rumale 0.19.0 → 0.20.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.rubocop.yml +5 -29
- data/CHANGELOG.md +28 -0
- data/lib/rumale.rb +7 -10
- data/lib/rumale/clustering/hdbscan.rb +3 -3
- data/lib/rumale/clustering/k_means.rb +1 -1
- data/lib/rumale/clustering/k_medoids.rb +1 -1
- data/lib/rumale/clustering/mini_batch_k_means.rb +139 -0
- data/lib/rumale/dataset.rb +4 -4
- data/lib/rumale/decomposition/nmf.rb +2 -2
- data/lib/rumale/ensemble/random_forest_classifier.rb +1 -1
- data/lib/rumale/ensemble/random_forest_regressor.rb +1 -1
- data/lib/rumale/feature_extraction/feature_hasher.rb +1 -1
- data/lib/rumale/feature_extraction/hash_vectorizer.rb +1 -1
- data/lib/rumale/feature_extraction/tfidf_transformer.rb +113 -0
- data/lib/rumale/kernel_approximation/nystroem.rb +1 -1
- data/lib/rumale/kernel_machine/kernel_svc.rb +1 -1
- data/lib/rumale/linear_model/base_sgd.rb +1 -1
- data/lib/rumale/manifold/tsne.rb +1 -1
- data/lib/rumale/model_selection/cross_validation.rb +3 -2
- data/lib/rumale/model_selection/group_k_fold.rb +93 -0
- data/lib/rumale/model_selection/group_shuffle_split.rb +115 -0
- data/lib/rumale/model_selection/k_fold.rb +1 -1
- data/lib/rumale/model_selection/shuffle_split.rb +5 -5
- data/lib/rumale/model_selection/stratified_k_fold.rb +1 -1
- data/lib/rumale/model_selection/stratified_shuffle_split.rb +13 -9
- data/lib/rumale/multiclass/one_vs_rest_classifier.rb +2 -2
- data/lib/rumale/nearest_neighbors/vp_tree.rb +1 -1
- data/lib/rumale/neural_network/adam.rb +1 -1
- data/lib/rumale/neural_network/base_mlp.rb +1 -1
- data/lib/rumale/preprocessing/binarizer.rb +60 -0
- data/lib/rumale/preprocessing/l1_normalizer.rb +62 -0
- data/lib/rumale/preprocessing/l2_normalizer.rb +2 -1
- data/lib/rumale/preprocessing/max_normalizer.rb +62 -0
- data/lib/rumale/probabilistic_output.rb +1 -1
- data/lib/rumale/version.rb +1 -1
- metadata +12 -15
- data/lib/rumale/linear_model/base_linear_model.rb +0 -102
- data/lib/rumale/optimizer/ada_grad.rb +0 -42
- data/lib/rumale/optimizer/adam.rb +0 -56
- data/lib/rumale/optimizer/nadam.rb +0 -67
- data/lib/rumale/optimizer/rmsprop.rb +0 -50
- data/lib/rumale/optimizer/sgd.rb +0 -46
- data/lib/rumale/optimizer/yellow_fin.rb +0 -104
- data/lib/rumale/polynomial_model/base_factorization_machine.rb +0 -125
- data/lib/rumale/polynomial_model/factorization_machine_classifier.rb +0 -220
- data/lib/rumale/polynomial_model/factorization_machine_regressor.rb +0 -134
@@ -1,7 +1,7 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
|
-
require 'rumale/base/base_estimator
|
4
|
-
require 'rumale/base/classifier
|
3
|
+
require 'rumale/base/base_estimator'
|
4
|
+
require 'rumale/base/classifier'
|
5
5
|
|
6
6
|
module Rumale
|
7
7
|
# This module consists of the classes that implement multi-class classification strategy.
|
@@ -30,7 +30,7 @@ module Rumale
|
|
30
30
|
@params = {}
|
31
31
|
@params[:min_samples_leaf] = min_samples_leaf
|
32
32
|
@data = x
|
33
|
-
@tree = build_tree(Numo::Int32.cast(
|
33
|
+
@tree = build_tree(Numo::Int32.cast(Array(0...@data.shape[0])))
