rumale 0.19.0 → 0.20.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (47) hide show
  1. checksums.yaml +4 -4
  2. data/.rubocop.yml +5 -29
  3. data/CHANGELOG.md +28 -0
  4. data/lib/rumale.rb +7 -10
  5. data/lib/rumale/clustering/hdbscan.rb +3 -3
  6. data/lib/rumale/clustering/k_means.rb +1 -1
  7. data/lib/rumale/clustering/k_medoids.rb +1 -1
  8. data/lib/rumale/clustering/mini_batch_k_means.rb +139 -0
  9. data/lib/rumale/dataset.rb +4 -4
  10. data/lib/rumale/decomposition/nmf.rb +2 -2
  11. data/lib/rumale/ensemble/random_forest_classifier.rb +1 -1
  12. data/lib/rumale/ensemble/random_forest_regressor.rb +1 -1
  13. data/lib/rumale/feature_extraction/feature_hasher.rb +1 -1
  14. data/lib/rumale/feature_extraction/hash_vectorizer.rb +1 -1
  15. data/lib/rumale/feature_extraction/tfidf_transformer.rb +113 -0
  16. data/lib/rumale/kernel_approximation/nystroem.rb +1 -1
  17. data/lib/rumale/kernel_machine/kernel_svc.rb +1 -1
  18. data/lib/rumale/linear_model/base_sgd.rb +1 -1
  19. data/lib/rumale/manifold/tsne.rb +1 -1
  20. data/lib/rumale/model_selection/cross_validation.rb +3 -2
  21. data/lib/rumale/model_selection/group_k_fold.rb +93 -0
  22. data/lib/rumale/model_selection/group_shuffle_split.rb +115 -0
  23. data/lib/rumale/model_selection/k_fold.rb +1 -1
  24. data/lib/rumale/model_selection/shuffle_split.rb +5 -5
  25. data/lib/rumale/model_selection/stratified_k_fold.rb +1 -1
  26. data/lib/rumale/model_selection/stratified_shuffle_split.rb +13 -9
  27. data/lib/rumale/multiclass/one_vs_rest_classifier.rb +2 -2
  28. data/lib/rumale/nearest_neighbors/vp_tree.rb +1 -1
  29. data/lib/rumale/neural_network/adam.rb +1 -1
  30. data/lib/rumale/neural_network/base_mlp.rb +1 -1
  31. data/lib/rumale/preprocessing/binarizer.rb +60 -0
  32. data/lib/rumale/preprocessing/l1_normalizer.rb +62 -0
  33. data/lib/rumale/preprocessing/l2_normalizer.rb +2 -1
  34. data/lib/rumale/preprocessing/max_normalizer.rb +62 -0
  35. data/lib/rumale/probabilistic_output.rb +1 -1
  36. data/lib/rumale/version.rb +1 -1
  37. metadata +12 -15
  38. data/lib/rumale/linear_model/base_linear_model.rb +0 -102
  39. data/lib/rumale/optimizer/ada_grad.rb +0 -42
  40. data/lib/rumale/optimizer/adam.rb +0 -56
  41. data/lib/rumale/optimizer/nadam.rb +0 -67
  42. data/lib/rumale/optimizer/rmsprop.rb +0 -50
  43. data/lib/rumale/optimizer/sgd.rb +0 -46
  44. data/lib/rumale/optimizer/yellow_fin.rb +0 -104
  45. data/lib/rumale/polynomial_model/base_factorization_machine.rb +0 -125
  46. data/lib/rumale/polynomial_model/factorization_machine_classifier.rb +0 -220
  47. data/lib/rumale/polynomial_model/factorization_machine_regressor.rb +0 -134
@@ -1,42 +0,0 @@
1
- # frozen_string_literal: true
2
-
3
- require 'rumale/validation'
4
- require 'rumale/base/base_estimator'
5
-
6
- module Rumale
7
- module Optimizer
8
- # AdaGrad is a class that implements AdaGrad optimizer.
9
- #
10
- # @deprecated AdaGrad will be deleted in version 0.20.0.
