polars-df 0.2.0-x86_64-linux
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.yardopts +3 -0
- data/CHANGELOG.md +33 -0
- data/Cargo.lock +2230 -0
- data/Cargo.toml +10 -0
- data/LICENSE-THIRD-PARTY.txt +38828 -0
- data/LICENSE.txt +20 -0
- data/README.md +91 -0
- data/lib/polars/3.0/polars.so +0 -0
- data/lib/polars/3.1/polars.so +0 -0
- data/lib/polars/3.2/polars.so +0 -0
- data/lib/polars/batched_csv_reader.rb +96 -0
- data/lib/polars/cat_expr.rb +52 -0
- data/lib/polars/cat_name_space.rb +54 -0
- data/lib/polars/convert.rb +100 -0
- data/lib/polars/data_frame.rb +4833 -0
- data/lib/polars/data_types.rb +122 -0
- data/lib/polars/date_time_expr.rb +1418 -0
- data/lib/polars/date_time_name_space.rb +1484 -0
- data/lib/polars/dynamic_group_by.rb +52 -0
- data/lib/polars/exceptions.rb +20 -0
- data/lib/polars/expr.rb +5307 -0
- data/lib/polars/expr_dispatch.rb +22 -0
- data/lib/polars/functions.rb +453 -0
- data/lib/polars/group_by.rb +558 -0
- data/lib/polars/io.rb +814 -0
- data/lib/polars/lazy_frame.rb +2442 -0
- data/lib/polars/lazy_functions.rb +1195 -0
- data/lib/polars/lazy_group_by.rb +93 -0
- data/lib/polars/list_expr.rb +610 -0
- data/lib/polars/list_name_space.rb +346 -0
- data/lib/polars/meta_expr.rb +54 -0
- data/lib/polars/rolling_group_by.rb +35 -0
- data/lib/polars/series.rb +3730 -0
- data/lib/polars/slice.rb +104 -0
- data/lib/polars/string_expr.rb +972 -0
- data/lib/polars/string_name_space.rb +690 -0
- data/lib/polars/struct_expr.rb +100 -0
- data/lib/polars/struct_name_space.rb +64 -0
- data/lib/polars/utils.rb +192 -0
- data/lib/polars/version.rb +4 -0
- data/lib/polars/when.rb +16 -0
- data/lib/polars/when_then.rb +19 -0
- data/lib/polars-df.rb +1 -0
- data/lib/polars.rb +50 -0
- metadata +89 -0
@@ -0,0 +1,558 @@
|
|
1
|
+
module Polars
|
2
|
+
# Starts a new GroupBy operation.
|
3
|
+
class GroupBy
|
4
|
+
# @private
|
5
|
+
attr_accessor :_df, :_dataframe_class, :by, :maintain_order
|
6
|
+
|
7
|
+
# @private
|
8
|
+
def initialize(df, by, dataframe_class, maintain_order: false)
