polars-df 0.2.0-x86_64-linux
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.yardopts +3 -0
- data/CHANGELOG.md +33 -0
- data/Cargo.lock +2230 -0
- data/Cargo.toml +10 -0
- data/LICENSE-THIRD-PARTY.txt +38828 -0
- data/LICENSE.txt +20 -0
- data/README.md +91 -0
- data/lib/polars/3.0/polars.so +0 -0
- data/lib/polars/3.1/polars.so +0 -0
- data/lib/polars/3.2/polars.so +0 -0
- data/lib/polars/batched_csv_reader.rb +96 -0
- data/lib/polars/cat_expr.rb +52 -0
- data/lib/polars/cat_name_space.rb +54 -0
- data/lib/polars/convert.rb +100 -0
- data/lib/polars/data_frame.rb +4833 -0
- data/lib/polars/data_types.rb +122 -0
- data/lib/polars/date_time_expr.rb +1418 -0
- data/lib/polars/date_time_name_space.rb +1484 -0
- data/lib/polars/dynamic_group_by.rb +52 -0
- data/lib/polars/exceptions.rb +20 -0
- data/lib/polars/expr.rb +5307 -0
- data/lib/polars/expr_dispatch.rb +22 -0
- data/lib/polars/functions.rb +453 -0
- data/lib/polars/group_by.rb +558 -0
- data/lib/polars/io.rb +814 -0
- data/lib/polars/lazy_frame.rb +2442 -0
- data/lib/polars/lazy_functions.rb +1195 -0
- data/lib/polars/lazy_group_by.rb +93 -0
- data/lib/polars/list_expr.rb +610 -0
- data/lib/polars/list_name_space.rb +346 -0
- data/lib/polars/meta_expr.rb +54 -0
- data/lib/polars/rolling_group_by.rb +35 -0
- data/lib/polars/series.rb +3730 -0
- data/lib/polars/slice.rb +104 -0
- data/lib/polars/string_expr.rb +972 -0
- data/lib/polars/string_name_space.rb +690 -0
- data/lib/polars/struct_expr.rb +100 -0
- data/lib/polars/struct_name_space.rb +64 -0
- data/lib/polars/utils.rb +192 -0
- data/lib/polars/version.rb +4 -0
- data/lib/polars/when.rb +16 -0
- data/lib/polars/when_then.rb +19 -0
- data/lib/polars-df.rb +1 -0
- data/lib/polars.rb +50 -0
- metadata +89 -0
@@ -0,0 +1,22 @@
|
|
1
|
+
module Polars
|
2
|
+
# @private
|
3
|
+
module ExprDispatch
|
4
|
+
private
|
5
|
+
|
6
|
+
def self.included(base)
|
7
|
+
base.attr_accessor :_s
|
8
|
+
base.singleton_class.attr_accessor :_accessor
|
9
|
+
end
|
10
|
+
|
11
|
+
def method_missing(method, ...)
|
12
|
+
return super unless self.class.method_defined?(method)
|
13
|
+
|
14
|
+
namespace = self.class._accessor
|
15
|
+
|
16
|
+
s = Utils.wrap_s(_s)
|
17
|
+
expr = Utils.col(s.name)
|
18
|
+
expr = expr.send(namespace) if namespace
|
19
|
+
s.to_frame.select(expr.send(method, ...)).to_series
|
20
|
+
end
|
21
|
+
end
|
22
|
+
end
|
@@ -0,0 +1,453 @@
|
|
1
|
+
module Polars
|
2
|
+
module Functions
|
3
|
+
# Convert categorical variables into dummy/indicator variables.
|
4
|
+
#
|
5
|
+
# @param df [DataFrame]
|
6
|
+
# DataFrame to convert.
|
7
|
+
# @param columns [Array, nil]
|
8
|
+
# A subset of columns to convert to dummy variables. `nil` means
|
9
|
+
# "all columns".
|
10
|
+
#
|
11
|
+
# @return [DataFrame]
|
12
|
+
def get_dummies(df, columns: nil)
|
13
|
+
df.to_dummies(columns: columns)
