numo-gsl 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/Gemfile +4 -0
- data/README.md +84 -0
- data/Rakefile +16 -0
- data/ext/numo/gsl/cdf/depend +17 -0
- data/ext/numo/gsl/cdf/erbpp_cdf.rb +44 -0
- data/ext/numo/gsl/cdf/extconf.rb +9 -0
- data/ext/numo/gsl/cdf/func_def.rb +610 -0
- data/ext/numo/gsl/const/const_def.rb +419 -0
- data/ext/numo/gsl/const/depend +17 -0
- data/ext/numo/gsl/const/erbpp_const.rb +30 -0
- data/ext/numo/gsl/const/extconf.rb +9 -0
- data/ext/numo/gsl/err/depend +1 -0
- data/ext/numo/gsl/err/err.c +22 -0
- data/ext/numo/gsl/err/extconf.rb +9 -0
- data/ext/numo/gsl/extconf_gsl.rb +44 -0
- data/ext/numo/gsl/fit/depend +17 -0
- data/ext/numo/gsl/fit/erbpp_fit.rb +74 -0
- data/ext/numo/gsl/fit/extconf.rb +9 -0
- data/ext/numo/gsl/fit/func_def.rb +129 -0
- data/ext/numo/gsl/fit/tmpl/check_1d.c +9 -0
- data/ext/numo/gsl/fit/tmpl/fit_linear.c +53 -0
- data/ext/numo/gsl/fit/tmpl/fit_linear_est.c +56 -0
- data/ext/numo/gsl/fit/tmpl/fit_mul.c +50 -0
- data/ext/numo/gsl/fit/tmpl/fit_mul_est.c +47 -0
- data/ext/numo/gsl/fit/tmpl/fit_wlinear.c +59 -0
- data/ext/numo/gsl/fit/tmpl/fit_wmul.c +56 -0
- data/ext/numo/gsl/gen/erbpp2.rb +306 -0
- data/ext/numo/gsl/gen/erbpp_gsl.rb +166 -0
- data/ext/numo/gsl/gen/func_parser.rb +520 -0
- data/ext/numo/gsl/gen/tmpl/c_DFloat_f_DFloat.c +40 -0
- data/ext/numo/gsl/gen/tmpl/c_DFloat_f_SZ.c +41 -0
- data/ext/numo/gsl/gen/tmpl/c_DFloat_f_SZ_x2.c +44 -0
- data/ext/numo/gsl/gen/tmpl/c_DFloat_x2_f_DFloat_x2.c +45 -0
- data/ext/numo/gsl/gen/tmpl/c_double_f_double.c +16 -0
- data/ext/numo/gsl/gen/tmpl/c_double_f_sizet.c +16 -0
- data/ext/numo/gsl/gen/tmpl/c_double_f_sizet_x2.c +17 -0
- data/ext/numo/gsl/gen/tmpl/c_double_f_void.c +15 -0
- data/ext/numo/gsl/gen/tmpl/c_double_x2_f_void.c +17 -0
- data/ext/numo/gsl/gen/tmpl/c_new_DFloat.c +29 -0
- data/ext/numo/gsl/gen/tmpl/c_new_double.c +22 -0
- data/ext/numo/gsl/gen/tmpl/c_new_f_other.c +25 -0
- data/ext/numo/gsl/gen/tmpl/c_new_sizet.c +22 -0
- data/ext/numo/gsl/gen/tmpl/c_new_sizet_double.c +23 -0
- data/ext/numo/gsl/gen/tmpl/c_new_sizet_x2.c +23 -0
- data/ext/numo/gsl/gen/tmpl/c_new_void.c +21 -0
- data/ext/numo/gsl/gen/tmpl/c_other_f_void.c +19 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_DFloat.c +46 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_DFloat_x2.c +41 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_DFloat_x3.c +44 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_DFloat_x4.c +47 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_SZ_x2_DFloat.c +45 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_double.c +17 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_other.c +17 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_sizet.c +21 -0
- data/ext/numo/gsl/gen/tmpl/c_self_f_void.c +14 -0
- data/ext/numo/gsl/gen/tmpl/c_sizet_f_void.c +15 -0
- data/ext/numo/gsl/gen/tmpl/c_sizet_x2_f_void.c +17 -0
- data/ext/numo/gsl/gen/tmpl/c_str_f_void.c +15 -0
- data/ext/numo/gsl/gen/tmpl/c_super_new_void.c +18 -0
- data/ext/numo/gsl/gen/tmpl/c_uint_f_void.c +15 -0
- data/ext/numo/gsl/gen/tmpl/c_ulong_f_void.c +15 -0
- data/ext/numo/gsl/gen/tmpl/c_void_f_double.c +17 -0
- data/ext/numo/gsl/gen/tmpl/c_void_f_double_x2.c +18 -0
- data/ext/numo/gsl/gen/tmpl/c_void_f_double_x4.c +20 -0
- data/ext/numo/gsl/gen/tmpl/c_void_f_ulong.c +17 -0
- data/ext/numo/gsl/gen/tmpl/c_void_f_void.c +14 -0
- data/ext/numo/gsl/gen/tmpl/cast_1d_contiguous.c +15 -0
- data/ext/numo/gsl/gen/tmpl/cast_2d_contiguous.c +15 -0
- data/ext/numo/gsl/gen/tmpl/class.c +26 -0
- data/ext/numo/gsl/gen/tmpl/create_new_narray.c +26 -0
- data/ext/numo/gsl/gen/tmpl/init_class.c +10 -0
- data/ext/numo/gsl/gen/tmpl/init_module.c +12 -0
- data/ext/numo/gsl/gen/tmpl/lib.c +41 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_Int_f_DFloat.c +38 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat.c +35 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat_Int.c +39 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat_UInt.c +39 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat_double.c +42 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat_double_x2.c +47 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat_int.c +42 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat_x2.c +38 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_DFloat_x3.c +41 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_Int.c +36 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt.c +36 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt32.c +36 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt32_double.c +43 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt32_double_uint.c +49 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt32_double_x2.c +48 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt32_uint_x3.c +51 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt_double.c +43 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt_double_uint.c +50 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt_double_x2.c +48 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_UInt_uint_x3.c +51 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_int_DFloat.c +41 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_int_DFloat_x2.c +44 -0
- data/ext/numo/gsl/gen/tmpl/m_DFloat_f_int_x2_DFloat_x2.c +46 -0
- data/ext/numo/gsl/gen/tmpl/m_Int_f_DFloat.c +36 -0
- data/ext/numo/gsl/gen/tmpl/m_Int_f_DFloat_x3.c +42 -0
- data/ext/numo/gsl/gen/tmpl/m_Int_f_int_DFloat.c +42 -0
