nmatrix 0.2.3 → 0.2.4

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -28,6 +28,7 @@ require 'spec_helper'
28
28
 
29
29
  describe "RSpec" do
30
30
  it "should permit #be_within to be used on a dense NMatrix" do
31
+ pending("not yet implemented for NMatrix-JRuby") if jruby?
31
32
  expect(NMatrix.new([4,1], 1.0, dtype: :complex128, stype: :dense) / 10000.0).to be_within(0.00000001).of(NMatrix.new([4,1], 0.0001, dtype: :float64, stype: :dense))
32
33
  expect(NMatrix.new([4,1], 1.0, dtype: :complex128, stype: :dense) / 10000.0).not_to be_within(0.00000001).of(NMatrix.new([4,1], 1.0, dtype: :float64, stype: :dense))
33
34
  end
@@ -104,13 +104,14 @@ describe NMatrix do
104
104
  [:dense, :yale, :list].each do |stype|
105
105
  context "#block_diagonal #{dtype} #{stype}" do
106
106
  it "block_diagonal() creates a block-diagonal NMatrix" do
107
+ pending("not yet implemented for NMatrix-JRuby") if jruby? and dtype == :object
107
108
  a = NMatrix.new([2,2], [1,2,
108
109
  3,4])
109
110
  b = NMatrix.new([1,1], [123.0])
110
111
  c = NMatrix.new([3,3], [1,2,3,
111
112
  1,2,3,
112
113
  1,2,3])
113
- d = Array[ [1,1,1], [2,2,2], [3,3,3] ]
114
+ d = Array[ [1,1,1], [2,2,2], [3,3,3] ]
114
115
  e = 12
115
116
  m = NMatrix.block_diagonal(a, b, c, d, e, dtype: dtype, stype: stype)
116
117
  expect(m).to eq(NMatrix.new([10,10], [1, 2, 0, 0, 0, 0, 0, 0, 0, 0,
@@ -136,6 +137,17 @@ describe NMatrix do
136
137
  expect(m.dtype).to eq(:float64)
137
138
  end
138
139
 
140
+ it "creates a matrix of random numbers with defined seed value" do
141
+ m1 = NMatrix.random(2,:seed => 62)
142
+ m2 = NMatrix.random(2,:seed => 62)
143
+ m3 = NMatrix.random(2,:seed => 65)
144
+
145
+
146
+ expect(m1).to eq(m2)
147
+ expect(m1).not_to eq(m3)
148
+
149
+ end
150
+
139
151
  it "creates a complex matrix of random numbers" do
140
152
  m = NMatrix.random(2, :dtype => :complex128)
141
153
  end
@@ -158,42 +170,44 @@ describe NMatrix do
158
170
  expect { NMatrix.random("not an array or integer") }.to raise_error
159
171
  end
160
172
  end
161
-
173
+
162
174
  context "::magic" do
163
-
175
+
164
176
  ALL_DTYPES.each do |dtype|
165
177
  context dtype do
166
178
  it "creates a matrix with numbers from 1 to n^n(n squared)" do
179
+ pending("not yet implemented for NMatrix-JRuby") if jruby?
167
180
  a = NMatrix.magic(3, dtype: dtype)
168
- magic3 = NMatrix.new([3,3], [4, 9, 2, 3, 5, 7, 8, 1, 6], dtype: dtype)
181
+ magic3 = NMatrix.new([3,3], [4, 9, 2, 3, 5, 7, 8, 1, 6], dtype: dtype)
169
182
  expect(a).to eq magic3
170
-
183
+
171
184
  b = NMatrix.magic(4, dtype: dtype)
172
185
  magic4 = NMatrix.new([4,4], [1, 15, 14, 4, 12, 6, 7, 9, 8, 10, 11, 5, 13, 3, 2, 16], dtype: dtype)
173
186
  expect(b).to eq magic4
174
-
187
+
175
188
  c = NMatrix.magic(6, dtype: dtype)
176
189
  magic6 = NMatrix.new([6,6], [31, 9, 2, 22, 27, 20, 3, 32, 7, 21, 23, 25, 35, 1, 6, 26, 19, 24, 4, 36, 29, 13, 18, 11, 30, 5, 34, 12, 14, 16, 8, 28, 33, 17, 10, 15], dtype: dtype)
177
- expect(c).to eq magic6
190
+ expect(c).to eq magic6
178
191
  end
179
192
  end
180
193
  end
181
-
194
+
182
195
  it "shape of two is not allowed" do
183
196
  expect { NMatrix.magic(2) }.to raise_error(ArgumentError)
184
197
  end
185
-
186
- it "Only accepts an integer as dimension" do
198
+
199
+ it "Only accepts an integer as dimension" do
187
200
  expect { NMatrix.magic(3.0) }.to raise_error(ArgumentError)
188
201
  end
189
202
  end
190
-
203
+
191
204
  context "::linspace" do
192
205
  it "creates a row vector when given only one shape parameter" do
206
+ pending("not yet implemented for NMatrix-JRuby") if jruby?
193
207
  v = NMatrix.linspace(1, 10, 4)
194
208
  #Expect a row vector only
195
209
  expect(v.shape.length).to eq(1)
196
-
210
+
197
211
  ans = [1.0,4.0,7.0,10.0]
198
212
 
