numo-gsl 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/Gemfile +4 -0
- data/README.md +84 -0
- data/Rakefile +16 -0
- data/ext/numo/gsl/cdf/depend +17 -0
- data/ext/numo/gsl/cdf/erbpp_cdf.rb +44 -0
- data/ext/numo/gsl/cdf/extconf.rb +9 -0
- data/ext/numo/gsl/cdf/func_def.rb +610 -0
- data/ext/numo/gsl/const/const_def.rb +419 -0
- data/ext/numo/gsl/const/depend +17 -0
- data/ext/numo/gsl/const/erbpp_const.rb +30 -0
- data/ext/numo/gsl/const/extconf.rb +9 -0
- data/ext/numo/gsl/err/depend +1 -0
- data/ext/numo/gsl/err/err.c +22 -0
- data/ext/numo/gsl/err/extconf.rb +9 -0
- data/ext/numo/gsl/extconf_gsl.rb +44 -0
- data/ext/numo/gsl/fit/depend +17 -0
- data/ext/numo/gsl/fit/erbpp_fit.rb +74 -0
- data/ext/numo/gsl/fit/extconf.rb +9 -0
- data/ext/numo/gsl/fit/func_def.rb +129 -0
- data/ext/numo/gsl/fit/tmpl/check_1d.c +9 -0
- data/ext/numo/gsl/fit/tmpl/fit_linear.c +53 -0
- data/ext/numo/gsl/fit/tmpl/fit_linear_est.c +56 -0
- data/ext/numo/gsl/fit/tmpl/fit_mul.c +50 -0
- data/ext/numo/gsl/fit/tmpl/fit_mul_est.c +47 -0
- data/ext/numo/gsl/fit/tmpl/fit_wlinear.c +59 -0
- data/ext/numo/gsl/fit/tmpl/fit_wmul.c +56 -0
- data/ext/numo/gsl/gen/erbpp2.rb +306 -0
- data/ext/numo/gsl/gen/erbpp_gsl.rb +166 -0
- data/ext/numo/gsl/gen/func_parser.rb +520 -0
- data/ext/numo/gsl/gen/tmpl/c_DFloat_f_DFloat.c +40 -0
- data/ext/numo/gsl/gen/tmpl/c_DFloat_f_SZ.c +41 -0
- data/ext/numo/gsl/gen/tmpl/c_DFloat_f_SZ_x2.c +44 -0
- data/ext/numo/gsl/gen/tmpl/c_DFloat_x2_f_DFloat_x2.c +45 -0
- data/ext/numo/gsl/gen/tmpl/c_double_f_double.c +16 -0
- data/ext/numo/gsl/gen/tmpl/c_double_f_sizet.c +16 -0
- data/ext/numo/gsl/gen/tmpl/c_double_f_sizet_x2.c +17 -0
- data/ext/numo/gsl/gen/tmpl/c_double_f_void.c +15 -0
- data/ext/numo/gsl/gen/tmpl/c_double_x2_f_void.c +17 -0
- data/ext/numo/gsl/gen/tmpl/c_new_DFloat.c +29 -0
- data/ext/numo/gsl/gen/tmpl/c_new_double.c +22 -0
- data/ext/numo/gsl/gen/tmpl/c_new_f_other.c +25 -0
- data/ext/numo/gsl/gen/tmpl/c_new_sizet.c +22 -0
- data/ext/numo/gsl/gen/tmpl/c_new_sizet_double.c +23 -0
- data/ext/numo/gsl/gen/tmpl/c_new_sizet_x2.c +23 -0
- data/ext/numo/gsl/gen/tmpl/c_new_void.c +21 -0
- data/ext/numo/gsl/gen/tmpl/c_other_f_void.c +19 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_DFloat.c +46 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_DFloat_x2.c +41 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_DFloat_x3.c +44 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_DFloat_x4.c +47 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_SZ_x2_DFloat.c +45 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_double.c +17 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_other.c +17 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_sizet.c +21 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_void.c +14 -0
- data/ext/numo/gsl/gen/tmpl/c_sizet_f_void.c +15 -0
- data/ext/numo/gsl/gen/tmpl/c_sizet_x2_f_void.c +17 -0
- data/ext/numo/gsl/gen/tmpl/c_str_f_void.c +15 -0
- data/ext/numo/gsl/gen/tmpl/c_super_new_void.c +18 -0
- data/ext/numo/gsl/gen/tmpl/c_uint_f_void.c +15 -0
- data/ext/numo/gsl/gen/tmpl/c_ulong_f_void.c +15 -0
- data/ext/numo/gsl/gen/tmpl/c_void_f_double.c +17 -0
- data/ext/numo/gsl/gen/tmpl/c_void_f_double_x2.c +18 -0
- data/ext/numo/gsl/gen/tmpl/c_void_f_double_x4.c +20 -0
- data/ext/numo/gsl/gen/tmpl/c_void_f_ulong.c +17 -0
- data/ext/numo/gsl/gen/tmpl/c_void_f_void.c +14 -0
- data/ext/numo/gsl/gen/tmpl/cast_1d_contiguous.c +15 -0
- data/ext/numo/gsl/gen/tmpl/cast_2d_contiguous.c +15 -0
- data/ext/numo/gsl/gen/tmpl/class.c +26 -0
- data/ext/numo/gsl/gen/tmpl/create_new_narray.c +26 -0
- data/ext/numo/gsl/gen/tmpl/init_class.c +10 -0
- data/ext/numo/gsl/gen/tmpl/init_module.c +12 -0
- data/ext/numo/gsl/gen/tmpl/lib.c +41 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_Int_f_DFloat.c +38 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat.c +35 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat_Int.c +39 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat_UInt.c +39 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat_double.c +42 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat_double_x2.c +47 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat_int.c +42 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat_x2.c +38 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat_x3.c +41 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_Int.c +36 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt.c +36 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt32.c +36 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt32_double.c +43 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt32_double_uint.c +49 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt32_double_x2.c +48 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt32_uint_x3.c +51 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt_double.c +43 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt_double_uint.c +50 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt_double_x2.c +48 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt_uint_x3.c +51 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_int_DFloat.c +41 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_int_DFloat_x2.c +44 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_int_x2_DFloat_x2.c +46 -0
