polars-df 0.2.0-x86_64-linux
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.yardopts +3 -0
- data/CHANGELOG.md +33 -0
- data/Cargo.lock +2230 -0
- data/Cargo.toml +10 -0
- data/LICENSE-THIRD-PARTY.txt +38828 -0
- data/LICENSE.txt +20 -0
- data/README.md +91 -0
- data/lib/polars/3.0/polars.so +0 -0
- data/lib/polars/3.1/polars.so +0 -0
- data/lib/polars/3.2/polars.so +0 -0
- data/lib/polars/batched_csv_reader.rb +96 -0
- data/lib/polars/cat_expr.rb +52 -0
- data/lib/polars/cat_name_space.rb +54 -0
- data/lib/polars/convert.rb +100 -0
- data/lib/polars/data_frame.rb +4833 -0
- data/lib/polars/data_types.rb +122 -0
- data/lib/polars/date_time_expr.rb +1418 -0
- data/lib/polars/date_time_name_space.rb +1484 -0
- data/lib/polars/dynamic_group_by.rb +52 -0
- data/lib/polars/exceptions.rb +20 -0
- data/lib/polars/expr.rb +5307 -0
- data/lib/polars/expr_dispatch.rb +22 -0
- data/lib/polars/functions.rb +453 -0
- data/lib/polars/group_by.rb +558 -0
- data/lib/polars/io.rb +814 -0
- data/lib/polars/lazy_frame.rb +2442 -0
- data/lib/polars/lazy_functions.rb +1195 -0
- data/lib/polars/lazy_group_by.rb +93 -0
- data/lib/polars/list_expr.rb +610 -0
- data/lib/polars/list_name_space.rb +346 -0
- data/lib/polars/meta_expr.rb +54 -0
- data/lib/polars/rolling_group_by.rb +35 -0
- data/lib/polars/series.rb +3730 -0
- data/lib/polars/slice.rb +104 -0
- data/lib/polars/string_expr.rb +972 -0
- data/lib/polars/string_name_space.rb +690 -0
- data/lib/polars/struct_expr.rb +100 -0
- data/lib/polars/struct_name_space.rb +64 -0
- data/lib/polars/utils.rb +192 -0
- data/lib/polars/version.rb +4 -0
- data/lib/polars/when.rb +16 -0
- data/lib/polars/when_then.rb +19 -0
- data/lib/polars-df.rb +1 -0
- data/lib/polars.rb +50 -0
- metadata +89 -0
data/lib/polars/io.rb
ADDED
@@ -0,0 +1,814 @@
|
|
1
|
+
module Polars
|
2
|
+
module IO
|
3
|
+
# Read a CSV file into a DataFrame.
|
4
|
+
#
|
5
|
+
# @param file [Object]
|
6
|
+
# Path to a file or a file-like object.
|
7
|
+
# @param has_header [Boolean]
|
8
|
+
# Indicate if the first row of dataset is a header or not.
|
9
|
+
# If set to false, column names will be autogenerated in the
|
10
|
+
# following format: `column_x`, with `x` being an
|
11
|
+
# enumeration over every column in the dataset starting at 1.
|
12
|
+
# @param columns [Object]
|
13
|
+
# Columns to select. Accepts a list of column indices (starting
|
14
|
+
# at zero) or a list of column names.
|
15
|
+
# @param new_columns [Object]
|
16
|
+
# Rename columns right after parsing the CSV file. If the given
|
17
|
+
# list is shorter than the width of the DataFrame the remaining
|
18
|
+
# columns will have their original name.
|
19
|
+
# @param sep [String]
|
20
|
+
# Single byte character to use as delimiter in the file.
|
21
|
+
# @param comment_char [String]
|
22
|
+
# Single byte character that indicates the start of a comment line,
|
23
|
+
# for instance `#`.
|
24
|
+
# @param quote_char [String]
|
25
|
+
# Single byte character used for csv quoting.
|
26
|
+
# Set to nil to turn off special handling and escaping of quotes.
|
27
|
+
# @param skip_rows [Integer]
|
28
|
+
# Start reading after `skip_rows` lines.
|
29
|
+
# @param dtypes [Object]
|
30
|
+
# Overwrite dtypes during inference.
|
31
|
+
# @param null_values [Object]
|
32
|
+
# Values to interpret as null values. You can provide a:
|
33
|
+
#
|
34
|
+
# - `String`: All values equal to this string will be null.
|
35
|
+
# - `Array`: All values equal to any string in this array will be null.
|
36
|
+
# - `Hash`: A hash that maps column name to a null value string.
|
37
|
+
# @param ignore_errors [Boolean]
|
38
|
+
# Try to keep reading lines if some lines yield errors.
|
39
|
+
# First try `infer_schema_length: 0` to read all columns as
|
40
|
+
# `:str` to check which values might cause an issue.
|
41
|
+
# @param parse_dates [Boolean]
|
42
|
+
# Try to automatically parse dates. If this does not succeed,
|
43
|
+
# the column remains of data type `:str`.
|
44
|
+
# @param n_threads [Integer]
|
45
|
+
# Number of threads to use in csv parsing.
|
46
|
+
# Defaults to the number of physical cpu's of your system.
|
47
|
+
# @param infer_schema_length [Integer]
|
48
|
+
# Maximum number of lines to read to infer schema.
|
49
|
+
# If set to 0, all columns will be read as `:utf8`.
|
50
|
+
# If set to `nil`, a full table scan will be done (slow).
|
51
|
+
# @param batch_size [Integer]
|
52
|
+