- data/ext/numo/gsl/gen/tmpl/m_Int_f_int_DFloat_x2.c +45 -0
- data/ext/numo/gsl/gen/tmpl/mod_func_noloop.c +54 -0
- data/ext/numo/gsl/gen/tmpl/mod_func_scalar.c +27 -0
- data/ext/numo/gsl/gen/tmpl/module.c +9 -0
- data/ext/numo/gsl/histogram/depend +17 -0
- data/ext/numo/gsl/histogram/erbpp_histogram.rb +109 -0
- data/ext/numo/gsl/histogram/extconf.rb +9 -0
- data/ext/numo/gsl/histogram/func_def.rb +763 -0
- data/ext/numo/gsl/histogram/tmpl/c_DFloat_f_2d_get.c +54 -0
- data/ext/numo/gsl/histogram/tmpl/c_DFloat_f_field.c +35 -0
- data/ext/numo/gsl/histogram/tmpl/c_DFloat_f_get.c +47 -0
- data/ext/numo/gsl/histogram/tmpl/c_DFloat_x2_f_get_range.c +56 -0
- data/ext/numo/gsl/histogram/tmpl/c_bool_f_other.c +19 -0
- data/ext/numo/gsl/histogram/tmpl/c_bool_f_pdf_init.c +24 -0
- data/ext/numo/gsl/histogram/tmpl/c_self_f_2d_set_ranges.c +26 -0
- data/ext/numo/gsl/histogram/tmpl/c_self_f_set_ranges.c +21 -0
- data/ext/numo/gsl/histogram/tmpl/c_sizet_f_field.c +15 -0
- data/ext/numo/gsl/interp/depend +17 -0
- data/ext/numo/gsl/interp/erbpp_interp.rb +59 -0
- data/ext/numo/gsl/interp/extconf.rb +9 -0
- data/ext/numo/gsl/interp/func_def.rb +816 -0
- data/ext/numo/gsl/interp/parse_interp.rb +67 -0
- data/ext/numo/gsl/interp/tmpl/interp2d_new.c +36 -0
- data/ext/numo/gsl/interp/tmpl/interp2d_type_new.c +17 -0
- data/ext/numo/gsl/interp/tmpl/interp_bsearch.c +57 -0
- data/ext/numo/gsl/interp/tmpl/interp_new.c +29 -0
- data/ext/numo/gsl/interp/tmpl/interp_type_new.c +16 -0
- data/ext/numo/gsl/interp/tmpl/spline2d_eval.c +61 -0
- data/ext/numo/gsl/interp/tmpl/spline_eval.c +55 -0
- data/ext/numo/gsl/interp/tmpl/spline_integ.c +56 -0
- data/ext/numo/gsl/interp/type_def.rb +9 -0
- data/ext/numo/gsl/multifit/depend +17 -0
- data/ext/numo/gsl/multifit/erbpp_multifit.rb +99 -0
- data/ext/numo/gsl/multifit/extconf.rb +9 -0
- data/ext/numo/gsl/multifit/func_2.1.rb +1035 -0
- data/ext/numo/gsl/multifit/func_2.2.1.rb +736 -0
- data/ext/numo/gsl/multifit/func_2.2.rb +736 -0
- data/ext/numo/gsl/multifit/func_2.3.rb +872 -0
- data/ext/numo/gsl/multifit/func_def.rb +1012 -0
- data/ext/numo/gsl/multifit/tmpl/multifit_linear.c +66 -0
- data/ext/numo/gsl/multifit/tmpl/multifit_linear_est.c +48 -0
- data/ext/numo/gsl/multifit/tmpl/multifit_linear_residuals.c +47 -0
- data/ext/numo/gsl/multifit/tmpl/multifit_wlinear.c +70 -0
- data/ext/numo/gsl/multifit/type_def.rb +1 -0
- data/ext/numo/gsl/numo_gsl.h +117 -0
- data/ext/numo/gsl/pdf/depend +17 -0
- data/ext/numo/gsl/pdf/erbpp_pdf.rb +26 -0
- data/ext/numo/gsl/pdf/extconf.rb +9 -0
- data/ext/numo/gsl/pdf/func_2.2.1.rb +306 -0
- data/ext/numo/gsl/pdf/func_2.2.rb +306 -0
- data/ext/numo/gsl/pdf/func_2.3.rb +306 -0
- data/ext/numo/gsl/pdf/func_def.rb +282 -0
- data/ext/numo/gsl/pdf/parse_pdf.rb +42 -0
- data/ext/numo/gsl/pdf/tmpl/dirichlet.c +39 -0
- data/ext/numo/gsl/pdf/tmpl/multinomial.c +39 -0
- data/ext/numo/gsl/poly/depend +17 -0
- data/ext/numo/gsl/poly/erbpp_poly.rb +70 -0
- data/ext/numo/gsl/poly/extconf.rb +9 -0
- data/ext/numo/gsl/poly/func_def.rb +234 -0
- data/ext/numo/gsl/poly/tmpl/poly_complex_solve.c +59 -0
- data/ext/numo/gsl/poly/tmpl/poly_eval.c +70 -0
- data/ext/numo/gsl/poly/tmpl/poly_eval_derivs.c +40 -0
- data/ext/numo/gsl/ran/depend +17 -0
- data/ext/numo/gsl/ran/erbpp_ran.rb +42 -0
- data/ext/numo/gsl/ran/extconf.rb +9 -0
- data/ext/numo/gsl/ran/func_2.2.1.rb +1658 -0
- data/ext/numo/gsl/ran/func_2.2.rb +1658 -0
- data/ext/numo/gsl/ran/func_2.3.rb +1658 -0
- data/ext/numo/gsl/ran/func_def.rb +1594 -0
- data/ext/numo/gsl/ran/parse_ran.rb +10 -0
- data/ext/numo/gsl/rng/depend +17 -0
- data/ext/numo/gsl/rng/erbpp_rng.rb +58 -0
- data/ext/numo/gsl/rng/extconf.rb +9 -0
- data/ext/numo/gsl/rng/func_def.rb +230 -0
- data/ext/numo/gsl/rng/parse_rng.rb +125 -0
- data/ext/numo/gsl/rng/tmpl/ran.c +40 -0
- data/ext/numo/gsl/rng/tmpl/ran_DFloat_f_DFloat.c +28 -0
- data/ext/numo/gsl/rng/tmpl/ran_DFloat_x2.c +45 -0
- data/ext/numo/gsl/rng/tmpl/ran_DFloat_x3.c +51 -0
- data/ext/numo/gsl/rng/tmpl/ran_multinomial.c +32 -0
- data/ext/numo/gsl/rng/tmpl/rng_DFloat.c +29 -0
- data/ext/numo/gsl/rng/tmpl/rng_UInt.c +44 -0
- data/ext/numo/gsl/rng/tmpl/rng_alloc.c +24 -0
- data/ext/numo/gsl/rng/tmpl/rng_type_new.c +14 -0
- data/ext/numo/gsl/rng/type_def.rb +63 -0
- data/ext/numo/gsl/rstat/depend +17 -0
- data/ext/numo/gsl/rstat/erbpp_rstat.rb +64 -0
- data/ext/numo/gsl/rstat/extconf.rb +9 -0
- data/ext/numo/gsl/rstat/func_2.2.1.rb +116 -0
- data/ext/numo/gsl/rstat/func_2.2.rb +116 -0
- data/ext/numo/gsl/rstat/func_2.3.rb +123 -0
- data/ext/numo/gsl/rstat/func_def.rb +102 -0
- data/ext/numo/gsl/sf/depend +17 -0
- data/ext/numo/gsl/sf/erbpp_sf.rb +51 -0
- data/ext/numo/gsl/sf/extconf.rb +9 -0
- data/ext/numo/gsl/sf/func_def.rb +4703 -0
- data/ext/numo/gsl/sf/parse_sf.rb +277 -0
- data/ext/numo/gsl/sf/tmpl/c_DFloat_f_int_x2_DFloat.c +50 -0
- data/ext/numo/gsl/sf/tmpl/c_DFloat_f_int_x2_DFloat_x2.c +52 -0
- data/ext/numo/gsl/sf/tmpl/c_DFloat_f_int_x3_DFloat_x2.c +55 -0
- data/ext/numo/gsl/sf/tmpl/m_DFloat_f_DFloat_mode.c +47 -0
- data/ext/numo/gsl/sf/tmpl/m_DFloat_f_lmax_array.c +41 -0
- data/ext/numo/gsl/sf/tmpl/m_DFloat_f_nmin_nmax_array.c +49 -0
- data/ext/numo/gsl/spmatrix/const_2.2.1.rb +3 -0
- data/ext/numo/gsl/spmatrix/const_2.2.rb +3 -0
- data/ext/numo/gsl/spmatrix/const_2.3.rb +3 -0
- data/ext/numo/gsl/spmatrix/const_def.rb +2 -0
- data/ext/numo/gsl/spmatrix/depend +17 -0
- data/ext/numo/gsl/spmatrix/erbpp_spmatrix.rb +100 -0
- data/ext/numo/gsl/spmatrix/extconf.rb +9 -0