|
34
34
|
end
|
35
35
|
|
36
36
|
# Search k-nearest neighbors of given query point.
|
@@ -32,7 +32,7 @@ module Rumale
|
|
32
32
|
end
|
33
33
|
|
34
34
|
# @!visibility private
|
35
|
-
# Calculate the updated weight with
|
35
|
+
# Calculate the updated weight with Adam adaptive learning rate.
|
36
36
|
#
|
37
37
|
# @param weight [Numo::DFloat] (shape: [n_features]) The weight to be updated.
|
38
38
|
# @param gradient [Numo::DFloat] (shape: [n_features]) The gradient for updating the weight.
|
@@ -222,7 +222,7 @@ module Rumale
|
|
222
222
|
n_samples = x.shape[0]
|
223
223
|
|
224
224
|
@params[:max_iter].times do |t|
|
225
|
-
sample_ids =
|
225
|
+
sample_ids = Array(0...n_samples)
|
226
226
|
sample_ids.shuffle!(random: srng)
|
227
227
|
until (subset_ids = sample_ids.shift(@params[:batch_size])).empty?
|
228
228
|
# random sampling
|
@@ -0,0 +1,60 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/base_estimator'
|
4
|
+
require 'rumale/base/transformer'
|
5
|
+
|
6
|
+
module Rumale
|
7
|
+
module Preprocessing
|
8
|
+
# Binarize samples according to a threshold
|
9
|
+
#
|
10
|
+
# @example
|
11
|
+
# binarizer = Rumale::Preprocessing::Binarizer.new
|
12
|
+
# x = Numo::DFloat[[-1.2, 3.2], [2.4, -0.5], [4.5, 0.8]]
|
13
|
+
# b = binarizer.transform(x)
|
14
|
+
# p b
|
15
|
+
#
|
16
|
+
# # Numo::DFloat#shape=[3, 2]
|
17
|
+
# # [[0, 1],
|
18
|
+
# # [1, 0],
|
19
|
+
# # [1, 1]]
|
20
|
+
class Binarizer
|
21
|
+
include Base::BaseEstimator
|
22
|
+
include Base::Transformer
|
23
|
+
|
24
|
+
# Create a new transformer for binarization.
|
25
|
+
# @param threshold [Float] The threshold value for binarization.
|
26
|
+
def initialize(threshold: 0.0)
|
27
|
+
check_params_numeric(threshold: threshold)
|
28
|
+
@params = { threshold: threshold }
|
29
|
+
end
|
30
|
+
|
31
|
+
# This method does nothing and returns the object itself.
|
32
|
+
# For compatibility with other transformer, this method exists.
|
33
|
+
#
|
34
|
+
# @overload fit() -> Binarizer
|
35
|
+
#
|
36
|
+
# @return [Binarizer]
|
37
|
+
def fit(_x = nil, _y = nil)
|
38
|
+
self
|
39
|
+
end
|
40
|
+
|
41
|
+
# Binarize each sample.
|
42
|
+
#
|
43
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be binarized.
|
44
|
+
# @return [Numo::DFloat] The binarized samples.
|
45
|
+
def transform(x)
|
46
|
+
x = check_convert_sample_array(x)
|
47
|
+
x.class.cast(x.gt(@params[:threshold]))
|
48
|
+
end
|
49
|
+
|
50
|
+
# The output of this method is the same as that of the transform method.
|
51
|
+
# For compatibility with other transformer, this method exists.
|
52
|
+
#
|
53
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be binarized.
|
54
|
+
# @return [Numo::DFloat] The binarized samples.
|
55
|
+
def fit_transform(x, _y = nil)
|
56
|
+
fit(x).transform(x)
|
57
|
+
end
|
58
|
+
end
|
59
|
+
end
|
60
|
+
end
|
@@ -0,0 +1,62 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/base_estimator'
|
4
|
+
require 'rumale/base/transformer'