# Number of lines to read into the buffer at once.
|
53
|
+
# Modify this to change performance.
|
54
|
+
# @param n_rows [Integer]
|
55
|
+
# Stop reading from CSV file after reading `n_rows`.
|
56
|
+
# During multi-threaded parsing, an upper bound of `n_rows`
|
57
|
+
# rows cannot be guaranteed.
|
58
|
+
# @param encoding ["utf8", "utf8-lossy"]
|
59
|
+
# Lossy means that invalid utf8 values are replaced with `�`
|
60
|
+
# characters. When using other encodings than `utf8` or
|
61
|
+
# `utf8-lossy`, the input is first decoded im memory with
|
62
|
+
# Ruby.
|
63
|
+
# @param low_memory [Boolean]
|
64
|
+
# Reduce memory usage at expense of performance.
|
65
|
+
# @param rechunk [Boolean]
|
66
|
+
# Make sure that all columns are contiguous in memory by
|
67
|
+
# aggregating the chunks into a single array.
|
68
|
+
# @param storage_options [Hash]
|
69
|
+
# Extra options that make sense for a
|
70
|
+
# particular storage connection.
|
71
|
+
# @param skip_rows_after_header [Integer]
|
72
|
+
# Skip this number of rows when the header is parsed.
|
73
|
+
# @param row_count_name [String]
|
74
|
+
# If not nil, this will insert a row count column with the given name into
|
75
|
+
# the DataFrame.
|
76
|
+
# @param row_count_offset [Integer]
|
77
|
+
# Offset to start the row_count column (only used if the name is set).
|
78
|
+
# @param sample_size [Integer]
|
79
|
+
# Set the sample size. This is used to sample statistics to estimate the
|
80
|
+
# allocation needed.
|
81
|
+
# @param eol_char [String]
|
82
|
+
# Single byte end of line character.
|
83
|
+
#
|
84
|
+
# @return [DataFrame]
|
85
|
+
#
|
86
|
+
# @note
|
87
|
+
# This operation defaults to a `rechunk` operation at the end, meaning that
|
88
|
+
# all data will be stored continuously in memory.
|
89
|
+
# Set `rechunk: false` if you are benchmarking the csv-reader. A `rechunk` is
|
90
|
+
# an expensive operation.
|
91
|
+
def read_csv(
|
92
|
+
file,
|
93
|
+
has_header: true,
|
94
|
+
columns: nil,
|
95
|
+
new_columns: nil,
|
96
|
+
sep: ",",
|
97
|
+
comment_char: nil,
|
98
|
+
quote_char: '"',
|
99
|
+
skip_rows: 0,
|
100
|
+
dtypes: nil,
|
101
|
+
null_values: nil,
|
102
|
+
ignore_errors: false,
|
103
|
+
parse_dates: false,
|
104
|
+
n_threads: nil,
|
105
|
+
infer_schema_length: 100,
|
106
|
+
batch_size: 8192,
|
107
|
+
n_rows: nil,
|
108
|
+
encoding: "utf8",
|
109
|
+
low_memory: false,
|
110
|
+
rechunk: true,
|
111
|
+
storage_options: nil,
|
112
|
+
skip_rows_after_header: 0,
|
113
|
+
row_count_name: nil,
|
114
|
+
row_count_offset: 0,
|
115
|
+
sample_size: 1024,
|
116
|
+
eol_char: "\n"
|
117
|
+
)
|
118
|
+
_check_arg_is_1byte("sep", sep, false)
|
119
|
+
_check_arg_is_1byte("comment_char", comment_char, false)
|
120
|
+
_check_arg_is_1byte("quote_char", quote_char, true)
|
121
|
+
_check_arg_is_1byte("eol_char", eol_char, false)
|
122
|
+
|
123
|
+
projection, columns = Utils.handle_projection_columns(columns)
|
124
|
+
|
125
|
+
storage_options ||= {}
|
126
|
+
|
127
|
+
if columns && !has_header
|
128
|
+
columns.each do |column|
|
129
|
+
if !column.start_with?("column_")
|
130
|
+
raise ArgumentError, "Specified column names do not start with \"column_\", but autogenerated header names were requested."
|
131
|
+
end
|
132
|
+
end
|
133
|
+
end
|
134
|
+
|
135
|
+
if projection || new_columns
|
136
|
+
raise Todo
|
137
|
+
end
|
138
|
+
|
139
|
+
df = nil
|
140
|
+
_prepare_file_arg(file) do |data|
|
141
|
+
df = DataFrame._read_csv(
|
142
|
+
data,
|
143
|
+
has_header: has_header,
|
144
|
+
columns: columns || projection,
|
145
|
+
sep: sep,
|
146
|
+
comment_char: comment_char,
|
147
|
+
quote_char: quote_char,
|
148
|
+
skip_rows: skip_rows,
|
149
|
+
dtypes: dtypes,
|
150
|
+
null_values: null_values,
|
151
|
+
ignore_errors: ignore_errors,
|
152
|
+
parse_dates: parse_dates,
|
153
|
+
n_threads: n_threads,
|
154
|
+
infer_schema_length: infer_schema_length,
|
155
|
+
batch_size: batch_size,
|
156
|
+
n_rows: n_rows,
|
157
|
+
encoding: encoding == "utf8-lossy" ? encoding : "utf8",
|
158
|
+
low_memory: low_memory,
|
159
|
+
rechunk: rechunk,
|
160
|
+
skip_rows_after_header: skip_rows_after_header,
|
161
|
+
row_count_name: row_count_name,
|
162
|
+
row_count_offset: row_count_offset,
|
163
|
+
sample_size: sample_size,
|
164
|
+
eol_char: eol_char
|
165
|
+
)
|
166
|
+
end
|
167
|
+
|
168
|
+
if new_columns
|
169
|
+
Utils._update_columns(df, new_columns)