199
213
  expect(v[0]).to be_within(0.000001).of(ans[0])
@@ -201,13 +215,14 @@ describe NMatrix do
201
215
  expect(v[2]).to be_within(0.000001).of(ans[2])
202
216
  expect(v[3]).to be_within(0.000001).of(ans[3])
203
217
  end
204
-
218
+
205
219
  it "creates a matrix of input shape with each entry linearly spaced in row major order" do
220
+ pending("not yet implemented for NMatrix-JRuby") if jruby?
206
221
  v = NMatrix.linspace(1, Math::PI, [2,2])
207
222
  expect(v.dtype).to eq(:float64)
208
223
 
209
224
  ans = [1.0, 1.7138642072677612, 2.4277284145355225, 3.1415927410125732]
210
-
225
+
211
226
  expect(v[0,0]).to be_within(0.000001).of(ans[0])
212
227
  expect(v[0,1]).to be_within(0.000001).of(ans[1])
213
228
  expect(v[1,0]).to be_within(0.000001).of(ans[2])
@@ -217,13 +232,14 @@ describe NMatrix do
217
232
 
218
233
  context "::logspace" do
219
234
  it "creates a logarithmically spaced vector" do
235
+ pending("not yet implemented for NMatrix-JRuby") if jruby?
220
236
  v = NMatrix.logspace(1, 2, 10)
221
-
237
+
222
238
  expect(v.shape.length).to eq(1)
223
-
239
+
224
240
  #Unit test taken from Matlab R2015b output of logspace(1,2,10)
225
241
  ans = [10.0000, 12.9155, 16.6810, 21.5443, 27.8256, 35.9381, 46.4159, 59.9484, 77.4264, 100.0000]
226
-
242
+
227
243
  expect(v[0].round(4)).to be_within(0.000001).of(ans[0])
228
244
  expect(v[1].round(4)).to be_within(0.000001).of(ans[1])
229
245
  expect(v[2].round(4)).to be_within(0.000001).of(ans[2])
@@ -235,13 +251,14 @@ describe NMatrix do
235
251
  expect(v[8].round(4)).to be_within(0.000001).of(ans[8])
236
252
  expect(v[9].round(4)).to be_within(0.000001).of(ans[9])
237
253
  end
238
-
254
+
239
255
  it "creates a logarithmically spaced vector bounded by Math::PI if :pi is pre-supplied" do
256
+ pending("not yet implemented for NMatrix-JRuby") if jruby?
240
257
  v = NMatrix.logspace(1, :pi, 7)
241
-
258
+
242
259
  #Unit test taken from Matlab R2015b output of logspace(1,pi,10)
243
260
  ans = [10.0000, 8.2450, 6.7980, 5.6050, 4.6213, 3.8103, 3.1416]
244
-
261
+
245
262
  expect(v[0].round(4)).to be_within(0.000001).of(ans[0])
246
263
  expect(v[1].round(4)).to be_within(0.000001).of(ans[1])
247
264
  expect(v[2].round(4)).to be_within(0.000001).of(ans[2])
@@ -249,13 +266,14 @@ describe NMatrix do
249
266
  expect(v[4].round(4)).to be_within(0.000001).of(ans[4])
250
267
  expect(v[5].round(4)).to be_within(0.000001).of(ans[5])
251
268
  expect(v[6].round(4)).to be_within(0.000001).of(ans[6])
252
- end
269
+ end
253
270
 
