numo-gsl 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/Gemfile +4 -0
- data/README.md +84 -0
- data/Rakefile +16 -0
- data/ext/numo/gsl/cdf/depend +17 -0
- data/ext/numo/gsl/cdf/erbpp_cdf.rb +44 -0
- data/ext/numo/gsl/cdf/extconf.rb +9 -0
- data/ext/numo/gsl/cdf/func_def.rb +610 -0
- data/ext/numo/gsl/const/const_def.rb +419 -0
- data/ext/numo/gsl/const/depend +17 -0
- data/ext/numo/gsl/const/erbpp_const.rb +30 -0
- data/ext/numo/gsl/const/extconf.rb +9 -0
- data/ext/numo/gsl/err/depend +1 -0
- data/ext/numo/gsl/err/err.c +22 -0
- data/ext/numo/gsl/err/extconf.rb +9 -0
- data/ext/numo/gsl/extconf_gsl.rb +44 -0
- data/ext/numo/gsl/fit/depend +17 -0
- data/ext/numo/gsl/fit/erbpp_fit.rb +74 -0
- data/ext/numo/gsl/fit/extconf.rb +9 -0
- data/ext/numo/gsl/fit/func_def.rb +129 -0
- data/ext/numo/gsl/fit/tmpl/check_1d.c +9 -0
- data/ext/numo/gsl/fit/tmpl/fit_linear.c +53 -0
- data/ext/numo/gsl/fit/tmpl/fit_linear_est.c +56 -0
- data/ext/numo/gsl/fit/tmpl/fit_mul.c +50 -0
- data/ext/numo/gsl/fit/tmpl/fit_mul_est.c +47 -0
- data/ext/numo/gsl/fit/tmpl/fit_wlinear.c +59 -0
- data/ext/numo/gsl/fit/tmpl/fit_wmul.c +56 -0
- data/ext/numo/gsl/gen/erbpp2.rb +306 -0
- data/ext/numo/gsl/gen/erbpp_gsl.rb +166 -0
- data/ext/numo/gsl/gen/func_parser.rb +520 -0
- data/ext/numo/gsl/gen/tmpl/c_DFloat_f_DFloat.c +40 -0
- data/ext/numo/gsl/gen/tmpl/c_DFloat_f_SZ.c +41 -0
- data/ext/numo/gsl/gen/tmpl/c_DFloat_f_SZ_x2.c +44 -0
- data/ext/numo/gsl/gen/tmpl/c_DFloat_x2_f_DFloat_x2.c +45 -0
- data/ext/numo/gsl/gen/tmpl/c_double_f_double.c +16 -0
- data/ext/numo/gsl/gen/tmpl/c_double_f_sizet.c +16 -0
- data/ext/numo/gsl/gen/tmpl/c_double_f_sizet_x2.c +17 -0
- data/ext/numo/gsl/gen/tmpl/c_double_f_void.c +15 -0
- data/ext/numo/gsl/gen/tmpl/c_double_x2_f_void.c +17 -0
- data/ext/numo/gsl/gen/tmpl/c_new_DFloat.c +29 -0
- data/ext/numo/gsl/gen/tmpl/c_new_double.c +22 -0
- data/ext/numo/gsl/gen/tmpl/c_new_f_other.c +25 -0
- data/ext/numo/gsl/gen/tmpl/c_new_sizet.c +22 -0
- data/ext/numo/gsl/gen/tmpl/c_new_sizet_double.c +23 -0
- data/ext/numo/gsl/gen/tmpl/c_new_sizet_x2.c +23 -0
- data/ext/numo/gsl/gen/tmpl/c_new_void.c +21 -0
- data/ext/numo/gsl/gen/tmpl/c_other_f_void.c +19 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_DFloat.c +46 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_DFloat_x2.c +41 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_DFloat_x3.c +44 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_DFloat_x4.c +47 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_SZ_x2_DFloat.c +45 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_double.c +17 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_other.c +17 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_sizet.c +21 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_void.c +14 -0
- data/ext/numo/gsl/gen/tmpl/c_sizet_f_void.c +15 -0
- data/ext/numo/gsl/gen/tmpl/c_sizet_x2_f_void.c +17 -0
- data/ext/numo/gsl/gen/tmpl/c_str_f_void.c +15 -0
- data/ext/numo/gsl/gen/tmpl/c_super_new_void.c +18 -0
- data/ext/numo/gsl/gen/tmpl/c_uint_f_void.c +15 -0
- data/ext/numo/gsl/gen/tmpl/c_ulong_f_void.c +15 -0
- data/ext/numo/gsl/gen/tmpl/c_void_f_double.c +17 -0
- data/ext/numo/gsl/gen/tmpl/c_void_f_double_x2.c +18 -0
- data/ext/numo/gsl/gen/tmpl/c_void_f_double_x4.c +20 -0
- data/ext/numo/gsl/gen/tmpl/c_void_f_ulong.c +17 -0
- data/ext/numo/gsl/gen/tmpl/c_void_f_void.c +14 -0
- data/ext/numo/gsl/gen/tmpl/cast_1d_contiguous.c +15 -0
- data/ext/numo/gsl/gen/tmpl/cast_2d_contiguous.c +15 -0
- data/ext/numo/gsl/gen/tmpl/class.c +26 -0
- data/ext/numo/gsl/gen/tmpl/create_new_narray.c +26 -0
- data/ext/numo/gsl/gen/tmpl/init_class.c +10 -0
- data/ext/numo/gsl/gen/tmpl/init_module.c +12 -0