- data/ext/numo/gsl/spmatrix/func_2.2.1.rb +297 -0
- data/ext/numo/gsl/spmatrix/func_2.2.rb +297 -0
- data/ext/numo/gsl/spmatrix/func_2.3.rb +297 -0
- data/ext/numo/gsl/spmatrix/func_def.rb +218 -0
- data/ext/numo/gsl/spmatrix/parse_spmatrix.rb +70 -0
- data/ext/numo/gsl/spmatrix/tmpl/itersolve_iterate.c +47 -0
- data/ext/numo/gsl/spmatrix/tmpl/itersolve_new.c +22 -0
- data/ext/numo/gsl/spmatrix/tmpl/itersolve_type_new.c +16 -0
- data/ext/numo/gsl/spmatrix/tmpl/spblas_dgemm.c +35 -0
- data/ext/numo/gsl/spmatrix/tmpl/spblas_dgemv.c +43 -0
- data/ext/numo/gsl/spmatrix/tmpl/spmatrix_add.c +22 -0
- data/ext/numo/gsl/spmatrix/tmpl/spmatrix_d2sp.c +28 -0
- data/ext/numo/gsl/spmatrix/tmpl/spmatrix_new.c +40 -0
- data/ext/numo/gsl/spmatrix/tmpl/spmatrix_sp2d.c +25 -0
- data/ext/numo/gsl/spmatrix/type_def.rb +1 -0
- data/ext/numo/gsl/stats/depend +17 -0
- data/ext/numo/gsl/stats/erbpp_stats.rb +29 -0
- data/ext/numo/gsl/stats/extconf.rb +9 -0
- data/ext/numo/gsl/stats/func_2.2.1.rb +608 -0
- data/ext/numo/gsl/stats/func_2.2.rb +608 -0
- data/ext/numo/gsl/stats/func_2.3.rb +608 -0
- data/ext/numo/gsl/stats/func_def.rb +608 -0
- data/ext/numo/gsl/stats/parse_stats.rb +63 -0
- data/ext/numo/gsl/stats/tmpl/stats_1a0p.c +37 -0
- data/ext/numo/gsl/stats/tmpl/stats_1a0p_index.c +60 -0
- data/ext/numo/gsl/stats/tmpl/stats_1a1p.c +41 -0
- data/ext/numo/gsl/stats/tmpl/stats_1a2p.c +42 -0
- data/ext/numo/gsl/stats/tmpl/stats_2a0p.c +39 -0
- data/ext/numo/gsl/stats/tmpl/stats_2a1p.c +43 -0
- data/ext/numo/gsl/stats/tmpl/stats_2a2p.c +44 -0
- data/ext/numo/gsl/stats/tmpl/stats_minmax.c +37 -0
- data/ext/numo/gsl/stats/tmpl/stats_minmax_index.c +67 -0
- data/ext/numo/gsl/stats/tmpl/stats_spearman.c +46 -0
- data/ext/numo/gsl/sys/const_def.rb +21 -0
- data/ext/numo/gsl/sys/depend +17 -0
- data/ext/numo/gsl/sys/enum_def.rb +75 -0
- data/ext/numo/gsl/sys/erbpp_sys.rb +60 -0
- data/ext/numo/gsl/sys/extconf.rb +9 -0
- data/ext/numo/gsl/sys/func_def.rb +249 -0
- data/ext/numo/gsl/version.h +1 -0
- data/ext/numo/gsl/wavelet/depend +17 -0
- data/ext/numo/gsl/wavelet/erbpp_wavelet.rb +48 -0
- data/ext/numo/gsl/wavelet/extconf.rb +9 -0
- data/ext/numo/gsl/wavelet/func_def.rb +337 -0
- data/ext/numo/gsl/wavelet/parse_wavelet.rb +47 -0
- data/ext/numo/gsl/wavelet/tmpl/wavelet2d_transform.c +56 -0
- data/ext/numo/gsl/wavelet/tmpl/wavelet_array_check.c +56 -0
- data/ext/numo/gsl/wavelet/tmpl/wavelet_macro.c +1 -0
- data/ext/numo/gsl/wavelet/tmpl/wavelet_new.c +20 -0
- data/ext/numo/gsl/wavelet/tmpl/wavelet_transform.c +55 -0
- data/ext/numo/gsl/wavelet/tmpl/wavelet_transform2.c +22 -0
- data/ext/numo/gsl/wavelet/tmpl/wavelet_type_new.c +15 -0
- data/ext/numo/gsl/wavelet/type_def.rb +6 -0
- data/lib/numo/gsl.rb +17 -0
- data/numo-gsl.gemspec +33 -0
- metadata +367 -0
@@ -0,0 +1,306 @@
|
|
1
|
+
[{:func_name=>"gsl_ran_gaussian_pdf",
|
2
|
+
:func_type=>"double",
|
3
|
+
:args=>[["double", "x"], ["double", "sigma"]],
|
4
|
+
:desc=>
|
5
|
+
"This function computes the probability density p(x) at x\n" +
|
6
|
+
"for a Gaussian distribution with standard deviation sigma, using\n" +
|
7
|
+
"the formula given above."},
|
8
|
+
{:func_name=>"gsl_ran_ugaussian_pdf",
|
9
|
+
:func_type=>"double",
|
10
|
+
:args=>[["double", "x"]],
|
11
|
+
:desc=>
|
12
|
+
"These functions compute results for the unit Gaussian distribution. They\n" +
|
13
|
+
"are equivalent to the functions above with a standard deviation of one,\n" +
|
14
|
+
"sigma = 1."},
|
15
|
+
{:func_name=>"gsl_ran_gaussian_tail_pdf",
|
16
|
+
:func_type=>"double",
|
17
|
+
:args=>[["double", "x"], ["double", "a"], ["double", "sigma"]],
|
18
|
+
:desc=>
|
19
|
+
"This function computes the probability density p(x) at x\n" +
|
20
|
+
"for a Gaussian tail distribution with standard deviation sigma and\n" +
|
21
|
+
"lower limit a, using the formula given above."},
|
22
|
+
{:func_name=>"gsl_ran_ugaussian_tail_pdf",
|
23
|
+
:func_type=>"double",
|
24
|
+
:args=>[["double", "x"], ["double", "a"]],
|
25
|
+
:desc=>
|
26
|
+
"These functions compute results for the tail of a unit Gaussian\n" +
|
27
|
+
"distribution. They are equivalent to the functions above with a standard\n" +
|
28
|
+
"deviation of one, sigma = 1."},
|
29
|
+
{:func_name=>"gsl_ran_bivariate_gaussian_pdf",
|
30
|
+
:func_type=>"double",
|
31
|
+
:args=>
|
32
|
+
[["double", "x"],
|
33
|
+
["double", "y"],
|
34
|
+
["double", "sigma_x"],
|
35
|
+
["double", "sigma_y"],
|
36
|
+
["double", "rho"]],
|
37
|
+
:desc=>
|
38
|
+
"This function computes the probability density p(x,y) at\n" +
|
39
|
+
"(x,y) for a bivariate Gaussian distribution with standard\n" +
|
40
|
+
"deviations sigma_x, sigma_y and correlation coefficient\n" +
|
41
|
+
"rho, using the formula given above."},
|
42
|
+
{:func_name=>"gsl_ran_multivariate_gaussian_pdf",
|
43
|
+
:func_type=>"int",
|
44
|
+
:args=>
|
45
|
+
[["const gsl_vector *", "x"],
|
46
|
+
["const gsl_vector *", "mu"],
|
47
|
+
["const gsl_matrix *", "L"],
|
48
|
+
["double *", "result"],
|
49
|
+
["gsl_vector *", "work"]],
|
50
|
+
:desc=>
|
51
|
+
"These functions compute p(x) or \\log{p(x)} at the point x, using mean vector\n" +
|
52
|
+
"mu and variance-covariance matrix specified by its Cholesky factor L using the formula\n" +
|
53
|
+
"above. Additional workspace of length k is required in work."},
|
54
|
+
{:func_name=>"gsl_ran_multivariate_gaussian_log_pdf",
|
55
|
+
:func_type=>"int",
|
56
|
+
:args=>
|
57
|
+
[["const gsl_vector *", "x"],
|
58
|
+
["const gsl_vector *", "mu"],