|
14
|
+
end
|
15
|
+
|
16
|
+
# Aggregate multiple Dataframes/Series to a single DataFrame/Series.
|
17
|
+
#
|
18
|
+
# @param items [Object]
|
19
|
+
# DataFrames/Series/LazyFrames to concatenate.
|
20
|
+
# @param rechunk [Boolean]
|
21
|
+
# Make sure that all data is in contiguous memory.
|
22
|
+
# @param how ["vertical", "diagonal", "horizontal"]
|
23
|
+
# Lazy only supports the 'vertical' strategy.
|
24
|
+
#
|
25
|
+
# - Vertical: applies multiple `vstack` operations.
|
26
|
+
# - Diagonal: finds a union between the column schemas and fills missing column values with null.
|
27
|
+
# - Horizontal: stacks Series horizontally and fills with nulls if the lengths don't match.
|
28
|
+
# @param parallel [Boolean]
|
29
|
+
# Only relevant for LazyFrames. This determines if the concatenated
|
30
|
+
# lazy computations may be executed in parallel.
|
31
|
+
#
|
32
|
+
# @return [Object]
|
33
|
+
#
|
34
|
+
# @example
|
35
|
+
# df1 = Polars::DataFrame.new({"a" => [1], "b" => [3]})
|
36
|
+
# df2 = Polars::DataFrame.new({"a" => [2], "b" => [4]})
|
37
|
+
# Polars.concat([df1, df2])
|
38
|
+
# # =>
|
39
|
+
# # shape: (2, 2)
|
40
|
+
# # ┌─────┬─────┐
|
41
|
+
# # │ a ┆ b │
|
42
|
+
# # │ --- ┆ --- │
|
43
|
+
# # │ i64 ┆ i64 │
|
44
|
+
# # ╞═════╪═════╡
|
45
|
+
# # │ 1 ┆ 3 │
|
46
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
47
|
+
# # │ 2 ┆ 4 │
|
48
|
+
# # └─────┴─────┘
|
49
|
+
def concat(items, rechunk: true, how: "vertical", parallel: true)
|
50
|
+
if items.empty?
|
51
|
+
raise ArgumentError, "cannot concat empty list"
|
52
|
+
end
|
53
|
+
|
54
|
+
first = items[0]
|
55
|
+
if first.is_a?(DataFrame)
|
56
|
+
if how == "vertical"
|
57
|
+
out = Utils.wrap_df(_concat_df(items))
|
58
|
+
elsif how == "diagonal"
|
59
|
+
out = Utils.wrap_df(_diag_concat_df(items))
|
60
|
+
elsif how == "horizontal"
|
61
|
+
out = Utils.wrap_df(_hor_concat_df(items))
|
62
|
+
else
|
63
|
+
raise ArgumentError, "how must be one of {{'vertical', 'diagonal', 'horizontal'}}, got #{how}"
|
64
|
+
end
|
65
|
+
elsif first.is_a?(LazyFrame)
|
66
|
+
if how == "vertical"
|
67
|
+
# TODO
|
68
|
+
return Utils.wrap_ldf(_concat_lf(items, rechunk, parallel))
|
69
|
+
else
|
70
|
+
raise ArgumentError, "Lazy only allows 'vertical' concat strategy."
|
71
|
+
end
|
72
|
+
elsif first.is_a?(Series)
|
73
|
+
# TODO
|
74
|
+
out = Utils.wrap_s(_concat_series(items))
|
75
|
+
elsif first.is_a?(Expr)
|
76
|
+
out = first
|
77
|
+
items[1..-1].each do |e|
|
78
|
+
out = out.append(e)
|
79
|
+
end
|
80
|
+
else
|
81
|
+
raise ArgumentError, "did not expect type: #{first.class.name} in 'Polars.concat'."
