numo-gsl 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/Gemfile +4 -0
- data/README.md +84 -0
- data/Rakefile +16 -0
- data/ext/numo/gsl/cdf/depend +17 -0
- data/ext/numo/gsl/cdf/erbpp_cdf.rb +44 -0
- data/ext/numo/gsl/cdf/extconf.rb +9 -0
- data/ext/numo/gsl/cdf/func_def.rb +610 -0
- data/ext/numo/gsl/const/const_def.rb +419 -0
- data/ext/numo/gsl/const/depend +17 -0
- data/ext/numo/gsl/const/erbpp_const.rb +30 -0
- data/ext/numo/gsl/const/extconf.rb +9 -0
- data/ext/numo/gsl/err/depend +1 -0
- data/ext/numo/gsl/err/err.c +22 -0
- data/ext/numo/gsl/err/extconf.rb +9 -0
- data/ext/numo/gsl/extconf_gsl.rb +44 -0
- data/ext/numo/gsl/fit/depend +17 -0
- data/ext/numo/gsl/fit/erbpp_fit.rb +74 -0
- data/ext/numo/gsl/fit/extconf.rb +9 -0
- data/ext/numo/gsl/fit/func_def.rb +129 -0
- data/ext/numo/gsl/fit/tmpl/check_1d.c +9 -0
- data/ext/numo/gsl/fit/tmpl/fit_linear.c +53 -0
- data/ext/numo/gsl/fit/tmpl/fit_linear_est.c +56 -0
- data/ext/numo/gsl/fit/tmpl/fit_mul.c +50 -0
- data/ext/numo/gsl/fit/tmpl/fit_mul_est.c +47 -0
- data/ext/numo/gsl/fit/tmpl/fit_wlinear.c +59 -0
- data/ext/numo/gsl/fit/tmpl/fit_wmul.c +56 -0
- data/ext/numo/gsl/gen/erbpp2.rb +306 -0
- data/ext/numo/gsl/gen/erbpp_gsl.rb +166 -0
- data/ext/numo/gsl/gen/func_parser.rb +520 -0
- data/ext/numo/gsl/gen/tmpl/c_DFloat_f_DFloat.c +40 -0
- data/ext/numo/gsl/gen/tmpl/c_DFloat_f_SZ.c +41 -0
- data/ext/numo/gsl/gen/tmpl/c_DFloat_f_SZ_x2.c +44 -0
- data/ext/numo/gsl/gen/tmpl/c_DFloat_x2_f_DFloat_x2.c +45 -0
- data/ext/numo/gsl/gen/tmpl/c_double_f_double.c +16 -0
- data/ext/numo/gsl/gen/tmpl/c_double_f_sizet.c +16 -0
- data/ext/numo/gsl/gen/tmpl/c_double_f_sizet_x2.c +17 -0
- data/ext/numo/gsl/gen/tmpl/c_double_f_void.c +15 -0
- data/ext/numo/gsl/gen/tmpl/c_double_x2_f_void.c +17 -0
- data/ext/numo/gsl/gen/tmpl/c_new_DFloat.c +29 -0
- data/ext/numo/gsl/gen/tmpl/c_new_double.c +22 -0
- data/ext/numo/gsl/gen/tmpl/c_new_f_other.c +25 -0
- data/ext/numo/gsl/gen/tmpl/c_new_sizet.c +22 -0
- data/ext/numo/gsl/gen/tmpl/c_new_sizet_double.c +23 -0
- data/ext/numo/gsl/gen/tmpl/c_new_sizet_x2.c +23 -0
- data/ext/numo/gsl/gen/tmpl/c_new_void.c +21 -0
- data/ext/numo/gsl/gen/tmpl/c_other_f_void.c +19 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_DFloat.c +46 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_DFloat_x2.c +41 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_DFloat_x3.c +44 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_DFloat_x4.c +47 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_SZ_x2_DFloat.c +45 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_double.c +17 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_other.c +17 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_sizet.c +21 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_void.c +14 -0
- data/ext/numo/gsl/gen/tmpl/c_sizet_f_void.c +15 -0
- data/ext/numo/gsl/gen/tmpl/c_sizet_x2_f_void.c +17 -0
- data/ext/numo/gsl/gen/tmpl/c_str_f_void.c +15 -0
- data/ext/numo/gsl/gen/tmpl/c_super_new_void.c +18 -0
- data/ext/numo/gsl/gen/tmpl/c_uint_f_void.c +15 -0
- data/ext/numo/gsl/gen/tmpl/c_ulong_f_void.c +15 -0
- data/ext/numo/gsl/gen/tmpl/c_void_f_double.c +17 -0
- data/ext/numo/gsl/gen/tmpl/c_void_f_double_x2.c +18 -0
- data/ext/numo/gsl/gen/tmpl/c_void_f_double_x4.c +20 -0
- data/ext/numo/gsl/gen/tmpl/c_void_f_ulong.c +17 -0
- data/ext/numo/gsl/gen/tmpl/c_void_f_void.c +14 -0
- data/ext/numo/gsl/gen/tmpl/cast_1d_contiguous.c +15 -0
- data/ext/numo/gsl/gen/tmpl/cast_2d_contiguous.c +15 -0
- data/ext/numo/gsl/gen/tmpl/class.c +26 -0
- data/ext/numo/gsl/gen/tmpl/create_new_narray.c +26 -0
- data/ext/numo/gsl/gen/tmpl/init_class.c +10 -0
- data/ext/numo/gsl/gen/tmpl/init_module.c +12 -0
- data/ext/numo/gsl/gen/tmpl/lib.c +41 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_Int_f_DFloat.c +38 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat.c +35 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat_Int.c +39 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat_UInt.c +39 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat_double.c +42 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat_double_x2.c +47 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat_int.c +42 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat_x2.c +38 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat_x3.c +41 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_Int.c +36 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt.c +36 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt32.c +36 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt32_double.c +43 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt32_double_uint.c +49 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt32_double_x2.c +48 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt32_uint_x3.c +51 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt_double.c +43 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt_double_uint.c +50 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt_double_x2.c +48 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt_uint_x3.c +51 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_int_DFloat.c +41 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_int_DFloat_x2.c +44 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_int_x2_DFloat_x2.c +46 -0