- data/ext/numo/gsl/gen/tmpl/m_Int_f_DFloat.c +36 -0
- data/ext/numo/gsl/gen/tmpl/m_Int_f_DFloat_x3.c +42 -0
- data/ext/numo/gsl/gen/tmpl/m_Int_f_int_DFloat.c +42 -0
- data/ext/numo/gsl/gen/tmpl/m_Int_f_int_DFloat_x2.c +45 -0
- data/ext/numo/gsl/gen/tmpl/mod_func_noloop.c +54 -0
- data/ext/numo/gsl/gen/tmpl/mod_func_scalar.c +27 -0
- data/ext/numo/gsl/gen/tmpl/module.c +9 -0
- data/ext/numo/gsl/histogram/depend +17 -0
- data/ext/numo/gsl/histogram/erbpp_histogram.rb +109 -0
- data/ext/numo/gsl/histogram/extconf.rb +9 -0
- data/ext/numo/gsl/histogram/func_def.rb +763 -0
- data/ext/numo/gsl/histogram/tmpl/c_DFloat_f_2d_get.c +54 -0
- data/ext/numo/gsl/histogram/tmpl/c_DFloat_f_field.c +35 -0
- data/ext/numo/gsl/histogram/tmpl/c_DFloat_f_get.c +47 -0
- data/ext/numo/gsl/histogram/tmpl/c_DFloat_x2_f_get_range.c +56 -0
- data/ext/numo/gsl/histogram/tmpl/c_bool_f_other.c +19 -0
- data/ext/numo/gsl/histogram/tmpl/c_bool_f_pdf_init.c +24 -0
- data/ext/numo/gsl/histogram/tmpl/c_self_f_2d_set_ranges.c +26 -0
- data/ext/numo/gsl/histogram/tmpl/c_self_f_set_ranges.c +21 -0
- data/ext/numo/gsl/histogram/tmpl/c_sizet_f_field.c +15 -0
- data/ext/numo/gsl/interp/depend +17 -0
- data/ext/numo/gsl/interp/erbpp_interp.rb +59 -0
- data/ext/numo/gsl/interp/extconf.rb +9 -0
- data/ext/numo/gsl/interp/func_def.rb +816 -0
- data/ext/numo/gsl/interp/parse_interp.rb +67 -0
- data/ext/numo/gsl/interp/tmpl/interp2d_new.c +36 -0
- data/ext/numo/gsl/interp/tmpl/interp2d_type_new.c +17 -0
- data/ext/numo/gsl/interp/tmpl/interp_bsearch.c +57 -0
- data/ext/numo/gsl/interp/tmpl/interp_new.c +29 -0
- data/ext/numo/gsl/interp/tmpl/interp_type_new.c +16 -0
- data/ext/numo/gsl/interp/tmpl/spline2d_eval.c +61 -0
- data/ext/numo/gsl/interp/tmpl/spline_eval.c +55 -0
- data/ext/numo/gsl/interp/tmpl/spline_integ.c +56 -0
- data/ext/numo/gsl/interp/type_def.rb +9 -0
- data/ext/numo/gsl/multifit/depend +17 -0
- data/ext/numo/gsl/multifit/erbpp_multifit.rb +99 -0
- data/ext/numo/gsl/multifit/extconf.rb +9 -0
- data/ext/numo/gsl/multifit/func_2.1.rb +1035 -0
- data/ext/numo/gsl/multifit/func_2.2.1.rb +736 -0
- data/ext/numo/gsl/multifit/func_2.2.rb +736 -0
- data/ext/numo/gsl/multifit/func_2.3.rb +872 -0
- data/ext/numo/gsl/multifit/func_def.rb +1012 -0
- data/ext/numo/gsl/multifit/tmpl/multifit_linear.c +66 -0
- data/ext/numo/gsl/multifit/tmpl/multifit_linear_est.c +48 -0
- data/ext/numo/gsl/multifit/tmpl/multifit_linear_residuals.c +47 -0
- data/ext/numo/gsl/multifit/tmpl/multifit_wlinear.c +70 -0
- data/ext/numo/gsl/multifit/type_def.rb +1 -0
- data/ext/numo/gsl/numo_gsl.h +117 -0
- data/ext/numo/gsl/pdf/depend +17 -0
- data/ext/numo/gsl/pdf/erbpp_pdf.rb +26 -0
- data/ext/numo/gsl/pdf/extconf.rb +9 -0
- data/ext/numo/gsl/pdf/func_2.2.1.rb +306 -0
- data/ext/numo/gsl/pdf/func_2.2.rb +306 -0
- data/ext/numo/gsl/pdf/func_2.3.rb +306 -0
- data/ext/numo/gsl/pdf/func_def.rb +282 -0
- data/ext/numo/gsl/pdf/parse_pdf.rb +42 -0
- data/ext/numo/gsl/pdf/tmpl/dirichlet.c +39 -0
- data/ext/numo/gsl/pdf/tmpl/multinomial.c +39 -0
- data/ext/numo/gsl/poly/depend +17 -0
- data/ext/numo/gsl/poly/erbpp_poly.rb +70 -0
- data/ext/numo/gsl/poly/extconf.rb +9 -0
- data/ext/numo/gsl/poly/func_def.rb +234 -0
- data/ext/numo/gsl/poly/tmpl/poly_complex_solve.c +59 -0
- data/ext/numo/gsl/poly/tmpl/poly_eval.c +70 -0
- data/ext/numo/gsl/poly/tmpl/poly_eval_derivs.c +40 -0
- data/ext/numo/gsl/ran/depend +17 -0
- data/ext/numo/gsl/ran/erbpp_ran.rb +42 -0
- data/ext/numo/gsl/ran/extconf.rb +9 -0
- data/ext/numo/gsl/ran/func_2.2.1.rb +1658 -0
- data/ext/numo/gsl/ran/func_2.2.rb +1658 -0
- data/ext/numo/gsl/ran/func_2.3.rb +1658 -0
- data/ext/numo/gsl/ran/func_def.rb +1594 -0
- data/ext/numo/gsl/ran/parse_ran.rb +10 -0
- data/ext/numo/gsl/rng/depend +17 -0
- data/ext/numo/gsl/rng/erbpp_rng.rb +58 -0
- data/ext/numo/gsl/rng/extconf.rb +9 -0
- data/ext/numo/gsl/rng/func_def.rb +230 -0
- data/ext/numo/gsl/rng/parse_rng.rb +125 -0
- data/ext/numo/gsl/rng/tmpl/ran.c +40 -0
- data/ext/numo/gsl/rng/tmpl/ran_DFloat_f_DFloat.c +28 -0
- data/ext/numo/gsl/rng/tmpl/ran_DFloat_x2.c +45 -0
- data/ext/numo/gsl/rng/tmpl/ran_DFloat_x3.c +51 -0
- data/ext/numo/gsl/rng/tmpl/ran_multinomial.c +32 -0
- data/ext/numo/gsl/rng/tmpl/rng_DFloat.c +29 -0
- data/ext/numo/gsl/rng/tmpl/rng_UInt.c +44 -0
- data/ext/numo/gsl/rng/tmpl/rng_alloc.c +24 -0
- data/ext/numo/gsl/rng/tmpl/rng_type_new.c +14 -0
- data/ext/numo/gsl/rng/type_def.rb +63 -0
- data/ext/numo/gsl/rstat/depend +17 -0
- data/ext/numo/gsl/rstat/erbpp_rstat.rb +64 -0
- data/ext/numo/gsl/rstat/extconf.rb +9 -0
- data/ext/numo/gsl/rstat/func_2.2.1.rb +116 -0
- data/ext/numo/gsl/rstat/func_2.2.rb +116 -0
- data/ext/numo/gsl/rstat/func_2.3.rb +123 -0
- data/ext/numo/gsl/rstat/func_def.rb +102 -0
- data/ext/numo/gsl/sf/depend +17 -0
- data/ext/numo/gsl/sf/erbpp_sf.rb +51 -0
- data/ext/numo/gsl/sf/extconf.rb +9 -0
- data/ext/numo/gsl/sf/func_def.rb +4703 -0
- data/ext/numo/gsl/sf/parse_sf.rb +277 -0
- data/ext/numo/gsl/sf/tmpl/c_DFloat_f_int_x2_DFloat.c +50 -0
- data/ext/numo/gsl/sf/tmpl/c_DFloat_f_int_x2_DFloat_x2.c +52 -0