|
59
|
+
["const gsl_matrix *", "L"],
|
60
|
+
["double *", "result"],
|
61
|
+
["gsl_vector *", "work"]],
|
62
|
+
:desc=>
|
63
|
+
"These functions compute p(x) or \\log{p(x)} at the point x, using mean vector\n" +
|
64
|
+
"mu and variance-covariance matrix specified by its Cholesky factor L using the formula\n" +
|
65
|
+
"above. Additional workspace of length k is required in work."},
|
66
|
+
{:func_name=>"gsl_ran_exponential_pdf",
|
67
|
+
:func_type=>"double",
|
68
|
+
:args=>[["double", "x"], ["double", "mu"]],
|
69
|
+
:desc=>
|
70
|
+
"This function computes the probability density p(x) at x\n" +
|
71
|
+
"for an exponential distribution with mean mu, using the formula\n" +
|
72
|
+
"given above."},
|
73
|
+
{:func_name=>"gsl_ran_laplace_pdf",
|
74
|
+
:func_type=>"double",
|
75
|
+
:args=>[["double", "x"], ["double", "a"]],
|
76
|
+
:desc=>
|
77
|
+
"This function computes the probability density p(x) at x\n" +
|
78
|
+
"for a Laplace distribution with width a, using the formula\n" +
|
79
|
+
"given above."},
|
80
|
+
{:func_name=>"gsl_ran_exppow_pdf",
|
81
|
+
:func_type=>"double",
|
82
|
+
:args=>[["double", "x"], ["double", "a"], ["double", "b"]],
|
83
|
+
:desc=>
|
84
|
+
"This function computes the probability density p(x) at x\n" +
|
85
|
+
"for an exponential power distribution with scale parameter a\n" +
|
86
|
+
"and exponent b, using the formula given above."},
|
87
|
+
{:func_name=>"gsl_ran_cauchy_pdf",
|
88
|
+
:func_type=>"double",
|
89
|
+
:args=>[["double", "x"], ["double", "a"]],
|
90
|
+
:desc=>
|
91
|
+
"This function computes the probability density p(x) at x\n" +
|
92
|
+
"for a Cauchy distribution with scale parameter a, using the formula\n" +
|
93
|
+
"given above."},
|
94
|
+
{:func_name=>"gsl_ran_rayleigh_pdf",
|
95
|
+
:func_type=>"double",
|
96
|
+
:args=>[["double", "x"], ["double", "sigma"]],
|
97
|
+
:desc=>
|
98
|
+
"This function computes the probability density p(x) at x\n" +
|
99
|
+
"for a Rayleigh distribution with scale parameter sigma, using the\n" +
|
100
|
+
"formula given above."},
|
101
|
+
{:func_name=>"gsl_ran_rayleigh_tail_pdf",
|
102
|
+
:func_type=>"double",
|
103
|
+
:args=>[["double", "x"], ["double", "a"], ["double", "sigma"]],
|
104
|
+
:desc=>
|
105
|
+
"This function computes the probability density p(x) at x\n" +
|
106
|
+
"for a Rayleigh tail distribution with scale parameter sigma and\n" +
|
107
|
+
"lower limit a, using the formula given above."},
|
108
|
+
{:func_name=>"gsl_ran_landau_pdf",
|
109
|
+
:func_type=>"double",
|
110
|
+
:args=>[["double", "x"]],
|
111
|
+
:desc=>
|
112
|
+
"This function computes the probability density p(x) at x\n" +
|
113
|
+
"for the Landau distribution using an approximation to the formula given\n" +
|
114
|
+
"above."},
|
115
|
+
{:func_name=>"gsl_ran_gamma_pdf",
|
116
|
+
:func_type=>"double",
|
117
|
+
:args=>[["double", "x"], ["double", "a"], ["double", "b"]],
|
118
|
+
:desc=>
|
119
|
+
"This function computes the probability density p(x) at x\n" +
|
120
|
+
"for a gamma distribution with parameters a and b, using the\n" +
|
121
|
+
"formula given above."},
|
122
|
+
{:func_name=>"gsl_ran_flat_pdf",
|
123
|
+
:func_type=>"double",
|
124
|
+
:args=>[["double", "x"], ["double", "a"], ["double", "b"]],
|
125
|
+
:desc=>
|
126
|
+
"This function computes the probability density p(x) at x\n" +
|
127
|
+
"for a uniform distribution from a to b, using the formula\n" +
|
128
|
+
"given above."},
|
129
|
+
{:func_name=>"gsl_ran_lognormal_pdf",
|
130
|
+
:func_type=>"double",
|
131
|
+
:args=>[["double", "x"], ["double", "zeta"], ["double", "sigma"]],
|
132
|
+
:desc=>
|
133
|
+
"This function computes the probability density p(x) at x\n" +
|
134
|
+
"for a lognormal distribution with parameters zeta and sigma,\n" +
|
135
|
+
"using the formula given above."},
|
136
|
+
{:func_name=>"gsl_ran_chisq_pdf",
|
137
|
+
:func_type=>"double",
|
138
|
+
:args=>[["double", "x"], ["double", "nu"]],
|
139
|
+
:desc=>
|
140
|
+
"This function computes the probability density p(x) at x\n" +
|
141
|
+
"for a chi-squared distribution with nu degrees of freedom, using\n" +
|
142
|
+
"the formula given above."},
|
143
|
+
{:func_name=>"gsl_ran_fdist_pdf",
|
144
|
+
:func_type=>"double",
|
145
|
+
:args=>[["double", "x"], ["double", "nu1"], ["double", "nu2"]],
|
146
|
+
:desc=>
|
147
|
+
"This function computes the probability density p(x) at x\n" +
|
148
|
+
"for an F-distribution with nu1 and nu2 degrees of freedom,\n" +
|
149
|
+
"using the formula given above."},
|
150
|
+
{:func_name=>"gsl_ran_tdist_pdf",
|
151
|
+
:func_type=>"double",
|
152
|
+
:args=>[["double", "x"], ["double", "nu"]],
|
153
|
+
:desc=>
|
154
|
+
"This function computes the probability density p(x) at x\n" +
|
155
|
+
"for a t-distribution with nu degrees of freedom, using the formula\n" +
|
156
|
+
"given above."},
|
157
|
+
{:func_name=>"gsl_ran_beta_pdf",
|
158
|
+
:func_type=>"double",
|
159
|
+
:args=>[["double", "x"], ["double", "a"], ["double", "b"]],
|
160
|
+
:desc=>
|
161
|
+
"This function computes the probability density p(x) at x\n" +
|
162
|
+
"for a beta distribution with parameters a and b, using the\n" +
|
163
|
+
"formula given above."},
|
164
|
+
{:func_name=>"gsl_ran_logistic_pdf",
|
165
|
+
:func_type=>"double",
|
166
|
+
:args=>[["double", "x"], ["double", "a"]],
|
167
|
+
:desc=>
|
168
|
+
"This function computes the probability density p(x) at x\n" +
|
169
|
+
"for a logistic distribution with scale parameter a, using the\n" +