- data/ext/numo/gsl/gen/tmpl/m_Int_f_DFloat.c +36 -0
- data/ext/numo/gsl/gen/tmpl/m_Int_f_DFloat_x3.c +42 -0
- data/ext/numo/gsl/gen/tmpl/m_Int_f_int_DFloat.c +42 -0
- data/ext/numo/gsl/gen/tmpl/m_Int_f_int_DFloat_x2.c +45 -0
- data/ext/numo/gsl/gen/tmpl/mod_func_noloop.c +54 -0
- data/ext/numo/gsl/gen/tmpl/mod_func_scalar.c +27 -0
- data/ext/numo/gsl/gen/tmpl/module.c +9 -0
- data/ext/numo/gsl/histogram/depend +17 -0
- data/ext/numo/gsl/histogram/erbpp_histogram.rb +109 -0
- data/ext/numo/gsl/histogram/extconf.rb +9 -0
- data/ext/numo/gsl/histogram/func_def.rb +763 -0
- data/ext/numo/gsl/histogram/tmpl/c_DFloat_f_2d_get.c +54 -0
- data/ext/numo/gsl/histogram/tmpl/c_DFloat_f_field.c +35 -0
- data/ext/numo/gsl/histogram/tmpl/c_DFloat_f_get.c +47 -0
- data/ext/numo/gsl/histogram/tmpl/c_DFloat_x2_f_get_range.c +56 -0
- data/ext/numo/gsl/histogram/tmpl/c_bool_f_other.c +19 -0
- data/ext/numo/gsl/histogram/tmpl/c_bool_f_pdf_init.c +24 -0
- data/ext/numo/gsl/histogram/tmpl/c_self_f_2d_set_ranges.c +26 -0
- data/ext/numo/gsl/histogram/tmpl/c_self_f_set_ranges.c +21 -0
- data/ext/numo/gsl/histogram/tmpl/c_sizet_f_field.c +15 -0
- data/ext/numo/gsl/interp/depend +17 -0
- data/ext/numo/gsl/interp/erbpp_interp.rb +59 -0
- data/ext/numo/gsl/interp/extconf.rb +9 -0
- data/ext/numo/gsl/interp/func_def.rb +816 -0
- data/ext/numo/gsl/interp/parse_interp.rb +67 -0
- data/ext/numo/gsl/interp/tmpl/interp2d_new.c +36 -0
- data/ext/numo/gsl/interp/tmpl/interp2d_type_new.c +17 -0
- data/ext/numo/gsl/interp/tmpl/interp_bsearch.c +57 -0
- data/ext/numo/gsl/interp/tmpl/interp_new.c +29 -0
- data/ext/numo/gsl/interp/tmpl/interp_type_new.c +16 -0
- data/ext/numo/gsl/interp/tmpl/spline2d_eval.c +61 -0
- data/ext/numo/gsl/interp/tmpl/spline_eval.c +55 -0
- data/ext/numo/gsl/interp/tmpl/spline_integ.c +56 -0
- data/ext/numo/gsl/interp/type_def.rb +9 -0
- data/ext/numo/gsl/multifit/depend +17 -0
- data/ext/numo/gsl/multifit/erbpp_multifit.rb +99 -0
- data/ext/numo/gsl/multifit/extconf.rb +9 -0
- data/ext/numo/gsl/multifit/func_2.1.rb +1035 -0
- data/ext/numo/gsl/multifit/func_2.2.1.rb +736 -0
- data/ext/numo/gsl/multifit/func_2.2.rb +736 -0
- data/ext/numo/gsl/multifit/func_2.3.rb +872 -0
- data/ext/numo/gsl/multifit/func_def.rb +1012 -0
- data/ext/numo/gsl/multifit/tmpl/multifit_linear.c +66 -0
- data/ext/numo/gsl/multifit/tmpl/multifit_linear_est.c +48 -0
- data/ext/numo/gsl/multifit/tmpl/multifit_linear_residuals.c +47 -0
- data/ext/numo/gsl/multifit/tmpl/multifit_wlinear.c +70 -0
- data/ext/numo/gsl/multifit/type_def.rb +1 -0
- data/ext/numo/gsl/numo_gsl.h +117 -0
- data/ext/numo/gsl/pdf/depend +17 -0
- data/ext/numo/gsl/pdf/erbpp_pdf.rb +26 -0
- data/ext/numo/gsl/pdf/extconf.rb +9 -0
- data/ext/numo/gsl/pdf/func_2.2.1.rb +306 -0
- data/ext/numo/gsl/pdf/func_2.2.rb +306 -0
- data/ext/numo/gsl/pdf/func_2.3.rb +306 -0
- data/ext/numo/gsl/pdf/func_def.rb +282 -0
- data/ext/numo/gsl/pdf/parse_pdf.rb +42 -0
- data/ext/numo/gsl/pdf/tmpl/dirichlet.c +39 -0
- data/ext/numo/gsl/pdf/tmpl/multinomial.c +39 -0
- data/ext/numo/gsl/poly/depend +17 -0
- data/ext/numo/gsl/poly/erbpp_poly.rb +70 -0
- data/ext/numo/gsl/poly/extconf.rb +9 -0
- data/ext/numo/gsl/poly/func_def.rb +234 -0
- data/ext/numo/gsl/poly/tmpl/poly_complex_solve.c +59 -0
- data/ext/numo/gsl/poly/tmpl/poly_eval.c +70 -0
- data/ext/numo/gsl/poly/tmpl/poly_eval_derivs.c +40 -0
- data/ext/numo/gsl/ran/depend +17 -0
- data/ext/numo/gsl/ran/erbpp_ran.rb +42 -0
- data/ext/numo/gsl/ran/extconf.rb +9 -0
- data/ext/numo/gsl/ran/func_2.2.1.rb +1658 -0
- data/ext/numo/gsl/ran/func_2.2.rb +1658 -0
- data/ext/numo/gsl/ran/func_2.3.rb +1658 -0
- data/ext/numo/gsl/ran/func_def.rb +1594 -0
- data/ext/numo/gsl/ran/parse_ran.rb +10 -0
- data/ext/numo/gsl/rng/depend +17 -0
- data/ext/numo/gsl/rng/erbpp_rng.rb +58 -0
- data/ext/numo/gsl/rng/extconf.rb +9 -0
- data/ext/numo/gsl/rng/func_def.rb +230 -0
- data/ext/numo/gsl/rng/parse_rng.rb +125 -0
- data/ext/numo/gsl/rng/tmpl/ran.c +40 -0
- data/ext/numo/gsl/rng/tmpl/ran_DFloat_f_DFloat.c +28 -0
- data/ext/numo/gsl/rng/tmpl/ran_DFloat_x2.c +45 -0
- data/ext/numo/gsl/rng/tmpl/ran_DFloat_x3.c +51 -0
- data/ext/numo/gsl/rng/tmpl/ran_multinomial.c +32 -0
- data/ext/numo/gsl/rng/tmpl/rng_DFloat.c +29 -0
- data/ext/numo/gsl/rng/tmpl/rng_UInt.c +44 -0
- data/ext/numo/gsl/rng/tmpl/rng_alloc.c +24 -0
- data/ext/numo/gsl/rng/tmpl/rng_type_new.c +14 -0
- data/ext/numo/gsl/rng/type_def.rb +63 -0
- data/ext/numo/gsl/rstat/depend +17 -0
- data/ext/numo/gsl/rstat/erbpp_rstat.rb +64 -0
- data/ext/numo/gsl/rstat/extconf.rb +9 -0
- data/ext/numo/gsl/rstat/func_2.2.1.rb +116 -0
- data/ext/numo/gsl/rstat/func_2.2.rb +116 -0
- data/ext/numo/gsl/rstat/func_2.3.rb +123 -0
- data/ext/numo/gsl/rstat/func_def.rb +102 -0
- data/ext/numo/gsl/sf/depend +17 -0
- data/ext/numo/gsl/sf/erbpp_sf.rb +51 -0
- data/ext/numo/gsl/sf/extconf.rb +9 -0
- data/ext/numo/gsl/sf/func_def.rb +4703 -0
- data/ext/numo/gsl/sf/parse_sf.rb +277 -0
- data/ext/numo/gsl/sf/tmpl/c_DFloat_f_int_x2_DFloat.c +50 -0
- data/ext/numo/gsl/sf/tmpl/c_DFloat_f_int_x2_DFloat_x2.c +52 -0