|
170
|
+
else
|
171
|
+
df
|
172
|
+
end
|
173
|
+
end
|
174
|
+
|
175
|
+
# Lazily read from a CSV file or multiple files via glob patterns.
|
176
|
+
#
|
177
|
+
# This allows the query optimizer to push down predicates and
|
178
|
+
# projections to the scan level, thereby potentially reducing
|
179
|
+
# memory overhead.
|
180
|
+
#
|
181
|
+
# @param file [Object]
|
182
|
+
# Path to a file.
|
183
|
+
# @param has_header [Boolean]
|
184
|
+
# Indicate if the first row of dataset is a header or not.
|
185
|
+
# If set to false, column names will be autogenerated in the
|
186
|
+
# following format: `column_x`, with `x` being an
|
187
|
+
# enumeration over every column in the dataset starting at 1.
|
188
|
+
# @param sep [String]
|
189
|
+
# Single byte character to use as delimiter in the file.
|
190
|
+
# @param comment_char [String]
|
191
|
+
# Single byte character that indicates the start of a comment line,
|
192
|
+
# for instance `#`.
|
193
|
+
# @param quote_char [String]
|
194
|
+
# Single byte character used for csv quoting.
|
195
|
+
# Set to None to turn off special handling and escaping of quotes.
|
196
|
+
# @param skip_rows [Integer]
|
197
|
+
# Start reading after `skip_rows` lines. The header will be parsed at this
|
198
|
+
# offset.
|
199
|
+
# @param dtypes [Object]
|
200
|
+
# Overwrite dtypes during inference.
|
201
|
+
# @param null_values [Object]
|
202
|
+
# Values to interpret as null values. You can provide a:
|
203
|
+
#
|
204
|
+
# - `String`: All values equal to this string will be null.
|
205
|
+
# - `Array`: All values equal to any string in this array will be null.
|
206
|
+
# - `Hash`: A hash that maps column name to a null value string.
|
207
|
+
# @param ignore_errors [Boolean]
|
208
|
+
# Try to keep reading lines if some lines yield errors.
|
209
|
+
# First try `infer_schema_length: 0` to read all columns as
|
210
|
+
# `:str` to check which values might cause an issue.
|
211
|
+
# @param cache [Boolean]
|
212
|
+
# Cache the result after reading.
|
213
|
+
# @param with_column_names [Object]
|
214
|
+
# Apply a function over the column names.
|
215
|
+
# This can be used to update a schema just in time, thus before
|
216
|
+
# scanning.
|
217
|
+
# @param infer_schema_length [Integer]
|
218
|
+
# Maximum number of lines to read to infer schema.
|
219
|
+
# If set to 0, all columns will be read as `:str`.
|
220
|
+
# If set to `nil`, a full table scan will be done (slow).
|
221
|
+
# @param n_rows [Integer]
|
222
|
+
# Stop reading from CSV file after reading `n_rows`.
|
223
|
+
# @param encoding ["utf8", "utf8-lossy"]
|
224
|
+
# Lossy means that invalid utf8 values are replaced with `�`
|
225
|
+
# characters.
|
226
|
+
# @param low_memory [Boolean]
|
227
|
+
# Reduce memory usage in expense of performance.
|
228
|
+
# @param rechunk [Boolean]
|
229
|
+
# Reallocate to contiguous memory when all chunks/ files are parsed.
|
230
|
+
# @param skip_rows_after_header [Integer]
|
231
|
+
# Skip this number of rows when the header is parsed.
|
232
|
+
# @param row_count_name [String]
|
233
|
+
# If not nil, this will insert a row count column with the given name into
|
234
|
+
# the DataFrame.
|
235
|
+
# @param row_count_offset [Integer]
|
236
|
+
# Offset to start the row_count column (only used if the name is set).
|
237
|
+
# @param parse_dates [Boolean]
|
238
|
+
# Try to automatically parse dates. If this does not succeed,
|
239
|
+
# the column remains of data type `:str`.
|
240
|
+
# @param eol_char [String]
|
241
|
+
# Single byte end of line character.
|
242
|
+
#
|
243
|
+
# @return [LazyFrame]
|