11
- #
12
- # *Reference*
13
- # - Duchi, J., Hazan, E., and Singer, Y., "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization," J. Machine Learning Research, vol. 12, pp. 2121--2159, 2011.
14
- class AdaGrad
15
- include Base::BaseEstimator
16
- include Validation
17
-
18
- # Create a new optimizer with AdaGrad.
19
- #
20
- # @param learning_rate [Float] The initial value of learning rate.
21
- def initialize(learning_rate: 0.01)
22
- warn 'warning: AdaGrad is deprecated. This class will be deleted in version 0.20.0.'
23
- check_params_numeric(learning_rate: learning_rate)
24
- check_params_positive(learning_rate: learning_rate)
25
- @params = {}
26
- @params[:learning_rate] = learning_rate
27
- @moment = nil
28
- end
29
-
30
- # Calculate the updated weight with AdaGrad adaptive learning rate.
31
- #
32
- # @param weight [Numo::DFloat] (shape: [n_features]) The weight to be updated.
33
- # @param gradient [Numo::DFloat] (shape: [n_features]) The gradient for updating the weight.
34
- # @return [Numo::DFloat] (shape: [n_feautres]) The updated weight.
35
- def call(weight, gradient)
36
- @moment ||= Numo::DFloat.zeros(weight.shape[0])
37
- @moment += gradient**2
38
- weight - (@params[:learning_rate] / (@moment**0.5 + 1.0e-8)) * gradient
39
- end
40
- end
41
- end
42
- end
@@ -1,56 +0,0 @@
1
- # frozen_string_literal: true
2
-
3
- require 'rumale/validation'
4
- require 'rumale/base/base_estimator'
5
-
6
- module Rumale
7
- module Optimizer
8
- # Adam is a class that implements Adam optimizer.
9
- #
10
- # @deprecated Adam will be deleted in version 0.20.0.
11
- #
12
- # *Reference*
13
- # - Kingma, D P., and Ba, J., "Adam: A Method for Stochastic Optimization," Proc. ICLR'15, 2015.
14
- class Adam
15
- include Base::BaseEstimator
16
- include Validation
17
-
18
- # Create a new optimizer with Adam
19
- #
20
- # @param learning_rate [Float] The initial value of learning rate.
21
- # @param decay1 [Float] The smoothing parameter for the first moment.
22
- # @param decay2 [Float] The smoothing parameter for the second moment.
23
- def initialize(learning_rate: 0.001, decay1: 0.9, decay2: 0.999)
24
- warn 'warning: Adam is deprecated. This class will be deleted in version 0.20.0.'
25
- check_params_numeric(learning_rate: learning_rate, decay1: decay1, decay2: decay2)
26
- check_params_positive(learning_rate: learning_rate, decay1: decay1, decay2: decay2)
27
- @params = {}
28
- @params[:learning_rate] = learning_rate
29
- @params[:decay1] = decay1
30
- @params[:decay2] = decay2
31
- @fst_moment = nil
32
- @sec_moment = nil
33
- @iter = 0
34
- end
35
-
36
- # Calculate the updated weight with Nadam adaptive learning rate.
37
- #
38
- # @param weight [Numo::DFloat] (shape: [n_features]) The weight to be updated.
39
- # @param gradient [Numo::DFloat] (shape: [n_features]) The gradient for updating the weight.
40
- # @return [Numo::DFloat] (shape: [n_feautres]) The updated weight.