- data/ext/numo/gsl/sf/tmpl/c_DFloat_f_int_x3_DFloat_x2.c +55 -0
- data/ext/numo/gsl/sf/tmpl/m_DFloat_f_DFloat_mode.c +47 -0
- data/ext/numo/gsl/sf/tmpl/m_DFloat_f_lmax_array.c +41 -0
- data/ext/numo/gsl/sf/tmpl/m_DFloat_f_nmin_nmax_array.c +49 -0
- data/ext/numo/gsl/spmatrix/const_2.2.1.rb +3 -0
- data/ext/numo/gsl/spmatrix/const_2.2.rb +3 -0
- data/ext/numo/gsl/spmatrix/const_2.3.rb +3 -0
- data/ext/numo/gsl/spmatrix/const_def.rb +2 -0
- data/ext/numo/gsl/spmatrix/depend +17 -0
- data/ext/numo/gsl/spmatrix/erbpp_spmatrix.rb +100 -0
- data/ext/numo/gsl/spmatrix/extconf.rb +9 -0
- data/ext/numo/gsl/spmatrix/func_2.2.1.rb +297 -0
- data/ext/numo/gsl/spmatrix/func_2.2.rb +297 -0
- data/ext/numo/gsl/spmatrix/func_2.3.rb +297 -0
- data/ext/numo/gsl/spmatrix/func_def.rb +218 -0
- data/ext/numo/gsl/spmatrix/parse_spmatrix.rb +70 -0
- data/ext/numo/gsl/spmatrix/tmpl/itersolve_iterate.c +47 -0
- data/ext/numo/gsl/spmatrix/tmpl/itersolve_new.c +22 -0
- data/ext/numo/gsl/spmatrix/tmpl/itersolve_type_new.c +16 -0
- data/ext/numo/gsl/spmatrix/tmpl/spblas_dgemm.c +35 -0
- data/ext/numo/gsl/spmatrix/tmpl/spblas_dgemv.c +43 -0
- data/ext/numo/gsl/spmatrix/tmpl/spmatrix_add.c +22 -0
- data/ext/numo/gsl/spmatrix/tmpl/spmatrix_d2sp.c +28 -0
- data/ext/numo/gsl/spmatrix/tmpl/spmatrix_new.c +40 -0
- data/ext/numo/gsl/spmatrix/tmpl/spmatrix_sp2d.c +25 -0
- data/ext/numo/gsl/spmatrix/type_def.rb +1 -0
- data/ext/numo/gsl/stats/depend +17 -0
- data/ext/numo/gsl/stats/erbpp_stats.rb +29 -0
- data/ext/numo/gsl/stats/extconf.rb +9 -0
- data/ext/numo/gsl/stats/func_2.2.1.rb +608 -0
- data/ext/numo/gsl/stats/func_2.2.rb +608 -0
- data/ext/numo/gsl/stats/func_2.3.rb +608 -0
- data/ext/numo/gsl/stats/func_def.rb +608 -0
- data/ext/numo/gsl/stats/parse_stats.rb +63 -0
- data/ext/numo/gsl/stats/tmpl/stats_1a0p.c +37 -0
- data/ext/numo/gsl/stats/tmpl/stats_1a0p_index.c +60 -0
- data/ext/numo/gsl/stats/tmpl/stats_1a1p.c +41 -0
- data/ext/numo/gsl/stats/tmpl/stats_1a2p.c +42 -0
- data/ext/numo/gsl/stats/tmpl/stats_2a0p.c +39 -0
- data/ext/numo/gsl/stats/tmpl/stats_2a1p.c +43 -0
- data/ext/numo/gsl/stats/tmpl/stats_2a2p.c +44 -0
- data/ext/numo/gsl/stats/tmpl/stats_minmax.c +37 -0
- data/ext/numo/gsl/stats/tmpl/stats_minmax_index.c +67 -0
- data/ext/numo/gsl/stats/tmpl/stats_spearman.c +46 -0
- data/ext/numo/gsl/sys/const_def.rb +21 -0
- data/ext/numo/gsl/sys/depend +17 -0
- data/ext/numo/gsl/sys/enum_def.rb +75 -0
- data/ext/numo/gsl/sys/erbpp_sys.rb +60 -0
- data/ext/numo/gsl/sys/extconf.rb +9 -0
- data/ext/numo/gsl/sys/func_def.rb +249 -0
- data/ext/numo/gsl/version.h +1 -0
- data/ext/numo/gsl/wavelet/depend +17 -0
- data/ext/numo/gsl/wavelet/erbpp_wavelet.rb +48 -0
- data/ext/numo/gsl/wavelet/extconf.rb +9 -0
- data/ext/numo/gsl/wavelet/func_def.rb +337 -0
- data/ext/numo/gsl/wavelet/parse_wavelet.rb +47 -0
- data/ext/numo/gsl/wavelet/tmpl/wavelet2d_transform.c +56 -0
- data/ext/numo/gsl/wavelet/tmpl/wavelet_array_check.c +56 -0
- data/ext/numo/gsl/wavelet/tmpl/wavelet_macro.c +1 -0
- data/ext/numo/gsl/wavelet/tmpl/wavelet_new.c +20 -0
- data/ext/numo/gsl/wavelet/tmpl/wavelet_transform.c +55 -0
- data/ext/numo/gsl/wavelet/tmpl/wavelet_transform2.c +22 -0
- data/ext/numo/gsl/wavelet/tmpl/wavelet_type_new.c +15 -0
- data/ext/numo/gsl/wavelet/type_def.rb +6 -0
- data/lib/numo/gsl.rb +17 -0
- data/numo-gsl.gemspec +33 -0
- metadata +367 -0
@@ -0,0 +1,608 @@
|
|
1
|
+
[{:func_name=>"gsl_stats_mean",
|
2
|
+
:func_type=>"double",
|
3
|
+
:args=>[["const double", "data[]"], ["size_t", "stride"], ["size_t", "n"]],
|
4
|
+
:desc=>
|
5
|
+
"This function returns the arithmetic mean of data, a dataset of\n" +
|
6
|
+
"length n with stride stride. The arithmetic mean, or\n" +
|
7
|
+
"sample mean, is denoted by \\Hat\\mu and defined as,\n" +
|
8
|
+
"\n" +
|
9
|
+
"\\Hat\\mu = (1/N) \\sum x_i\n" +
|
10
|
+
"\n" +
|
11
|
+
"where x_i are the elements of the dataset data. For\n" +
|
12
|
+
"samples drawn from a gaussian distribution the variance of\n" +
|
13
|
+
"\\Hat\\mu is \\sigma^2 / N."},
|
14
|
+
{:func_name=>"gsl_stats_variance",
|
15
|
+
:func_type=>"double",
|
16
|
+
:args=>[["const double", "data[]"], ["size_t", "stride"], ["size_t", "n"]],
|
17
|
+
:desc=>
|
18
|
+
"This function returns the estimated, or sample, variance of\n" +
|
19
|
+
"data, a dataset of length n with stride stride. The\n" +
|
20
|
+
"estimated variance is denoted by \\Hat\\sigma^2 and is defined by,\n" +
|
21
|
+
"\n" +
|
22
|
+
"\\Hat\\sigma^2 = (1/(N-1)) \\sum (x_i - \\Hat\\mu)^2\n" +
|
23
|
+
"\n" +
|
24
|
+
"where x_i are the elements of the dataset data. Note that\n" +
|
25
|
+
"the normalization factor of 1/(N-1) results from the derivation\n" +
|
26
|
+
"of \\Hat\\sigma^2 as an unbiased estimator of the population\n" +
|
27
|
+
"variance \\sigma^2. For samples drawn from a Gaussian distribution\n" +
|
28
|
+
"the variance of \\Hat\\sigma^2 itself is 2 \\sigma^4 / N.\n" +
|
29
|
+
"\n" +
|
30
|
+
"This function computes the mean via a call to gsl_stats_mean. If\n" +
|
31
|
+
"you have already computed the mean then you can pass it directly to\n" +
|
32
|
+
"gsl_stats_variance_m."},
|
33
|
+
{:func_name=>"gsl_stats_variance_m",
|
34
|
+