|
82
|
+
end
|
83
|
+
|
84
|
+
if rechunk
|
85
|
+
out.rechunk
|
86
|
+
else
|
87
|
+
out
|
88
|
+
end
|
89
|
+
end
|
90
|
+
|
91
|
+
# Create a range of type `Datetime` (or `Date`).
|
92
|
+
#
|
93
|
+
# @param low [Object]
|
94
|
+
# Lower bound of the date range.
|
95
|
+
# @param high [Object]
|
96
|
+
# Upper bound of the date range.
|
97
|
+
# @param interval [Object]
|
98
|
+
# Interval periods. It can be a polars duration string, such as `3d12h4m25s`
|
99
|
+
# representing 3 days, 12 hours, 4 minutes, and 25 seconds.
|
100
|
+
# @param lazy [Boolean]
|
101
|
+
# Return an expression.
|
102
|
+
# @param closed ["both", "left", "right", "none"]
|
103
|
+
# Define whether the temporal window interval is closed or not.
|
104
|
+
# @param name [String]
|
105
|
+
# Name of the output Series.
|
106
|
+
# @param time_unit [nil, "ns", "us", "ms"]
|
107
|
+
# Set the time unit.
|
108
|
+
# @param time_zone [String]
|
109
|
+
# Optional timezone
|
110
|
+
#
|
111
|
+
# @return [Object]
|
112
|
+
#
|
113
|
+
# @note
|
114
|
+
# If both `low` and `high` are passed as date types (not datetime), and the
|
115
|
+
# interval granularity is no finer than 1d, the returned range is also of
|
116
|
+
# type date. All other permutations return a datetime Series.
|
117
|
+
#
|
118
|
+
# @example Using polars duration string to specify the interval
|
119
|
+
# Polars.date_range(Date.new(2022, 1, 1), Date.new(2022, 3, 1), "1mo", name: "drange")
|
120
|
+
# # =>
|
121
|
+
# # shape: (3,)
|
122
|
+
# # Series: 'drange' [date]
|
123
|
+
# # [
|
124
|
+
# # 2022-01-01
|
125
|
+
# # 2022-02-01
|
126
|
+
# # 2022-03-01
|
127
|
+
# # ]
|
128
|
+
#
|
129
|
+
# @example Using `timedelta` object to specify the interval:
|
130
|
+
# Polars.date_range(
|
131
|
+
# DateTime.new(1985, 1, 1),
|
132
|
+
# DateTime.new(1985, 1, 10),
|
133
|
+
# "1d12h",
|
134
|
+
# time_unit: "ms"
|
135
|
+
# )
|
136
|
+
# # =>
|
137
|
+
# # shape: (7,)
|
138
|
+
# # Series: '' [datetime[ms]]
|
139
|
+
# # [
|
140
|
+
# # 1985-01-01 00:00:00
|
141
|
+
# # 1985-01-02 12:00:00
|
142
|
+
# # 1985-01-04 00:00:00
|
143
|
+
# # 1985-01-05 12:00:00
|
144
|
+
# # 1985-01-07 00:00:00
|
145
|
+
# # 1985-01-08 12:00:00
|
146
|
+
# # 1985-01-10 00:00:00
|
147
|
+
# # ]
|
148
|
+
def date_range(
|
149
|
+
low,
|
150
|
+
high,
|
151
|
+
interval,
|
152
|
+
lazy: false,
|
153
|
+
closed: "both",
|
154
|
+
name: nil,
|
155
|
+
time_unit: nil,
|
156
|
+
time_zone: nil
|
157
|
+
)
|
158
|
+
if defined?(ActiveSupport::Duration) && interval.is_a?(ActiveSupport::Duration)
|
159
|
+
raise Todo
|
160
|
+
else
|
161
|
+
interval = interval.to_s
|
162
|
+
if interval.include?(" ")
|
163
|
+
interval = interval.gsub(" ", "")
|
164
|
+
end
|
165
|
+
end
|
166
|
+
|
167
|
+
if low.is_a?(Expr) || high.is_a?(Expr) || lazy
|
168
|
+
low = Utils.expr_to_lit_or_expr(low, str_to_lit: true)
|
169
|
+
high = Utils.expr_to_lit_or_expr(high, str_to_lit: true)
|
170
|
+
return Utils.wrap_expr(
|
171
|
+
_rb_date_range_lazy(low, high, interval, closed, name, time_zone)
|
172
|
+
)
|
173
|
+
end
|
174
|
+
|
175
|
+
low, low_is_date = _ensure_datetime(low)
|
176
|
+
high, high_is_date = _ensure_datetime(high)
|
177
|
+
|
178
|
+
if !time_unit.nil?
|
179
|
+
tu = time_unit
|
180
|
+
elsif interval.include?("ns")
|
181
|
+
tu = "ns"
|
182
|
+
else
|
183
|
+
tu = "us"
|
184
|
+
end
|
185
|
+
|
186
|
+
start = Utils._datetime_to_pl_timestamp(low, tu)
|
187
|
+
stop = Utils._datetime_to_pl_timestamp(high, tu)
|
188
|
+
if name.nil?