41
- def call(weight, gradient)
42
- @fst_moment ||= Numo::DFloat.zeros(weight.shape)
43
- @sec_moment ||= Numo::DFloat.zeros(weight.shape)
44
-
45
- @iter += 1
46
-
47
- @fst_moment = @params[:decay1] * @fst_moment + (1.0 - @params[:decay1]) * gradient
48
- @sec_moment = @params[:decay2] * @sec_moment + (1.0 - @params[:decay2]) * gradient**2
49
- nm_fst_moment = @fst_moment / (1.0 - @params[:decay1]**@iter)
50
- nm_sec_moment = @sec_moment / (1.0 - @params[:decay2]**@iter)
51
-
52
- weight - @params[:learning_rate] * nm_fst_moment / (nm_sec_moment**0.5 + 1e-8)
53
- end
54
- end
55
- end
56
- end
@@ -1,67 +0,0 @@
1
- # frozen_string_literal: true
2
-
3
- require 'rumale/validation'
4
- require 'rumale/base/base_estimator'
5
-
6
- module Rumale
7
- # This module consists of the classes that implement optimizers adaptively tuning hyperparameters.
8
- #
9
- # @deprecated Optimizer module will be deleted in version 0.20.0.
10
- module Optimizer
11
- # Nadam is a class that implements Nadam optimizer.
12
- #
13
- # @deprecated Nadam will be deleted in version 0.20.0.
14
- #
15
- # *Reference*
16
- # - Dozat, T., "Incorporating Nesterov Momentum into Adam," Tech. Repo. Stanford University, 2015.
17
- class Nadam
18
- include Base::BaseEstimator
19
- include Validation
20
-
21
- # Create a new optimizer with Nadam
22
- #
23
- # @param learning_rate [Float] The initial value of learning rate.
24
- # @param decay1 [Float] The smoothing parameter for the first moment.
25
- # @param decay2 [Float] The smoothing parameter for the second moment.
26
- def initialize(learning_rate: 0.01, decay1: 0.9, decay2: 0.999)
27
- warn 'warning: Nadam is deprecated. This class will be deleted in version 0.20.0.'
28
- check_params_numeric(learning_rate: learning_rate, decay1: decay1, decay2: decay2)
29
- check_params_positive(learning_rate: learning_rate, decay1: decay1, decay2: decay2)
30
- @params = {}
31
- @params[:learning_rate] = learning_rate
32
- @params[:decay1] = decay1
33
- @params[:decay2] = decay2
34
- @fst_moment = nil
35
- @sec_moment = nil
36
- @decay1_prod = 1.0
37
- @iter = 0
38
- end
39
-
40
- # Calculate the updated weight with Nadam adaptive learning rate.
41
- #
42
- # @param weight [Numo::DFloat] (shape: [n_features]) The weight to be updated.
43
- # @param gradient [Numo::DFloat] (shape: [n_features]) The gradient for updating the weight.
44
- # @return [Numo::DFloat] (shape: [n_feautres]) The updated weight.
45
- def call(weight, gradient)
46
- @fst_moment ||= Numo::DFloat.zeros(weight.shape[0])
47
- @sec_moment ||= Numo::DFloat.zeros(weight.shape[0])
48
-
49
- @iter += 1
50
-
51
- decay1_curr = @params[:decay1] * (1.0 - 0.5 * 0.96**(@iter * 0.004))
52
- decay1_next = @params[:decay1] * (1.0 - 0.5 * 0.96**((@iter + 1) * 0.004))
53
- decay1_prod_curr = @decay1_prod * decay1_curr
54
- decay1_prod_next = @decay1_prod * decay1_curr * decay1_next
55
- @decay1_prod = decay1_prod_curr
56
-
57
- @fst_moment = @params[:decay1] * @fst_moment + (1.0 - @params[:decay1]) * gradient
58
- @sec_moment = @params[:decay2] * @sec_moment + (1.0 - @params[:decay2]) * gradient**2
59
- nm_gradient = gradient / (1.0 - decay1_prod_curr)
60
- nm_fst_moment = @fst_moment / (1.0 - decay1_prod_next)
61
- nm_sec_moment = @sec_moment / (1.0 - @params[:decay2]**@iter)
62
-
63
- weight - (@params[:learning_rate] / (nm_sec_moment**0.5 + 1e-8)) * ((1 - decay1_curr) * nm_gradient + decay1_next * nm_fst_moment)
64
- end
65
- end
66
- end
67
- end
@@ -1,50 +0,0 @@
1
- # frozen_string_literal: true
2
-
3
- require 'rumale/validation'
4
- require 'rumale/base/base_estimator'
5
-
6
- module Rumale
7
- module Optimizer
8
- # RMSProp is a class that implements RMSProp optimizer.