- data/ext/numo/gsl/gen/tmpl/lib.c +41 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_Int_f_DFloat.c +38 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat.c +35 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat_Int.c +39 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat_UInt.c +39 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat_double.c +42 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat_double_x2.c +47 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat_int.c +42 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat_x2.c +38 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat_x3.c +41 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_Int.c +36 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt.c +36 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt32.c +36 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt32_double.c +43 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt32_double_uint.c +49 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt32_double_x2.c +48 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt32_uint_x3.c +51 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt_double.c +43 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt_double_uint.c +50 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt_double_x2.c +48 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt_uint_x3.c +51 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_int_DFloat.c +41 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_int_DFloat_x2.c +44 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_int_x2_DFloat_x2.c +46 -0
- data/ext/numo/gsl/gen/tmpl/m_Int_f_DFloat.c +36 -0
- data/ext/numo/gsl/gen/tmpl/m_Int_f_DFloat_x3.c +42 -0
- data/ext/numo/gsl/gen/tmpl/m_Int_f_int_DFloat.c +42 -0
- data/ext/numo/gsl/gen/tmpl/m_Int_f_int_DFloat_x2.c +45 -0
- data/ext/numo/gsl/gen/tmpl/mod_func_noloop.c +54 -0
- data/ext/numo/gsl/gen/tmpl/mod_func_scalar.c +27 -0
- data/ext/numo/gsl/gen/tmpl/module.c +9 -0
- data/ext/numo/gsl/histogram/depend +17 -0
- data/ext/numo/gsl/histogram/erbpp_histogram.rb +109 -0
- data/ext/numo/gsl/histogram/extconf.rb +9 -0
- data/ext/numo/gsl/histogram/func_def.rb +763 -0
- data/ext/numo/gsl/histogram/tmpl/c_DFloat_f_2d_get.c +54 -0
- data/ext/numo/gsl/histogram/tmpl/c_DFloat_f_field.c +35 -0
- data/ext/numo/gsl/histogram/tmpl/c_DFloat_f_get.c +47 -0
- data/ext/numo/gsl/histogram/tmpl/c_DFloat_x2_f_get_range.c +56 -0
- data/ext/numo/gsl/histogram/tmpl/c_bool_f_other.c +19 -0
- data/ext/numo/gsl/histogram/tmpl/c_bool_f_pdf_init.c +24 -0
- data/ext/numo/gsl/histogram/tmpl/c_self_f_2d_set_ranges.c +26 -0
- data/ext/numo/gsl/histogram/tmpl/c_self_f_set_ranges.c +21 -0
- data/ext/numo/gsl/histogram/tmpl/c_sizet_f_field.c +15 -0
- data/ext/numo/gsl/interp/depend +17 -0
- data/ext/numo/gsl/interp/erbpp_interp.rb +59 -0
- data/ext/numo/gsl/interp/extconf.rb +9 -0
- data/ext/numo/gsl/interp/func_def.rb +816 -0
- data/ext/numo/gsl/interp/parse_interp.rb +67 -0
- data/ext/numo/gsl/interp/tmpl/interp2d_new.c +36 -0
- data/ext/numo/gsl/interp/tmpl/interp2d_type_new.c +17 -0
- data/ext/numo/gsl/interp/tmpl/interp_bsearch.c +57 -0
- data/ext/numo/gsl/interp/tmpl/interp_new.c +29 -0
- data/ext/numo/gsl/interp/tmpl/interp_type_new.c +16 -0
- data/ext/numo/gsl/interp/tmpl/spline2d_eval.c +61 -0
- data/ext/numo/gsl/interp/tmpl/spline_eval.c +55 -0
- data/ext/numo/gsl/interp/tmpl/spline_integ.c +56 -0
- data/ext/numo/gsl/interp/type_def.rb +9 -0
- data/ext/numo/gsl/multifit/depend +17 -0
- data/ext/numo/gsl/multifit/erbpp_multifit.rb +99 -0
- data/ext/numo/gsl/multifit/extconf.rb +9 -0
- data/ext/numo/gsl/multifit/func_2.1.rb +1035 -0
- data/ext/numo/gsl/multifit/func_2.2.1.rb +736 -0
- data/ext/numo/gsl/multifit/func_2.2.rb +736 -0
- data/ext/numo/gsl/multifit/func_2.3.rb +872 -0
- data/ext/numo/gsl/multifit/func_def.rb +1012 -0
- data/ext/numo/gsl/multifit/tmpl/multifit_linear.c +66 -0
- data/ext/numo/gsl/multifit/tmpl/multifit_linear_est.c +48 -0
- data/ext/numo/gsl/multifit/tmpl/multifit_linear_residuals.c +47 -0
- data/ext/numo/gsl/multifit/tmpl/multifit_wlinear.c +70 -0
- data/ext/numo/gsl/multifit/type_def.rb +1 -0
- data/ext/numo/gsl/numo_gsl.h +117 -0
- data/ext/numo/gsl/pdf/depend +17 -0
- data/ext/numo/gsl/pdf/erbpp_pdf.rb +26 -0
- data/ext/numo/gsl/pdf/extconf.rb +9 -0
- data/ext/numo/gsl/pdf/func_2.2.1.rb +306 -0
- data/ext/numo/gsl/pdf/func_2.2.rb +306 -0
- data/ext/numo/gsl/pdf/func_2.3.rb +306 -0
- data/ext/numo/gsl/pdf/func_def.rb +282 -0
- data/ext/numo/gsl/pdf/parse_pdf.rb +42 -0