|
5
|
+
|
6
|
+
module Rumale
|
7
|
+
module Preprocessing
|
8
|
+
# Normalize samples to unit L1-norm.
|
9
|
+
#
|
10
|
+
# @example
|
11
|
+
# normalizer = Rumale::Preprocessing::L1Normalizer.new
|
12
|
+
# new_samples = normalizer.fit_transform(samples)
|
13
|
+
class L1Normalizer
|
14
|
+
include Base::BaseEstimator
|
15
|
+
include Base::Transformer
|
16
|
+
|
17
|
+
# Return the vector consists of L1-norm for each sample.
|
18
|
+
# @return [Numo::DFloat] (shape: [n_samples])
|
19
|
+
attr_reader :norm_vec # :nodoc:
|
20
|
+
|
21
|
+
# Create a new normalizer for normaliing to L1-norm.
|
22
|
+
def initialize
|
23
|
+
@params = {}
|
24
|
+
@norm_vec = nil
|
25
|
+
end
|
26
|
+
|
27
|
+
# Calculate L1-norms of each sample.
|
28
|
+
#
|
29
|
+
# @overload fit(x) -> L1Normalizer
|
30
|
+
#
|
31
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate L1-norms.
|
32
|
+
# @return [L1Normalizer]
|
33
|
+
def fit(x, _y = nil)
|
34
|
+
x = check_convert_sample_array(x)
|
35
|
+
@norm_vec = x.abs.sum(1)
|
36
|
+
@norm_vec[@norm_vec.eq(0)] = 1
|
37
|
+
self
|
38
|
+
end
|
39
|
+
|
40
|
+
# Calculate L1-norms of each sample, and then normalize samples to L1-norm.
|
41
|
+
#
|
42
|
+
# @overload fit_transform(x) -> Numo::DFloat
|
43
|
+
#
|
44
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate L1-norms.
|
45
|
+
# @return [Numo::DFloat] The normalized samples.
|
46
|
+
def fit_transform(x, _y = nil)
|
47
|
+
x = check_convert_sample_array(x)
|
48
|
+
fit(x)
|
49
|
+
x / @norm_vec.expand_dims(1)
|
50
|
+
end
|
51
|
+
|
52
|
+
# Calculate L1-norms of each sample, and then normalize samples to L1-norm.
|
53
|
+
# This method calls the fit_transform method. This method exists for the Pipeline class.
|
54
|
+
#
|
55
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate L1-norms.
|
56
|
+
# @return [Numo::DFloat] The normalized samples.
|
57
|
+
def transform(x)
|
58
|
+
fit_transform(x)
|
59
|
+
end
|
60
|
+
end
|
61
|
+
end
|
62
|
+
end
|
@@ -34,6 +34,7 @@ module Rumale
|
|
34
34
|
def fit(x, _y = nil)
|
35
35
|
x = check_convert_sample_array(x)
|
36
36
|
@norm_vec = Numo::NMath.sqrt((x**2).sum(1))
|
37
|
+
@norm_vec[@norm_vec.eq(0)] = 1
|
37
38
|
self
|
38
39
|
end
|
39
40
|
|
@@ -46,7 +47,7 @@ module Rumale
|
|
46
47
|
def fit_transform(x, _y = nil)
|
47
48
|
x = check_convert_sample_array(x)
|
48
49
|
fit(x)
|
49
|
-
x / @norm_vec.
|
50
|
+
x / @norm_vec.expand_dims(1)
|
50
51
|
end
|
51
52
|
|
52
53
|
# Calculate L2-norms of each sample, and then normalize samples to unit L2-norm.
|
@@ -0,0 +1,62 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/base_estimator'
|
4
|
+
require 'rumale/base/transformer'
|
5
|
+
|
6
|
+
module Rumale
|
7
|
+
module Preprocessing
|
8
|
+
# Normalize samples with the maximum of the absolute values.
|
9
|
+
#
|
10
|
+
# @example
|
11
|
+
# normalizer = Rumale::Preprocessing::MaxNormalizer.new
|
12
|
+
# new_samples = normalizer.fit_transform(samples)
|
13
|
+
class MaxNormalizer
|
14
|
+
include Base::BaseEstimator
|
15
|
+
include Base::Transformer
|
16
|
+
|
17
|
+
# Return the vector consists of the maximum norm for each sample.
|
18
|
+
# @return [Numo::DFloat] (shape: [n_samples])
|
19
|
+
attr_reader :norm_vec # :nodoc:
|
20
|
+
|
21
|
+
# Create a new normalizer for normaliing to max-norm.
|
22
|
+
def initialize
|
23
|
+
@params = {}
|
24
|
+
@norm_vec = nil
|
25
|
+
end
|
26
|
+
|
27
|
+
# Calculate the maximum norms of each sample.
|
28
|
+
#
|
29
|
+
# @overload fit(x) -> MaxNormalizer
|
30
|
+
#
|
31
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate the maximum norms.