244
|
+
def scan_csv(
|
245
|
+
file,
|
246
|
+
has_header: true,
|
247
|
+
sep: ",",
|
248
|
+
comment_char: nil,
|
249
|
+
quote_char: '"',
|
250
|
+
skip_rows: 0,
|
251
|
+
dtypes: nil,
|
252
|
+
null_values: nil,
|
253
|
+
ignore_errors: false,
|
254
|
+
cache: true,
|
255
|
+
with_column_names: nil,
|
256
|
+
infer_schema_length: 100,
|
257
|
+
n_rows: nil,
|
258
|
+
encoding: "utf8",
|
259
|
+
low_memory: false,
|
260
|
+
rechunk: true,
|
261
|
+
skip_rows_after_header: 0,
|
262
|
+
row_count_name: nil,
|
263
|
+
row_count_offset: 0,
|
264
|
+
parse_dates: false,
|
265
|
+
eol_char: "\n"
|
266
|
+
)
|
267
|
+
_check_arg_is_1byte("sep", sep, false)
|
268
|
+
_check_arg_is_1byte("comment_char", comment_char, false)
|
269
|
+
_check_arg_is_1byte("quote_char", quote_char, true)
|
270
|
+
|
271
|
+
if file.is_a?(String) || (defined?(Pathname) && file.is_a?(Pathname))
|
272
|
+
file = Utils.format_path(file)
|
273
|
+
end
|
274
|
+
|
275
|
+
LazyFrame._scan_csv(
|
276
|
+
file,
|
277
|
+
has_header: has_header,
|
278
|
+
sep: sep,
|
279
|
+
comment_char: comment_char,
|
280
|
+
quote_char: quote_char,
|
281
|
+
skip_rows: skip_rows,
|
282
|
+
dtypes: dtypes,
|
283
|
+
null_values: null_values,
|
284
|
+
ignore_errors: ignore_errors,
|
285
|
+
cache: cache,
|
286
|
+
with_column_names: with_column_names,
|
287
|
+
infer_schema_length: infer_schema_length,
|
288
|
+
n_rows: n_rows,
|
289
|
+
low_memory: low_memory,
|
290
|
+
rechunk: rechunk,
|
291
|
+
skip_rows_after_header: skip_rows_after_header,
|
292
|
+
encoding: encoding,
|
293
|
+
row_count_name: row_count_name,
|
294
|
+
row_count_offset: row_count_offset,
|
295
|
+
parse_dates: parse_dates,
|
296
|
+
eol_char: eol_char,
|
297
|
+
)
|
298
|
+
end
|
299
|
+
|
300
|
+
# Lazily read from an Arrow IPC (Feather v2) file or multiple files via glob patterns.
|
301
|
+
#
|
302
|
+
# This allows the query optimizer to push down predicates and projections to the scan
|
303
|
+
# level, thereby potentially reducing memory overhead.
|
304
|
+
#
|
305
|
+
# @param file [String]
|
306
|
+
# Path to a IPC file.
|
307
|
+
# @param n_rows [Integer]
|
308
|
+
# Stop reading from IPC file after reading `n_rows`.
|
309
|
+
# @param cache [Boolean]
|
310
|
+
# Cache the result after reading.
|
311
|
+
# @param rechunk [Boolean]
|
312
|
+
# Reallocate to contiguous memory when all chunks/ files are parsed.
|
313
|
+
# @param row_count_name [String]
|
314
|
+
# If not nil, this will insert a row count column with give name into the
|
315
|
+
# DataFrame.
|
316
|
+
# @param row_count_offset [Integer]
|
317
|
+
# Offset to start the row_count column (only use if the name is set).
|
318
|
+
# @param storage_options [Hash]
|
319
|
+
# Extra options that make sense for a particular storage connection.
|
320
|
+
# @param memory_map [Boolean]
|
321
|
+
# Try to memory map the file. This can greatly improve performance on repeated
|
322
|
+
# queries as the OS may cache pages.
|
323
|
+
# Only uncompressed IPC files can be memory mapped.
|
324
|
+
#
|
325
|
+
# @return [LazyFrame]
|
326
|
+
def scan_ipc(
|
327
|
+
file,
|
328
|
+
n_rows: nil,
|
329
|
+
cache: true,
|
330
|
+
rechunk: true,
|
331
|
+
row_count_name: nil,
|
332
|
+
row_count_offset: 0,
|
333
|
+
storage_options: nil,
|
334
|
+
memory_map: true
|
335
|
+
)
|
336
|
+
LazyFrame._scan_ipc(
|
337
|
+
file,
|
338
|
+
n_rows: n_rows,
|
339
|
+
cache: cache,
|
340
|
+
rechunk: rechunk,
|
341
|
+
row_count_name: row_count_name,
|
342
|
+
row_count_offset: row_count_offset,
|
343
|
+
storage_options: storage_options,
|
344
|
+
memory_map: memory_map
|
345
|
+
)