- data/ext/numo/gsl/pdf/tmpl/dirichlet.c +39 -0
- data/ext/numo/gsl/pdf/tmpl/multinomial.c +39 -0
- data/ext/numo/gsl/poly/depend +17 -0
- data/ext/numo/gsl/poly/erbpp_poly.rb +70 -0
- data/ext/numo/gsl/poly/extconf.rb +9 -0
- data/ext/numo/gsl/poly/func_def.rb +234 -0
- data/ext/numo/gsl/poly/tmpl/poly_complex_solve.c +59 -0
- data/ext/numo/gsl/poly/tmpl/poly_eval.c +70 -0
- data/ext/numo/gsl/poly/tmpl/poly_eval_derivs.c +40 -0
- data/ext/numo/gsl/ran/depend +17 -0
- data/ext/numo/gsl/ran/erbpp_ran.rb +42 -0
- data/ext/numo/gsl/ran/extconf.rb +9 -0
- data/ext/numo/gsl/ran/func_2.2.1.rb +1658 -0
- data/ext/numo/gsl/ran/func_2.2.rb +1658 -0
- data/ext/numo/gsl/ran/func_2.3.rb +1658 -0
- data/ext/numo/gsl/ran/func_def.rb +1594 -0
- data/ext/numo/gsl/ran/parse_ran.rb +10 -0
- data/ext/numo/gsl/rng/depend +17 -0
- data/ext/numo/gsl/rng/erbpp_rng.rb +58 -0
- data/ext/numo/gsl/rng/extconf.rb +9 -0
- data/ext/numo/gsl/rng/func_def.rb +230 -0
- data/ext/numo/gsl/rng/parse_rng.rb +125 -0
- data/ext/numo/gsl/rng/tmpl/ran.c +40 -0
- data/ext/numo/gsl/rng/tmpl/ran_DFloat_f_DFloat.c +28 -0
- data/ext/numo/gsl/rng/tmpl/ran_DFloat_x2.c +45 -0
- data/ext/numo/gsl/rng/tmpl/ran_DFloat_x3.c +51 -0
- data/ext/numo/gsl/rng/tmpl/ran_multinomial.c +32 -0
- data/ext/numo/gsl/rng/tmpl/rng_DFloat.c +29 -0
- data/ext/numo/gsl/rng/tmpl/rng_UInt.c +44 -0
- data/ext/numo/gsl/rng/tmpl/rng_alloc.c +24 -0
- data/ext/numo/gsl/rng/tmpl/rng_type_new.c +14 -0
- data/ext/numo/gsl/rng/type_def.rb +63 -0
- data/ext/numo/gsl/rstat/depend +17 -0
- data/ext/numo/gsl/rstat/erbpp_rstat.rb +64 -0
- data/ext/numo/gsl/rstat/extconf.rb +9 -0
- data/ext/numo/gsl/rstat/func_2.2.1.rb +116 -0
- data/ext/numo/gsl/rstat/func_2.2.rb +116 -0
- data/ext/numo/gsl/rstat/func_2.3.rb +123 -0
- data/ext/numo/gsl/rstat/func_def.rb +102 -0
- data/ext/numo/gsl/sf/depend +17 -0
- data/ext/numo/gsl/sf/erbpp_sf.rb +51 -0
- data/ext/numo/gsl/sf/extconf.rb +9 -0
- data/ext/numo/gsl/sf/func_def.rb +4703 -0
- data/ext/numo/gsl/sf/parse_sf.rb +277 -0
- data/ext/numo/gsl/sf/tmpl/c_DFloat_f_int_x2_DFloat.c +50 -0
- data/ext/numo/gsl/sf/tmpl/c_DFloat_f_int_x2_DFloat_x2.c +52 -0
- data/ext/numo/gsl/sf/tmpl/c_DFloat_f_int_x3_DFloat_x2.c +55 -0
- data/ext/numo/gsl/sf/tmpl/m_DFloat_f_DFloat_mode.c +47 -0
- data/ext/numo/gsl/sf/tmpl/m_DFloat_f_lmax_array.c +41 -0
- data/ext/numo/gsl/sf/tmpl/m_DFloat_f_nmin_nmax_array.c +49 -0
- data/ext/numo/gsl/spmatrix/const_2.2.1.rb +3 -0
- data/ext/numo/gsl/spmatrix/const_2.2.rb +3 -0
- data/ext/numo/gsl/spmatrix/const_2.3.rb +3 -0
- data/ext/numo/gsl/spmatrix/const_def.rb +2 -0
- data/ext/numo/gsl/spmatrix/depend +17 -0
- data/ext/numo/gsl/spmatrix/erbpp_spmatrix.rb +100 -0
- data/ext/numo/gsl/spmatrix/extconf.rb +9 -0
- data/ext/numo/gsl/spmatrix/func_2.2.1.rb +297 -0
- data/ext/numo/gsl/spmatrix/func_2.2.rb +297 -0
- data/ext/numo/gsl/spmatrix/func_2.3.rb +297 -0
- data/ext/numo/gsl/spmatrix/func_def.rb +218 -0
- data/ext/numo/gsl/spmatrix/parse_spmatrix.rb +70 -0
- data/ext/numo/gsl/spmatrix/tmpl/itersolve_iterate.c +47 -0
- data/ext/numo/gsl/spmatrix/tmpl/itersolve_new.c +22 -0
- data/ext/numo/gsl/spmatrix/tmpl/itersolve_type_new.c +16 -0
- data/ext/numo/gsl/spmatrix/tmpl/spblas_dgemm.c +35 -0
- data/ext/numo/gsl/spmatrix/tmpl/spblas_dgemv.c +43 -0
- data/ext/numo/gsl/spmatrix/tmpl/spmatrix_add.c +22 -0
- data/ext/numo/gsl/spmatrix/tmpl/spmatrix_d2sp.c +28 -0
- data/ext/numo/gsl/spmatrix/tmpl/spmatrix_new.c +40 -0
- data/ext/numo/gsl/spmatrix/tmpl/spmatrix_sp2d.c +25 -0
- data/ext/numo/gsl/spmatrix/type_def.rb +1 -0
- data/ext/numo/gsl/stats/depend +17 -0
- data/ext/numo/gsl/stats/erbpp_stats.rb +29 -0
- data/ext/numo/gsl/stats/extconf.rb +9 -0
- data/ext/numo/gsl/stats/func_2.2.1.rb +608 -0
- data/ext/numo/gsl/stats/func_2.2.rb +608 -0
- data/ext/numo/gsl/stats/func_2.3.rb +608 -0
- data/ext/numo/gsl/stats/func_def.rb +608 -0
- data/ext/numo/gsl/stats/parse_stats.rb +63 -0
- data/ext/numo/gsl/stats/tmpl/stats_1a0p.c +37 -0
- data/ext/numo/gsl/stats/tmpl/stats_1a0p_index.c +60 -0
- data/ext/numo/gsl/stats/tmpl/stats_1a1p.c +41 -0
- data/ext/numo/gsl/stats/tmpl/stats_1a2p.c +42 -0
- data/ext/numo/gsl/stats/tmpl/stats_2a0p.c +39 -0