|
32
|
+
# @return [MaxNormalizer]
|
33
|
+
def fit(x, _y = nil)
|
34
|
+
x = check_convert_sample_array(x)
|
35
|
+
@norm_vec = x.abs.max(1)
|
36
|
+
@norm_vec[@norm_vec.eq(0)] = 1
|
37
|
+
self
|
38
|
+
end
|
39
|
+
|
40
|
+
# Calculate the maximums norm of each sample, and then normalize samples with the norms.
|
41
|
+
#
|
42
|
+
# @overload fit_transform(x) -> Numo::DFloat
|
43
|
+
#
|
44
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate maximum norms.
|
45
|
+
# @return [Numo::DFloat] The normalized samples.
|
46
|
+
def fit_transform(x, _y = nil)
|
47
|
+
x = check_convert_sample_array(x)
|
48
|
+
fit(x)
|
49
|
+
x / @norm_vec.expand_dims(1)
|
50
|
+
end
|
51
|
+
|
52
|
+
# Calculate the maximum norms of each sample, and then normalize samples with the norms.
|
53
|
+
# This method calls the fit_transform method. This method exists for the Pipeline class.
|
54
|
+
#
|
55
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate maximum norms.
|
56
|
+
# @return [Numo::DFloat] The normalized samples.
|
57
|
+
def transform(x)
|
58
|
+
fit_transform(x)
|
59
|
+
end
|
60
|
+
end
|
61
|
+
end
|
62
|
+
end
|
data/lib/rumale/version.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: rumale
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
4
|
+
version: 0.20.1
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- yoshoku
|
8
|
-
autorequire:
|
8
|
+
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2020-
|
11
|
+
date: 2020-08-23 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: numo-narray
|
@@ -72,6 +72,7 @@ files:
|
|
72
72
|
- lib/rumale/clustering/hdbscan.rb
|
73
73
|
- lib/rumale/clustering/k_means.rb
|
74
74
|
- lib/rumale/clustering/k_medoids.rb
|
75
|
+
- lib/rumale/clustering/mini_batch_k_means.rb
|
75
76
|
- lib/rumale/clustering/power_iteration.rb
|
76
77
|
- lib/rumale/clustering/single_linkage.rb
|
77
78
|
- lib/rumale/clustering/snn.rb
|
@@ -112,13 +113,13 @@ files:
|
|
112
113
|
- lib/rumale/evaluation_measure/silhouette_score.rb
|
113
114
|
- lib/rumale/feature_extraction/feature_hasher.rb
|
114
115
|
- lib/rumale/feature_extraction/hash_vectorizer.rb
|
116
|
+
- lib/rumale/feature_extraction/tfidf_transformer.rb
|
115
117
|
- lib/rumale/kernel_approximation/nystroem.rb
|
116
118
|
- lib/rumale/kernel_approximation/rbf.rb
|
117
119
|
- lib/rumale/kernel_machine/kernel_fda.rb
|
118
120
|
- lib/rumale/kernel_machine/kernel_pca.rb
|
119
121
|
- lib/rumale/kernel_machine/kernel_ridge.rb
|
120
122
|
- lib/rumale/kernel_machine/kernel_svc.rb
|
121
|
-
- lib/rumale/linear_model/base_linear_model.rb
|
122
123
|
- lib/rumale/linear_model/base_sgd.rb
|
123
124
|
- lib/rumale/linear_model/elastic_net.rb
|
124
125
|
- lib/rumale/linear_model/lasso.rb
|
@@ -134,6 +135,8 @@ files:
|
|
134
135
|
- lib/rumale/model_selection/cross_validation.rb