|
189
|
+
name = ""
|
190
|
+
end
|
191
|
+
|
192
|
+
dt_range = Utils.wrap_s(
|
193
|
+
_rb_date_range(start, stop, interval, closed, name, tu, time_zone)
|
194
|
+
)
|
195
|
+
if low_is_date && high_is_date && !["h", "m", "s"].any? { |v| _interval_granularity(interval).end_with?(v) }
|
196
|
+
dt_range = dt_range.cast(Date)
|
197
|
+
end
|
198
|
+
|
199
|
+
dt_range
|
200
|
+
end
|
201
|
+
|
202
|
+
# Bin values into discrete values.
|
203
|
+
#
|
204
|
+
# @param s [Series]
|
205
|
+
# Series to bin.
|
206
|
+
# @param bins [Array]
|
207
|
+
# Bins to create.
|
208
|
+
# @param labels [Array]
|
209
|
+
# Labels to assign to the bins. If given the length of labels must be
|
210
|
+
# len(bins) + 1.
|
211
|
+
# @param break_point_label [String]
|
212
|
+
# Name given to the breakpoint column.
|
213
|
+
# @param category_label [String]
|
214
|
+
# Name given to the category column.
|
215
|
+
#
|
216
|
+
# @return [DataFrame]
|
217
|
+
#
|
218
|
+
# @note
|
219
|
+
# This functionality is experimental and may change without it being considered a
|
220
|
+
# breaking change.
|
221
|
+
#
|
222
|
+
# @example
|
223
|
+
# a = Polars::Series.new("a", 13.times.map { |i| (-30 + i * 5) / 10.0 })
|
224
|
+
# Polars.cut(a, [-1, 1])
|
225
|
+
# # =>
|
226
|
+
# # shape: (12, 3)
|
227
|
+
# # ┌──────┬─────────────┬──────────────┐
|
228
|
+
# # │ a ┆ break_point ┆ category │
|
229
|
+
# # │ --- ┆ --- ┆ --- │
|
230
|
+
# # │ f64 ┆ f64 ┆ cat │
|
231
|
+
# # ╞══════╪═════════════╪══════════════╡
|
232
|
+
# # │ -3.0 ┆ -1.0 ┆ (-inf, -1.0] │
|
233
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
|
234
|
+
# # │ -2.5 ┆ -1.0 ┆ (-inf, -1.0] │
|
235
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
|
236
|
+
# # │ -2.0 ┆ -1.0 ┆ (-inf, -1.0] │
|
237
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
|
238
|
+
# # │ -1.5 ┆ -1.0 ┆ (-inf, -1.0] │
|
239
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
|
240
|
+
# # │ ... ┆ ... ┆ ... │
|
241
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
|
242
|
+
# # │ 1.0 ┆ 1.0 ┆ (-1.0, 1.0] │
|
243
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
|
244
|
+
# # │ 1.5 ┆ inf ┆ (1.0, inf] │
|
245
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
|
246
|
+
# # │ 2.0 ┆ inf ┆ (1.0, inf] │
|
247
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
|
248
|
+
# # │ 2.5 ┆ inf ┆ (1.0, inf] │
|
249
|
+
# # └──────┴─────────────┴──────────────┘
|
250
|
+
# def cut(
|
251
|
+
# s,
|
252
|
+
# bins,
|
253
|
+
# labels: nil,
|
254
|
+
# break_point_label: "break_point",
|
255
|
+
# category_label: "category"
|
256
|
+
# )
|
257
|
+
# var_nm = s.name
|
258
|
+
|
259
|
+
# cuts_df = DataFrame.new(
|
260
|
+
# [
|
261
|
+
# Series.new(
|
262
|
+
# break_point_label, bins, dtype: :f64
|
263
|
+
# ).extend_constant(Float::INFINITY, 1)
|
264
|
+
# ]
|
265
|
+
# )
|
266
|
+
|
267
|
+
# if labels
|
268
|
+
# if labels.length != bins.length + 1
|
269
|
+
# raise ArgumentError, "expected more labels"
|
270
|
+
# end
|
271
|
+
# cuts_df = cuts_df.with_column(Series.new(category_label, labels))
|
272
|
+
# else
|
273
|
+
# cuts_df = cuts_df.with_column(
|
274
|
+
# Polars.format(
|
275
|
+
# "({}, {}]",
|
276
|
+