|
9
|
+
self._df = df
|
10
|
+
self._dataframe_class = dataframe_class
|
11
|
+
self.by = by
|
12
|
+
self.maintain_order = maintain_order
|
13
|
+
end
|
14
|
+
|
15
|
+
# Apply a custom/user-defined function (UDF) over the groups as a sub-DataFrame.
|
16
|
+
#
|
17
|
+
# Implementing logic using a Ruby function is almost always _significantly_
|
18
|
+
# slower and more memory intensive than implementing the same logic using
|
19
|
+
# the native expression API because:
|
20
|
+
|
21
|
+
# - The native expression engine runs in Rust; UDFs run in Ruby.
|
22
|
+
# - Use of Ruby UDFs forces the DataFrame to be materialized in memory.
|
23
|
+
# - Polars-native expressions can be parallelised (UDFs cannot).
|
24
|
+
# - Polars-native expressions can be logically optimised (UDFs cannot).
|
25
|
+
#
|
26
|
+
# Wherever possible you should strongly prefer the native expression API
|
27
|
+
# to achieve the best performance.
|
28
|
+
#
|
29
|
+
# @return [DataFrame]
|
30
|
+
#
|
31
|
+
# @example
|
32
|
+
# df = Polars::DataFrame.new(
|
33
|
+
# {
|
34
|
+
# "id" => [0, 1, 2, 3, 4],
|
35
|
+
# "color" => ["red", "green", "green", "red", "red"],
|
36
|
+
# "shape" => ["square", "triangle", "square", "triangle", "square"]
|
37
|
+
# }
|
38
|
+
# )
|
39
|
+
# df.groupby("color").apply { |group_df| group_df.sample(2) }
|
40
|
+
# # =>
|
41
|
+
# # shape: (4, 3)
|
42
|
+
# # ┌─────┬───────┬──────────┐
|
43
|
+
# # │ id ┆ color ┆ shape │
|
44
|
+
# # │ --- ┆ --- ┆ --- │
|
45
|
+
# # │ i64 ┆ str ┆ str │
|
46
|
+
# # ╞═════╪═══════╪══════════╡
|
47
|
+
# # │ 1 ┆ green ┆ triangle │
|
48
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┤
|
49
|
+
# # │ 2 ┆ green ┆ square │
|
50
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┤
|
51
|
+
# # │ 4 ┆ red ┆ square │
|
52
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┤
|
53
|
+
# # │ 3 ┆ red ┆ triangle │
|
54
|
+
# # └─────┴───────┴──────────┘
|
55
|
+
# def apply(&f)
|
56
|
+
# _dataframe_class._from_rbdf(_df.groupby_apply(by, f))
|
57
|
+
# end
|
58
|
+
|
59
|
+
# Use multiple aggregations on columns.
|
60
|
+
#
|
61
|
+
# This can be combined with complete lazy API and is considered idiomatic polars.
|
62
|
+
#
|
63
|
+
# @param aggs [Object]
|
64
|
+
# Single / multiple aggregation expression(s).
|
65
|
+
#
|
66
|
+
# @return [DataFrame]
|
67
|
+
#
|
68
|
+
# @example
|
69
|
+
# df = Polars::DataFrame.new(
|
70
|
+
# {"foo" => ["one", "two", "two", "one", "two"], "bar" => [5, 3, 2, 4, 1]}
|
71
|
+
# )
|
72
|
+
# df.groupby("foo", maintain_order: true).agg(
|
73
|
+
# [
|
74
|
+
# Polars.sum("bar").suffix("_sum"),
|
75
|
+
# Polars.col("bar").sort.tail(2).sum.suffix("_tail_sum")
|
76
|
+
# ]
|
77
|
+
# )
|
78
|
+
# # =>
|
79
|
+
# # shape: (2, 3)
|
80
|
+
# # ┌─────┬─────────┬──────────────┐
|
81
|
+
# # │ foo ┆ bar_sum ┆ bar_tail_sum │
|
82
|
+
# # │ --- ┆ --- ┆ --- │
|
83
|
+
# # │ str ┆ i64 ┆ i64 │
|
84
|
+
# # ╞═════╪═════════╪══════════════╡
|
85
|
+
# # │ one ┆ 9 ┆ 9 │
|
86
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
|
87
|
+
# # │ two ┆ 6 ┆ 5 │
|
88
|
+
# # └─────┴─────────┴──────────────┘
|
89
|
+
def agg(aggs)
|
90
|
+
df = Utils.wrap_df(_df)
|
91
|
+
.lazy
|
92
|
+
.groupby(by, maintain_order: maintain_order)
|
93
|
+
.agg(aggs)
|
94
|
+
.collect(no_optimization: true, string_cache: false)
|
95
|
+
_dataframe_class._from_rbdf(df._df)