- data/ext/numo/gsl/sf/tmpl/c_DFloat_f_int_x3_DFloat_x2.c +55 -0
- data/ext/numo/gsl/sf/tmpl/m_DFloat_f_DFloat_mode.c +47 -0
- data/ext/numo/gsl/sf/tmpl/m_DFloat_f_lmax_array.c +41 -0
- data/ext/numo/gsl/sf/tmpl/m_DFloat_f_nmin_nmax_array.c +49 -0
- data/ext/numo/gsl/spmatrix/const_2.2.1.rb +3 -0
- data/ext/numo/gsl/spmatrix/const_2.2.rb +3 -0
- data/ext/numo/gsl/spmatrix/const_2.3.rb +3 -0
- data/ext/numo/gsl/spmatrix/const_def.rb +2 -0
- data/ext/numo/gsl/spmatrix/depend +17 -0
- data/ext/numo/gsl/spmatrix/erbpp_spmatrix.rb +100 -0
- data/ext/numo/gsl/spmatrix/extconf.rb +9 -0
- data/ext/numo/gsl/spmatrix/func_2.2.1.rb +297 -0
- data/ext/numo/gsl/spmatrix/func_2.2.rb +297 -0
- data/ext/numo/gsl/spmatrix/func_2.3.rb +297 -0
- data/ext/numo/gsl/spmatrix/func_def.rb +218 -0
- data/ext/numo/gsl/spmatrix/parse_spmatrix.rb +70 -0
- data/ext/numo/gsl/spmatrix/tmpl/itersolve_iterate.c +47 -0
- data/ext/numo/gsl/spmatrix/tmpl/itersolve_new.c +22 -0
- data/ext/numo/gsl/spmatrix/tmpl/itersolve_type_new.c +16 -0
- data/ext/numo/gsl/spmatrix/tmpl/spblas_dgemm.c +35 -0
- data/ext/numo/gsl/spmatrix/tmpl/spblas_dgemv.c +43 -0
- data/ext/numo/gsl/spmatrix/tmpl/spmatrix_add.c +22 -0
- data/ext/numo/gsl/spmatrix/tmpl/spmatrix_d2sp.c +28 -0
- data/ext/numo/gsl/spmatrix/tmpl/spmatrix_new.c +40 -0
- data/ext/numo/gsl/spmatrix/tmpl/spmatrix_sp2d.c +25 -0
- data/ext/numo/gsl/spmatrix/type_def.rb +1 -0
- data/ext/numo/gsl/stats/depend +17 -0
- data/ext/numo/gsl/stats/erbpp_stats.rb +29 -0
- data/ext/numo/gsl/stats/extconf.rb +9 -0
- data/ext/numo/gsl/stats/func_2.2.1.rb +608 -0
- data/ext/numo/gsl/stats/func_2.2.rb +608 -0
- data/ext/numo/gsl/stats/func_2.3.rb +608 -0
- data/ext/numo/gsl/stats/func_def.rb +608 -0
- data/ext/numo/gsl/stats/parse_stats.rb +63 -0
- data/ext/numo/gsl/stats/tmpl/stats_1a0p.c +37 -0
- data/ext/numo/gsl/stats/tmpl/stats_1a0p_index.c +60 -0
- data/ext/numo/gsl/stats/tmpl/stats_1a1p.c +41 -0
- data/ext/numo/gsl/stats/tmpl/stats_1a2p.c +42 -0
- data/ext/numo/gsl/stats/tmpl/stats_2a0p.c +39 -0
- data/ext/numo/gsl/stats/tmpl/stats_2a1p.c +43 -0
- data/ext/numo/gsl/stats/tmpl/stats_2a2p.c +44 -0
- data/ext/numo/gsl/stats/tmpl/stats_minmax.c +37 -0
- data/ext/numo/gsl/stats/tmpl/stats_minmax_index.c +67 -0
- data/ext/numo/gsl/stats/tmpl/stats_spearman.c +46 -0
- data/ext/numo/gsl/sys/const_def.rb +21 -0
- data/ext/numo/gsl/sys/depend +17 -0
- data/ext/numo/gsl/sys/enum_def.rb +75 -0
- data/ext/numo/gsl/sys/erbpp_sys.rb +60 -0
- data/ext/numo/gsl/sys/extconf.rb +9 -0
- data/ext/numo/gsl/sys/func_def.rb +249 -0
- data/ext/numo/gsl/version.h +1 -0
- data/ext/numo/gsl/wavelet/depend +17 -0
- data/ext/numo/gsl/wavelet/erbpp_wavelet.rb +48 -0
- data/ext/numo/gsl/wavelet/extconf.rb +9 -0
- data/ext/numo/gsl/wavelet/func_def.rb +337 -0
- data/ext/numo/gsl/wavelet/parse_wavelet.rb +47 -0
- data/ext/numo/gsl/wavelet/tmpl/wavelet2d_transform.c +56 -0
- data/ext/numo/gsl/wavelet/tmpl/wavelet_array_check.c +56 -0
- data/ext/numo/gsl/wavelet/tmpl/wavelet_macro.c +1 -0
- data/ext/numo/gsl/wavelet/tmpl/wavelet_new.c +20 -0
- data/ext/numo/gsl/wavelet/tmpl/wavelet_transform.c +55 -0
- data/ext/numo/gsl/wavelet/tmpl/wavelet_transform2.c +22 -0
- data/ext/numo/gsl/wavelet/tmpl/wavelet_type_new.c +15 -0
- data/ext/numo/gsl/wavelet/type_def.rb +6 -0
- data/lib/numo/gsl.rb +17 -0
- data/numo-gsl.gemspec +33 -0
- metadata +367 -0
@@ -0,0 +1,608 @@
|
|
1
|
+
[{:func_name=>"gsl_stats_mean",
|
2
|
+
:func_type=>"double",
|
3
|
+
:args=>[["const double", "data[]"], ["size_t", "stride"], ["size_t", "n"]],
|
4
|
+
:desc=>
|
5
|
+
"This function returns the arithmetic mean of data, a dataset of\n" +
|
6
|
+
"length n with stride stride. The arithmetic mean, or\n" +
|
7
|
+
"sample mean, is denoted by \\Hat\\mu and defined as,\n" +
|
8
|
+
"\n" +
|
9
|
+
"\\Hat\\mu = (1/N) \\sum x_i\n" +
|
10
|
+
"\n" +
|
11
|
+
"where x_i are the elements of the dataset data. For\n" +
|
12
|
+
"samples drawn from a gaussian distribution the variance of\n" +
|
13
|
+
"\\Hat\\mu is \\sigma^2 / N."},
|
14
|
+
{:func_name=>"gsl_stats_variance",
|
15
|
+
:func_type=>"double",
|
16
|
+
:args=>[["const double", "data[]"], ["size_t", "stride"], ["size_t", "n"]],
|
17
|
+
:desc=>
|
18
|
+
"This function returns the estimated, or sample, variance of\n" +
|
19
|
+
"data, a dataset of length n with stride stride. The\n" +
|
20
|
+
"estimated variance is denoted by \\Hat\\sigma^2 and is defined by,\n" +
|
21
|
+
"\n" +
|
22
|
+
"\\Hat\\sigma^2 = (1/(N-1)) \\sum (x_i - \\Hat\\mu)^2\n" +
|
23
|
+
"\n" +
|
24
|
+
"where x_i are the elements of the dataset data. Note that\n" +
|
25
|
+
"the normalization factor of 1/(N-1) results from the derivation\n" +
|
26
|
+
"of \\Hat\\sigma^2 as an unbiased estimator of the population\n" +
|
27
|
+
"variance \\sigma^2. For samples drawn from a Gaussian distribution\n" +
|
28
|
+
"the variance of \\Hat\\sigma^2 itself is 2 \\sigma^4 / N.\n" +
|
29
|
+
"\n" +
|
30
|
+
"This function computes the mean via a call to gsl_stats_mean. If\n" +
|
31
|
+
"you have already computed the mean then you can pass it directly to\n" +
|
32
|
+
"gsl_stats_variance_m."},
|
33
|
+
{:func_name=>"gsl_stats_variance_m",
|
34
|
+