- data/ext/numo/gsl/stats/tmpl/stats_2a1p.c +43 -0
- data/ext/numo/gsl/stats/tmpl/stats_2a2p.c +44 -0
- data/ext/numo/gsl/stats/tmpl/stats_minmax.c +37 -0
- data/ext/numo/gsl/stats/tmpl/stats_minmax_index.c +67 -0
- data/ext/numo/gsl/stats/tmpl/stats_spearman.c +46 -0
- data/ext/numo/gsl/sys/const_def.rb +21 -0
- data/ext/numo/gsl/sys/depend +17 -0
- data/ext/numo/gsl/sys/enum_def.rb +75 -0
- data/ext/numo/gsl/sys/erbpp_sys.rb +60 -0
- data/ext/numo/gsl/sys/extconf.rb +9 -0
- data/ext/numo/gsl/sys/func_def.rb +249 -0
- data/ext/numo/gsl/version.h +1 -0
- data/ext/numo/gsl/wavelet/depend +17 -0
- data/ext/numo/gsl/wavelet/erbpp_wavelet.rb +48 -0
- data/ext/numo/gsl/wavelet/extconf.rb +9 -0
- data/ext/numo/gsl/wavelet/func_def.rb +337 -0
- data/ext/numo/gsl/wavelet/parse_wavelet.rb +47 -0
- data/ext/numo/gsl/wavelet/tmpl/wavelet2d_transform.c +56 -0
- data/ext/numo/gsl/wavelet/tmpl/wavelet_array_check.c +56 -0
- data/ext/numo/gsl/wavelet/tmpl/wavelet_macro.c +1 -0
- data/ext/numo/gsl/wavelet/tmpl/wavelet_new.c +20 -0
- data/ext/numo/gsl/wavelet/tmpl/wavelet_transform.c +55 -0
- data/ext/numo/gsl/wavelet/tmpl/wavelet_transform2.c +22 -0
- data/ext/numo/gsl/wavelet/tmpl/wavelet_type_new.c +15 -0
- data/ext/numo/gsl/wavelet/type_def.rb +6 -0
- data/lib/numo/gsl.rb +17 -0
- data/numo-gsl.gemspec +33 -0
- metadata +367 -0
@@ -0,0 +1,234 @@
|
|
1
|
+
[{:func_name=>"gsl_poly_eval",
|
2
|
+
:func_type=>"double",
|
3
|
+
:args=>
|
4
|
+
[["const double", "c[]"], ["const int", "len"], ["const double", "x"]],
|
5
|
+
:desc=>
|
6
|
+
"This function evaluates a polynomial with real coefficients for the real variable x."},
|
7
|
+
{:func_name=>"gsl_poly_complex_eval",
|
8
|
+
:func_type=>"gsl_complex",
|
9
|
+
:args=>
|
10
|
+
[["const double", "c[]"], ["const int", "len"], ["const gsl_complex", "z"]],
|
11
|
+
:desc=>
|
12
|
+
"This function evaluates a polynomial with real coefficients for the complex variable z."},
|
13
|
+
{:func_name=>"gsl_complex_poly_complex_eval",
|
14
|
+
:func_type=>"gsl_complex",
|
15
|
+
:args=>
|
16
|
+
[["const gsl_complex", "c[]"],
|
17
|
+
["const int", "len"],
|
18
|
+
["const gsl_complex", "z"]],
|
19
|
+
:desc=>
|
20
|
+
"This function evaluates a polynomial with complex coefficients for the complex variable z."},
|
21
|
+
{:func_name=>"gsl_poly_eval_derivs",
|
22
|
+
:func_type=>"int",
|
23
|
+
:args=>
|
24
|
+
[["const double", "c[]"],
|
25
|
+
["const size_t", "lenc"],
|
26
|
+
["const double", "x"],
|
27
|
+
["double", "res[]"],
|
28
|
+
["const size_t", "lenres"]],
|
29
|
+
:desc=>
|
30
|
+
"This function evaluates a polynomial and its derivatives storing the\n" +
|
31
|
+
"results in the array res of size lenres. The output array\n" +
|
32
|
+
"contains the values of d^k P/d x^k for the specified value of\n" +
|
33
|
+
"x starting with k = 0."},
|
34
|
+
{:func_name=>"gsl_poly_dd_init",
|
35
|
+
:func_type=>"int",
|
36
|
+
:args=>
|
37
|
+
[["double", "dd[]"],
|
38
|
+
["const double", "xa[]"],
|
39
|
+
["const double", "ya[]"],
|
40
|
+
["size_t", "size"]],
|
41
|
+
:desc=>
|
42
|
+
"This function computes a divided-difference representation of the\n" +
|
43
|
+
"interpolating polynomial for the points (x, y) stored in\n" +
|
44
|
+
"the arrays xa and ya of length size. On output the\n" +
|
45
|
+
"divided-differences of (xa,ya) are stored in the array\n" +
|
46
|
+
"dd, also of length size. Using the notation above,\n" +
|
47
|
+
"dd[k] = [x_0,x_1,...,x_k]."},
|
48
|
+
{:func_name=>"gsl_poly_dd_eval",
|
49
|
+
:func_type=>"double",
|
50
|
+
:args=>
|
51
|
+
[["const double", "dd[]"],
|
52
|
+
["const double", "xa[]"],
|
53
|
+
["const size_t", "size"],
|
54
|
+
["const double", "x"]],
|
55
|
+
:desc=>
|
56
|
+
"This function evaluates the polynomial stored in divided-difference form\n" +
|
57
|
+
"in the arrays dd and xa of length size at the point\n" +
|
58
|
+
"x. "},
|
59
|
+
{:func_name=>"gsl_poly_dd_taylor",
|
60
|
+
:func_type=>"int",
|
61
|
+
:args=>
|
62
|
+
[["double", "c[]"],
|
63
|
+
["double", "xp"],
|
64
|
+
["const double", "dd[]"],
|
65
|
+
["const double", "xa[]"],
|
66
|
+
["size_t", "size"],
|
67
|
+