:func_type=>"double",
|
35
|
+
:args=>
|
36
|
+
[["const double", "data[]"],
|
37
|
+
["size_t", "stride"],
|
38
|
+
["size_t", "n"],
|
39
|
+
["double", "mean"]],
|
40
|
+
:desc=>
|
41
|
+
"This function returns the sample variance of data relative to the\n" +
|
42
|
+
"given value of mean. The function is computed with \\Hat\\mu\n" +
|
43
|
+
"replaced by the value of mean that you supply,\n" +
|
44
|
+
"\n" +
|
45
|
+
"\\Hat\\sigma^2 = (1/(N-1)) \\sum (x_i - mean)^2"},
|
46
|
+
{:func_name=>"gsl_stats_sd",
|
47
|
+
:func_type=>"double",
|
48
|
+
:args=>[["const double", "data[]"], ["size_t", "stride"], ["size_t", "n"]],
|
49
|
+
:desc=>
|
50
|
+
"The standard deviation is defined as the square root of the variance.\n" +
|
51
|
+
"These functions return the square root of the corresponding variance\n" +
|
52
|
+
"functions above."},
|
53
|
+
{:func_name=>"gsl_stats_sd_m",
|
54
|
+
:func_type=>"double",
|
55
|
+
:args=>
|
56
|
+
[["const double", "data[]"],
|
57
|
+
["size_t", "stride"],
|
58
|
+
["size_t", "n"],
|
59
|
+
["double", "mean"]],
|
60
|
+
:desc=>
|
61
|
+
"The standard deviation is defined as the square root of the variance.\n" +
|
62
|
+
"These functions return the square root of the corresponding variance\n" +
|
63
|
+
"functions above."},
|
64
|
+
{:func_name=>"gsl_stats_tss",
|
65
|
+
:func_type=>"double",
|
66
|
+
:args=>[["const double", "data[]"], ["size_t", "stride"], ["size_t", "n"]],
|
67
|
+
:desc=>
|
68
|
+
"These functions return the total sum of squares (TSS) of data about\n" +
|
69
|
+
"the mean. For gsl_stats_tss_m the user-supplied value of\n" +
|
70
|
+
"mean is used, and for gsl_stats_tss it is computed using\n" +
|
71
|
+
"gsl_stats_mean.\n" +
|
72
|
+
"\n" +
|
73
|
+
"TSS = \\sum (x_i - mean)^2"},
|
74
|
+
{:func_name=>"gsl_stats_tss_m",
|
75
|
+
:func_type=>"double",
|
76
|
+
:args=>
|
77
|
+
[["const double", "data[]"],
|
78
|
+
["size_t", "stride"],
|
79
|
+
["size_t", "n"],
|
80
|
+
["double", "mean"]],
|
81
|
+
:desc=>
|
82
|
+
"These functions return the total sum of squares (TSS) of data about\n" +
|
83
|
+
"the mean. For gsl_stats_tss_m the user-supplied value of\n" +
|
84
|
+
"mean is used, and for gsl_stats_tss it is computed using\n" +
|
85
|
+
"gsl_stats_mean.\n" +
|
86
|
+
"\n" +
|
87
|
+
"TSS = \\sum (x_i - mean)^2"},
|
88
|
+
{:func_name=>"gsl_stats_variance_with_fixed_mean",
|
89
|
+
:func_type=>"double",
|
90
|
+
:args=>
|
91
|
+
[["const double", "data[]"],
|
92
|
+
["size_t", "stride"],
|
93
|
+
["size_t", "n"],
|
94
|
+
["double", "mean"]],
|
95
|
+
:desc=>
|
96
|
+
"This function computes an unbiased estimate of the variance of\n" +
|
97
|
+
"data when the population mean mean of the underlying\n" +
|
98
|
+
"distribution is known a priori. In this case the estimator for\n" +
|
99
|
+
"the variance uses the factor 1/N and the sample mean\n" +
|
100
|
+
"\\Hat\\mu is replaced by the known population mean \\mu,\n" +
|
101
|
+
"\n" +
|
102
|
+
"\\Hat\\sigma^2 = (1/N) \\sum (x_i - \\mu)^2"},
|
103
|
+
{:func_name=>"gsl_stats_sd_with_fixed_mean",
|
104
|
+
:func_type=>"double",
|
105
|
+
:args=>
|
106
|
+
[["const double", "data[]"],
|
107
|
+
["size_t", "stride"],
|
108
|
+
["size_t", "n"],
|
109
|
+
["double", "mean"]],
|
110
|
+
:desc=>
|
111
|
+
"This function calculates the standard deviation of data for a\n" +
|
112
|
+
"fixed population mean mean. The result is the square root of the\n" +
|
113
|
+
"corresponding variance function."},
|
114
|
+
{:func_name=>"gsl_stats_absdev",
|
115
|
+
:func_type=>"double",
|
116
|
+
:args=>[["const double", "data[]"], ["size_t", "stride"], ["size_t", "n"]],
|
117
|
+
:desc=>
|
118
|
+
"This function computes the absolute deviation from the mean of\n" +
|
119
|
+
"data, a dataset of length n with stride stride. The\n" +
|
120
|
+
"absolute deviation from the mean is defined as,\n" +
|
121
|
+
"\n" +
|
122
|
+
"absdev = (1/N) \\sum |x_i - \\Hat\\mu|\n" +
|
123
|
+
"\n" +
|
124
|
+
"where x_i are the elements of the dataset data. The\n" +
|
125
|
+
"absolute deviation from the mean provides a more robust measure of the\n" +
|
126
|
+
"width of a distribution than the variance. This function computes the\n" +
|
127
|
+
"mean of data via a call to gsl_stats_mean."},
|
128
|
+
{:func_name=>"gsl_stats_absdev_m",
|
129
|
+
:func_type=>"double",
|
130
|
+
:args=>
|
131
|
+
[["const double", "data[]"],
|
132
|
+
["size_t", "stride"],
|
133
|
+
["size_t", "n"],
|
134
|
+
["double", "mean"]],
|
135
|
+
:desc=>
|
136
|
+
"This function computes the absolute deviation of the dataset data\n" +
|
137
|
+
"relative to the given value of mean,\n" +
|
138
|
+
"\n" +
|
139
|
+
"absdev = (1/N) \\sum |x_i - mean|\n" +
|
140
|
+
"\n" +
|
141
|
+
"This function is useful if you have already computed the mean of\n" +
|
142
|
+
"data (and want to avoid recomputing it), or wish to calculate the\n" +
|
143
|
+
"absolute deviation relative to another value (such as zero, or the\n" +
|
144
|
+
"median)."},
|
145
|
+
{:func_name=>"gsl_stats_skew",
|
146
|
+
:func_type=>"double",
|
147
|
+
:args=>[["const double", "data[]"], ["size_t", "stride"], ["size_t", "n"]],
|
148
|
+
:desc=>
|
149
|
+
"This function computes the skewness of data, a dataset of length\n" +