|
135
136
|
- lib/rumale/model_selection/function.rb
|
136
137
|
- lib/rumale/model_selection/grid_search_cv.rb
|
138
|
+
- lib/rumale/model_selection/group_k_fold.rb
|
139
|
+
- lib/rumale/model_selection/group_shuffle_split.rb
|
137
140
|
- lib/rumale/model_selection/k_fold.rb
|
138
141
|
- lib/rumale/model_selection/shuffle_split.rb
|
139
142
|
- lib/rumale/model_selection/stratified_k_fold.rb
|
@@ -152,23 +155,17 @@ files:
|
|
152
155
|
- lib/rumale/neural_network/base_mlp.rb
|
153
156
|
- lib/rumale/neural_network/mlp_classifier.rb
|
154
157
|
- lib/rumale/neural_network/mlp_regressor.rb
|
155
|
-
- lib/rumale/optimizer/ada_grad.rb
|
156
|
-
- lib/rumale/optimizer/adam.rb
|
157
|
-
- lib/rumale/optimizer/nadam.rb
|
158
|
-
- lib/rumale/optimizer/rmsprop.rb
|
159
|
-
- lib/rumale/optimizer/sgd.rb
|
160
|
-
- lib/rumale/optimizer/yellow_fin.rb
|
161
158
|
- lib/rumale/pairwise_metric.rb
|
162
159
|
- lib/rumale/pipeline/feature_union.rb
|
163
160
|
- lib/rumale/pipeline/pipeline.rb
|
164
|
-
- lib/rumale/polynomial_model/base_factorization_machine.rb
|
165
|
-
- lib/rumale/polynomial_model/factorization_machine_classifier.rb
|
166
|
-
- lib/rumale/polynomial_model/factorization_machine_regressor.rb
|
167
161
|
- lib/rumale/preprocessing/bin_discretizer.rb
|
162
|
+
- lib/rumale/preprocessing/binarizer.rb
|
163
|
+
- lib/rumale/preprocessing/l1_normalizer.rb
|
168
164
|
- lib/rumale/preprocessing/l2_normalizer.rb
|
169
165
|
- lib/rumale/preprocessing/label_binarizer.rb
|
170
166
|
- lib/rumale/preprocessing/label_encoder.rb
|
171
167
|
- lib/rumale/preprocessing/max_abs_scaler.rb
|
168
|
+
- lib/rumale/preprocessing/max_normalizer.rb
|
172
169
|
- lib/rumale/preprocessing/min_max_scaler.rb
|
173
170
|
- lib/rumale/preprocessing/one_hot_encoder.rb
|
174
171
|
- lib/rumale/preprocessing/ordinal_encoder.rb
|
@@ -196,7 +193,7 @@ metadata:
|
|
196
193
|
source_code_uri: https://github.com/yoshoku/rumale
|
197
194
|
documentation_uri: https://yoshoku.github.io/rumale/doc/
|
198
195
|
bug_tracker_uri: https://github.com/yoshoku/rumale/issues
|
199
|
-
post_install_message:
|
196
|
+
post_install_message:
|
200
197
|
rdoc_options: []
|
201
198
|
require_paths:
|
202
199
|
- lib
|
@@ -212,7 +209,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
212
209
|
version: '0'
|
213
210
|
requirements: []
|
214
211
|
rubygems_version: 3.1.2
|
215
|
-
signing_key:
|
212
|
+
signing_key:
|
216
213
|
specification_version: 4
|
217
214
|
summary: Rumale is a machine learning library in Ruby. Rumale provides machine learning
|
218
215
|
algorithms with interfaces similar to Scikit-Learn in Python.
|
@@ -1,102 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/base_estimator'
|
4
|
-
require 'rumale/optimizer/nadam'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