9
- #
10
- # @deprecated RMSProp will be deleted in version 0.20.0.
11
- #
12
- # *Reference*
13
- # - Sutskever, I., Martens, J., Dahl, G., and Hinton, G., "On the importance of initialization and momentum in deep learning," Proc. ICML' 13, pp. 1139--1147, 2013.
14
- # - Hinton, G., Srivastava, N., and Swersky, K., "Lecture 6e rmsprop," Neural Networks for Machine Learning, 2012.
15
- class RMSProp
16
- include Base::BaseEstimator
17
- include Validation
18
-
19
- # Create a new optimizer with RMSProp.
20
- #
21
- # @param learning_rate [Float] The initial value of learning rate.
22
- # @param momentum [Float] The initial value of momentum.
23
- # @param decay [Float] The smooting parameter.
24
- def initialize(learning_rate: 0.01, momentum: 0.9, decay: 0.9)
25
- warn 'warning: RMSProp is deprecated. This class will be deleted in version 0.20.0.'
26
- check_params_numeric(learning_rate: learning_rate, momentum: momentum, decay: decay)
27
- check_params_positive(learning_rate: learning_rate, momentum: momentum, decay: decay)
28
- @params = {}
29
- @params[:learning_rate] = learning_rate
30
- @params[:momentum] = momentum
31
- @params[:decay] = decay
32
- @moment = nil
33
- @update = nil
34
- end
35
-
36
- # Calculate the updated weight with RMSProp adaptive learning rate.
37
- #
38
- # @param weight [Numo::DFloat] (shape: [n_features]) The weight to be updated.
39
- # @param gradient [Numo::DFloat] (shape: [n_features]) The gradient for updating the weight.
40
- # @return [Numo::DFloat] (shape: [n_feautres]) The updated weight.
41
- def call(weight, gradient)
42
- @moment ||= Numo::DFloat.zeros(weight.shape[0])
43
- @update ||= Numo::DFloat.zeros(weight.shape[0])
44
- @moment = @params[:decay] * @moment + (1.0 - @params[:decay]) * gradient**2
45
- @update = @params[:momentum] * @update - (@params[:learning_rate] / (@moment**0.5 + 1.0e-8)) * gradient
46
- weight + @update
47
- end
48
- end
49
- end
50
- end
@@ -1,46 +0,0 @@
1
- # frozen_string_literal: true
2
-
3
- require 'rumale/validation'
4
- require 'rumale/base/base_estimator'
5
-
6
- module Rumale
7
- module Optimizer
8
- # SGD is a class that implements SGD optimizer.
9
- #
10
- # @deprecated SGD will be deleted in version 0.20.0.
11
- class SGD
12
- include Base::BaseEstimator
13
- include Validation
14
-
15
- # Create a new optimizer with SGD.
16
- #
17
- # @param learning_rate [Float] The initial value of learning rate.
18
- # @param momentum [Float] The initial value of momentum.
19
- # @param decay [Float] The smooting parameter.
20
- def initialize(learning_rate: 0.01, momentum: 0.0, decay: 0.0)
21
- warn 'warning: SGD is deprecated. This class will be deleted in version 0.20.0.'
22
- check_params_numeric(learning_rate: learning_rate, momentum: momentum, decay: decay)
23
- check_params_positive(learning_rate: learning_rate, momentum: momentum, decay: decay)
24
- @params = {}
25
- @params[:learning_rate] = learning_rate
26
- @params[:momentum] = momentum
27
- @params[:decay] = decay
28
- @iter = 0
29
- @update = nil
30
- end
31
-
32
- # Calculate the updated weight with SGD.
33
- #
34
- # @param weight [Numo::DFloat] (shape: [n_features]) The weight to be updated.
35
- # @param gradient [Numo::DFloat] (shape: [n_features]) The gradient for updating the weight.