:func_type=>"double",
|
35
|
+
:args=>
|
36
|
+
[["const double", "data[]"],
|
37
|
+
["size_t", "stride"],
|
38
|
+
["size_t", "n"],
|
39
|
+
["double", "mean"]],
|
40
|
+
:desc=>
|
41
|
+
"This function returns the sample variance of data relative to the\n" +
|
42
|
+
"given value of mean. The function is computed with \\Hat\\mu\n" +
|
43
|
+
"replaced by the value of mean that you supply,\n" +
|
44
|
+
"\n" +
|
45
|
+
"\\Hat\\sigma^2 = (1/(N-1)) \\sum (x_i - mean)^2"},
|
46
|
+
{:func_name=>"gsl_stats_sd",
|
47
|
+
:func_type=>"double",
|
48
|
+
:args=>[["const double", "data[]"], ["size_t", "stride"], ["size_t", "n"]],
|
49
|
+
:desc=>
|
50
|
+
"The standard deviation is defined as the square root of the variance.\n" +
|
51
|
+
"These functions return the square root of the corresponding variance\n" +
|
52
|
+
"functions above."},
|
53
|
+
{:func_name=>"gsl_stats_sd_m",
|
54
|
+
:func_type=>"double",
|
55
|
+
:args=>
|
56
|
+
[["const double", "data[]"],
|
57
|
+
["size_t", "stride"],
|
58
|
+
["size_t", "n"],
|
59
|
+
["double", "mean"]],
|
60
|
+
:desc=>
|
61
|
+
"The standard deviation is defined as the square root of the variance.\n" +
|
62
|
+
"These functions return the square root of the corresponding variance\n" +
|
63
|
+
"functions above."},
|
64
|
+
{:func_name=>"gsl_stats_tss",
|
65
|
+
:func_type=>"double",
|
66
|
+
:args=>[["const double", "data[]"], ["size_t", "stride"], ["size_t", "n"]],
|
67
|
+
:desc=>
|
68
|
+
"These functions return the total sum of squares (TSS) of data about\n" +
|
69
|
+
"the mean. For gsl_stats_tss_m the user-supplied value of\n" +
|
70
|
+
"mean is used, and for gsl_stats_tss it is computed using\n" +
|
71
|
+
"gsl_stats_mean.\n" +
|
72
|
+
"\n" +
|
73
|
+
"TSS = \\sum (x_i - mean)^2"},
|
74
|
+
{:func_name=>"gsl_stats_tss_m",
|
75
|
+
:func_type=>"double",
|
76
|
+
:args=>
|
77
|
+
[["const double", "data[]"],
|
78
|
+
["size_t", "stride"],
|
79
|
+
["size_t", "n"],
|
80
|
+
["double", "mean"]],
|
81
|
+
:desc=>
|
82
|
+
"These functions return the total sum of squares (TSS) of data about\n" +
|
83
|
+
"the mean. For gsl_stats_tss_m the user-supplied value of\n" +
|
84
|
+
"mean is used, and for gsl_stats_tss it is computed using\n" +
|
85
|
+
"gsl_stats_mean.\n" +
|
86
|
+
"\n" +
|
87
|
+
"TSS = \\sum (x_i - mean)^2"},
|
88
|
+
{:func_name=>"gsl_stats_variance_with_fixed_mean",
|
89
|
+
:func_type=>"double",
|
90
|
+
:args=>
|
91
|
+
[["const double", "data[]"],
|
92
|
+
["size_t", "stride"],
|
93
|
+
["size_t", "n"],
|
94
|
+
["double", "mean"]],
|
95
|
+
:desc=>
|
96
|
+
"This function computes an unbiased estimate of the variance of\n" +
|
97
|
+
"data when the population mean mean of the underlying\n" +
|
98
|
+
"distribution is known a priori. In this case the estimator for\n" +
|
99
|
+
"the variance uses the factor 1/N and the sample mean\n" +
|
100
|
+
"\\Hat\\mu is replaced by the known population mean \\mu,\n" +
|
101
|
+
"\n" +
|
102
|
+
"\\Hat\\sigma^2 = (1/N) \\sum (x_i - \\mu)^2"},
|
103
|
+
{:func_name=>"gsl_stats_sd_with_fixed_mean",
|
104
|
+
:func_type=>"double",
|
105
|
+
:args=>
|
106
|
+
[["const double", "data[]"],
|
107
|
+
["size_t", "stride"],
|
108
|
+
["size_t", "n"],
|
109
|
+
["double", "mean"]],
|
110
|
+
:desc=>
|
111
|
+
"This function calculates the standard deviation of data for a\n" +
|
112
|
+
"fixed population mean mean. The result is the square root of the\n" +
|
113
|
+
"corresponding variance function."},
|
114
|
+
{:func_name=>"gsl_stats_absdev",
|
115
|
+
:func_type=>"double",
|
116
|
+
:args=>[["const double", "data[]"], ["size_t", "stride"], ["size_t", "n"]],
|
117
|
+
:desc=>
|
118
|
+
"This function computes the absolute deviation from the mean of\n" +
|
119
|
+
"data, a dataset of length n with stride stride. The\n" +
|
120
|
+
"absolute deviation from the mean is defined as,\n" +
|
121
|
+
"\n" +
|
122
|
+
"absdev = (1/N) \\sum |x_i - \\Hat\\mu|\n" +
|
123
|
+
"\n" +
|
124
|
+
"where x_i are the elements of the dataset data. The\n" +
|
125
|
+
"absolute deviation from the mean provides a more robust measure of the\n" +
|
126
|
+
"width of a distribution than the variance. This function computes the\n" +
|
127
|
+
"mean of data via a call to gsl_stats_mean."},
|
128
|
+
{:func_name=>"gsl_stats_absdev_m",
|
129
|
+
:func_type=>"double",
|
130
|
+
:args=>
|
131
|
+
[["const double", "data[]"],
|
132
|
+
["size_t", "stride"],
|
133
|
+
["size_t", "n"],
|
134
|
+
["double", "mean"]],
|
135
|
+
:desc=>
|
136
|
+
"This function computes the absolute deviation of the dataset data\n" +
|
137
|
+
"relative to the given value of mean,\n" +
|
138
|
+
"\n" +
|
139
|
+
"absdev = (1/N) \\sum |x_i - mean|\n" +
|
140
|
+
"\n" +
|
141
|
+
"This function is useful if you have already computed the mean of\n" +
|
142
|
+
"data (and want to avoid recomputing it), or wish to calculate the\n" +
|
143
|
+
"absolute deviation relative to another value (such as zero, or the\n" +
|
144
|
+
"median)."},
|
145
|
+
{:func_name=>"gsl_stats_skew",
|
146
|
+
:func_type=>"double",
|
147
|
+
:args=>[["const double", "data[]"], ["size_t", "stride"], ["size_t", "n"]],
|
148
|
+
:desc=>
|
149
|
+
"This function computes the skewness of data, a dataset of length\n" +