module LinearModel
|
8
|
-
# @note
|
9
|
-
# In version 0.17.0, a new linear model abstract class called BaseSGD is introduced.
|
10
|
-
# BaseLienarModel is deprecated and will be removed in the future.
|
11
|
-
# @deprecated Use BaseSGD class instead. This class will be deleted in version 0.20.0.
|
12
|
-
#
|
13
|
-
# BaseLinearModel is an abstract class for implementation of linear estimator
|
14
|
-
# with mini-batch stochastic gradient descent optimization.
|
15
|
-
# This class is used for internal process.
|
16
|
-
class BaseLinearModel
|
17
|
-
# :nocov:
|
18
|
-
include Base::BaseEstimator
|
19
|
-
|
20
|
-
# Initialize a linear estimator.
|
21
|
-
#
|
22
|
-
# @param reg_param [Float] The regularization parameter.
|
23
|
-
# @param fit_bias [Boolean] The flag indicating whether to fit the bias term.
|
24
|
-
# @param bias_scale [Float] The scale of the bias term.
|
25
|
-
# @param max_iter [Integer] The maximum number of iterations.
|
26
|
-
# @param batch_size [Integer] The size of the mini batches.
|
27
|
-
# @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
|
28
|
-
# If nil is given, Nadam is used.
|
29
|
-
# @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel.
|
30
|
-
# If nil is given, the methods do not execute in parallel.
|
31
|
-
# If zero or less is given, it becomes equal to the number of processors.
|
32
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
33
|
-
def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0,
|
34
|
-
max_iter: 1000, batch_size: 10, optimizer: nil, n_jobs: nil, random_seed: nil)
|
35
|
-
warn 'warning: BaseLinearModel is deprecated. Use BaseSGD instead.'
|
36
|
-
@params = {}
|
37
|
-
@params[:reg_param] = reg_param
|
38
|
-
@params[:fit_bias] = fit_bias
|
39
|
-
@params[:bias_scale] = bias_scale
|
40
|
-
@params[:max_iter] = max_iter
|
41
|
-
@params[:batch_size] = batch_size
|
42
|
-
@params[:optimizer] = optimizer
|
43
|
-
@params[:optimizer] ||= Rumale::Optimizer::Nadam.new
|
44
|
-
@params[:n_jobs] = n_jobs
|
45
|
-
@params[:random_seed] = random_seed
|
46
|
-
@params[:random_seed] ||= srand
|
47
|
-
@weight_vec = nil
|
48
|
-
@bias_term = nil
|
49
|
-
@rng = Random.new(@params[:random_seed])
|
50
|
-
end
|
51
|
-
|
52
|
-
private
|
53
|
-
|
54
|
-
def partial_fit(x, y)
|
55
|
-
# Expand feature vectors for bias term.
|
56
|
-
samples = @params[:fit_bias] ? expand_feature(x) : x
|
57
|
-
# Initialize some variables.
|
58
|
-
n_samples, n_features = samples.shape
|
59
|
-
rand_ids = [*0...n_samples].shuffle(random: @rng.dup)
|
60
|
-
weight = Numo::DFloat.zeros(n_features)
|
61
|
-
optimizer = @params[:optimizer].dup
|
62
|
-
# Optimization.
|
63
|
-
@params[:max_iter].times do |_t|
|
64
|
-
# Random sampling
|
65
|
-
subset_ids = rand_ids.shift(@params[:batch_size])
|
66
|
-
rand_ids.concat(subset_ids)
|
67
|
-
sub_samples = samples[subset_ids, true]
|
68
|
-
sub_targets = y[subset_ids]
|
69
|
-
# Update weight.
|
70
|
-
loss_gradient = calc_loss_gradient(sub_samples, sub_targets, weight)
|
71
|
-
next if loss_gradient.ne(0.0).count.zero?
|
72
|
-
|
73
|
-
weight = calc_new_weight(optimizer, sub_samples, weight, loss_gradient)
|
74
|
-
end
|
75
|
-
split_weight(weight)
|
76
|
-
end
|
77
|
-
|
78
|
-
def calc_loss_gradient(_x, _y, _weight)
|
79
|
-
raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}."
|
80
|
-
end
|
81
|
-
|
82
|
-
def calc_new_weight(optimizer, x, weight, loss_gradient)
|
83
|
-
weight_gradient = x.transpose.dot(loss_gradient) / @params[:batch_size] + @params[:reg_param] * weight
|
84
|
-
optimizer.call(weight, weight_gradient)
|
85
|
-
end
|
86
|
-
|
87
|
-
def expand_feature(x)
|
88
|
-
n_samples = x.shape[0]
|
89
|
-
Numo::NArray.hstack([x, Numo::DFloat.ones([n_samples, 1]) * @params[:bias_scale]])
|
90
|
-
end
|
91
|
-
|
92
|
-
def split_weight(weight)
|
93
|
-
if @params[:fit_bias]
|
94
|
-
[weight[0...-1].dup, weight[-1]]
|
95
|
-
else
|
96
|
-
[weight, 0.0]
|
97
|
-
end
|
98
|
-
end
|
99
|
-
# :nocov:
|
100
|
-
end
|
101
|
-
end
|
102
|
-
end
|