|
170
|
+
"formula given above."},
|
171
|
+
{:func_name=>"gsl_ran_pareto_pdf",
|
172
|
+
:func_type=>"double",
|
173
|
+
:args=>[["double", "x"], ["double", "a"], ["double", "b"]],
|
174
|
+
:desc=>
|
175
|
+
"This function computes the probability density p(x) at x\n" +
|
176
|
+
"for a Pareto distribution with exponent a and scale b, using\n" +
|
177
|
+
"the formula given above."},
|
178
|
+
{:func_name=>"gsl_ran_weibull_pdf",
|
179
|
+
:func_type=>"double",
|
180
|
+
:args=>[["double", "x"], ["double", "a"], ["double", "b"]],
|
181
|
+
:desc=>
|
182
|
+
"This function computes the probability density p(x) at x\n" +
|
183
|
+
"for a Weibull distribution with scale a and exponent b,\n" +
|
184
|
+
"using the formula given above."},
|
185
|
+
{:func_name=>"gsl_ran_gumbel1_pdf",
|
186
|
+
:func_type=>"double",
|
187
|
+
:args=>[["double", "x"], ["double", "a"], ["double", "b"]],
|
188
|
+
:desc=>
|
189
|
+
"This function computes the probability density p(x) at x\n" +
|
190
|
+
"for a Type-1 Gumbel distribution with parameters a and b,\n" +
|
191
|
+
"using the formula given above."},
|
192
|
+
{:func_name=>"gsl_ran_gumbel2_pdf",
|
193
|
+
:func_type=>"double",
|
194
|
+
:args=>[["double", "x"], ["double", "a"], ["double", "b"]],
|
195
|
+
:desc=>
|
196
|
+
"This function computes the probability density p(x) at x\n" +
|
197
|
+
"for a Type-2 Gumbel distribution with parameters a and b,\n" +
|
198
|
+
"using the formula given above."},
|
199
|
+
{:func_name=>"gsl_ran_dirichlet_pdf",
|
200
|
+
:func_type=>"double",
|
201
|
+
:args=>
|
202
|
+
[["size_t", "K"], ["const double", "alpha[]"], ["const double", "theta[]"]],
|
203
|
+
:desc=>
|
204
|
+
"This function computes the probability density \n" +
|
205
|
+
"$p(\\theta_1, \\ldots , \\theta_K)$\n" +
|
206
|
+
"p(\\theta_1, ... , \\theta_K)\n" +
|
207
|
+
"at theta[K] for a Dirichlet distribution with parameters \n" +
|
208
|
+
"alpha[K], using the formula given above."},
|
209
|
+
{:func_name=>"gsl_ran_dirichlet_lnpdf",
|
210
|
+
:func_type=>"double",
|
211
|
+
:args=>
|
212
|
+
[["size_t", "K"], ["const double", "alpha[]"], ["const double", "theta[]"]],
|
213
|
+
:desc=>
|
214
|
+
"This function computes the logarithm of the probability density \n" +
|
215
|
+
"$p(\\theta_1, \\ldots , \\theta_K)$\n" +
|
216
|
+
"p(\\theta_1, ... , \\theta_K)\n" +
|
217
|
+
"for a Dirichlet distribution with parameters \n" +
|
218
|
+
"alpha[K]."},
|
219
|
+
{:func_name=>"gsl_ran_discrete_pdf",
|
220
|
+
:func_type=>"double",
|
221
|
+
:args=>[["size_t", "k"], ["const gsl_ran_discrete_t *", "g"]],
|
222
|
+
:desc=>
|
223
|
+
"Returns the probability P[k] of observing the variable k.\n" +
|
224
|
+
"Since P[k] is not stored as part of the lookup table, it must be\n" +
|
225
|
+
"recomputed; this computation takes O(K), so if K is large\n" +
|
226
|
+
"and you care about the original array P[k] used to create the\n" +
|
227
|
+
"lookup table, then you should just keep this original array P[k]\n" +
|
228
|
+
"around."},
|
229
|
+
{:func_name=>"gsl_ran_poisson_pdf",
|
230
|
+
:func_type=>"double",
|
231
|
+
:args=>[["unsigned int", "k"], ["double", "mu"]],
|
232
|
+
:desc=>
|
233
|
+
"This function computes the probability p(k) of obtaining k\n" +
|
234
|
+
"from a Poisson distribution with mean mu, using the formula\n" +
|
235
|
+
"given above."},
|
236
|
+
{:func_name=>"gsl_ran_bernoulli_pdf",
|
237
|
+
:func_type=>"double",
|
238
|
+
:args=>[["unsigned int", "k"], ["double", "p"]],
|
239
|
+
:desc=>
|
240
|
+
"This function computes the probability p(k) of obtaining\n" +
|
241
|
+
"k from a Bernoulli distribution with probability parameter\n" +
|
242
|
+
"p, using the formula given above."},
|
243
|
+
{:func_name=>"gsl_ran_binomial_pdf",
|
244
|
+
:func_type=>"double",
|
245
|
+
:args=>[["unsigned int", "k"], ["double", "p"], ["unsigned int", "n"]],
|
246
|
+
:desc=>
|
247
|
+
"This function computes the probability p(k) of obtaining k\n" +
|
248
|
+
"from a binomial distribution with parameters p and n, using\n" +
|
249
|
+
"the formula given above."},
|
250
|
+
{:func_name=>"gsl_ran_multinomial_pdf",
|
251
|
+
:func_type=>"double",
|
252
|
+
:args=>
|
253
|
+
[["size_t", "K"], ["const double", "p[]"], ["const unsigned int", "n[]"]],
|
254
|
+
:desc=>
|
255
|
+
"This function computes the probability \n" +
|
256
|
+
"$P(n_1, n_2, \\ldots, n_K)$\n" +
|
257
|
+
"P(n_1, n_2, ..., n_K)\n" +
|
258
|
+
"of sampling n[K] from a multinomial distribution \n" +
|
259
|
+
"with parameters p[K], using the formula given above."},
|
260
|
+
{:func_name=>"gsl_ran_multinomial_lnpdf",
|
261
|
+
:func_type=>"double",
|
262
|
+
:args=>
|
263
|
+
[["size_t", "K"], ["const double", "p[]"], ["const unsigned int", "n[]"]],
|
264
|
+
:desc=>
|
265
|
+
"This function returns the logarithm of the probability for the\n" +
|
266
|
+
"multinomial distribution $P(n_1, n_2, \\ldots, n_K)$\n" +
|
267
|
+
"P(n_1, n_2, ..., n_K) with parameters p[K]."},
|
268
|
+
{:func_name=>"gsl_ran_negative_binomial_pdf",
|
269
|
+
:func_type=>"double",
|
270
|
+
:args=>[["unsigned int", "k"], ["double", "p"], ["double", "n"]],
|
271
|
+
:desc=>
|
272
|
+
"This function computes the probability p(k) of obtaining k\n" +
|
273
|
+
"from a negative binomial distribution with parameters p and\n" +
|
274
|
+
"n, using the formula given above."},
|
275
|
+
{:func_name=>"gsl_ran_pascal_pdf",
|
276
|
+
:func_type=>"double",
|
277
|
+
:args=>[["unsigned int", "k"], ["double", "p"], ["unsigned int", "n"]],