|
96
|
+
end
|
97
|
+
|
98
|
+
# Get the first `n` rows of each group.
|
99
|
+
#
|
100
|
+
# @param n [Integer]
|
101
|
+
# Number of rows to return.
|
102
|
+
#
|
103
|
+
# @return [DataFrame]
|
104
|
+
#
|
105
|
+
# @example
|
106
|
+
# df = Polars::DataFrame.new(
|
107
|
+
# {
|
108
|
+
# "letters" => ["c", "c", "a", "c", "a", "b"],
|
109
|
+
# "nrs" => [1, 2, 3, 4, 5, 6]
|
110
|
+
# }
|
111
|
+
# )
|
112
|
+
# # =>
|
113
|
+
# # shape: (6, 2)
|
114
|
+
# # ┌─────────┬─────┐
|
115
|
+
# # │ letters ┆ nrs │
|
116
|
+
# # │ --- ┆ --- │
|
117
|
+
# # │ str ┆ i64 │
|
118
|
+
# # ╞═════════╪═════╡
|
119
|
+
# # │ c ┆ 1 │
|
120
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
121
|
+
# # │ c ┆ 2 │
|
122
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
123
|
+
# # │ a ┆ 3 │
|
124
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
125
|
+
# # │ c ┆ 4 │
|
126
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
127
|
+
# # │ a ┆ 5 │
|
128
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
129
|
+
# # │ b ┆ 6 │
|
130
|
+
# # └─────────┴─────┘
|
131
|
+
#
|
132
|
+
# @example
|
133
|
+
# df.groupby("letters").head(2).sort("letters")
|
134
|
+
# # =>
|
135
|
+
# # shape: (5, 2)
|
136
|
+
# # ┌─────────┬─────┐
|
137
|
+
# # │ letters ┆ nrs │
|
138
|
+
# # │ --- ┆ --- │
|
139
|
+
# # │ str ┆ i64 │
|
140
|
+
# # ╞═════════╪═════╡
|
141
|
+
# # │ a ┆ 3 │
|
142
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
143
|
+
# # │ a ┆ 5 │
|
144
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
145
|
+
# # │ b ┆ 6 │
|
146
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
147
|
+
# # │ c ┆ 1 │
|
148
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
149
|
+
# # │ c ┆ 2 │
|
150
|
+
# # └─────────┴─────┘
|
151
|
+
def head(n = 5)
|
152
|
+
df = (
|
153
|
+
Utils.wrap_df(_df)
|
154
|
+
.lazy
|
155
|
+
.groupby(by, maintain_order: maintain_order)
|
156
|
+
.head(n)
|
157
|
+
.collect(no_optimization: true, string_cache: false)
|
158
|
+
)
|
159
|
+
_dataframe_class._from_rbdf(df._df)