36
- # @return [Numo::DFloat] (shape: [n_feautres]) The updated weight.
37
- def call(weight, gradient)
38
- @update ||= Numo::DFloat.zeros(weight.shape[0])
39
- current_learning_rate = @params[:learning_rate] / (1.0 + @params[:decay] * @iter)
40
- @iter += 1
41
- @update = @params[:momentum] * @update - current_learning_rate * gradient
42
- weight + @update
43
- end
44
- end
45
- end
46
- end
@@ -1,104 +0,0 @@
1
- # frozen_string_literal: true
2
-
3
- require 'rumale/validation'
4
- require 'rumale/base/base_estimator'
5
-
6
- module Rumale
7
- module Optimizer
8
- # YellowFin is a class that implements YellowFin optimizer.
9
- #
10
- # @deprecated YellowFin will be deleted in version 0.20.0.
11
- #
12
- # *Reference*
13
- # - Zhang, J., and Mitliagkas, I., "YellowFin and the Art of Momentum Tuning," CoRR abs/1706.03471, 2017.
14
- class YellowFin
15
- include Base::BaseEstimator
16
- include Validation
17
-
18
- # Create a new optimizer with YellowFin.
19
- #
20
- # @param learning_rate [Float] The initial value of learning rate.
21
- # @param momentum [Float] The initial value of momentum.
22
- # @param decay [Float] The smooting parameter.
23
- # @param window_width [Integer] The sliding window width for searching curvature range.
24
- def initialize(learning_rate: 0.01, momentum: 0.9, decay: 0.999, window_width: 20)
25
- warn 'warning: YellowFin is deprecated. This class will be deleted in version 0.20.0.'
26
- check_params_numeric(learning_rate: learning_rate, momentum: momentum, decay: decay, window_width: window_width)
27
- check_params_positive(learning_rate: learning_rate, momentum: momentum, decay: decay, window_width: window_width)
28
- @params = {}
29
- @params[:learning_rate] = learning_rate
30
- @params[:momentum] = momentum
31
- @params[:decay] = decay
32
- @params[:window_width] = window_width
33
- @smth_learning_rate = learning_rate
34
- @smth_momentum = momentum
35
- @grad_norms = nil
36
- @grad_norm_min = 0.0
37
- @grad_norm_max = 0.0
38
- @grad_mean_sqr = 0.0
39
- @grad_mean = 0.0
40
- @grad_var = 0.0
41
- @grad_norm_mean = 0.0
42
- @curve_mean = 0.0
43
- @distance_mean = 0.0
44
- @update = nil
45
- end
46
-
47
- # Calculate the updated weight with adaptive momentum coefficient and learning rate.
48
- #
49
- # @param weight [Numo::DFloat] (shape: [n_features]) The weight to be updated.
50
- # @param gradient [Numo::DFloat] (shape: [n_features]) The gradient for updating the weight.
51
- # @return [Numo::DFloat] (shape: [n_feautres]) The updated weight.