|
346
|
+
end
|
347
|
+
|
348
|
+
# Lazily read from a parquet file or multiple files via glob patterns.
|
349
|
+
#
|
350
|
+
# This allows the query optimizer to push down predicates and projections to the scan
|
351
|
+
# level, thereby potentially reducing memory overhead.
|
352
|
+
#
|
353
|
+
# @param file [String]
|
354
|
+
# Path to a file.
|
355
|
+
# @param n_rows [Integer]
|
356
|
+
# Stop reading from parquet file after reading `n_rows`.
|
357
|
+
# @param cache [Boolean]
|
358
|
+
# Cache the result after reading.
|
359
|
+
# @param parallel ["auto", "columns", "row_groups", "none"]
|
360
|
+
# This determines the direction of parallelism. 'auto' will try to determine the
|
361
|
+
# optimal direction.
|
362
|
+
# @param rechunk [Boolean]
|
363
|
+
# In case of reading multiple files via a glob pattern rechunk the final DataFrame
|
364
|
+
# into contiguous memory chunks.
|
365
|
+
# @param row_count_name [String]
|
366
|
+
# If not nil, this will insert a row count column with give name into the
|
367
|
+
# DataFrame.
|
368
|
+
# @param row_count_offset [Integer]
|
369
|
+
# Offset to start the row_count column (only use if the name is set).
|
370
|
+
# @param storage_options [Hash]
|
371
|
+
# Extra options that make sense for a particular storage connection.
|
372
|
+
# @param low_memory [Boolean]
|
373
|
+
# Reduce memory pressure at the expense of performance.
|
374
|
+
#
|
375
|
+
# @return [LazyFrame]
|
376
|
+
def scan_parquet(
|
377
|
+
file,
|
378
|
+
n_rows: nil,
|
379
|
+
cache: true,
|
380
|
+
parallel: "auto",
|
381
|
+
rechunk: true,
|
382
|
+
row_count_name: nil,
|
383
|
+
row_count_offset: 0,
|
384
|
+
storage_options: nil,
|
385
|
+
low_memory: false
|
386
|
+
)
|
387
|
+
if file.is_a?(String) || (defined?(Pathname) && file.is_a?(Pathname))
|
388
|
+
file = Utils.format_path(file)
|
389
|
+
end
|
390
|
+
|
391
|
+
LazyFrame._scan_parquet(
|
392
|
+
file,
|
393
|
+
n_rows:n_rows,
|
394
|
+
cache: cache,
|
395
|
+
parallel: parallel,
|
396
|
+
rechunk: rechunk,
|
397
|
+
row_count_name: row_count_name,
|
398
|
+
row_count_offset: row_count_offset,
|
399
|
+
storage_options: storage_options,
|
400
|
+
low_memory: low_memory
|
401
|
+
)
|
402
|
+
end
|
403
|
+
|
404
|
+
# Lazily read from a newline delimited JSON file.
|
405
|
+
#
|
406
|
+
# This allows the query optimizer to push down predicates and projections to the scan
|
407
|
+
# level, thereby potentially reducing memory overhead.
|
408
|
+
#
|
409
|
+
# @param file [String]
|
410
|
+
# Path to a file.
|
411
|
+
# @param infer_schema_length [Integer]
|
412
|
+
# Infer the schema length from the first `infer_schema_length` rows.
|
413
|
+
# @param batch_size [Integer]
|
414
|
+
# Number of rows to read in each batch.
|
415
|
+
# @param n_rows [Integer]
|
416
|
+
# Stop reading from JSON file after reading `n_rows`.
|
417
|
+
# @param low_memory [Boolean]
|
418
|
+
# Reduce memory pressure at the expense of performance.
|
419
|
+
# @param rechunk [Boolean]
|
420
|
+
# Reallocate to contiguous memory when all chunks/ files are parsed.
|
421
|
+
# @param row_count_name [String]
|
422
|
+
# If not nil, this will insert a row count column with give name into the
|
423
|
+
# DataFrame.
|
424
|
+
# @param row_count_offset [Integer]
|
425
|
+
# Offset to start the row_count column (only use if the name is set).
|
426
|
+
#
|
427
|
+
# @return [LazyFrame]
|
428
|
+
def scan_ndjson(
|
429
|
+
file,
|
430
|
+
infer_schema_length: 100,
|
431
|
+
batch_size: 1024,
|
432
|
+
n_rows: nil,
|
433
|
+
low_memory: false,
|
434
|
+
rechunk: true,
|
435
|
+
row_count_name: nil,
|
436
|
+
row_count_offset: 0
|
437
|
+
)
|
438
|
+
if file.is_a?(String) || (defined?(Pathname) && file.is_a?(Pathname))
|
439
|
+
file = Utils.format_path(file)
|
440
|
+
end
|
441
|
+
|
442
|
+
LazyFrame._scan_ndjson(
|
443
|
+
file,
|
444
|
+
infer_schema_length: infer_schema_length,
|
445
|
+
batch_size: batch_size,
|
446
|
+
n_rows: n_rows,
|
447
|
+
low_memory: low_memory,
|
448
|
+
rechunk: rechunk,
|
449
|
+
row_count_name: row_count_name,
|
450
|
+
row_count_offset: row_count_offset,
|
451
|
+
)
|
452
|
+
end
|
453
|
+
|
454
|
+
# Read into a DataFrame from Apache Avro format.
|
455
|
+
#
|
456
|
+
# @param file [Object]
|
457
|
+
# Path to a file or a file-like object.
|
458
|
+
# @param columns [Object]
|
459
|
+
# Columns to select. Accepts a list of column indices (starting at zero) or a list
|
460
|
+
# of column names.
|
461
|
+
# @param n_rows [Integer]
|
462
|
+
# Stop reading from Apache Avro file after reading ``n_rows``.
|
463
|
+
#
|
464
|
+
# @return [DataFrame]
|
465
|
+
def read_avro(file, columns: nil, n_rows: nil)
|
466
|
+
if file.is_a?(String) || (defined?(Pathname) && file.is_a?(Pathname))
|
467
|
+
file = Utils.format_path(file)
|
468
|
+
end
|
469
|
+
|
470
|
+
DataFrame._read_avro(file, n_rows: n_rows, columns: columns)