["double", "w[]"]],
|
68
|
+
:desc=>
|
69
|
+
"This function converts the divided-difference representation of a\n" +
|
70
|
+
"polynomial to a Taylor expansion. The divided-difference representation\n" +
|
71
|
+
"is supplied in the arrays dd and xa of length size.\n" +
|
72
|
+
"On output the Taylor coefficients of the polynomial expanded about the\n" +
|
73
|
+
"point xp are stored in the array c also of length\n" +
|
74
|
+
"size. A workspace of length size must be provided in the\n" +
|
75
|
+
"array w."},
|
76
|
+
{:func_name=>"gsl_poly_dd_hermite_init",
|
77
|
+
:func_type=>"int",
|
78
|
+
:args=>
|
79
|
+
[["double", "dd[]"],
|
80
|
+
["double", "za[]"],
|
81
|
+
["const double", "xa[]"],
|
82
|
+
["const double", "ya[]"],
|
83
|
+
["const double", "dya[]"],
|
84
|
+
["const size_t", "size"]],
|
85
|
+
:desc=>
|
86
|
+
"This function computes a divided-difference representation of the\n" +
|
87
|
+
"interpolating Hermite polynomial for the points (x, y) stored in\n" +
|
88
|
+
"the arrays xa and ya of length size. Hermite interpolation\n" +
|
89
|
+
"constructs polynomials which also match first derivatives dy/dx which are\n" +
|
90
|
+
"provided in the array dya also of length size. The first derivatives can be\n" +
|
91
|
+
"incorported into the usual divided-difference algorithm by forming a new\n" +
|
92
|
+
"dataset z = \\{x_0,x_0,x_1,x_1,...\\}, which is stored in the array\n" +
|
93
|
+
"za of length 2*size on output. On output the\n" +
|
94
|
+
"divided-differences of the Hermite representation are stored in the array\n" +
|
95
|
+
"dd, also of length 2*size. Using the notation above,\n" +
|
96
|
+
"dd[k] = [z_0,z_1,...,z_k]. The resulting Hermite polynomial\n" +
|
97
|
+
"can be evaluated by calling gsl_poly_dd_eval and using\n" +
|
98
|
+
"za for the input argument xa."},
|
99
|
+
{:func_name=>"gsl_poly_solve_quadratic",
|
100
|
+
:func_type=>"int",
|
101
|
+
:args=>
|
102
|
+
[["double", "a"],
|
103
|
+
["double", "b"],
|
104
|
+
["double", "c"],
|
105
|
+
["double *", "x0"],
|
106
|
+
["double *", "x1"]],
|
107
|
+
:desc=>
|
108
|
+
"This function finds the real roots of the quadratic equation,\n" +
|
109
|
+
"\n" +
|
110
|
+
"a x^2 + b x + c = 0\n" +
|
111
|
+
"\n" +
|
112
|
+
"The number of real roots (either zero, one or two) is returned, and\n" +
|
113
|
+
"their locations are stored in x0 and x1. If no real roots\n" +
|
114
|
+
"are found then x0 and x1 are not modified. If one real root\n" +
|
115
|
+
"is found (i.e. if a=0) then it is stored in x0. When two\n" +
|
116
|
+
"real roots are found they are stored in x0 and x1 in\n" +
|
117
|
+
"ascending order. The case of coincident roots is not considered\n" +
|
118
|
+
"special. For example (x-1)^2=0 will have two roots, which happen\n" +
|
119
|
+
"to have exactly equal values.\n" +
|
120
|
+
"\n" +
|
121
|
+
"The number of roots found depends on the sign of the discriminant\n" +
|
122
|
+
"b^2 - 4 a c. This will be subject to rounding and cancellation\n" +
|
123
|
+
"errors when computed in double precision, and will also be subject to\n" +
|
124
|
+
"errors if the coefficients of the polynomial are inexact. These errors\n" +
|
125
|
+
"may cause a discrete change in the number of roots. However, for\n" +
|
126
|
+
"polynomials with small integer coefficients the discriminant can always\n" +
|
127
|
+
"be computed exactly.\n"},
|
128
|
+
{:func_name=>"gsl_poly_complex_solve_quadratic",
|
129
|
+
:func_type=>"int",
|
130
|
+
:args=>
|
131
|
+
[["double", "a"],
|
132
|
+
["double", "b"],
|
133
|
+
["double", "c"],
|
134
|
+
["gsl_complex *", "z0"],
|
135
|
+
["gsl_complex *", "z1"]],
|
136
|
+
:desc=>
|
137
|
+
"\n" +
|
138
|
+
"This function finds the complex roots of the quadratic equation,\n" +
|
139
|
+
"\n" +
|
140
|
+
"a z^2 + b z + c = 0\n" +
|
141
|
+
"\n" +
|
142
|
+
"The number of complex roots is returned (either one or two) and the\n" +
|
143
|
+
"locations of the roots are stored in z0 and z1. The roots\n" +
|
144
|
+
"are returned in ascending order, sorted first by their real components\n" +
|
145
|
+
"and then by their imaginary components. If only one real root is found\n" +