|
160
|
+
end
|
161
|
+
|
162
|
+
# Get the last `n` rows of each group.
|
163
|
+
#
|
164
|
+
# @param n [Integer]
|
165
|
+
# Number of rows to return.
|
166
|
+
#
|
167
|
+
# @return [DataFrame]
|
168
|
+
#
|
169
|
+
# @example
|
170
|
+
# df = Polars::DataFrame.new(
|
171
|
+
# {
|
172
|
+
# "letters" => ["c", "c", "a", "c", "a", "b"],
|
173
|
+
# "nrs" => [1, 2, 3, 4, 5, 6]
|
174
|
+
# }
|
175
|
+
# )
|
176
|
+
# # =>
|
177
|
+
# # shape: (6, 2)
|
178
|
+
# # ┌─────────┬─────┐
|
179
|
+
# # │ letters ┆ nrs │
|
180
|
+
# # │ --- ┆ --- │
|
181
|
+
# # │ str ┆ i64 │
|
182
|
+
# # ╞═════════╪═════╡
|
183
|
+
# # │ c ┆ 1 │
|
184
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
185
|
+
# # │ c ┆ 2 │
|
186
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
187
|
+
# # │ a ┆ 3 │
|
188
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
189
|
+
# # │ c ┆ 4 │
|
190
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
191
|
+
# # │ a ┆ 5 │
|
192
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
193
|
+
# # │ b ┆ 6 │
|
194
|
+
# # └─────────┴─────┘
|
195
|
+
#
|
196
|
+
# @example
|
197
|
+
# df.groupby("letters").tail(2).sort("letters")
|
198
|
+
# # =>
|
199
|
+
# # shape: (5, 2)
|
200
|
+
# # ┌─────────┬─────┐
|
201
|
+
# # │ letters ┆ nrs │
|
202
|
+
# # │ --- ┆ --- │
|
203
|
+
# # │ str ┆ i64 │
|
204
|
+
# # ╞═════════╪═════╡
|
205
|
+
# # │ a ┆ 3 │
|
206
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
207
|
+
# # │ a ┆ 5 │
|
208
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
209
|
+
# # │ b ┆ 6 │
|
210
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
211
|
+
# # │ c ┆ 2 │
|
212
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
213
|
+
# # │ c ┆ 4 │
|
214
|
+
# # └─────────┴─────┘
|
215
|
+
def tail(n = 5)
|
216
|
+
df = (
|
217
|
+
Utils.wrap_df(_df)
|
218
|
+
.lazy
|
219
|
+
.groupby(by, maintain_order: maintain_order)
|
220
|
+
.tail(n)
|
221
|
+
.collect(no_optimization: true, string_cache: false)
|
222
|
+
)
|
223
|
+
_dataframe_class._from_rbdf(df._df)
|
224
|
+
end
|
225
|
+
|
226
|
+
# pivot is deprecated
|
227
|
+
|
228
|
+
# Aggregate the first values in the group.
|
229
|
+
#
|
230
|
+
# @return [DataFrame]
|
231
|
+
#
|
232
|
+
# @example
|
233
|
+
# df = Polars::DataFrame.new(
|
234
|
+
# {
|
235
|
+
# "a" => [1, 2, 2, 3, 4, 5],
|
236
|
+
# "b" => [0.5, 0.5, 4, 10, 13, 14],
|
237
|
+
# "c" => [true, true, true, false, false, true],
|
238
|
+
# "d" => ["Apple", "Orange", "Apple", "Apple", "Banana", "Banana"]
|
239
|
+
# }
|
240
|
+
# )
|
241
|
+
# df.groupby("d", maintain_order: true).first
|
242
|
+
# # =>
|
243
|
+
# # shape: (3, 4)
|
244
|
+
# # ┌────────┬─────┬──────┬───────┐
|
245
|
+
# # │ d ┆ a ┆ b ┆ c │
|
246
|
+
# # │ --- ┆ --- ┆ --- ┆ --- │
|
247
|
+
# # │ str ┆ i64 ┆ f64 ┆ bool │
|
248
|
+
# # ╞════════╪═════╪══════╪═══════╡
|
249
|
+
# # │ Apple ┆ 1 ┆ 0.5 ┆ true │
|
250
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
251
|
+
# # │ Orange ┆ 2 ┆ 0.5 ┆ true │
|
252
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
253
|
+
# # │ Banana ┆ 4 ┆ 13.0 ┆ false │
|
254
|
+
# # └────────┴─────┴──────┴───────┘
|
255
|
+
def first
|
256
|
+
agg(Polars.all.first)