|
150
|
+
"n with stride stride. The skewness is defined as,\n" +
|
151
|
+
"\n" +
|
152
|
+
"skew = (1/N) \\sum ((x_i - \\Hat\\mu)/\\Hat\\sigma)^3\n" +
|
153
|
+
"\n" +
|
154
|
+
"where x_i are the elements of the dataset data. The skewness\n" +
|
155
|
+
"measures the asymmetry of the tails of a distribution.\n" +
|
156
|
+
"\n" +
|
157
|
+
"The function computes the mean and estimated standard deviation of\n" +
|
158
|
+
"data via calls to gsl_stats_mean and gsl_stats_sd."},
|
159
|
+
{:func_name=>"gsl_stats_skew_m_sd",
|
160
|
+
:func_type=>"double",
|
161
|
+
:args=>
|
162
|
+
[["const double", "data[]"],
|
163
|
+
["size_t", "stride"],
|
164
|
+
["size_t", "n"],
|
165
|
+
["double", "mean"],
|
166
|
+
["double", "sd"]],
|
167
|
+
:desc=>
|
168
|
+
"This function computes the skewness of the dataset data using the\n" +
|
169
|
+
"given values of the mean mean and standard deviation sd,\n" +
|
170
|
+
"\n" +
|
171
|
+
"skew = (1/N) \\sum ((x_i - mean)/sd)^3\n" +
|
172
|
+
"\n" +
|
173
|
+
"These functions are useful if you have already computed the mean and\n" +
|
174
|
+
"standard deviation of data and want to avoid recomputing them."},
|
175
|
+
{:func_name=>"gsl_stats_kurtosis",
|
176
|
+
:func_type=>"double",
|
177
|
+
:args=>[["const double", "data[]"], ["size_t", "stride"], ["size_t", "n"]],
|
178
|
+
:desc=>
|
179
|
+
"This function computes the kurtosis of data, a dataset of length\n" +
|
180
|
+
"n with stride stride. The kurtosis is defined as,\n" +
|
181
|
+
"\n" +
|
182
|
+
"kurtosis = ((1/N) \\sum ((x_i - \\Hat\\mu)/\\Hat\\sigma)^4) - 3\n" +
|
183
|
+
"\n" +
|
184
|
+
"The kurtosis measures how sharply peaked a distribution is, relative to\n" +
|
185
|
+
"its width. The kurtosis is normalized to zero for a Gaussian\n" +
|
186
|
+
"distribution."},
|
187
|
+
{:func_name=>"gsl_stats_kurtosis_m_sd",
|
188
|
+
:func_type=>"double",
|
189
|
+
:args=>
|
190
|
+
[["const double", "data[]"],
|
191
|
+
["size_t", "stride"],
|
192
|
+
["size_t", "n"],
|
193
|
+
["double", "mean"],
|
194
|
+
["double", "sd"]],
|
195
|
+
:desc=>
|
196
|
+
"This function computes the kurtosis of the dataset data using the\n" +
|
197
|
+
"given values of the mean mean and standard deviation sd,\n" +
|
198
|
+
"\n" +
|
199
|
+
"kurtosis = ((1/N) \\sum ((x_i - mean)/sd)^4) - 3\n" +
|
200
|
+
"\n" +
|
201
|
+
"This function is useful if you have already computed the mean and\n" +
|
202
|
+
"standard deviation of data and want to avoid recomputing them."},
|
203
|
+
{:func_name=>"gsl_stats_lag1_autocorrelation",
|
204
|
+
:func_type=>"double",
|
205
|
+
:args=>
|
206
|
+
[["const double", "data[]"],
|
207
|
+
["const size_t", "stride"],
|
208
|
+
["const size_t", "n"]],
|
209
|
+
:desc=>
|
210
|
+
"This function computes the lag-1 autocorrelation of the dataset data.\n" +
|
211
|
+
"\n" +
|
212
|
+
"a_1 = @{\\sum_@{i = 2@}^@{n@} (x_@{i@} - \\Hat\\mu) (x_@{i-1@} - \\Hat\\mu)\n" +
|
213
|
+
" \\over\n" +
|
214
|
+
" \\sum_@{i = 1@}^@{n@} (x_@{i@} - \\Hat\\mu) (x_@{i@} - \\Hat\\mu)@}"},
|
215
|
+
{:func_name=>"gsl_stats_lag1_autocorrelation_m",
|
216
|
+
:func_type=>"double",
|
217
|
+
:args=>
|
218
|
+
[["const double", "data[]"],
|
219
|
+
["const size_t", "stride"],
|
220
|
+
["const size_t", "n"],
|
221
|
+
["const double", "mean"]],
|
222
|
+
:desc=>
|
223
|
+
"This function computes the lag-1 autocorrelation of the dataset\n" +
|
224
|
+
"data using the given value of the mean mean.\n"},
|
225
|
+
{:func_name=>"gsl_stats_covariance",
|
226
|
+
:func_type=>"double",
|
227
|
+
:args=>
|
228
|
+
[["const double", "data1[]"],
|
229
|
+
["const size_t", "stride1"],
|
230
|
+
["const double", "data2[]"],
|
231
|
+
["const size_t", "stride2"],
|
232
|
+
["const size_t", "n"]],
|
233
|
+
:desc=>
|
234
|
+
"This function computes the covariance of the datasets data1 and\n" +
|
235
|
+
"data2 which must both be of the same length n.\n" +
|
236
|
+
"\n" +
|
237
|
+
"covar = (1/(n - 1)) \\sum_@{i = 1@}^@{n@} (x_i - \\Hat x) (y_i - \\Hat y)"},
|
238
|
+
{:func_name=>"gsl_stats_covariance_m",
|
239
|
+
:func_type=>"double",
|
240
|
+
:args=>
|
241
|
+
[["const double", "data1[]"],
|
242
|
+
["const size_t", "stride1"],
|
243
|
+
["const double", "data2[]"],
|
244
|
+
["const size_t", "stride2"],
|
245
|
+
["const size_t", "n"],
|
246
|
+
["const double", "mean1"],
|
247
|
+
["const double", "mean2"]],
|
248
|
+
:desc=>
|
249
|
+
"This function computes the covariance of the datasets data1 and\n" +
|
250
|
+
"data2 using the given values of the means, mean1 and\n" +
|
251
|
+
"mean2. This is useful if you have already computed the means of\n" +
|
252
|
+
"data1 and data2 and want to avoid recomputing them."},
|
253
|
+
{:func_name=>"gsl_stats_correlation",
|
254
|
+
:func_type=>"double",
|
255
|
+
:args=>
|
256
|
+
[["const double", "data1[]"],
|
257
|
+
["const size_t", "stride1"],
|
258
|
+
["const double", "data2[]"],
|
259
|
+
["const size_t", "stride2"],
|
260
|
+
["const size_t", "n"]],
|
261
|
+
:desc=>
|
262
|
+
"This function efficiently computes the Pearson correlation coefficient\n" +
|
263
|
+
"between the datasets data1 and data2 which must both be of\n" +
|
264
|
+
"the same length n.\n" +