|
150
|
+
"n with stride stride. The skewness is defined as,\n" +
|
151
|
+
"\n" +
|
152
|
+
"skew = (1/N) \\sum ((x_i - \\Hat\\mu)/\\Hat\\sigma)^3\n" +
|
153
|
+
"\n" +
|
154
|
+
"where x_i are the elements of the dataset data. The skewness\n" +
|
155
|
+
"measures the asymmetry of the tails of a distribution.\n" +
|
156
|
+
"\n" +
|
157
|
+
"The function computes the mean and estimated standard deviation of\n" +
|
158
|
+
"data via calls to gsl_stats_mean and gsl_stats_sd."},
|
159
|
+
{:func_name=>"gsl_stats_skew_m_sd",
|
160
|
+
:func_type=>"double",
|
161
|
+
:args=>
|
162
|
+
[["const double", "data[]"],
|
163
|
+
["size_t", "stride"],
|
164
|
+
["size_t", "n"],
|
165
|
+
["double", "mean"],
|
166
|
+
["double", "sd"]],
|
167
|
+
:desc=>
|
168
|
+
"This function computes the skewness of the dataset data using the\n" +
|
169
|
+
"given values of the mean mean and standard deviation sd,\n" +
|
170
|
+
"\n" +
|
171
|
+
"skew = (1/N) \\sum ((x_i - mean)/sd)^3\n" +
|
172
|
+
"\n" +
|
173
|
+
"These functions are useful if you have already computed the mean and\n" +
|
174
|
+
"standard deviation of data and want to avoid recomputing them."},
|
175
|
+
{:func_name=>"gsl_stats_kurtosis",
|
176
|
+
:func_type=>"double",
|
177
|
+
:args=>[["const double", "data[]"], ["size_t", "stride"], ["size_t", "n"]],
|
178
|
+
:desc=>
|
179
|
+
"This function computes the kurtosis of data, a dataset of length\n" +
|
180
|
+
"n with stride stride. The kurtosis is defined as,\n" +
|
181
|
+
"\n" +
|
182
|
+
"kurtosis = ((1/N) \\sum ((x_i - \\Hat\\mu)/\\Hat\\sigma)^4) - 3\n" +
|
183
|
+
"\n" +
|
184
|
+
"The kurtosis measures how sharply peaked a distribution is, relative to\n" +
|
185
|
+
"its width. The kurtosis is normalized to zero for a Gaussian\n" +
|
186
|
+
"distribution."},
|
187
|
+
{:func_name=>"gsl_stats_kurtosis_m_sd",
|
188
|
+
:func_type=>"double",
|
189
|
+
:args=>
|
190
|
+
[["const double", "data[]"],
|
191
|
+
["size_t", "stride"],
|
192
|
+
["size_t", "n"],
|
193
|
+
["double", "mean"],
|
194
|
+
["double", "sd"]],
|
195
|
+
:desc=>
|
196
|
+
"This function computes the kurtosis of the dataset data using the\n" +
|
197
|
+
"given values of the mean mean and standard deviation sd,\n" +
|
198
|
+
"\n" +
|
199
|
+
"kurtosis = ((1/N) \\sum ((x_i - mean)/sd)^4) - 3\n" +
|
200
|
+
"\n" +
|
201
|
+
"This function is useful if you have already computed the mean and\n" +
|
202
|
+
"standard deviation of data and want to avoid recomputing them."},
|
203
|
+
{:func_name=>"gsl_stats_lag1_autocorrelation",
|
204
|
+
:func_type=>"double",
|
205
|
+
:args=>
|
206
|
+
[["const double", "data[]"],
|
207
|
+
["const size_t", "stride"],
|
208
|
+
["const size_t", "n"]],
|
209
|
+
:desc=>
|
210
|
+
"This function computes the lag-1 autocorrelation of the dataset data.\n" +
|
211
|
+
"\n" +
|
212
|
+
"a_1 = @{\\sum_@{i = 1@}^@{n@} (x_@{i@} - \\Hat\\mu) (x_@{i-1@} - \\Hat\\mu)\n" +
|
213
|
+
" \\over\n" +
|
214
|
+
" \\sum_@{i = 1@}^@{n@} (x_@{i@} - \\Hat\\mu) (x_@{i@} - \\Hat\\mu)@}"},
|
215
|
+
{:func_name=>"gsl_stats_lag1_autocorrelation_m",
|
216
|
+
:func_type=>"double",
|
217
|
+
:args=>
|
218
|
+
[["const double", "data[]"],
|
219
|
+
["const size_t", "stride"],
|
220
|
+
["const size_t", "n"],
|
221
|
+
["const double", "mean"]],
|
222
|
+
:desc=>
|
223
|
+
"This function computes the lag-1 autocorrelation of the dataset\n" +
|
224
|
+
"data using the given value of the mean mean.\n"},
|
225
|
+
{:func_name=>"gsl_stats_covariance",
|
226
|
+
:func_type=>"double",
|
227
|
+
:args=>
|
228
|
+
[["const double", "data1[]"],
|
229
|
+
["const size_t", "stride1"],
|
230
|
+
["const double", "data2[]"],
|
231
|
+
["const size_t", "stride2"],
|
232
|
+
["const size_t", "n"]],
|
233
|
+
:desc=>
|
234
|
+
"This function computes the covariance of the datasets data1 and\n" +
|
235
|
+
"data2 which must both be of the same length n.\n" +
|
236
|
+
"\n" +
|
237
|
+
"covar = (1/(n - 1)) \\sum_@{i = 1@}^@{n@} (x_i - \\Hat x) (y_i - \\Hat y)"},
|
238
|
+
{:func_name=>"gsl_stats_covariance_m",
|
239
|
+
:func_type=>"double",
|
240
|
+
:args=>
|
241
|
+
[["const double", "data1[]"],
|
242
|
+
["const size_t", "stride1"],
|
243
|
+
["const double", "data2[]"],
|
244
|
+
["const size_t", "stride2"],
|
245
|
+
["const size_t", "n"],
|
246
|
+
["const double", "mean1"],
|
247
|
+
["const double", "mean2"]],
|
248
|
+
:desc=>
|
249
|
+
"This function computes the covariance of the datasets data1 and\n" +
|
250
|
+
"data2 using the given values of the means, mean1 and\n" +
|
251
|
+
"mean2. This is useful if you have already computed the means of\n" +
|
252
|
+
"data1 and data2 and want to avoid recomputing them."},
|
253
|
+
{:func_name=>"gsl_stats_correlation",
|
254
|
+
:func_type=>"double",
|
255
|
+
:args=>
|
256
|
+
[["const double", "data1[]"],
|
257
|
+
["const size_t", "stride1"],
|
258
|
+
["const double", "data2[]"],
|
259
|
+
["const size_t", "stride2"],
|
260
|
+
["const size_t", "n"]],
|
261
|
+
:desc=>
|
262
|
+
"This function efficiently computes the Pearson correlation coefficient\n" +
|
263
|
+
"between the datasets data1 and data2 which must both be of\n" +
|
264
|
+
"the same length n.\n" +