|
257
|
+
end
|
258
|
+
|
259
|
+
# Aggregate the last values in the group.
|
260
|
+
#
|
261
|
+
# @return [DataFrame]
|
262
|
+
#
|
263
|
+
# @example
|
264
|
+
# df = Polars::DataFrame.new(
|
265
|
+
# {
|
266
|
+
# "a" => [1, 2, 2, 3, 4, 5],
|
267
|
+
# "b" => [0.5, 0.5, 4, 10, 13, 14],
|
268
|
+
# "c" => [true, true, true, false, false, true],
|
269
|
+
# "d" => ["Apple", "Orange", "Apple", "Apple", "Banana", "Banana"]
|
270
|
+
# }
|
271
|
+
# )
|
272
|
+
# df.groupby("d", maintain_order: true).last
|
273
|
+
# # =>
|
274
|
+
# # shape: (3, 4)
|
275
|
+
# # ┌────────┬─────┬──────┬───────┐
|
276
|
+
# # │ d ┆ a ┆ b ┆ c │
|
277
|
+
# # │ --- ┆ --- ┆ --- ┆ --- │
|
278
|
+
# # │ str ┆ i64 ┆ f64 ┆ bool │
|
279
|
+
# # ╞════════╪═════╪══════╪═══════╡
|
280
|
+
# # │ Apple ┆ 3 ┆ 10.0 ┆ false │
|
281
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
282
|
+
# # │ Orange ┆ 2 ┆ 0.5 ┆ true │
|
283
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
284
|
+
# # │ Banana ┆ 5 ┆ 14.0 ┆ true │
|
285
|
+
# # └────────┴─────┴──────┴───────┘
|
286
|
+
def last
|
287
|
+
agg(Polars.all.last)
|
288
|
+
end
|
289
|
+
|
290
|
+
# Reduce the groups to the sum.
|
291
|
+
#
|
292
|
+
# @return [DataFrame]
|
293
|
+
#
|
294
|
+
# @example
|
295
|
+
# df = Polars::DataFrame.new(
|
296
|
+
# {
|
297
|
+
# "a" => [1, 2, 2, 3, 4, 5],
|
298
|
+
# "b" => [0.5, 0.5, 4, 10, 13, 14],
|
299
|
+
# "c" => [true, true, true, false, false, true],
|
300
|
+
# "d" => ["Apple", "Orange", "Apple", "Apple", "Banana", "Banana"]
|
301
|
+
# }
|
302
|
+
# )
|
303
|
+
# df.groupby("d", maintain_order: true).sum
|
304
|
+
# # =>
|
305
|
+
# # shape: (3, 4)
|
306
|
+
# # ┌────────┬─────┬──────┬─────┐
|
307
|
+
# # │ d ┆ a ┆ b ┆ c │
|
308
|
+
# # │ --- ┆ --- ┆ --- ┆ --- │
|
309
|
+
# # │ str ┆ i64 ┆ f64 ┆ u32 │
|
310
|
+
# # ╞════════╪═════╪══════╪═════╡
|
311
|
+
# # │ Apple ┆ 6 ┆ 14.5 ┆ 2 │
|
312
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌┤
|
313
|
+
# # │ Orange ┆ 2 ┆ 0.5 ┆ 1 │
|
314
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌┤
|
315
|
+
# # │ Banana ┆ 9 ┆ 27.0 ┆ 1 │
|
316
|
+
# # └────────┴─────┴──────┴─────┘
|
317
|
+
def sum
|
318
|
+
agg(Polars.all.sum)
|
319
|
+
end
|
320
|
+
|
321
|
+
# Reduce the groups to the minimal value.
|
322
|
+
#
|
323
|
+
# @return [DataFrame]
|
324
|
+
#
|
325
|
+
# @example
|
326
|
+
# df = Polars::DataFrame.new(
|
327
|
+
# {
|
328
|
+
# "a" => [1, 2, 2, 3, 4, 5],
|
329
|
+
# "b" => [0.5, 0.5, 4, 10, 13, 14],
|
330
|
+
# "c" => [true, true, true, false, false, true],
|
331
|
+
# "d" => ["Apple", "Orange", "Apple", "Apple", "Banana", "Banana"],
|
332
|
+
# }
|
333
|
+
# )
|
334
|
+
# df.groupby("d", maintain_order: true).min
|
335
|
+
# # =>
|
336
|
+
# # shape: (3, 4)
|
337
|
+
# # ┌────────┬─────┬──────┬───────┐
|
338
|
+
# # │ d ┆ a ┆ b ┆ c │
|
339
|
+
# # │ --- ┆ --- ┆ --- ┆ --- │
|
340
|
+
# # │ str ┆ i64 ┆ f64 ┆ bool │
|
341
|
+
# # ╞════════╪═════╪══════╪═══════╡
|
342
|
+
# # │ Apple ┆ 1 ┆ 0.5 ┆ false │
|
343
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
344
|
+
# # │ Orange ┆ 2 ┆ 0.5 ┆ true │
|
345
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
346
|
+
# # │ Banana ┆ 4 ┆ 13.0 ┆ false │
|
347
|
+
# # └────────┴─────┴──────┴───────┘
|
348
|
+
def min
|
349
|
+
agg(Polars.all.min)