# Polars.col(break_point_label).shift_and_fill(1, -Float::INFINITY),
|
277
|
+
# Polars.col(break_point_label)
|
278
|
+
# ).alias(category_label)
|
279
|
+
# )
|
280
|
+
# end
|
281
|
+
|
282
|
+
# cuts_df = cuts_df.with_column(Polars.col(category_label).cast(:cat))
|
283
|
+
|
284
|
+
# s.cast(:f64)
|
285
|
+
# .sort
|
286
|
+
# .to_frame
|
287
|
+
# .join_asof(
|
288
|
+
# cuts_df,
|
289
|
+
# left_on: var_nm,
|
290
|
+
# right_on: break_point_label,
|
291
|
+
# strategy: "forward"
|
292
|
+
# )
|
293
|
+
# end
|
294
|
+
|
295
|
+
# Align a sequence of frames using the uique values from one or more columns as a key.
|
296
|
+
#
|
297
|
+
# Frames that do not contain the given key values have rows injected (with nulls
|
298
|
+
# filling the non-key columns), and each resulting frame is sorted by the key.
|
299
|
+
#
|
300
|
+
# The original column order of input frames is not changed unless ``select`` is
|
301
|
+
# specified (in which case the final column order is determined from that).
|
302
|
+
#
|
303
|
+
# Note that this does not result in a joined frame - you receive the same number
|
304
|
+
# of frames back that you passed in, but each is now aligned by key and has
|
305
|
+
# the same number of rows.
|
306
|
+
#
|
307
|
+
# @param frames [Array]
|
308
|
+
# Sequence of DataFrames or LazyFrames.
|
309
|
+
# @param on [Object]
|
310
|
+
# One or more columns whose unique values will be used to align the frames.
|
311
|
+
# @param select [Object]
|
312
|
+
# Optional post-alignment column select to constrain and/or order
|
313
|
+
# the columns returned from the newly aligned frames.
|
314
|
+
# @param reverse [Object]
|
315
|
+
# Sort the alignment column values in descending order; can be a single
|
316
|
+
# boolean or a list of booleans associated with each column in `on`.
|
317
|
+
#
|
318
|
+
# @return [Object]
|
319
|
+
#
|
320
|
+
# @example
|
321
|
+
# df1 = Polars::DataFrame.new(
|
322
|
+
# {
|
323
|
+
# "dt" => [Date.new(2022, 9, 1), Date.new(2022, 9, 2), Date.new(2022, 9, 3)],
|
324
|
+
# "x" => [3.5, 4.0, 1.0],
|
325
|
+
# "y" => [10.0, 2.5, 1.5]
|
326
|
+
# }
|
327
|
+
# )
|
328
|
+
# df2 = Polars::DataFrame.new(
|
329
|
+
# {
|
330
|
+
# "dt" => [Date.new(2022, 9, 2), Date.new(2022, 9, 3), Date.new(2022, 9, 1)],
|
331
|
+
# "x" => [8.0, 1.0, 3.5],
|
332
|
+
# "y" => [1.5, 12.0, 5.0]
|
333
|
+
# }
|
334
|
+
# )
|
335
|
+
# df3 = Polars::DataFrame.new(
|
336
|
+
# {
|
337
|
+
# "dt" => [Date.new(2022, 9, 3), Date.new(2022, 9, 2)],
|
338
|
+
# "x" => [2.0, 5.0],
|
339
|
+
# "y" => [2.5, 2.0]
|
340
|
+
# }
|
341
|
+
# )
|
342
|
+
# af1, af2, af3 = Polars.align_frames(
|
343
|
+
# df1, df2, df3, on: "dt", select: ["x", "y"]
|
344
|
+
# )
|
345
|
+
# (af1 * af2 * af3).fill_null(0).select(Polars.sum(Polars.col("*")).alias("dot"))
|
346
|
+
# # =>
|
347
|
+
# # shape: (3, 1)
|
348
|
+
# # ┌───────┐
|
349
|
+
# # │ dot │
|
350
|
+
# # │ --- │
|
351
|
+
# # │ f64 │
|
352
|
+
# # ╞═══════╡
|
353
|
+
# # │ 0.0 │
|
354
|
+
# # ├╌╌╌╌╌╌╌┤
|
355
|
+
# # │ 167.5 │
|
356
|
+
# # ├╌╌╌╌╌╌╌┤
|
357
|
+
# # │ 47.0 │
|
358
|
+
# # └───────┘
|
359
|
+
def align_frames(
|
360
|
+
*frames,
|
361
|
+
on:,
|
362
|
+
select: nil,
|
363
|
+
reverse: false
|
364
|
+
)
|
365
|
+
if frames.empty?