|
265
|
+
"r = cov(x, y) / (\\Hat\\sigma_x \\Hat\\sigma_y)\n" +
|
266
|
+
" = @{1/(n-1) \\sum (x_i - \\Hat x) (y_i - \\Hat y)\n" +
|
267
|
+
" \\over\n" +
|
268
|
+
" \\sqrt@{1/(n-1) \\sum (x_i - \\Hat x)^2@} \\sqrt@{1/(n-1) \\sum (y_i - \\Hat y)^2@}\n" +
|
269
|
+
" @}"},
|
270
|
+
{:func_name=>"gsl_stats_spearman",
|
271
|
+
:func_type=>"double",
|
272
|
+
:args=>
|
273
|
+
[["const double", "data1[]"],
|
274
|
+
["const size_t", "stride1"],
|
275
|
+
["const double", "data2[]"],
|
276
|
+
["const size_t", "stride2"],
|
277
|
+
["const size_t", "n"],
|
278
|
+
["double", "work[]"]],
|
279
|
+
:desc=>
|
280
|
+
"This function computes the Spearman rank correlation coefficient between\n" +
|
281
|
+
"the datasets data1 and data2 which must both be of the same\n" +
|
282
|
+
"length n. Additional workspace of size 2*n is required in\n" +
|
283
|
+
"work. The Spearman rank correlation between vectors x and\n" +
|
284
|
+
"y is equivalent to the Pearson correlation between the ranked\n" +
|
285
|
+
"vectors x_R and y_R, where ranks are defined to be the\n" +
|
286
|
+
"average of the positions of an element in the ascending order of the values."},
|
287
|
+
{:func_name=>"gsl_stats_wmean",
|
288
|
+
:func_type=>"double",
|
289
|
+
:args=>
|
290
|
+
[["const double", "w[]"],
|
291
|
+
["size_t", "wstride"],
|
292
|
+
["const double", "data[]"],
|
293
|
+
["size_t", "stride"],
|
294
|
+
["size_t", "n"]],
|
295
|
+
:desc=>
|
296
|
+
"This function returns the weighted mean of the dataset data with\n" +
|
297
|
+
"stride stride and length n, using the set of weights w\n" +
|
298
|
+
"with stride wstride and length n. The weighted mean is defined as,\n" +
|
299
|
+
"\n" +
|
300
|
+
"\\Hat\\mu = (\\sum w_i x_i) / (\\sum w_i)"},
|
301
|
+
{:func_name=>"gsl_stats_wvariance",
|
302
|
+
:func_type=>"double",
|
303
|
+
:args=>
|
304
|
+
[["const double", "w[]"],
|
305
|
+
["size_t", "wstride"],
|
306
|
+
["const double", "data[]"],
|
307
|
+
["size_t", "stride"],
|
308
|
+
["size_t", "n"]],
|
309
|
+
:desc=>
|
310
|
+
"This function returns the estimated variance of the dataset data\n" +
|
311
|
+
"with stride stride and length n, using the set of weights\n" +
|
312
|
+
"w with stride wstride and length n. The estimated\n" +
|
313
|
+
"variance of a weighted dataset is calculated as,\n" +
|
314
|
+
"\n" +
|
315
|
+
"\\Hat\\sigma^2 = ((\\sum w_i)/((\\sum w_i)^2 - \\sum (w_i^2))) \n" +
|
316
|
+
" \\sum w_i (x_i - \\Hat\\mu)^2\n" +
|
317
|
+
"\n" +
|
318
|
+
"Note that this expression reduces to an unweighted variance with the\n" +
|
319
|
+
"familiar 1/(N-1) factor when there are N equal non-zero\n" +
|
320
|
+
"weights."},
|
321
|
+
{:func_name=>"gsl_stats_wvariance_m",
|
322
|
+
:func_type=>"double",
|
323
|
+
:args=>
|
324
|
+
[["const double", "w[]"],
|
325
|
+
["size_t", "wstride"],
|
326
|
+
["const double", "data[]"],
|
327
|
+
["size_t", "stride"],
|
328
|
+
["size_t", "n"],
|
329
|
+
["double", "wmean"]],
|
330
|
+
:desc=>
|
331
|
+
"This function returns the estimated variance of the weighted dataset\n" +
|
332
|
+
"data using the given weighted mean wmean."},
|
333
|
+
{:func_name=>"gsl_stats_wsd",
|
334
|
+
:func_type=>"double",
|
335
|
+
:args=>
|
336
|
+
[["const double", "w[]"],
|
337
|
+
["size_t", "wstride"],
|
338
|
+
["const double", "data[]"],
|
339
|
+
["size_t", "stride"],
|
340
|
+
["size_t", "n"]],
|
341
|
+
:desc=>
|
342
|
+
"The standard deviation is defined as the square root of the variance.\n" +
|
343
|
+
"This function returns the square root of the corresponding variance\n" +
|
344
|
+
"function gsl_stats_wvariance above."},
|
345
|
+
{:func_name=>"gsl_stats_wsd_m",
|
346
|
+
:func_type=>"double",
|
347
|
+
:args=>
|
348
|
+
[["const double", "w[]"],
|
349
|
+
["size_t", "wstride"],
|
350
|
+
["const double", "data[]"],
|
351
|
+
["size_t", "stride"],
|
352
|
+
["size_t", "n"],
|
353
|
+
["double", "wmean"]],
|
354
|
+
:desc=>
|
355
|
+
"This function returns the square root of the corresponding variance\n" +
|
356
|
+
"function gsl_stats_wvariance_m above."},
|
357
|
+
{:func_name=>"gsl_stats_wvariance_with_fixed_mean",
|
358
|
+
:func_type=>"double",
|
359
|
+
:args=>
|
360
|
+
[["const double", "w[]"],
|
361
|
+
["size_t", "wstride"],
|
362
|
+
["const double", "data[]"],
|
363
|
+
["size_t", "stride"],
|
364
|
+
["size_t", "n"],
|
365
|
+
["const double", "mean"]],
|
366
|
+
:desc=>
|
367
|
+
"This function computes an unbiased estimate of the variance of the weighted\n" +
|
368
|
+
"dataset data when the population mean mean of the underlying\n" +
|
369
|
+
"distribution is known a priori. In this case the estimator for\n" +
|
370
|
+
"the variance replaces the sample mean \\Hat\\mu by the known\n" +
|
371
|
+
"population mean \\mu,\n" +
|
372
|
+
"\n" +
|
373
|
+
"\\Hat\\sigma^2 = (\\sum w_i (x_i - \\mu)^2) / (\\sum w_i)"},
|
374
|
+
{:func_name=>"gsl_stats_wsd_with_fixed_mean",
|
375
|
+
:func_type=>"double",
|
376
|
+
:args=>
|
377
|
+
[["const double", "w[]"],
|
378
|
+
["size_t", "wstride"],
|
379
|
+
["const double", "data[]"],
|
380
|
+
["size_t", "stride"],
|
381
|
+
["size_t", "n"],
|
382
|
+
["const double", "mean"]],
|
383
|
+
:desc=>
|
384
|
+