|
350
|
+
end
|
351
|
+
|
352
|
+
# Reduce the groups to the maximal value.
|
353
|
+
#
|
354
|
+
# @return [DataFrame]
|
355
|
+
#
|
356
|
+
# @example
|
357
|
+
# df = Polars::DataFrame.new(
|
358
|
+
# {
|
359
|
+
# "a" => [1, 2, 2, 3, 4, 5],
|
360
|
+
# "b" => [0.5, 0.5, 4, 10, 13, 14],
|
361
|
+
# "c" => [true, true, true, false, false, true],
|
362
|
+
# "d" => ["Apple", "Orange", "Apple", "Apple", "Banana", "Banana"]
|
363
|
+
# }
|
364
|
+
# )
|
365
|
+
# df.groupby("d", maintain_order: true).max
|
366
|
+
# # =>
|
367
|
+
# # shape: (3, 4)
|
368
|
+
# # ┌────────┬─────┬──────┬──────┐
|
369
|
+
# # │ d ┆ a ┆ b ┆ c │
|
370
|
+
# # │ --- ┆ --- ┆ --- ┆ --- │
|
371
|
+
# # │ str ┆ i64 ┆ f64 ┆ bool │
|
372
|
+
# # ╞════════╪═════╪══════╪══════╡
|
373
|
+
# # │ Apple ┆ 3 ┆ 10.0 ┆ true │
|
374
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
375
|
+
# # │ Orange ┆ 2 ┆ 0.5 ┆ true │
|
376
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
377
|
+
# # │ Banana ┆ 5 ┆ 14.0 ┆ true │
|
378
|
+
# # └────────┴─────┴──────┴──────┘
|
379
|
+
def max
|
380
|
+
agg(Polars.all.max)
|
381
|
+
end
|
382
|
+
|
383
|
+
# Count the number of values in each group.
|
384
|
+
#
|
385
|
+
# @return [DataFrame]
|
386
|
+
#
|
387
|
+
# @example
|
388
|
+
# df = Polars::DataFrame.new(
|
389
|
+
# {
|
390
|
+
# "a" => [1, 2, 2, 3, 4, 5],
|
391
|
+
# "b" => [0.5, 0.5, 4, 10, 13, 14],
|
392
|
+
# "c" => [true, true, true, false, false, true],
|
393
|
+
# "d" => ["Apple", "Orange", "Apple", "Apple", "Banana", "Banana"]
|
394
|
+
# }
|
395
|
+
# )
|
396
|
+
# df.groupby("d", maintain_order: true).count
|
397
|
+
# # =>
|
398
|
+
# # shape: (3, 2)
|
399
|
+
# # ┌────────┬───────┐
|
400
|
+
# # │ d ┆ count │
|
401
|
+
# # │ --- ┆ --- │
|
402
|
+
# # │ str ┆ u32 │
|
403
|
+
# # ╞════════╪═══════╡
|
404
|
+
# # │ Apple ┆ 3 │
|
405
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
406
|
+
# # │ Orange ┆ 1 │
|
407
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
408
|
+
# # │ Banana ┆ 2 │
|
409
|
+
# # └────────┴───────┘
|
410
|
+
def count
|
411
|
+
agg(Polars.count)