52
- def call(weight, gradient)
53
- @update ||= Numo::DFloat.zeros(weight.shape[0])
54
- curvature_range(gradient)
55
- gradient_variance(gradient)
56
- distance_to_optimum(gradient)
57
- @smth_momentum = @params[:decay] * @smth_momentum + (1 - @params[:decay]) * current_momentum
58
- @smth_learning_rate = @params[:decay] * @smth_learning_rate + (1 - @params[:decay]) * current_learning_rate
59
- @update = @smth_momentum * @update - @smth_learning_rate * gradient
60
- weight + @update
61
- end
62
-
63
- private
64
-
65
- def current_momentum
66
- dr = Math.sqrt(@grad_norm_max / @grad_norm_min + 1.0e-8)
67
- [cubic_root**2, ((dr - 1) / (dr + 1))**2].max
68
- end
69
-
70
- def current_learning_rate
71
- (1.0 - Math.sqrt(@params[:momentum]))**2 / (@grad_norm_min + 1.0e-8)
72
- end
73
-
74
- def cubic_root
75
- p = (@distance_mean**2 * @grad_norm_min**2) / (2 * @grad_var + 1.0e-8)
76
- w3 = (-Math.sqrt(p**2 + 4.fdiv(27) * p**3) - p).fdiv(2)
77
- w = (w3 >= 0.0 ? 1 : -1) * w3.abs**1.fdiv(3)
78
- y = w - p / (3 * w + 1.0e-8)
79
- y + 1
80
- end
81
-
82
- def curvature_range(gradient)
83
- @grad_norms ||= []
84
- @grad_norms.push((gradient**2).sum)
85
- @grad_norms.shift(@grad_norms.size - @params[:window_width]) if @grad_norms.size > @params[:window_width]
86
- @grad_norm_min = @params[:decay] * @grad_norm_min + (1 - @params[:decay]) * @grad_norms.min
87
- @grad_norm_max = @params[:decay] * @grad_norm_max + (1 - @params[:decay]) * @grad_norms.max
88
- end
89
-
90
- def gradient_variance(gradient)
91
- @grad_mean_sqr = @params[:decay] * @grad_mean_sqr + (1 - @params[:decay]) * gradient**2
92
- @grad_mean = @params[:decay] * @grad_mean + (1 - @params[:decay]) * gradient
93
- @grad_var = (@grad_mean_sqr - @grad_mean**2).sum
94
- end
95
-
96
- def distance_to_optimum(gradient)
97
- grad_sqr = (gradient**2).sum
98
- @grad_norm_mean = @params[:decay] * @grad_norm_mean + (1 - @params[:decay]) * Math.sqrt(grad_sqr + 1.0e-8)
99
- @curve_mean = @params[:decay] * @curve_mean + (1 - @params[:decay]) * grad_sqr
100
- @distance_mean = @params[:decay] * @distance_mean + (1 - @params[:decay]) * (@grad_norm_mean / @curve_mean)
101
- end
102
- end
103
- end
104
- end
@@ -1,125 +0,0 @@
1
- # frozen_string_literal: true
2
-
3
- require 'rumale/base/base_estimator'
4
- require 'rumale/optimizer/nadam'
5
-
6
- module Rumale
7
- # This module consists of the classes that implement polynomial models.
8
- #
9
- # @deprecated PolynomialModel module will be deleted in version 0.20.0.
10
- module PolynomialModel
11
- # BaseFactorizationMachine is an abstract class for implementation of Factorization Machine-based estimators.
12
- # This class is used internally.
13
- #
14
- # @deprecated BaseFactorizationMachine will be deleted in version 0.20.0.
15
- class BaseFactorizationMachine
16
- include Base::BaseEstimator
17
-
18
- # Initialize a Factorization Machine-based estimator.
19
- #
20
- # @param n_factors [Integer] The maximum number of iterations.
21
- # @param loss [String] The loss function ('hinge' or 'logistic' or nil).
22
- # @param reg_param_linear [Float] The regularization parameter for linear model.
23
- # @param reg_param_factor [Float] The regularization parameter for factor matrix.
24
- # @param max_iter [Integer] The maximum number of epochs that indicates
25
- # how many times the whole data is given to the training process.
26
- # @param batch_size [Integer] The size of the mini batches.
27
- # @param tol [Float] The tolerance of loss for terminating optimization.
28
- # @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
29
- # If nil is given, Nadam is used.
30
- # @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel.
31
- # If nil is given, the methods do not execute in parallel.
32
- # If zero or less is given, it becomes equal to the number of processors.
33
- # This parameter is ignored if the Parallel gem is not loaded.
34
- # @param verbose [Boolean] The flag indicating whether to output loss during iteration.
35
- # @param random_seed [Integer] The seed value using to initialize the random generator.
36
- def initialize(n_factors: 2, loss: nil, reg_param_linear: 1.0, reg_param_factor: 1.0,
37
- max_iter: 200, batch_size: 50, tol: 1e-4,
38
- optimizer: nil, n_jobs: nil, verbose: false, random_seed: nil)
39
- @params = {}
40
- @params[:n_factors] = n_factors
41
- @params[:loss] = loss unless loss.nil?