"The standard deviation is defined as the square root of the variance.\n" +
|
385
|
+
"This function returns the square root of the corresponding variance\n" +
|
386
|
+
"function above."},
|
387
|
+
{:func_name=>"gsl_stats_wtss",
|
388
|
+
:func_type=>"double",
|
389
|
+
:args=>
|
390
|
+
[["const double", "w[]"],
|
391
|
+
["const size_t", "wstride"],
|
392
|
+
["const double", "data[]"],
|
393
|
+
["size_t", "stride"],
|
394
|
+
["size_t", "n"]],
|
395
|
+
:desc=>
|
396
|
+
"These functions return the weighted total sum of squares (TSS) of\n" +
|
397
|
+
"data about the weighted mean. For gsl_stats_wtss_m the\n" +
|
398
|
+
"user-supplied value of wmean is used, and for gsl_stats_wtss\n" +
|
399
|
+
"it is computed using gsl_stats_wmean.\n" +
|
400
|
+
"\n" +
|
401
|
+
"TSS = \\sum w_i (x_i - wmean)^2"},
|
402
|
+
{:func_name=>"gsl_stats_wtss_m",
|
403
|
+
:func_type=>"double",
|
404
|
+
:args=>
|
405
|
+
[["const double", "w[]"],
|
406
|
+
["const size_t", "wstride"],
|
407
|
+
["const double", "data[]"],
|
408
|
+
["size_t", "stride"],
|
409
|
+
["size_t", "n"],
|
410
|
+
["double", "wmean"]],
|
411
|
+
:desc=>
|
412
|
+
"These functions return the weighted total sum of squares (TSS) of\n" +
|
413
|
+
"data about the weighted mean. For gsl_stats_wtss_m the\n" +
|
414
|
+
"user-supplied value of wmean is used, and for gsl_stats_wtss\n" +
|
415
|
+
"it is computed using gsl_stats_wmean.\n" +
|
416
|
+
"\n" +
|
417
|
+
"TSS = \\sum w_i (x_i - wmean)^2"},
|
418
|
+
{:func_name=>"gsl_stats_wabsdev",
|
419
|
+
:func_type=>"double",
|
420
|
+
:args=>
|
421
|
+
[["const double", "w[]"],
|
422
|
+
["size_t", "wstride"],
|
423
|
+
["const double", "data[]"],
|
424
|
+
["size_t", "stride"],
|
425
|
+
["size_t", "n"]],
|
426
|
+
:desc=>
|
427
|
+
"This function computes the weighted absolute deviation from the weighted\n" +
|
428
|
+
"mean of data. The absolute deviation from the mean is defined as,\n" +
|
429
|
+
"\n" +
|
430
|
+
"absdev = (\\sum w_i |x_i - \\Hat\\mu|) / (\\sum w_i)"},
|
431
|
+
{:func_name=>"gsl_stats_wabsdev_m",
|
432
|
+
:func_type=>"double",
|
433
|
+
:args=>
|
434
|
+
[["const double", "w[]"],
|
435
|
+
["size_t", "wstride"],
|
436
|
+
["const double", "data[]"],
|
437
|
+
["size_t", "stride"],
|
438
|
+
["size_t", "n"],
|
439
|
+
["double", "wmean"]],
|
440
|
+
:desc=>
|
441
|
+
"This function computes the absolute deviation of the weighted dataset\n" +
|
442
|
+
"data about the given weighted mean wmean."},
|
443
|
+
{:func_name=>"gsl_stats_wskew",
|
444
|
+
:func_type=>"double",
|
445
|
+
:args=>
|
446
|
+
[["const double", "w[]"],
|
447
|
+
["size_t", "wstride"],
|
448
|
+
["const double", "data[]"],
|
449
|
+
["size_t", "stride"],
|
450
|
+
["size_t", "n"]],
|
451
|
+
:desc=>
|
452
|
+
"This function computes the weighted skewness of the dataset data.\n" +
|
453
|
+
"\n" +
|
454
|
+
"skew = (\\sum w_i ((x_i - \\Hat x)/\\Hat \\sigma)^3) / (\\sum w_i)"},
|
455
|
+
{:func_name=>"gsl_stats_wskew_m_sd",
|
456
|
+
:func_type=>"double",
|
457
|
+
:args=>
|
458
|
+
[["const double", "w[]"],
|
459
|
+
["size_t", "wstride"],
|
460
|
+
["const double", "data[]"],
|
461
|
+
["size_t", "stride"],
|
462
|
+
["size_t", "n"],
|
463
|
+
["double", "wmean"],
|
464
|
+
["double", "wsd"]],
|
465
|
+
:desc=>
|
466
|
+
"This function computes the weighted skewness of the dataset data\n" +
|
467
|
+
"using the given values of the weighted mean and weighted standard\n" +
|
468
|
+
"deviation, wmean and wsd."},
|
469
|
+
{:func_name=>"gsl_stats_wkurtosis",
|
470
|
+
:func_type=>"double",
|
471
|
+
:args=>
|
472
|
+
[["const double", "w[]"],
|
473
|
+
["size_t", "wstride"],
|
474
|
+
["const double", "data[]"],
|
475
|
+
["size_t", "stride"],
|
476
|
+
["size_t", "n"]],
|
477
|
+
:desc=>
|
478
|
+
"This function computes the weighted kurtosis of the dataset data.\n" +
|
479
|
+
"\n" +
|
480
|
+
"kurtosis = ((\\sum w_i ((x_i - \\Hat x)/\\Hat \\sigma)^4) / (\\sum w_i)) - 3"},
|
481
|
+
{:func_name=>"gsl_stats_wkurtosis_m_sd",
|
482
|
+
:func_type=>"double",
|
483
|
+
:args=>
|
484
|
+
[["const double", "w[]"],
|
485
|
+
["size_t", "wstride"],
|
486
|
+
["const double", "data[]"],
|
487
|
+
["size_t", "stride"],
|
488
|
+
["size_t", "n"],
|
489
|
+
["double", "wmean"],
|
490
|
+
["double", "wsd"]],
|
491
|
+
:desc=>
|
492
|
+
"This function computes the weighted kurtosis of the dataset data\n" +
|
493
|
+
"using the given values of the weighted mean and weighted standard\n" +
|
494
|
+
"deviation, wmean and wsd."},
|
495
|
+
{:func_name=>"gsl_stats_max",
|
496
|
+
:func_type=>"double",
|
497
|
+
:args=>[["const double", "data[]"], ["size_t", "stride"], ["size_t", "n"]],
|
498
|
+
:desc=>
|
499
|
+
"This function returns the maximum value in data, a dataset of\n" +
|
500
|
+
"length n with stride stride. The maximum value is defined\n" +
|
501
|
+
"as the value of the element x_i which satisfies $x_i \\ge x_j$\n" +
|
502
|
+
"x_i >= x_j for all j.\n" +
|
503
|
+
"\n" +
|
504
|
+
"If you want instead to find the element with the largest absolute\n" +
|
505
|
+
"magnitude you will need to apply fabs or abs to your data\n" +
|
506
|
+
"before calling this function."},
|
507
|
+
{:func_name=>"gsl_stats_min",
|
508
|
+
:func_type=>"double",