|
146
|
+
"(i.e. if a=0) then it is stored in z0.\n"},
|
147
|
+
{:func_name=>"gsl_poly_solve_cubic",
|
148
|
+
:func_type=>"int",
|
149
|
+
:args=>
|
150
|
+
[["double", "a"],
|
151
|
+
["double", "b"],
|
152
|
+
["double", "c"],
|
153
|
+
["double *", "x0"],
|
154
|
+
["double *", "x1"],
|
155
|
+
["double *", "x2"]],
|
156
|
+
:desc=>
|
157
|
+
"\n" +
|
158
|
+
"This function finds the real roots of the cubic equation,\n" +
|
159
|
+
"\n" +
|
160
|
+
"x^3 + a x^2 + b x + c = 0\n" +
|
161
|
+
"\n" +
|
162
|
+
"with a leading coefficient of unity. The number of real roots (either\n" +
|
163
|
+
"one or three) is returned, and their locations are stored in x0,\n" +
|
164
|
+
"x1 and x2. If one real root is found then only x0\n" +
|
165
|
+
"is modified. When three real roots are found they are stored in\n" +
|
166
|
+
"x0, x1 and x2 in ascending order. The case of\n" +
|
167
|
+
"coincident roots is not considered special. For example, the equation\n" +
|
168
|
+
"(x-1)^3=0 will have three roots with exactly equal values. As\n" +
|
169
|
+
"in the quadratic case, finite precision may cause equal or\n" +
|
170
|
+
"closely-spaced real roots to move off the real axis into the complex\n" +
|
171
|
+
"plane, leading to a discrete change in the number of real roots."},
|
172
|
+
{:func_name=>"gsl_poly_complex_solve_cubic",
|
173
|
+
:func_type=>"int",
|
174
|
+
:args=>
|
175
|
+
[["double", "a"],
|
176
|
+
["double", "b"],
|
177
|
+
["double", "c"],
|
178
|
+
["gsl_complex *", "z0"],
|
179
|
+
["gsl_complex *", "z1"],
|
180
|
+
["gsl_complex *", "z2"]],
|
181
|
+
:desc=>
|
182
|
+
"\n" +
|
183
|
+
"This function finds the complex roots of the cubic equation,\n" +
|
184
|
+
"\n" +
|
185
|
+
"z^3 + a z^2 + b z + c = 0\n" +
|
186
|
+
"\n" +
|
187
|
+
"The number of complex roots is returned (always three) and the locations\n" +
|
188
|
+
"of the roots are stored in z0, z1 and z2. The roots\n" +
|
189
|
+
"are returned in ascending order, sorted first by their real components\n" +
|
190
|
+
"and then by their imaginary components.\n"},
|
191
|
+
{:func_name=>"gsl_poly_complex_workspace_alloc",
|
192
|
+
:func_type=>"gsl_poly_complex_workspace *",
|
193
|
+
:args=>[["size_t", "n"]],
|
194
|
+
:desc=>
|
195
|
+
"This function allocates space for a gsl_poly_complex_workspace\n" +
|
196
|
+
"struct and a workspace suitable for solving a polynomial with n\n" +
|
197
|
+
"coefficients using the routine gsl_poly_complex_solve.\n" +
|
198
|
+
"\n" +
|
199
|
+
"The function returns a pointer to the newly allocated\n" +
|
200
|
+
"gsl_poly_complex_workspace if no errors were detected, and a null\n" +
|
201
|
+
"pointer in the case of error."},
|
202
|
+
{:func_name=>"gsl_poly_complex_workspace_free",
|
203
|
+
:func_type=>"void",
|
204
|
+
:args=>[["gsl_poly_complex_workspace *", "w"]],
|
205
|
+
:desc=>
|
206
|
+
"This function frees all the memory associated with the workspace\n" +
|
207
|
+
"w."},
|
208
|
+
{:func_name=>"gsl_poly_complex_solve",
|
209
|
+
:func_type=>"int",
|
210
|
+
:args=>
|
211
|
+
[["const double *", "a"],
|
212
|
+
["size_t", "n"],
|
213
|
+
["gsl_poly_complex_workspace *", "w"],
|
214
|
+
["gsl_complex_packed_ptr", "z"]],
|
215
|
+
:desc=>
|
216
|
+
"This function computes the roots of the general polynomial \n" +
|
217
|
+
"$P(x) = a_0 + a_1 x + a_2 x^2 + ... + a_{n-1} x^{n-1}$ \n" +
|
218
|
+
"P(x) = a_0 + a_1 x + a_2 x^2 + ... + a_@{n-1@} x^@{n-1@} using \n" +
|
219
|
+
"balanced-QR reduction of the companion matrix. The parameter n\n" +
|
220
|
+
"specifies the length of the coefficient array. The coefficient of the\n" +
|
221
|
+
"highest order term must be non-zero. The function requires a workspace\n" +
|
222
|
+
"w of the appropriate size. The n-1 roots are returned in\n" +
|
223
|
+
"the packed complex array z of length 2(n-1), alternating\n" +
|
224
|
+
"real and imaginary parts.\n" +
|
225
|
+
"\n" +
|
226
|
+
"The function returns GSL_SUCCESS if all the roots are found. If\n" +
|
227
|
+
"the QR reduction does not converge, the error handler is invoked with\n" +
|
228
|
+
"an error code of GSL_EFAILED. Note that due to finite precision,\n" +