|
412
|
+
end
|
413
|
+
|
414
|
+
# Reduce the groups to the mean values.
|
415
|
+
#
|
416
|
+
# @return [DataFrame]
|
417
|
+
#
|
418
|
+
# @example
|
419
|
+
# df = Polars::DataFrame.new(
|
420
|
+
# {
|
421
|
+
# "a" => [1, 2, 2, 3, 4, 5],
|
422
|
+
# "b" => [0.5, 0.5, 4, 10, 13, 14],
|
423
|
+
# "c" => [true, true, true, false, false, true],
|
424
|
+
# "d" => ["Apple", "Orange", "Apple", "Apple", "Banana", "Banana"]
|
425
|
+
# }
|
426
|
+
# )
|
427
|
+
# df.groupby("d", maintain_order: true).mean
|
428
|
+
# # =>
|
429
|
+
# # shape: (3, 4)
|
430
|
+
# # ┌────────┬─────┬──────────┬──────────┐
|
431
|
+
# # │ d ┆ a ┆ b ┆ c │
|
432
|
+
# # │ --- ┆ --- ┆ --- ┆ --- │
|
433
|
+
# # │ str ┆ f64 ┆ f64 ┆ f64 │
|
434
|
+
# # ╞════════╪═════╪══════════╪══════════╡
|
435
|
+
# # │ Apple ┆ 2.0 ┆ 4.833333 ┆ 0.666667 │
|
436
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┤
|
437
|
+
# # │ Orange ┆ 2.0 ┆ 0.5 ┆ 1.0 │
|
438
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┤
|
439
|
+
# # │ Banana ┆ 4.5 ┆ 13.5 ┆ 0.5 │
|
440
|
+
# # └────────┴─────┴──────────┴──────────┘
|
441
|
+
def mean
|
442
|
+
agg(Polars.all.mean)
|
443
|
+
end
|
444
|
+
|
445
|
+
# Count the unique values per group.
|
446
|
+
#
|
447
|
+
# @return [DataFrame]
|
448
|
+
#
|
449
|
+
# @example
|
450
|
+
# df = Polars::DataFrame.new(
|
451
|
+
# {
|
452
|
+
# "a" => [1, 2, 1, 3, 4, 5],
|
453
|
+
# "b" => [0.5, 0.5, 0.5, 10, 13, 14],
|
454
|
+
# "d" => ["Apple", "Banana", "Apple", "Apple", "Banana", "Banana"]
|
455
|
+
# }
|
456
|
+
# )
|
457
|
+
# df.groupby("d", maintain_order: true).n_unique
|
458
|
+
# # =>
|
459
|
+
# # shape: (2, 3)
|
460
|
+
# # ┌────────┬─────┬─────┐
|
461
|
+
# # │ d ┆ a ┆ b │
|
462
|
+
# # │ --- ┆ --- ┆ --- │
|
463
|
+
# # │ str ┆ u32 ┆ u32 │
|
464
|
+
# # ╞════════╪═════╪═════╡
|
465
|
+
# # │ Apple ┆ 2 ┆ 2 │
|
466
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
467
|
+
# # │ Banana ┆ 3 ┆ 3 │
|
468
|
+
# # └────────┴─────┴─────┘
|
469
|
+
def n_unique
|
470
|
+
agg(Polars.all.n_unique)