|
471
|
+
end
|
472
|
+
|
473
|
+
# Read into a DataFrame from Arrow IPC (Feather v2) file.
|
474
|
+
#
|
475
|
+
# @param file [Object]
|
476
|
+
# Path to a file or a file-like object.
|
477
|
+
# @param columns [Object]
|
478
|
+
# Columns to select. Accepts a list of column indices (starting at zero) or a list
|
479
|
+
# of column names.
|
480
|
+
# @param n_rows [Integer]
|
481
|
+
# Stop reading from IPC file after reading `n_rows`.
|
482
|
+
# @param memory_map [Boolean]
|
483
|
+
# Try to memory map the file. This can greatly improve performance on repeated
|
484
|
+
# queries as the OS may cache pages.
|
485
|
+
# Only uncompressed IPC files can be memory mapped.
|
486
|
+
# @param storage_options [Hash]
|
487
|
+
# Extra options that make sense for a particular storage connection.
|
488
|
+
# @param row_count_name [String]
|
489
|
+
# If not nil, this will insert a row count column with give name into the
|
490
|
+
# DataFrame.
|
491
|
+
# @param row_count_offset [Integer]
|
492
|
+
# Offset to start the row_count column (only use if the name is set).
|
493
|
+
# @param rechunk [Boolean]
|
494
|
+
# Make sure that all data is contiguous.
|
495
|
+
#
|
496
|
+
# @return [DataFrame]
|
497
|
+
def read_ipc(
|
498
|
+
file,
|
499
|
+
columns: nil,
|
500
|
+
n_rows: nil,
|
501
|
+
memory_map: true,
|
502
|
+
storage_options: nil,
|
503
|
+
row_count_name: nil,
|
504
|
+
row_count_offset: 0,
|
505
|
+
rechunk: true
|
506
|
+
)
|
507
|
+
storage_options ||= {}
|
508
|
+
_prepare_file_arg(file, **storage_options) do |data|
|
509
|
+
DataFrame._read_ipc(
|
510
|
+
data,
|
511
|
+
columns: columns,
|
512
|
+
n_rows: n_rows,
|
513
|
+
row_count_name: row_count_name,
|
514
|
+
row_count_offset: row_count_offset,
|
515
|
+
rechunk: rechunk,
|
516
|
+
memory_map: memory_map
|
517
|
+
)
|
518
|
+
end
|
519
|
+
end
|
520
|
+
|
521
|
+
# Read into a DataFrame from a parquet file.
|
522
|
+
#
|
523
|
+
# @param file [Object]
|
524
|
+
# Path to a file, or a file-like object.
|
525
|
+
# @param columns [Object]
|
526
|
+
# Columns to select. Accepts a list of column indices (starting at zero) or a list
|
527
|
+
# of column names.
|
528
|
+
# @param n_rows [Integer]
|
529
|
+
# Stop reading from parquet file after reading `n_rows`.
|
530
|
+
# @param storage_options [Hash]
|
531
|
+
# Extra options that make sense for a particular storage connection.
|
532
|
+
# @param parallel ["auto", "columns", "row_groups", "none"]
|
533
|
+
# This determines the direction of parallelism. 'auto' will try to determine the
|
534
|
+
# optimal direction.
|
535
|
+
# @param row_count_name [String]
|
536
|
+
# If not nil, this will insert a row count column with give name into the
|
537
|
+
# DataFrame.
|
538
|
+
# @param row_count_offset [Integer]
|
539
|
+
# Offset to start the row_count column (only use if the name is set).
|
540
|
+
# @param low_memory [Boolean]
|
541
|
+
# Reduce memory pressure at the expense of performance.
|
542
|
+
#
|
543
|
+
# @return [DataFrame]
|
544
|
+
#
|
545
|
+
# @note
|
546
|
+
# This operation defaults to a `rechunk` operation at the end, meaning that
|
547
|
+
# all data will be stored continuously in memory.
|
548
|
+
# Set `rechunk: false` if you are benchmarking the parquet-reader. A `rechunk` is
|
549
|
+
# an expensive operation.
|
550
|
+
def read_parquet(
|
551
|
+
file,
|
552
|
+
columns: nil,
|
553
|
+
n_rows: nil,
|
554
|
+
storage_options: nil,
|
555
|
+
parallel: "auto",
|
556
|
+
row_count_name: nil,
|
557
|
+
row_count_offset: 0,
|
558
|
+
low_memory: false
|
559
|
+
)
|
560
|
+
_prepare_file_arg(file) do |data|
|
561
|
+
DataFrame._read_parquet(
|
562
|
+
data,
|
563
|
+
columns: columns,
|
564
|
+
n_rows: n_rows,
|
565
|
+
parallel: parallel,
|
566
|
+
row_count_name: row_count_name,
|
567
|
+
row_count_offset: row_count_offset,
|
568
|
+
low_memory: low_memory
|
569
|
+
)
|
570
|
+
end
|
571
|
+
end
|
572
|
+
|
573
|
+
# Read into a DataFrame from a JSON file.
|
574
|
+
#
|
575
|
+
# @param file [Object]
|
576
|
+
# Path to a file or a file-like object.
|
577
|
+
#
|
578
|
+
# @return [DataFrame]
|
579
|
+
def read_json(file)
|
580
|
+
DataFrame._read_json(file)
|
581
|
+
end
|
582
|
+
|
583
|
+
# Read into a DataFrame from a newline delimited JSON file.
|
584
|
+
#
|
585
|
+
# @param file [Object]
|
586
|
+
# Path to a file or a file-like object.
|
587
|
+
#
|
588
|
+
# @return [DataFrame]
|
589
|
+
def read_ndjson(file)
|
590
|
+
DataFrame._read_ndjson(file)