|
265
|
+
"r = cov(x, y) / (\\Hat\\sigma_x \\Hat\\sigma_y)\n" +
|
266
|
+
" = @{1/(n-1) \\sum (x_i - \\Hat x) (y_i - \\Hat y)\n" +
|
267
|
+
" \\over\n" +
|
268
|
+
" \\sqrt@{1/(n-1) \\sum (x_i - \\Hat x)^2@} \\sqrt@{1/(n-1) \\sum (y_i - \\Hat y)^2@}\n" +
|
269
|
+
" @}"},
|
270
|
+
{:func_name=>"gsl_stats_spearman",
|
271
|
+
:func_type=>"double",
|
272
|
+
:args=>
|
273
|
+
[["const double", "data1[]"],
|
274
|
+
["const size_t", "stride1"],
|
275
|
+
["const double", "data2[]"],
|
276
|
+
["const size_t", "stride2"],
|
277
|
+
["const size_t", "n"],
|
278
|
+
["double", "work[]"]],
|
279
|
+
:desc=>
|
280
|
+
"This function computes the Spearman rank correlation coefficient between\n" +
|
281
|
+
"the datasets data1 and data2 which must both be of the same\n" +
|
282
|
+
"length n. Additional workspace of size 2*n is required in\n" +
|
283
|
+
"work. The Spearman rank correlation between vectors x and\n" +
|
284
|
+
"y is equivalent to the Pearson correlation between the ranked\n" +
|
285
|
+
"vectors x_R and y_R, where ranks are defined to be the\n" +
|
286
|
+
"average of the positions of an element in the ascending order of the values."},
|
287
|
+
{:func_name=>"gsl_stats_wmean",
|
288
|
+
:func_type=>"double",
|
289
|
+
:args=>
|
290
|
+
[["const double", "w[]"],
|
291
|
+
["size_t", "wstride"],
|
292
|
+
["const double", "data[]"],
|
293
|
+
["size_t", "stride"],
|
294
|
+
["size_t", "n"]],
|
295
|
+
:desc=>
|
296
|
+
"This function returns the weighted mean of the dataset data with\n" +
|
297
|
+
"stride stride and length n, using the set of weights w\n" +
|
298
|
+
"with stride wstride and length n. The weighted mean is defined as,\n" +
|
299
|
+
"\n" +
|
300
|
+
"\\Hat\\mu = (\\sum w_i x_i) / (\\sum w_i)"},
|
301
|
+
{:func_name=>"gsl_stats_wvariance",
|
302
|
+
:func_type=>"double",
|
303
|
+
:args=>
|
304
|
+
[["const double", "w[]"],
|
305
|
+
["size_t", "wstride"],
|
306
|
+
["const double", "data[]"],
|
307
|
+
["size_t", "stride"],
|
308
|
+
["size_t", "n"]],
|
309
|
+
:desc=>
|
310
|
+
"This function returns the estimated variance of the dataset data\n" +
|
311
|
+
"with stride stride and length n, using the set of weights\n" +
|
312
|
+
"w with stride wstride and length n. The estimated\n" +
|
313
|
+
"variance of a weighted dataset is calculated as,\n" +
|
314
|
+
"\n" +
|
315
|
+
"\\Hat\\sigma^2 = ((\\sum w_i)/((\\sum w_i)^2 - \\sum (w_i^2))) \n" +
|
316
|
+
" \\sum w_i (x_i - \\Hat\\mu)^2\n" +
|
317
|
+
"\n" +
|
318
|
+
"Note that this expression reduces to an unweighted variance with the\n" +
|
319
|
+
"familiar 1/(N-1) factor when there are N equal non-zero\n" +
|
320
|
+
"weights."},
|
321
|
+
{:func_name=>"gsl_stats_wvariance_m",
|
322
|
+
:func_type=>"double",
|
323
|
+
:args=>
|
324
|
+
[["const double", "w[]"],
|
325
|
+
["size_t", "wstride"],
|
326
|
+
["const double", "data[]"],
|
327
|
+
["size_t", "stride"],
|
328
|
+
["size_t", "n"],
|
329
|
+
["double", "wmean"]],
|
330
|
+
:desc=>
|
331
|
+
"This function returns the estimated variance of the weighted dataset\n" +
|
332
|
+
"data using the given weighted mean wmean."},
|
333
|
+
{:func_name=>"gsl_stats_wsd",
|
334
|
+
:func_type=>"double",
|
335
|
+
:args=>
|
336
|
+
[["const double", "w[]"],
|
337
|
+
["size_t", "wstride"],
|
338
|
+
["const double", "data[]"],
|
339
|
+
["size_t", "stride"],
|
340
|
+
["size_t", "n"]],
|
341
|
+
:desc=>
|
342
|
+
"The standard deviation is defined as the square root of the variance.\n" +
|
343
|
+
"This function returns the square root of the corresponding variance\n" +
|
344
|
+
"function gsl_stats_wvariance above."},
|
345
|
+
{:func_name=>"gsl_stats_wsd_m",
|
346
|
+
:func_type=>"double",
|
347
|
+
:args=>
|
348
|
+
[["const double", "w[]"],
|
349
|
+
["size_t", "wstride"],
|
350
|
+
["const double", "data[]"],
|
351
|
+
["size_t", "stride"],
|
352
|
+
["size_t", "n"],
|
353
|
+
["double", "wmean"]],
|
354
|
+
:desc=>
|
355
|
+
"This function returns the square root of the corresponding variance\n" +
|
356
|
+
"function gsl_stats_wvariance_m above."},
|
357
|
+
{:func_name=>"gsl_stats_wvariance_with_fixed_mean",
|
358
|
+
:func_type=>"double",
|
359
|
+
:args=>
|
360
|
+
[["const double", "w[]"],
|
361
|
+
["size_t", "wstride"],
|
362
|
+
["const double", "data[]"],
|
363
|
+
["size_t", "stride"],
|
364
|
+
["size_t", "n"],
|
365
|
+
["const double", "mean"]],
|
366
|
+
:desc=>
|
367
|
+
"This function computes an unbiased estimate of the variance of the weighted\n" +
|
368
|
+
"dataset data when the population mean mean of the underlying\n" +
|
369
|
+
"distribution is known a priori. In this case the estimator for\n" +
|
370
|
+
"the variance replaces the sample mean \\Hat\\mu by the known\n" +
|
371
|
+
"population mean \\mu,\n" +
|
372
|
+
"\n" +
|
373
|
+
"\\Hat\\sigma^2 = (\\sum w_i (x_i - \\mu)^2) / (\\sum w_i)"},
|
374
|
+
{:func_name=>"gsl_stats_wsd_with_fixed_mean",
|
375
|
+
:func_type=>"double",
|
376
|
+
:args=>
|
377
|
+
[["const double", "w[]"],
|
378
|
+
["size_t", "wstride"],
|
379
|
+
["const double", "data[]"],
|
380
|
+
["size_t", "stride"],
|
381
|
+
["size_t", "n"],
|
382
|
+
["const double", "mean"]],
|
383
|
+
:desc=>
|
384
|
+