|
471
|
+
end
|
472
|
+
|
473
|
+
# Compute the quantile per group.
|
474
|
+
#
|
475
|
+
# @param quantile [Float]
|
476
|
+
# Quantile between 0.0 and 1.0.
|
477
|
+
# @param interpolation ["nearest", "higher", "lower", "midpoint", "linear"]
|
478
|
+
# Interpolation method.
|
479
|
+
#
|
480
|
+
# @return [DataFrame]
|
481
|
+
#
|
482
|
+
# @example
|
483
|
+
# df = Polars::DataFrame.new(
|
484
|
+
# {
|
485
|
+
# "a" => [1, 2, 2, 3, 4, 5],
|
486
|
+
# "b" => [0.5, 0.5, 4, 10, 13, 14],
|
487
|
+
# "d" => ["Apple", "Orange", "Apple", "Apple", "Banana", "Banana"]
|
488
|
+
# }
|
489
|
+
# )
|
490
|
+
# df.groupby("d", maintain_order: true).quantile(1)
|
491
|
+
# # =>
|
492
|
+
# # shape: (3, 3)
|
493
|
+
# # ┌────────┬─────┬──────┐
|
494
|
+
# # │ d ┆ a ┆ b │
|
495
|
+
# # │ --- ┆ --- ┆ --- │
|
496
|
+
# # │ str ┆ f64 ┆ f64 │
|
497
|
+
# # ╞════════╪═════╪══════╡
|
498
|
+
# # │ Apple ┆ 3.0 ┆ 10.0 │
|
499
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌┤
|
500
|
+
# # │ Orange ┆ 2.0 ┆ 0.5 │
|
501
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌┤
|
502
|
+
# # │ Banana ┆ 5.0 ┆ 14.0 │
|
503
|
+
# # └────────┴─────┴──────┘
|
504
|
+
def quantile(quantile, interpolation: "nearest")
|
505
|
+
agg(Polars.all.quantile(quantile, interpolation: interpolation))
|
506
|
+
end
|
507
|
+
|
508
|
+
# Return the median per group.
|
509
|
+
#
|
510
|
+
# @return [DataFrame]
|
511
|
+
#
|
512
|
+
# @example
|
513
|
+
# df = Polars::DataFrame.new(
|
514
|
+
# {
|
515
|
+
# "a" => [1, 2, 2, 3, 4, 5],
|
516
|
+
# "b" => [0.5, 0.5, 4, 10, 13, 14],
|
517
|
+
# "d" => ["Apple", "Banana", "Apple", "Apple", "Banana", "Banana"]
|
518
|
+
# }
|
519
|
+
# )
|
520
|
+
# df.groupby("d", maintain_order: true).median
|
521
|
+
# # =>
|
522
|
+
# # shape: (2, 3)
|
523
|
+
# # ┌────────┬─────┬──────┐
|
524
|
+
# # │ d ┆ a ┆ b │
|
525
|
+
# # │ --- ┆ --- ┆ --- │
|
526
|
+
# # │ str ┆ f64 ┆ f64 │
|
527
|
+
# # ╞════════╪═════╪══════╡
|
528
|
+
# # │ Apple ┆ 2.0 ┆ 4.0 │
|
529
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌┤
|
530
|
+
# # │ Banana ┆ 4.0 ┆ 13.0 │
|
531
|
+
# # └────────┴─────┴──────┘
|
532
|
+
def median
|
533
|
+
agg(Polars.all.median)
|
534
|
+
end
|
535
|
+
|
536
|
+
# Aggregate the groups into Series.
|
537
|
+
#
|
538
|
+
# @return [DataFrame]
|
539
|
+
#
|
540
|
+
# @example
|
541
|
+
# df = Polars::DataFrame.new({"a" => ["one", "two", "one", "two"], "b" => [1, 2, 3, 4]})
|
542
|
+
# df.groupby("a", maintain_order: true).agg_list
|
543
|
+
# # =>
|
544
|
+
# # shape: (2, 2)
|
545
|
+
# # ┌─────┬───────────┐
|
546
|
+
# # │ a ┆ b │
|
547
|
+
# # │ --- ┆ --- │
|
548
|
+
# # │ str ┆ list[i64] │
|
549
|
+
# # ╞═════╪═══════════╡
|
550
|
+
# # │ one ┆ [1, 3] │
|
551
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
|
552
|
+
# # │ two ┆ [2, 4] │
|
553
|
+
# # └─────┴───────────┘
|
554
|
+
def agg_list
|
555
|
+
agg(Polars.all.list)
|
556
|
+
end
|
557
|
+
end
|
558
|
+
end
|