|
591
|
+
end
|
592
|
+
|
593
|
+
# def read_sql
|
594
|
+
# end
|
595
|
+
|
596
|
+
# def read_excel
|
597
|
+
# end
|
598
|
+
|
599
|
+
# Read a CSV file in batches.
|
600
|
+
#
|
601
|
+
# Upon creation of the `BatchedCsvReader`,
|
602
|
+
# polars will gather statistics and determine the
|
603
|
+
# file chunks. After that work will only be done
|
604
|
+
# if `next_batches` is called.
|
605
|
+
#
|
606
|
+
# @param file [Object]
|
607
|
+
# Path to a file or a file-like object.
|
608
|
+
# @param has_header [Boolean]
|
609
|
+
# Indicate if the first row of dataset is a header or not.
|
610
|
+
# If set to False, column names will be autogenerated in the
|
611
|
+
# following format: `column_x`, with `x` being an
|
612
|
+
# enumeration over every column in the dataset starting at 1.
|
613
|
+
# @param columns [Object]
|
614
|
+
# Columns to select. Accepts a list of column indices (starting
|
615
|
+
# at zero) or a list of column names.
|
616
|
+
# @param new_columns [Object]
|
617
|
+
# Rename columns right after parsing the CSV file. If the given
|
618
|
+
# list is shorter than the width of the DataFrame the remaining
|
619
|
+
# columns will have their original name.
|
620
|
+
# @param sep [String]
|
621
|
+
# Single byte character to use as delimiter in the file.
|
622
|
+
# @param comment_char [String]
|
623
|
+
# Single byte character that indicates the start of a comment line,
|
624
|
+
# for instance `#`.
|
625
|
+
# @param quote_char [String]
|
626
|
+
# Single byte character used for csv quoting, default = `"`.
|
627
|
+
# Set to nil to turn off special handling and escaping of quotes.
|
628
|
+
# @param skip_rows [Integer]
|
629
|
+
# Start reading after `skip_rows` lines.
|
630
|
+
# @param dtypes [Object]
|
631
|
+
# Overwrite dtypes during inference.
|
632
|
+
# @param null_values [Object]
|
633
|
+
# Values to interpret as null values. You can provide a:
|
634
|
+
#
|
635
|
+
# - `String`: All values equal to this string will be null.
|
636
|
+
# - `Array`: All values equal to any string in this array will be null.
|
637
|
+
# - `Hash`: A hash that maps column name to a null value string.
|
638
|
+
# @param ignore_errors [Boolean]
|
639
|
+
# Try to keep reading lines if some lines yield errors.
|
640
|
+
# First try `infer_schema_length: 0` to read all columns as
|
641
|
+
# `:str` to check which values might cause an issue.
|
642
|
+
# @param parse_dates [Boolean]
|
643
|
+
# Try to automatically parse dates. If this does not succeed,
|
644
|
+
# the column remains of data type `:str`.
|
645
|
+
# @param n_threads [Integer]
|
646
|
+
# Number of threads to use in csv parsing.
|
647
|
+
# Defaults to the number of physical cpu's of your system.
|
648
|
+
# @param infer_schema_length [Integer]
|
649
|
+
# Maximum number of lines to read to infer schema.
|
650
|
+
# If set to 0, all columns will be read as `:str`.
|
651
|
+
# If set to `nil`, a full table scan will be done (slow).
|
652
|
+
# @param batch_size [Integer]
|
653
|
+
# Number of lines to read into the buffer at once.
|
654
|
+
# Modify this to change performance.
|
655
|
+
# @param n_rows [Integer]
|
656
|
+
# Stop reading from CSV file after reading `n_rows`.
|
657
|
+
# During multi-threaded parsing, an upper bound of `n_rows`
|
658
|
+
# rows cannot be guaranteed.
|
659
|
+
# @param encoding ["utf8", "utf8-lossy"]
|
660
|
+
# Lossy means that invalid utf8 values are replaced with `�`
|
661
|
+
# characters. When using other encodings than `utf8` or
|
662
|
+
# `utf8-lossy`, the input is first decoded im memory with
|
663
|
+
# Ruby. Defaults to `utf8`.
|
664
|
+
# @param low_memory [Boolean]
|
665
|
+
# Reduce memory usage at expense of performance.
|
666
|
+
# @param rechunk [Boolean]
|
667
|
+
# Make sure that all columns are contiguous in memory by
|
668
|
+
# aggregating the chunks into a single array.
|
669
|
+
# @param skip_rows_after_header [Integer]
|
670
|
+
# Skip this number of rows when the header is parsed.
|
671
|
+
# @param row_count_name [String]
|
672
|
+
# If not nil, this will insert a row count column with the given name into
|
673
|
+
# the DataFrame.
|
674
|
+
# @param row_count_offset [Integer]
|
675
|
+
# Offset to start the row_count column (only used if the name is set).
|
676
|
+
# @param sample_size [Integer]
|
677
|
+
# Set the sample size. This is used to sample statistics to estimate the
|