|
278
|
+
:desc=>
|
279
|
+
"This function computes the probability p(k) of obtaining k\n" +
|
280
|
+
"from a Pascal distribution with parameters p and\n" +
|
281
|
+
"n, using the formula given above."},
|
282
|
+
{:func_name=>"gsl_ran_geometric_pdf",
|
283
|
+
:func_type=>"double",
|
284
|
+
:args=>[["unsigned int", "k"], ["double", "p"]],
|
285
|
+
:desc=>
|
286
|
+
"This function computes the probability p(k) of obtaining k\n" +
|
287
|
+
"from a geometric distribution with probability parameter p, using\n" +
|
288
|
+
"the formula given above."},
|
289
|
+
{:func_name=>"gsl_ran_hypergeometric_pdf",
|
290
|
+
:func_type=>"double",
|
291
|
+
:args=>
|
292
|
+
[["unsigned int", "k"],
|
293
|
+
["unsigned int", "n1"],
|
294
|
+
["unsigned int", "n2"],
|
295
|
+
["unsigned int", "t"]],
|
296
|
+
:desc=>
|
297
|
+
"This function computes the probability p(k) of obtaining k\n" +
|
298
|
+
"from a hypergeometric distribution with parameters n1, n2,\n" +
|
299
|
+
"t, using the formula given above."},
|
300
|
+
{:func_name=>"gsl_ran_logarithmic_pdf",
|
301
|
+
:func_type=>"double",
|
302
|
+
:args=>[["unsigned int", "k"], ["double", "p"]],
|
303
|
+
:desc=>
|
304
|
+
"This function computes the probability p(k) of obtaining k\n" +
|
305
|
+
"from a logarithmic distribution with probability parameter p,\n" +
|
306
|
+
"using the formula given above."}]
|
@@ -0,0 +1,306 @@
|
|
1
|
+
[{:func_name=>"gsl_ran_gaussian_pdf",
|
2
|
+
:func_type=>"double",
|
3
|
+
:args=>[["double", "x"], ["double", "sigma"]],
|
4
|
+
:desc=>
|
5
|
+
"This function computes the probability density p(x) at x\n" +
|
6
|
+
"for a Gaussian distribution with standard deviation sigma, using\n" +
|
7
|
+
"the formula given above."},
|
8
|
+
{:func_name=>"gsl_ran_ugaussian_pdf",
|
9
|
+
:func_type=>"double",
|
10
|
+
:args=>[["double", "x"]],
|
11
|
+
:desc=>
|
12
|
+
"These functions compute results for the unit Gaussian distribution. They\n" +
|
13
|
+
"are equivalent to the functions above with a standard deviation of one,\n" +
|
14
|
+
"sigma = 1."},
|
15
|
+
{:func_name=>"gsl_ran_gaussian_tail_pdf",
|
16
|
+
:func_type=>"double",
|
17
|
+
:args=>[["double", "x"], ["double", "a"], ["double", "sigma"]],
|
18
|
+
:desc=>
|
19
|
+
"This function computes the probability density p(x) at x\n" +
|
20
|
+
"for a Gaussian tail distribution with standard deviation sigma and\n" +
|
21
|
+
"lower limit a, using the formula given above."},
|
22
|
+
{:func_name=>"gsl_ran_ugaussian_tail_pdf",
|
23
|
+
:func_type=>"double",
|
24
|
+
:args=>[["double", "x"], ["double", "a"]],
|
25
|
+
:desc=>
|
26
|
+
"These functions compute results for the tail of a unit Gaussian\n" +
|
27
|
+
"distribution. They are equivalent to the functions above with a standard\n" +
|
28
|
+
"deviation of one, sigma = 1."},
|
29
|
+
{:func_name=>"gsl_ran_bivariate_gaussian_pdf",
|
30
|
+
:func_type=>"double",
|
31
|
+
:args=>
|
32
|
+
[["double", "x"],
|
33
|
+
["double", "y"],
|
34
|
+
["double", "sigma_x"],
|
35
|
+
["double", "sigma_y"],
|
36
|
+
["double", "rho"]],
|
37
|
+
:desc=>
|
38
|
+
"This function computes the probability density p(x,y) at\n" +
|
39
|
+
"(x,y) for a bivariate Gaussian distribution with standard\n" +
|
40
|
+
"deviations sigma_x, sigma_y and correlation coefficient\n" +
|
41
|
+
"rho, using the formula given above."},
|
42
|
+
{:func_name=>"gsl_ran_multivariate_gaussian_pdf",
|
43
|
+
:func_type=>"int",
|
44
|
+
:args=>
|
45
|
+
[["const gsl_vector *", "x"],
|
46
|
+
["const gsl_vector *", "mu"],
|
47
|
+
["const gsl_matrix *", "L"],
|
48
|
+
["double *", "result"],
|
49
|
+
["gsl_vector *", "work"]],
|
50
|
+
:desc=>
|
51
|
+
"These functions compute p(x) or \\log{p(x)} at the point x, using mean vector\n" +
|
52
|
+
"mu and variance-covariance matrix specified by its Cholesky factor L using the formula\n" +
|
53
|
+
"above. Additional workspace of length k is required in work."},
|
54
|
+
{:func_name=>"gsl_ran_multivariate_gaussian_log_pdf",
|
55
|
+
:func_type=>"int",
|
56
|
+
:args=>
|
57
|
+
[["const gsl_vector *", "x"],
|
58
|
+
["const gsl_vector *", "mu"],
|
59
|
+
["const gsl_matrix *", "L"],
|
60
|
+
["double *", "result"],
|
61
|
+
["gsl_vector *", "work"]],
|
62
|
+
:desc=>
|
63
|
+
"These functions compute p(x) or \\log{p(x)} at the point x, using mean vector\n" +
|
64
|
+
"mu and variance-covariance matrix specified by its Cholesky factor L using the formula\n" +
|
65
|
+
"above. Additional workspace of length k is required in work."},
|
66
|
+
{:func_name=>"gsl_ran_exponential_pdf",
|
67
|
+
:func_type=>"double",
|
68
|
+
:args=>[["double", "x"], ["double", "mu"]],
|
69
|
+
:desc=>
|
70
|
+
"This function computes the probability density p(x) at x\n" +
|
71
|
+
"for an exponential distribution with mean mu, using the formula\n" +
|
72
|
+
"given above."},
|
73
|
+
{:func_name=>"gsl_ran_laplace_pdf",
|
74
|
+
:func_type=>"double",
|
75
|
+
:args=>[["double", "x"], ["double", "a"]],
|
76
|
+
:desc=>
|
77
|
+
"This function computes the probability density p(x) at x\n" +
|
78
|
+
"for a Laplace distribution with width a, using the formula\n" +
|
79
|
+
"given above."},
|
80
|
+
{:func_name=>"gsl_ran_exppow_pdf",
|
81
|
+
:func_type=>"double",
|
82
|
+
:args=>[["double", "x"], ["double", "a"], ["double", "b"]],
|
83
|
+
:desc=>
|
84
|
+
"This function computes the probability density p(x) at x\n" +
|
85
|
+
"for an exponential power distribution with scale parameter a\n" +
|
86
|
+
"and exponent b, using the formula given above."},