|
366
|
+
return []
|
367
|
+
elsif frames.map(&:class).uniq.length != 1
|
368
|
+
raise TypeError, "Input frames must be of a consistent type (all LazyFrame or all DataFrame)"
|
369
|
+
end
|
370
|
+
|
371
|
+
# establish the superset of all "on" column values, sort, and cache
|
372
|
+
eager = frames[0].is_a?(DataFrame)
|
373
|
+
alignment_frame = (
|
374
|
+
concat(frames.map { |df| df.lazy.select(on) })
|
375
|
+
.unique(maintain_order: false)
|
376
|
+
.sort(on, reverse: reverse)
|
377
|
+
)
|
378
|
+
alignment_frame = (
|
379
|
+
eager ? alignment_frame.collect.lazy : alignment_frame.cache
|
380
|
+
)
|
381
|
+
# finally, align all frames
|
382
|
+
aligned_frames =
|
383
|
+
frames.map do |df|
|
384
|
+
alignment_frame.join(
|
385
|
+
df.lazy,
|
386
|
+
on: alignment_frame.columns,
|
387
|
+
how: "left"
|
388
|
+
).select(df.columns)
|
389
|
+
end
|
390
|
+
if !select.nil?
|
391
|
+
aligned_frames = aligned_frames.map { |df| df.select(select) }
|
392
|
+
end
|
393
|
+
|
394
|
+
eager ? aligned_frames.map(&:collect) : aligned_frames
|
395
|
+
end
|
396
|
+
|
397
|
+
# Return a new Series of given length and type, filled with ones.
|
398
|
+
#
|
399
|
+
# @param n [Integer]
|
400
|
+
# Number of elements in the `Series`
|
401
|
+
# @param dtype [Symbol]
|
402
|
+
# DataType of the elements, defaults to `:f64`
|
403
|
+
#
|
404
|
+
# @return [Series]
|
405
|
+
#
|
406
|
+
# @note
|
407
|
+
# In the lazy API you should probably not use this, but use `lit(1)`
|
408
|
+
# instead.
|
409
|
+
def ones(n, dtype: nil)
|
410
|
+
s = Series.new([1.0])
|
411
|
+
if dtype
|
412
|
+
s = s.cast(dtype)
|
413
|
+
end
|
414
|
+
s.new_from_index(0, n)
|
415
|
+
end
|
416
|
+
|
417
|
+
# Return a new Series of given length and type, filled with zeros.
|
418
|
+
#
|
419
|
+
# @param n [Integer]
|
420
|
+
# Number of elements in the `Series`
|
421
|
+
# @param dtype [Symbol]
|
422
|
+
# DataType of the elements, defaults to `:f64`
|
423
|
+
#
|
424
|
+
# @return [Series]
|
425
|
+
#
|
426
|
+
# @note
|
427
|
+
# In the lazy API you should probably not use this, but use `lit(0)`
|
428
|
+
# instead.
|
429
|
+
def zeros(n, dtype: nil)
|
430
|
+
s = Series.new([0.0])
|
431
|
+
if dtype
|
432
|
+
s = s.cast(dtype)
|
433
|
+
end
|
434
|
+
s.new_from_index(0, n)
|
435
|
+
end
|
436
|
+
|
437
|
+
private
|
438
|
+
|
439
|
+
def _ensure_datetime(value)
|
440
|
+
is_date_type = false
|
441
|
+
if !value.is_a?(::DateTime)
|
442
|
+
value = ::DateTime.new(value.year, value.month, value.day)
|
443
|
+
is_date_type = true
|
444
|
+
end
|
445
|
+
[value, is_date_type]
|
446
|
+
end
|
447
|
+
|
448
|
+
# TODO
|
449
|
+
def _interval_granularity(interval)
|
450
|
+
interval
|
451
|
+
end
|
452
|
+
end
|
453
|
+
end
|