|
229
|
+
"roots of higher multiplicity are returned as a cluster of simple roots\n" +
|
230
|
+
"with reduced accuracy. The solution of polynomials with higher-order\n" +
|
231
|
+
"roots requires specialized algorithms that take the multiplicity\n" +
|
232
|
+
"structure into account (see e.g. Z. Zeng, Algorithm 835, ACM\n" +
|
233
|
+
"Transactions on Mathematical Software, Volume 30, Issue 2 (2004), pp\n" +
|
234
|
+
"218--236)."}]
|
@@ -0,0 +1,59 @@
|
|
1
|
+
static void
|
2
|
+
iter_<%=c_func%>(na_loop_t *const lp)
|
3
|
+
{
|
4
|
+
size_t n;
|
5
|
+
double *a;
|
6
|
+
gsl_complex_packed_ptr z;
|
7
|
+
void **opts;
|
8
|
+
gsl_poly_complex_workspace *w;
|
9
|
+
|
10
|
+
opts = (void **)(lp->opt_ptr);
|
11
|
+
w = (gsl_poly_complex_workspace*)(opts[0]);
|
12
|
+
|
13
|
+
n = lp->args[0].shape[0];
|
14
|
+
a = (double*)(lp->args[0].ptr + lp->args[0].iter[0].pos);
|
15
|
+
z = (gsl_complex_packed_ptr)(lp->args[1].ptr + lp->args[1].iter[0].pos);
|
16
|
+
<%=func_name%>(a, n, w, z);
|
17
|
+
}
|
18
|
+
|
19
|
+
/*
|
20
|
+
@overload <%=name%>(<%=args[0][1]%>)
|
21
|
+
@param [Numo::DFloat] <%=args[0][1]%>
|
22
|
+
@return [Numo::DComplex] <%=args[3][1]%> result
|
23
|
+
|
24
|
+
<%= description %>
|
25
|
+
|
26
|
+
*/
|
27
|
+
static VALUE
|
28
|
+
<%=c_func(1)%>(VALUE mod, VALUE v1)
|
29
|
+
{
|
30
|
+
size_t shape[0];
|
31
|
+
ndfunc_arg_in_t ain[1] = {{cDF,1}};
|
32
|
+
ndfunc_arg_out_t aout[1] = {{cDC,1,shape}};
|
33
|
+
ndfunc_t ndf = {iter_<%=c_func%>, NO_LOOP, 1,1, ain,aout};
|
34
|
+
gsl_poly_complex_workspace *w;
|
35
|
+
void *opts[1];
|
36
|
+
VALUE vz, vws;
|
37
|
+
size_t n;
|
38
|
+
narray_t *na;
|
39
|
+
|
40
|
+
v1 = rb_funcall(cDF, rb_intern("cast"), 1, v1);
|
41
|
+
GetNArray(v1,na);
|
42
|
+
if (na->ndim == 0) {
|
43
|
+
rb_raise(nary_eDimensionError,"ndim(=%d) should >= %d", na->ndim, 0);
|
44
|
+
}
|
45
|
+
if (na->shape[na->ndim-1] < 2) {
|
46
|
+
rb_raise(nary_eShapeError, "last axis size must be >= 2");
|
47
|
+
}
|
48
|
+
n = na->shape[na->ndim-1];
|
49
|
+
shape[0] = n-1;
|
50
|
+
|
51
|
+
vws = poly_complex_workspace_s_new(cComplexWorkspace, SIZET2NUM(n));
|
52
|
+
TypedData_Get_Struct(vws, gsl_poly_complex_workspace, &poly_complex_workspace_data_type, w);
|
53
|
+
opts[0] = w;
|
54
|
+
|
55
|
+
vz = na_ndloop3(&ndf, opts, 1, v1);
|
56
|
+
RB_GC_GUARD(vws);
|
57
|
+
RB_GC_GUARD(v1);
|
58
|
+
return vz;
|
59
|
+
}
|
@@ -0,0 +1,70 @@
|
|
1
|
+
static inline int is_complex_nary(VALUE v)
|
2
|
+
{
|
3
|
+
VALUE c = CLASS_OF(v);
|
4
|
+
if (c == numo_cDComplex || c == numo_cSComplex || c == rb_cComplex)
|
5
|
+
return 1;
|
6
|
+
else
|
7
|
+
return 0;
|
8
|
+
}
|
9
|
+
<%
|
10
|
+
dbl="double"
|
11
|
+
cmp="gsl_complex"
|
12
|
+
cDF="cDF"
|
13
|
+
cDC="cDC"
|
14
|
+
[
|
15
|
+
[dbl,dbl,dbl,cDF,cDF,cDF,"ff","gsl_poly_eval"],
|
16
|
+
[dbl,cmp,cmp,cDF,cDC,cDC,"fc","gsl_poly_complex_eval"],
|
17
|
+
[cmp,cmp,cmp,cDC,cDC,cDC,"cc","gsl_complex_poly_complex_eval"],
|
18
|
+
].each do |tp0,tp1,tp2,cv0,cv1,cv2,fn,gfn|
|
19
|
+
%>
|
20
|
+
static void
|
21
|
+
iter_<%=fn%>(na_loop_t *const lp)
|
22
|
+
{
|
23
|
+
size_t n;
|
24
|
+
<%=tp0%> *c;
|
25
|
+
<%=tp1%> x;
|
26
|
+
<%=tp2%> y;
|
27
|
+
|
28
|
+
assert(lp->args[0].ndim == 1);
|
29
|
+
n = lp->args[0].shape[0];
|
30
|
+
c = (<%=tp0%>*)GET_PTR(lp,0);
|
31
|
+
x = *(<%=tp1%>*)GET_PTR(lp,1);
|
32
|
+
y = <%=gfn%>(c,n,x);
|
33
|
+
*(<%=tp2%>*)GET_PTR(lp,2) = y;
|
34
|
+
}
|
35
|
+
|
36
|
+
static VALUE
|
37
|
+
poly_eval_<%=fn%>(VALUE v0, VALUE v1)
|
38
|
+
{
|
39
|
+
ndfunc_arg_in_t ain[2] = {{<%=cv0%>,1},{<%=cv1%>,0}};
|
40
|
+
ndfunc_arg_out_t aout[1] = {{<%=cv2%>,0}};
|
41
|
+
ndfunc_t ndf = {iter_<%=fn%>,NO_LOOP|NDF_INPLACE|NDF_EXTRACT,2,1,ain,aout};
|
42
|
+
return na_ndloop(&ndf,2,v0,v1);
|
43
|
+
}
|
44
|
+
<% end %>
|
45
|
+
|
46
|
+
/*
|
47
|
+
@overload <%=name%>(c,x)
|
48
|
+
|
49
|
+
@param [Numo::DFloat or DComplex] c
|
50
|
+
@param [Numo::DFloat or DComplex] x
|
51
|
+
@return [Numo::DFloat or DComplex]
|
52
|
+
|
53
|
+
This function calls gsl_poly_eval or gsl_poly_complex_eval
|
54
|
+
or gsl_complex_poly_complex_eval according to
|
55
|
+
whether argument is complex or not.