|
87
|
+
{:func_name=>"gsl_ran_cauchy_pdf",
|
88
|
+
:func_type=>"double",
|
89
|
+
:args=>[["double", "x"], ["double", "a"]],
|
90
|
+
:desc=>
|
91
|
+
"This function computes the probability density p(x) at x\n" +
|
92
|
+
"for a Cauchy distribution with scale parameter a, using the formula\n" +
|
93
|
+
"given above."},
|
94
|
+
{:func_name=>"gsl_ran_rayleigh_pdf",
|
95
|
+
:func_type=>"double",
|
96
|
+
:args=>[["double", "x"], ["double", "sigma"]],
|
97
|
+
:desc=>
|
98
|
+
"This function computes the probability density p(x) at x\n" +
|
99
|
+
"for a Rayleigh distribution with scale parameter sigma, using the\n" +
|
100
|
+
"formula given above."},
|
101
|
+
{:func_name=>"gsl_ran_rayleigh_tail_pdf",
|
102
|
+
:func_type=>"double",
|
103
|
+
:args=>[["double", "x"], ["double", "a"], ["double", "sigma"]],
|
104
|
+
:desc=>
|
105
|
+
"This function computes the probability density p(x) at x\n" +
|
106
|
+
"for a Rayleigh tail distribution with scale parameter sigma and\n" +
|
107
|
+
"lower limit a, using the formula given above."},
|
108
|
+
{:func_name=>"gsl_ran_landau_pdf",
|
109
|
+
:func_type=>"double",
|
110
|
+
:args=>[["double", "x"]],
|
111
|
+
:desc=>
|
112
|
+
"This function computes the probability density p(x) at x\n" +
|
113
|
+
"for the Landau distribution using an approximation to the formula given\n" +
|
114
|
+
"above."},
|
115
|
+
{:func_name=>"gsl_ran_gamma_pdf",
|
116
|
+
:func_type=>"double",
|
117
|
+
:args=>[["double", "x"], ["double", "a"], ["double", "b"]],
|
118
|
+
:desc=>
|
119
|
+
"This function computes the probability density p(x) at x\n" +
|
120
|
+
"for a gamma distribution with parameters a and b, using the\n" +
|
121
|
+
"formula given above."},
|
122
|
+
{:func_name=>"gsl_ran_flat_pdf",
|
123
|
+
:func_type=>"double",
|
124
|
+
:args=>[["double", "x"], ["double", "a"], ["double", "b"]],
|
125
|
+
:desc=>
|
126
|
+
"This function computes the probability density p(x) at x\n" +
|
127
|
+
"for a uniform distribution from a to b, using the formula\n" +
|
128
|
+
"given above."},
|
129
|
+
{:func_name=>"gsl_ran_lognormal_pdf",
|
130
|
+
:func_type=>"double",
|
131
|
+
:args=>[["double", "x"], ["double", "zeta"], ["double", "sigma"]],
|
132
|
+
:desc=>
|
133
|
+
"This function computes the probability density p(x) at x\n" +
|
134
|
+
"for a lognormal distribution with parameters zeta and sigma,\n" +
|
135
|
+
"using the formula given above."},
|
136
|
+
{:func_name=>"gsl_ran_chisq_pdf",
|
137
|
+
:func_type=>"double",
|
138
|
+
:args=>[["double", "x"], ["double", "nu"]],
|
139
|
+
:desc=>
|
140
|
+
"This function computes the probability density p(x) at x\n" +
|
141
|
+
"for a chi-squared distribution with nu degrees of freedom, using\n" +
|
142
|
+
"the formula given above."},
|
143
|
+
{:func_name=>"gsl_ran_fdist_pdf",
|
144
|
+
:func_type=>"double",
|
145
|
+
:args=>[["double", "x"], ["double", "nu1"], ["double", "nu2"]],
|
146
|
+
:desc=>
|
147
|
+
"This function computes the probability density p(x) at x\n" +
|
148
|
+
"for an F-distribution with nu1 and nu2 degrees of freedom,\n" +
|
149
|
+
"using the formula given above."},
|
150
|
+
{:func_name=>"gsl_ran_tdist_pdf",
|
151
|
+
:func_type=>"double",
|
152
|
+
:args=>[["double", "x"], ["double", "nu"]],
|
153
|
+
:desc=>
|
154
|
+
"This function computes the probability density p(x) at x\n" +
|
155
|
+
"for a t-distribution with nu degrees of freedom, using the formula\n" +
|
156
|
+
"given above."},
|
157
|
+
{:func_name=>"gsl_ran_beta_pdf",
|
158
|
+
:func_type=>"double",
|
159
|
+
:args=>[["double", "x"], ["double", "a"], ["double", "b"]],
|
160
|
+
:desc=>
|
161
|
+
"This function computes the probability density p(x) at x\n" +
|
162
|
+
"for a beta distribution with parameters a and b, using the\n" +
|
163
|
+
"formula given above."},
|
164
|
+
{:func_name=>"gsl_ran_logistic_pdf",
|
165
|
+
:func_type=>"double",
|
166
|
+
:args=>[["double", "x"], ["double", "a"]],
|
167
|
+
:desc=>
|
168
|
+
"This function computes the probability density p(x) at x\n" +
|
169
|
+
"for a logistic distribution with scale parameter a, using the\n" +
|
170
|
+
"formula given above."},
|
171
|
+
{:func_name=>"gsl_ran_pareto_pdf",
|
172
|
+
:func_type=>"double",
|
173
|
+
:args=>[["double", "x"], ["double", "a"], ["double", "b"]],
|
174
|
+
:desc=>
|
175
|
+
"This function computes the probability density p(x) at x\n" +
|
176
|
+
"for a Pareto distribution with exponent a and scale b, using\n" +
|
177
|
+
"the formula given above."},
|
178
|
+
{:func_name=>"gsl_ran_weibull_pdf",
|
179
|
+
:func_type=>"double",
|
180
|
+
:args=>[["double", "x"], ["double", "a"], ["double", "b"]],
|
181
|
+
:desc=>
|
182
|
+
"This function computes the probability density p(x) at x\n" +
|
183
|
+
"for a Weibull distribution with scale a and exponent b,\n" +
|
184
|
+
"using the formula given above."},
|
185
|
+
{:func_name=>"gsl_ran_gumbel1_pdf",
|
186
|
+
:func_type=>"double",
|
187
|
+
:args=>[["double", "x"], ["double", "a"], ["double", "b"]],
|
188
|
+
:desc=>
|
189
|
+
"This function computes the probability density p(x) at x\n" +
|
190
|
+
"for a Type-1 Gumbel distribution with parameters a and b,\n" +
|
191
|
+
"using the formula given above."},
|
192
|
+
{:func_name=>"gsl_ran_gumbel2_pdf",
|
193
|
+
:func_type=>"double",
|
194
|
+
:args=>[["double", "x"], ["double", "a"], ["double", "b"]],
|
195
|
+
:desc=>
|
196
|
+
"This function computes the probability density p(x) at x\n" +
|
197
|
+