"The standard deviation is defined as the square root of the variance.\n" +
|
385
|
+
"This function returns the square root of the corresponding variance\n" +
|
386
|
+
"function above."},
|
387
|
+
{:func_name=>"gsl_stats_wtss",
|
388
|
+
:func_type=>"double",
|
389
|
+
:args=>
|
390
|
+
[["const double", "w[]"],
|
391
|
+
["const size_t", "wstride"],
|
392
|
+
["const double", "data[]"],
|
393
|
+
["size_t", "stride"],
|
394
|
+
["size_t", "n"]],
|
395
|
+
:desc=>
|
396
|
+
"These functions return the weighted total sum of squares (TSS) of\n" +
|
397
|
+
"data about the weighted mean. For gsl_stats_wtss_m the\n" +
|
398
|
+
"user-supplied value of wmean is used, and for gsl_stats_wtss\n" +
|
399
|
+
"it is computed using gsl_stats_wmean.\n" +
|
400
|
+
"\n" +
|
401
|
+
"TSS = \\sum w_i (x_i - wmean)^2"},
|
402
|
+
{:func_name=>"gsl_stats_wtss_m",
|
403
|
+
:func_type=>"double",
|
404
|
+
:args=>
|
405
|
+
[["const double", "w[]"],
|
406
|
+
["const size_t", "wstride"],
|
407
|
+
["const double", "data[]"],
|
408
|
+
["size_t", "stride"],
|
409
|
+
["size_t", "n"],
|
410
|
+
["double", "wmean"]],
|
411
|
+
:desc=>
|
412
|
+
"These functions return the weighted total sum of squares (TSS) of\n" +
|
413
|
+
"data about the weighted mean. For gsl_stats_wtss_m the\n" +
|
414
|
+
"user-supplied value of wmean is used, and for gsl_stats_wtss\n" +
|
415
|
+
"it is computed using gsl_stats_wmean.\n" +
|
416
|
+
"\n" +
|
417
|
+
"TSS = \\sum w_i (x_i - wmean)^2"},
|
418
|
+
{:func_name=>"gsl_stats_wabsdev",
|
419
|
+
:func_type=>"double",
|
420
|
+
:args=>
|
421
|
+
[["const double", "w[]"],
|
422
|
+
["size_t", "wstride"],
|
423
|
+
["const double", "data[]"],
|
424
|
+
["size_t", "stride"],
|
425
|
+
["size_t", "n"]],
|
426
|
+
:desc=>
|
427
|
+
"This function computes the weighted absolute deviation from the weighted\n" +
|
428
|
+
"mean of data. The absolute deviation from the mean is defined as,\n" +
|
429
|
+
"\n" +
|
430
|
+
"absdev = (\\sum w_i |x_i - \\Hat\\mu|) / (\\sum w_i)"},
|
431
|
+
{:func_name=>"gsl_stats_wabsdev_m",
|
432
|
+
:func_type=>"double",
|
433
|
+
:args=>
|
434
|
+
[["const double", "w[]"],
|
435
|
+
["size_t", "wstride"],
|
436
|
+
["const double", "data[]"],
|
437
|
+
["size_t", "stride"],
|
438
|
+
["size_t", "n"],
|
439
|
+
["double", "wmean"]],
|
440
|
+
:desc=>
|
441
|
+
"This function computes the absolute deviation of the weighted dataset\n" +
|
442
|
+
"data about the given weighted mean wmean."},
|
443
|
+
{:func_name=>"gsl_stats_wskew",
|
444
|
+
:func_type=>"double",
|
445
|
+
:args=>
|
446
|
+
[["const double", "w[]"],
|
447
|
+
["size_t", "wstride"],
|
448
|
+
["const double", "data[]"],
|
449
|
+
["size_t", "stride"],
|
450
|
+
["size_t", "n"]],
|
451
|
+
:desc=>
|
452
|
+
"This function computes the weighted skewness of the dataset data.\n" +
|
453
|
+
"\n" +
|
454
|
+
"skew = (\\sum w_i ((x_i - \\Hat x)/\\Hat \\sigma)^3) / (\\sum w_i)"},
|
455
|
+
{:func_name=>"gsl_stats_wskew_m_sd",
|
456
|
+
:func_type=>"double",
|
457
|
+
:args=>
|
458
|
+
[["const double", "w[]"],
|
459
|
+
["size_t", "wstride"],
|
460
|
+
["const double", "data[]"],
|
461
|
+
["size_t", "stride"],
|
462
|
+
["size_t", "n"],
|
463
|
+
["double", "wmean"],
|
464
|
+
["double", "wsd"]],
|
465
|
+
:desc=>
|
466
|
+
"This function computes the weighted skewness of the dataset data\n" +
|
467
|
+
"using the given values of the weighted mean and weighted standard\n" +
|
468
|
+
"deviation, wmean and wsd."},
|
469
|
+
{:func_name=>"gsl_stats_wkurtosis",
|
470
|
+
:func_type=>"double",
|
471
|
+
:args=>
|
472
|
+
[["const double", "w[]"],
|
473
|
+
["size_t", "wstride"],
|
474
|
+
["const double", "data[]"],
|
475
|
+
["size_t", "stride"],
|
476
|
+
["size_t", "n"]],
|
477
|
+
:desc=>
|
478
|
+
"This function computes the weighted kurtosis of the dataset data.\n" +
|
479
|
+
"\n" +
|
480
|
+
"kurtosis = ((\\sum w_i ((x_i - \\Hat x)/\\Hat \\sigma)^4) / (\\sum w_i)) - 3"},
|
481
|
+
{:func_name=>"gsl_stats_wkurtosis_m_sd",
|
482
|
+
:func_type=>"double",
|
483
|
+
:args=>
|
484
|
+
[["const double", "w[]"],
|
485
|
+
["size_t", "wstride"],
|
486
|
+
["const double", "data[]"],
|
487
|
+
["size_t", "stride"],
|
488
|
+
["size_t", "n"],
|
489
|
+
["double", "wmean"],
|
490
|
+
["double", "wsd"]],
|
491
|
+
:desc=>
|
492
|
+
"This function computes the weighted kurtosis of the dataset data\n" +
|
493
|
+
"using the given values of the weighted mean and weighted standard\n" +
|
494
|
+
"deviation, wmean and wsd."},
|
495
|
+
{:func_name=>"gsl_stats_max",
|
496
|
+
:func_type=>"double",
|
497
|
+
:args=>[["const double", "data[]"], ["size_t", "stride"], ["size_t", "n"]],
|
498
|
+
:desc=>
|
499
|
+
"This function returns the maximum value in data, a dataset of\n" +
|
500
|
+
"length n with stride stride. The maximum value is defined\n" +
|
501
|
+
"as the value of the element x_i which satisfies $x_i \\ge x_j$\n" +
|
502
|
+
"x_i >= x_j for all j.\n" +
|
503
|
+
"\n" +
|
504
|
+
"If you want instead to find the element with the largest absolute\n" +
|
505
|
+
"magnitude you will need to apply fabs or abs to your data\n" +
|
506
|
+
"before calling this function."},
|
507
|
+
{:func_name=>"gsl_stats_min",
|
508
|
+
:func_type=>"double",