678
|
+
# allocation needed.
|
679
|
+
# @param eol_char [String]
|
680
|
+
# Single byte end of line character.
|
681
|
+
#
|
682
|
+
# @return [BatchedCsvReader]
|
683
|
+
#
|
684
|
+
# @example
|
685
|
+
# reader = Polars.read_csv_batched(
|
686
|
+
# "./tpch/tables_scale_100/lineitem.tbl", sep: "|", parse_dates: true
|
687
|
+
# )
|
688
|
+
# reader.next_batches(5)
|
689
|
+
def read_csv_batched(
|
690
|
+
file,
|
691
|
+
has_header: true,
|
692
|
+
columns: nil,
|
693
|
+
new_columns: nil,
|
694
|
+
sep: ",",
|
695
|
+
comment_char: nil,
|
696
|
+
quote_char: '"',
|
697
|
+
skip_rows: 0,
|
698
|
+
dtypes: nil,
|
699
|
+
null_values: nil,
|
700
|
+
ignore_errors: false,
|
701
|
+
parse_dates: false,
|
702
|
+
n_threads: nil,
|
703
|
+
infer_schema_length: 100,
|
704
|
+
batch_size: 50_000,
|
705
|
+
n_rows: nil,
|
706
|
+
encoding: "utf8",
|
707
|
+
low_memory: false,
|
708
|
+
rechunk: true,
|
709
|
+
skip_rows_after_header: 0,
|
710
|
+
row_count_name: nil,
|
711
|
+
row_count_offset: 0,
|
712
|
+
sample_size: 1024,
|
713
|
+
eol_char: "\n"
|
714
|
+
)
|
715
|
+
projection, columns = Utils.handle_projection_columns(columns)
|
716
|
+
|
717
|
+
if columns && !has_header
|
718
|
+
columns.each do |column|
|
719
|
+
if !column.start_with?("column_")
|
720
|
+
raise ArgumentError, "Specified column names do not start with \"column_\", but autogenerated header names were requested."
|
721
|
+
end
|
722
|
+
end
|
723
|
+
end
|
724
|
+
|
725
|
+
if projection || new_columns
|
726
|
+
raise Todo
|
727
|
+
end
|
728
|
+
|
729
|
+
BatchedCsvReader.new(
|
730
|
+
file,
|
731
|
+
has_header: has_header,
|
732
|
+
columns: columns || projection,
|
733
|
+
sep: sep,
|
734
|
+
comment_char: comment_char,
|
735
|
+
quote_char: quote_char,
|
736
|
+
skip_rows: skip_rows,
|
737
|
+
dtypes: dtypes,
|
738
|
+
null_values: null_values,
|
739
|
+
ignore_errors: ignore_errors,
|
740
|
+
parse_dates: parse_dates,
|
741
|
+
n_threads: n_threads,
|
742
|
+
infer_schema_length: infer_schema_length,
|
743
|
+
batch_size: batch_size,
|
744
|
+
n_rows: n_rows,
|
745
|
+
encoding: encoding == "utf8-lossy" ? encoding : "utf8",
|
746
|
+
low_memory: low_memory,
|
747
|
+
rechunk: rechunk,
|
748
|
+
skip_rows_after_header: skip_rows_after_header,
|
749
|
+
row_count_name: row_count_name,
|
750
|
+
row_count_offset: row_count_offset,
|
751
|
+
sample_size: sample_size,
|
752
|
+
eol_char: eol_char,
|
753
|
+
new_columns: new_columns
|
754
|
+
)
|
755
|
+
end
|
756
|
+
|
757
|
+
# Get a schema of the IPC file without reading data.
|
758
|
+
#
|
759
|
+
# @param file [Object]
|
760
|
+
# Path to a file or a file-like object.
|
761
|
+
#
|
762
|
+
# @return [Hash]
|
763
|
+
def read_ipc_schema(file)
|
764
|
+
if file.is_a?(String) || (defined?(Pathname) && file.is_a?(Pathname))
|
765
|
+
file = Utils.format_path(file)
|
766
|
+
end
|
767
|
+
|
768
|
+
_ipc_schema(file)
|
769
|
+
end
|
770
|
+
|
771
|
+
# Get a schema of the Parquet file without reading data.
|
772
|
+
#
|
773
|
+
# @param file [Object]
|
774
|
+
# Path to a file or a file-like object.
|
775
|
+
#
|
776
|
+
# @return [Hash]
|
777
|
+
def read_parquet_schema(file)
|
778
|
+
if file.is_a?(String) || (defined?(Pathname) && file.is_a?(Pathname))
|
779
|
+
file = Utils.format_path(file)
|
780
|
+
end
|
781
|
+
|
782
|
+
_parquet_schema(file)
|
783
|
+
end
|
784
|
+
|
785
|
+
private
|
786
|
+
|
787
|
+
def _prepare_file_arg(file)
|
788
|
+
if file.is_a?(String) && file =~ /\Ahttps?:\/\//
|
789
|
+
raise ArgumentError, "use URI(...) for remote files"
|
790
|
+
end
|
791
|
+
|
792
|
+
if defined?(URI) && file.is_a?(URI)
|
793
|
+
require "open-uri"
|
794
|
+
|
795
|
+
file = URI.open(file)
|
796
|
+
end
|
797
|
+
|
798
|
+
yield file
|
799
|
+
end
|
800
|
+
|
801
|
+
def _check_arg_is_1byte(arg_name, arg, can_be_empty = false)
|
802
|
+
if arg.is_a?(String)
|
803
|
+
arg_byte_length = arg.bytesize
|
804
|
+
if can_be_empty
|
805
|
+
if arg_byte_length > 1
|
806
|
+
raise ArgumentError, "#{arg_name} should be a single byte character or empty, but is #{arg_byte_length} bytes long."
|
807
|
+
end
|
808
|
+
elsif arg_byte_length != 1
|
809
|
+
raise ArgumentError, "#{arg_name} should be a single byte character, but is #{arg_byte_length} bytes long."
|
810
|
+
end
|
811
|
+
end
|
812
|
+
end
|
813
|
+
end
|
814
|
+
end
|