"for a Type-2 Gumbel distribution with parameters a and b,\n" +
|
198
|
+
"using the formula given above."},
|
199
|
+
{:func_name=>"gsl_ran_dirichlet_pdf",
|
200
|
+
:func_type=>"double",
|
201
|
+
:args=>
|
202
|
+
[["size_t", "K"], ["const double", "alpha[]"], ["const double", "theta[]"]],
|
203
|
+
:desc=>
|
204
|
+
"This function computes the probability density \n" +
|
205
|
+
"$p(\\theta_1, \\ldots , \\theta_K)$\n" +
|
206
|
+
"p(\\theta_1, ... , \\theta_K)\n" +
|
207
|
+
"at theta[K] for a Dirichlet distribution with parameters \n" +
|
208
|
+
"alpha[K], using the formula given above."},
|
209
|
+
{:func_name=>"gsl_ran_dirichlet_lnpdf",
|
210
|
+
:func_type=>"double",
|
211
|
+
:args=>
|
212
|
+
[["size_t", "K"], ["const double", "alpha[]"], ["const double", "theta[]"]],
|
213
|
+
:desc=>
|
214
|
+
"This function computes the logarithm of the probability density \n" +
|
215
|
+
"$p(\\theta_1, \\ldots , \\theta_K)$\n" +
|
216
|
+
"p(\\theta_1, ... , \\theta_K)\n" +
|
217
|
+
"for a Dirichlet distribution with parameters \n" +
|
218
|
+
"alpha[K]."},
|
219
|
+
{:func_name=>"gsl_ran_discrete_pdf",
|
220
|
+
:func_type=>"double",
|
221
|
+
:args=>[["size_t", "k"], ["const gsl_ran_discrete_t *", "g"]],
|
222
|
+
:desc=>
|
223
|
+
"Returns the probability P[k] of observing the variable k.\n" +
|
224
|
+
"Since P[k] is not stored as part of the lookup table, it must be\n" +
|
225
|
+
"recomputed; this computation takes O(K), so if K is large\n" +
|
226
|
+
"and you care about the original array P[k] used to create the\n" +
|
227
|
+
"lookup table, then you should just keep this original array P[k]\n" +
|
228
|
+
"around."},
|
229
|
+
{:func_name=>"gsl_ran_poisson_pdf",
|
230
|
+
:func_type=>"double",
|
231
|
+
:args=>[["unsigned int", "k"], ["double", "mu"]],
|
232
|
+
:desc=>
|
233
|
+
"This function computes the probability p(k) of obtaining k\n" +
|
234
|
+
"from a Poisson distribution with mean mu, using the formula\n" +
|
235
|
+
"given above."},
|
236
|
+
{:func_name=>"gsl_ran_bernoulli_pdf",
|
237
|
+
:func_type=>"double",
|
238
|
+
:args=>[["unsigned int", "k"], ["double", "p"]],
|
239
|
+
:desc=>
|
240
|
+
"This function computes the probability p(k) of obtaining\n" +
|
241
|
+
"k from a Bernoulli distribution with probability parameter\n" +
|
242
|
+
"p, using the formula given above."},
|
243
|
+
{:func_name=>"gsl_ran_binomial_pdf",
|
244
|
+
:func_type=>"double",
|
245
|
+
:args=>[["unsigned int", "k"], ["double", "p"], ["unsigned int", "n"]],
|
246
|
+
:desc=>
|
247
|
+
"This function computes the probability p(k) of obtaining k\n" +
|
248
|
+
"from a binomial distribution with parameters p and n, using\n" +
|
249
|
+
"the formula given above."},
|
250
|
+
{:func_name=>"gsl_ran_multinomial_pdf",
|
251
|
+
:func_type=>"double",
|
252
|
+
:args=>
|
253
|
+
[["size_t", "K"], ["const double", "p[]"], ["const unsigned int", "n[]"]],
|
254
|
+
:desc=>
|
255
|
+
"This function computes the probability \n" +
|
256
|
+
"$P(n_1, n_2, \\ldots, n_K)$\n" +
|
257
|
+
"P(n_1, n_2, ..., n_K)\n" +
|
258
|
+
"of sampling n[K] from a multinomial distribution \n" +
|
259
|
+
"with parameters p[K], using the formula given above."},
|
260
|
+
{:func_name=>"gsl_ran_multinomial_lnpdf",
|
261
|
+
:func_type=>"double",
|
262
|
+
:args=>
|
263
|
+
[["size_t", "K"], ["const double", "p[]"], ["const unsigned int", "n[]"]],
|
264
|
+
:desc=>
|
265
|
+
"This function returns the logarithm of the probability for the\n" +
|
266
|
+
"multinomial distribution $P(n_1, n_2, \\ldots, n_K)$\n" +
|
267
|
+
"P(n_1, n_2, ..., n_K) with parameters p[K]."},
|
268
|
+
{:func_name=>"gsl_ran_negative_binomial_pdf",
|
269
|
+
:func_type=>"double",
|
270
|
+
:args=>[["unsigned int", "k"], ["double", "p"], ["double", "n"]],
|
271
|
+
:desc=>
|
272
|
+
"This function computes the probability p(k) of obtaining k\n" +
|
273
|
+
"from a negative binomial distribution with parameters p and\n" +
|
274
|
+
"n, using the formula given above."},
|
275
|
+
{:func_name=>"gsl_ran_pascal_pdf",
|
276
|
+
:func_type=>"double",
|
277
|
+
:args=>[["unsigned int", "k"], ["double", "p"], ["unsigned int", "n"]],
|
278
|
+
:desc=>
|
279
|
+
"This function computes the probability p(k) of obtaining k\n" +
|
280
|
+
"from a Pascal distribution with parameters p and\n" +
|
281
|
+
"n, using the formula given above."},
|
282
|
+
{:func_name=>"gsl_ran_geometric_pdf",
|
283
|
+
:func_type=>"double",
|
284
|
+
:args=>[["unsigned int", "k"], ["double", "p"]],
|
285
|
+
:desc=>
|
286
|
+
"This function computes the probability p(k) of obtaining k\n" +
|
287
|
+
"from a geometric distribution with probability parameter p, using\n" +
|
288
|
+
"the formula given above."},
|
289
|
+
{:func_name=>"gsl_ran_hypergeometric_pdf",
|
290
|
+
:func_type=>"double",
|
291
|
+
:args=>
|
292
|
+
[["unsigned int", "k"],
|
293
|
+
["unsigned int", "n1"],
|
294
|
+
["unsigned int", "n2"],
|
295
|
+
["unsigned int", "t"]],
|
296
|
+
:desc=>
|
297
|
+
"This function computes the probability p(k) of obtaining k\n" +
|
298
|
+
"from a hypergeometric distribution with parameters n1, n2,\n" +
|
299
|
+
"t, using the formula given above."},
|
300
|
+
{:func_name=>"gsl_ran_logarithmic_pdf",
|
301
|
+
:func_type=>"double",
|
302
|
+
:args=>[["unsigned int", "k"], ["double", "p"]],
|
303
|
+
:desc=>
|
304
|
+
"This function computes the probability p(k) of obtaining k\n" +
|
305
|
+
"from a logarithmic distribution with probability parameter p,\n" +
|
306
|
+
"using the formula given above."}]
|