|
56
|
+
|
57
|
+
<%= description %>
|
58
|
+
|
59
|
+
*/
|
60
|
+
static VALUE
|
61
|
+
<%=c_func(2)%>(VALUE mod, VALUE v0, VALUE v1)
|
62
|
+
{
|
63
|
+
if (is_complex_nary(v0)) {
|
64
|
+
return poly_eval_cc(v0,v1);
|
65
|
+
} else if (is_complex_nary(v1)) {
|
66
|
+
return poly_eval_fc(v0,v1);
|
67
|
+
} else {
|
68
|
+
return poly_eval_ff(v0,v1);
|
69
|
+
}
|
70
|
+
}
|
@@ -0,0 +1,40 @@
|
|
1
|
+
static void
|
2
|
+
iter_<%=c_func%>(na_loop_t *const lp)
|
3
|
+
{
|
4
|
+
size_t lenc, lenres;
|
5
|
+
double *c;
|
6
|
+
double x;
|
7
|
+
double *r;
|
8
|
+
|
9
|
+
assert(lp->args[0].ndim == 1);
|
10
|
+
assert(lp->args[2].ndim == 1);
|
11
|
+
lenc = lp->args[0].shape[0];
|
12
|
+
lenres = lp->args[2].shape[0];
|
13
|
+
c = (double*)GET_PTR(lp,0);
|
14
|
+
x = *(double*)GET_PTR(lp,1);
|
15
|
+
r = (double*)GET_PTR(lp,2);
|
16
|
+
<%=func_name%>(c,lenc,x,r,lenres);
|
17
|
+
}
|
18
|
+
|
19
|
+
/*
|
20
|
+
@overload <%=name%>(c,x,lenres)
|
21
|
+
|
22
|
+
@param [Numo::DFloat] c
|
23
|
+
@param [Numo::DFloat] x
|
24
|
+
@param [Integer] lenres
|
25
|
+
@return [Numo::DFloat]
|
26
|
+
|
27
|
+
<%= description %>
|
28
|
+
|
29
|
+
*/
|
30
|
+
static VALUE
|
31
|
+
<%=c_func(3)%>(VALUE mod, VALUE v0, VALUE v1, VALUE v2)
|
32
|
+
{
|
33
|
+
size_t shape[1];
|
34
|
+
ndfunc_arg_in_t ain[2] = {{cDF,1},{cDF,0}};
|
35
|
+
ndfunc_arg_out_t aout[1] = {{cDF,1,shape}};
|
36
|
+
ndfunc_t ndf = {iter_<%=c_func%>,NO_LOOP|NDF_INPLACE|NDF_EXTRACT,2,1,ain,aout};
|
37
|
+
|
38
|
+
shape[0] = NUM2SIZET(v2);
|
39
|
+
return na_ndloop(&ndf,2,v0,v1);
|
40
|
+
}
|
@@ -0,0 +1,17 @@
|
|
1
|
+
COGEN=ruby erbpp_ran.rb
|
2
|
+
GENSRC=gsl_ran.c
|
3
|
+
GENDEPS=erbpp_ran.rb ../gen/*.rb ../gen/tmpl/*.c # tmpl/*.c
|
4
|
+
|
5
|
+
src : $(GENSRC)
|
6
|
+
|
7
|
+
$(GENSRC) : $(GENDEPS)
|
8
|
+
$(COGEN) > $@
|
9
|
+
|
10
|
+
doc : $(GENSRC)
|
11
|
+
yard doc $(GENSRC)
|
12
|
+
|
13
|
+
clean: cleansrc cleandoc
|
14
|
+
cleansrc:
|
15
|
+
-$(Q)$(RM) $(GENSRC)
|
16
|
+
cleandoc:
|
17
|
+
-$(Q)$(RM_RF) doc .yardoc
|
@@ -0,0 +1,42 @@
|
|
1
|
+
require_relative "parse_ran"
|
2
|
+
require "erbpp/line_number"
|
3
|
+
|
4
|
+
ErbppGsl.read_func_pattern(
|
5
|
+
[ /^gsl_ran_discrete_(\w+)$/, disc_list=[]],
|
6
|
+
[ /^gsl_ran_(\w+)_pdf$/, ran_list=[]],
|
7
|
+
)
|
8
|
+
|
9
|
+
DefLib.new do
|
10
|
+
set erb_dir: %w[tmpl ../gen/tmpl]
|
11
|
+
set erb_suffix: ".c"
|
12
|
+
set ns_var: "mG"
|
13
|
+
|
14
|
+
name = "Ran"
|
15
|
+
base = name.downcase
|
16
|
+
set file_name: "gsl_#{name}.c"
|
17
|
+
set include_files: ["gsl/gsl_randist.h"]
|
18
|
+
set lib_name: "ran"
|
19
|
+
|
20
|
+
def_module do
|
21
|
+
set name: base
|
22
|
+
set module_name: name
|
23
|
+
set module_var: "m"+name
|
24
|
+
set full_module_name: "Numo::GSL::"+name
|
25
|
+
end
|
26
|
+
|
27
|
+
DefDiscrete.new(self) do
|
28
|
+
name = "Discrete"
|
29
|
+
base = name.downcase
|
30
|
+
set ns_var: "mRan"
|
31
|
+
set name: "ran_"+base
|
32
|
+
set class_name: name
|
33
|
+
set class_var: "c"+name
|
34
|
+
set full_class_name: "Numo::GSL::Ran::"+name
|
35
|
+
set struct: "gsl_ran_discrete_t"
|
36
|
+
|
37
|
+
disc_list.each do |h|
|
38
|
+
check_func(h)
|
39
|
+
end
|
40
|
+
end
|
41
|
+
|
42
|
+
end.run
|