|
509
|
+
:args=>[["const double", "data[]"], ["size_t", "stride"], ["size_t", "n"]],
|
510
|
+
:desc=>
|
511
|
+
"This function returns the minimum value in data, a dataset of\n" +
|
512
|
+
"length n with stride stride. The minimum value is defined\n" +
|
513
|
+
"as the value of the element x_i which satisfies $x_i \\le x_j$\n" +
|
514
|
+
"x_i <= x_j for all j.\n" +
|
515
|
+
"\n" +
|
516
|
+
"If you want instead to find the element with the smallest absolute\n" +
|
517
|
+
"magnitude you will need to apply fabs or abs to your data\n" +
|
518
|
+
"before calling this function."},
|
519
|
+
{:func_name=>"gsl_stats_minmax",
|
520
|
+
:func_type=>"void",
|
521
|
+
:args=>
|
522
|
+
[["double *", "min"],
|
523
|
+
["double *", "max"],
|
524
|
+
["const double", "data[]"],
|
525
|
+
["size_t", "stride"],
|
526
|
+
["size_t", "n"]],
|
527
|
+
:desc=>
|
528
|
+
"This function finds both the minimum and maximum values min,\n" +
|
529
|
+
"max in data in a single pass."},
|
530
|
+
{:func_name=>"gsl_stats_max_index",
|
531
|
+
:func_type=>"size_t",
|
532
|
+
:args=>[["const double", "data[]"], ["size_t", "stride"], ["size_t", "n"]],
|
533
|
+
:desc=>
|
534
|
+
"This function returns the index of the maximum value in data, a\n" +
|
535
|
+
"dataset of length n with stride stride. The maximum value is\n" +
|
536
|
+
"defined as the value of the element x_i which satisfies \n" +
|
537
|
+
"$x_i \\ge x_j$\n" +
|
538
|
+
"x_i >= x_j for all j. When there are several equal maximum\n" +
|
539
|
+
"elements then the first one is chosen."},
|
540
|
+
{:func_name=>"gsl_stats_min_index",
|
541
|
+
:func_type=>"size_t",
|
542
|
+
:args=>[["const double", "data[]"], ["size_t", "stride"], ["size_t", "n"]],
|
543
|
+
:desc=>
|
544
|
+
"This function returns the index of the minimum value in data, a\n" +
|
545
|
+
"dataset of length n with stride stride. The minimum value\n" +
|
546
|
+
"is defined as the value of the element x_i which satisfies\n" +
|
547
|
+
"$x_i \\ge x_j$\n" +
|
548
|
+
"x_i >= x_j for all j. When there are several equal\n" +
|
549
|
+
"minimum elements then the first one is chosen."},
|
550
|
+
{:func_name=>"gsl_stats_minmax_index",
|
551
|
+
:func_type=>"void",
|
552
|
+
:args=>
|
553
|
+
[["size_t *", "min_index"],
|
554
|
+
["size_t *", "max_index"],
|
555
|
+
["const double", "data[]"],
|
556
|
+
["size_t", "stride"],
|
557
|
+
["size_t", "n"]],
|
558
|
+
:desc=>
|
559
|
+
"This function returns the indexes min_index, max_index of\n" +
|
560
|
+
"the minimum and maximum values in data in a single pass."},
|
561
|
+
{:func_name=>"gsl_stats_median_from_sorted_data",
|
562
|
+
:func_type=>"double",
|
563
|
+
:args=>
|
564
|
+
[["const double", "sorted_data[]"], ["size_t", "stride"], ["size_t", "n"]],
|
565
|
+
:desc=>
|
566
|
+
"This function returns the median value of sorted_data, a dataset\n" +
|
567
|
+
"of length n with stride stride. The elements of the array\n" +
|
568
|
+
"must be in ascending numerical order. There are no checks to see\n" +
|
569
|
+
"whether the data are sorted, so the function gsl_sort should\n" +
|
570
|
+
"always be used first.\n" +
|
571
|
+
"\n" +
|
572
|
+
"When the dataset has an odd number of elements the median is the value\n" +
|
573
|
+
"of element (n-1)/2. When the dataset has an even number of\n" +
|
574
|
+
"elements the median is the mean of the two nearest middle values,\n" +
|
575
|
+
"elements (n-1)/2 and n/2. Since the algorithm for\n" +
|
576
|
+
"computing the median involves interpolation this function always returns\n" +
|
577
|
+
"a floating-point number, even for integer data types."},
|
578
|
+
{:func_name=>"gsl_stats_quantile_from_sorted_data",
|
579
|
+
:func_type=>"double",
|
580
|
+
:args=>
|
581
|
+
[["const double", "sorted_data[]"],
|
582
|
+
["size_t", "stride"],
|
583
|
+
["size_t", "n"],
|
584
|
+
["double", "f"]],
|
585
|
+
:desc=>
|
586
|
+
"This function returns a quantile value of sorted_data, a\n" +
|
587
|
+
"double-precision array of length n with stride stride. The\n" +
|
588
|
+
"elements of the array must be in ascending numerical order. The\n" +
|
589
|
+
"quantile is determined by the f, a fraction between 0 and 1. For\n" +
|
590
|
+
"example, to compute the value of the 75th percentile f should have\n" +
|
591
|
+
"the value 0.75.\n" +
|
592
|
+
"\n" +
|
593
|
+
"There are no checks to see whether the data are sorted, so the function\n" +
|
594
|
+
"gsl_sort should always be used first.\n" +
|
595
|
+
"\n" +
|
596
|
+
"The quantile is found by interpolation, using the formula\n" +
|
597
|
+
"\n" +
|
598
|
+
"quantile = (1 - \\delta) x_i + \\delta x_@{i+1@}\n" +
|
599
|
+
"\n" +
|
600
|
+
"where i is floor((n - 1)f) and \\delta is\n" +
|
601
|
+
"(n-1)f - i.\n" +
|
602
|
+
"\n" +
|
603
|
+
"Thus the minimum value of the array (data[0*stride]) is given by\n" +
|
604
|
+
"f equal to zero, the maximum value (data[(n-1)*stride]) is\n" +
|
605
|
+
"given by f equal to one and the median value is given by f\n" +
|
606
|
+
"equal to 0.5. Since the algorithm for computing quantiles involves\n" +
|
607
|
+
"interpolation this function always returns a floating-point number, even\n" +
|
608
|
+
"for integer data types."}]
|