|
509
|
+
:args=>[["const double", "data[]"], ["size_t", "stride"], ["size_t", "n"]],
|
510
|
+
:desc=>
|
511
|
+
"This function returns the minimum value in data, a dataset of\n" +
|
512
|
+
"length n with stride stride. The minimum value is defined\n" +
|
513
|
+
"as the value of the element x_i which satisfies $x_i \\le x_j$\n" +
|
514
|
+
"x_i <= x_j for all j.\n" +
|
515
|
+
"\n" +
|
516
|
+
"If you want instead to find the element with the smallest absolute\n" +
|
517
|
+
"magnitude you will need to apply fabs or abs to your data\n" +
|
518
|
+
"before calling this function."},
|
519
|
+
{:func_name=>"gsl_stats_minmax",
|
520
|
+
:func_type=>"void",
|
521
|
+
:args=>
|
522
|
+
[["double *", "min"],
|
523
|
+
["double *", "max"],
|
524
|
+
["const double", "data[]"],
|
525
|
+
["size_t", "stride"],
|
526
|
+
["size_t", "n"]],
|
527
|
+
:desc=>
|
528
|
+
"This function finds both the minimum and maximum values min,\n" +
|
529
|
+
"max in data in a single pass."},
|
530
|
+
{:func_name=>"gsl_stats_max_index",
|
531
|
+
:func_type=>"size_t",
|
532
|
+
:args=>[["const double", "data[]"], ["size_t", "stride"], ["size_t", "n"]],
|
533
|
+
:desc=>
|
534
|
+
"This function returns the index of the maximum value in data, a\n" +
|
535
|
+
"dataset of length n with stride stride. The maximum value is\n" +
|
536
|
+
"defined as the value of the element x_i which satisfies \n" +
|
537
|
+
"$x_i \\ge x_j$\n" +
|
538
|
+
"x_i >= x_j for all j. When there are several equal maximum\n" +
|
539
|
+
"elements then the first one is chosen."},
|
540
|
+
{:func_name=>"gsl_stats_min_index",
|
541
|
+
:func_type=>"size_t",
|
542
|
+
:args=>[["const double", "data[]"], ["size_t", "stride"], ["size_t", "n"]],
|
543
|
+
:desc=>
|
544
|
+
"This function returns the index of the minimum value in data, a\n" +
|
545
|
+
"dataset of length n with stride stride. The minimum value\n" +
|
546
|
+
"is defined as the value of the element x_i which satisfies\n" +
|
547
|
+
"$x_i \\ge x_j$\n" +
|
548
|
+
"x_i >= x_j for all j. When there are several equal\n" +
|
549
|
+
"minimum elements then the first one is chosen."},
|
550
|
+
{:func_name=>"gsl_stats_minmax_index",
|
551
|
+
:func_type=>"void",
|
552
|
+
:args=>
|
553
|
+
[["size_t *", "min_index"],
|
554
|
+
["size_t *", "max_index"],
|
555
|
+
["const double", "data[]"],
|
556
|
+
["size_t", "stride"],
|
557
|
+
["size_t", "n"]],
|
558
|
+
:desc=>
|
559
|
+
"This function returns the indexes min_index, max_index of\n" +
|
560
|
+
"the minimum and maximum values in data in a single pass."},
|
561
|
+
{:func_name=>"gsl_stats_median_from_sorted_data",
|
562
|
+
:func_type=>"double",
|
563
|
+
:args=>
|
564
|
+
[["const double", "sorted_data[]"], ["size_t", "stride"], ["size_t", "n"]],
|
565
|
+
:desc=>
|
566
|
+
"This function returns the median value of sorted_data, a dataset\n" +
|
567
|
+
"of length n with stride stride. The elements of the array\n" +
|
568
|
+
"must be in ascending numerical order. There are no checks to see\n" +
|
569
|
+
"whether the data are sorted, so the function gsl_sort should\n" +
|
570
|
+
"always be used first.\n" +
|
571
|
+
"\n" +
|
572
|
+
"When the dataset has an odd number of elements the median is the value\n" +
|
573
|
+
"of element (n-1)/2. When the dataset has an even number of\n" +
|
574
|
+
"elements the median is the mean of the two nearest middle values,\n" +
|
575
|
+
"elements (n-1)/2 and n/2. Since the algorithm for\n" +
|
576
|
+
"computing the median involves interpolation this function always returns\n" +
|
577
|
+
"a floating-point number, even for integer data types."},
|
578
|
+
{:func_name=>"gsl_stats_quantile_from_sorted_data",
|
579
|
+
:func_type=>"double",
|
580
|
+
:args=>
|
581
|
+
[["const double", "sorted_data[]"],
|
582
|
+
["size_t", "stride"],
|
583
|
+
["size_t", "n"],
|
584
|
+
["double", "f"]],
|
585
|
+
:desc=>
|
586
|
+
"This function returns a quantile value of sorted_data, a\n" +
|
587
|
+
"double-precision array of length n with stride stride. The\n" +
|
588
|
+
"elements of the array must be in ascending numerical order. The\n" +
|
589
|
+
"quantile is determined by the f, a fraction between 0 and 1. For\n" +
|
590
|
+
"example, to compute the value of the 75th percentile f should have\n" +
|
591
|
+
"the value 0.75.\n" +
|
592
|
+
"\n" +
|
593
|
+
"There are no checks to see whether the data are sorted, so the function\n" +
|
594
|
+
"gsl_sort should always be used first.\n" +
|
595
|
+
"\n" +
|
596
|
+
"The quantile is found by interpolation, using the formula\n" +
|
597
|
+
"\n" +
|
598
|
+
"quantile = (1 - \\delta) x_i + \\delta x_@{i+1@}\n" +
|
599
|
+
"\n" +
|
600
|
+
"where i is floor((n - 1)f) and \\delta is\n" +
|
601
|
+
"(n-1)f - i.\n" +
|
602
|
+
"\n" +
|
603
|
+
"Thus the minimum value of the array (data[0*stride]) is given by\n" +
|
604
|
+
"f equal to zero, the maximum value (data[(n-1)*stride]) is\n" +
|
605
|
+
"given by f equal to one and the median value is given by f\n" +
|
606
|
+
"equal to 0.5. Since the algorithm for computing quantiles involves\n" +
|
607
|
+
"interpolation this function always returns a floating-point number, even\n" +
|
608
|
+
"for integer data types."}]
|