42
- @params[:reg_param_linear] = reg_param_linear
43
- @params[:reg_param_factor] = reg_param_factor
44
- @params[:max_iter] = max_iter
45
- @params[:batch_size] = batch_size
46
- @params[:tol] = tol
47
- @params[:optimizer] = optimizer
48
- @params[:optimizer] ||= Optimizer::Nadam.new
49
- @params[:n_jobs] = n_jobs
50
- @params[:verbose] = verbose
51
- @params[:random_seed] = random_seed
52
- @params[:random_seed] ||= srand
53
- @factor_mat = nil
54
- @weight_vec = nil
55
- @bias_term = nil
56
- @rng = Random.new(@params[:random_seed])
57
- end
58
-
59
- private
60
-
61
- def partial_fit(x, y)
62
- # Initialize some variables.
63
- class_name = self.class.to_s.split('::').last if @params[:verbose]
64
- n_samples, n_features = x.shape
65
- sub_rng = @rng.dup
66
- weight_vec = Numo::DFloat.zeros(n_features + 1)
67
- factor_mat = Rumale::Utils.rand_normal([@params[:n_factors], n_features], sub_rng)
68
- weight_optimizer = @params[:optimizer].dup
69
- factor_optimizers = Array.new(@params[:n_factors]) { @params[:optimizer].dup }
70
- # Start optimization.
71
- @params[:max_iter].times do |t|
72
- sample_ids = [*0...n_samples]
73
- sample_ids.shuffle!(random: sub_rng)
74
- until (subset_ids = sample_ids.shift(@params[:batch_size])).empty?
75
- # Sampling.
76
- sub_x = x[subset_ids, true]
77
- sub_y = y[subset_ids]
78
- ex_sub_x = expand_feature(sub_x)
79
- # Calculate gradients for loss function.
80
- loss_grad = loss_gradient(sub_x, ex_sub_x, sub_y, factor_mat, weight_vec)
81
- next if loss_grad.ne(0.0).count.zero?
82
-
83
- # Update each parameter.
84
- weight_vec = weight_optimizer.call(weight_vec, weight_gradient(loss_grad, ex_sub_x, weight_vec))
85
- @params[:n_factors].times do |n|
86
- factor_mat[n, true] = factor_optimizers[n].call(factor_mat[n, true],
87
- factor_gradient(loss_grad, sub_x, factor_mat[n, true]))
88
- end
89
- end
90
- loss = loss_func(x, expand_feature(x), y, factor_mat, weight_vec)
91
- puts "[#{class_name}] Loss after #{t + 1} epochs: #{loss}" if @params[:verbose]
92
- break if loss < @params[:tol]
93
- end
94
- [factor_mat, *split_weight_vec_bias(weight_vec)]
95
- end
96
-
97
- def loss_func(_x, _expanded_x, _y, _factor, _weight)
98
- raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}."
99
- end
100
-
101
- def loss_gradient(_x, _expanded_x, _y, _factor, _weight)
102
- raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}."
103
- end
104
-
105
- def weight_gradient(loss_grad, data, weight)
106
- (loss_grad.expand_dims(1) * data).mean(0) + @params[:reg_param_linear] * weight
107
- end
108
-
109
- def factor_gradient(loss_grad, data, factor)
110
- (loss_grad.expand_dims(1) * (data * data.dot(factor).expand_dims(1) - factor * (data**2))).mean(0) +
111
- @params[:reg_param_factor] * factor
112
- end
113
-
114
- def expand_feature(x)
115
- Numo::NArray.hstack([x, Numo::DFloat.ones([x.shape[0], 1])])
116
- end
117
-
118
- def split_weight_vec_bias(weight_vec)
119
- weights = weight_vec[0...-1].dup
120
- bias = weight_vec[-1]
121
- [weights, bias]
122
- end
123
- end
124
- end
125
- end