254
271
  it "creates a matrix of input shape with each entry logarithmically spaced in row major order" do
272
+ pending("not yet implemented for NMatrix-JRuby") if jruby?
255
273
  v = NMatrix.logspace(1, 2, [3,2])
256
-
274
+
257
275
  ans = [10.0, 15.8489, 25.1189, 39.8107, 63.0957, 100.0]
258
-
276
+
259
277
  expect(v[0,0].round(4)).to be_within(0.000001).of(ans[0])
260
278
  expect(v[0,1].round(4)).to be_within(0.000001).of(ans[1])
261
279
  expect(v[1,0].round(4)).to be_within(0.000001).of(ans[2])
@@ -360,6 +378,7 @@ describe NMatrix do
360
378
  end
361
379
 
362
380
  it "should create an nmatrix of ones with dimensions and type the same as its argument" do
381
+ pending("not yet implemented for NMatrix-JRuby") if jruby?
363
382
  expect(NMatrix.ones_like(@nm_1d)).to eq NMatrix[1.0, 1.0, 1.0, 1.0, 1.0]
364
383
  expect(NMatrix.ones_like(@nm_2d)).to eq NMatrix[[1.0, 1.0], [1.0, 1.0]]
365
384
  end
@@ -383,6 +402,7 @@ describe "NVector" do
383
402
  end
384
403
 
385
404
  it "ones() creates a vector of ones" do
405
+ pending("not yet implemented for NMatrix-JRuby") if jruby?
386
406
  v = NVector.ones(3)
387
407
 
388
408
  3.times do |i|
@@ -391,6 +411,7 @@ describe "NVector" do
391
411
  end
392
412
 
393
413
  it "random() creates a vector of random numbers" do
414
+ pending("not yet implemented for NMatrix-JRuby") if jruby?
394
415
  v = NVector.random(4)
395
416
  expect(v.dtype).to eq(:float64)
396
417
  expect(v.stype).to eq(:dense)
@@ -424,16 +445,19 @@ describe "NVector" do
424
445
  end
425
446
 
426
447
  it "cindgen() creates a vector of complexes, sequentially" do
448
+ pending("not yet implemented for NMatrix-JRuby") if jruby?
427
449
  v = NVector.cindgen(2)
428
450
  expect(v).to eq(NMatrix.new([2,1], [Complex(0.0, 0.0), Complex(1.0, 0.0)], dtype: :complex64))
429
451
  end
430
452
 
431
453
  it "linspace() creates a vector with n values equally spaced between a and b" do
454
+ pending("not yet implemented for NMatrix-JRuby") if jruby?
432
455
  v = NVector.linspace(0, 2, 5)
433
456
  expect(v).to eq(NMatrix.new([5,1], [0.0, 0.5, 1.0, 1.5, 2.0]))
434
457
  end
435
458
 
436
459
  it "logspace() creates a vector with n values logarithmically spaced between decades 10^a and 10^b" do
460
+ pending("not yet implemented for NMatrix-JRuby") if jruby?
437
461
  v = NVector.logspace(0, 3, 4)
438
462
  expect(v).to eq(NMatrix.new([4,1], [1.0, 10.0, 100.0, 1000.0]))
439
463
  end
@@ -40,8 +40,12 @@ describe "Set slice operation" do
40
40
 
41
41
  if stype == :yale
42
42
  step "verify correct arrangement of Yale IJA and A arrays" do
43
- @m.extend NMatrix::YaleFunctions
44
- expect(@m.yale_ija).to eq([4,6,8,10,1,2,0,2,0,1])
43
+ @m.extend NMatrix::YaleFunctions unless jruby?
44
+ if jruby?
45
+ pending("not yet implemented for NMatrix-JRuby")
46
+ else
47
+ expect(@m.yale_ija).to eq([4,6,8,10,1,2,0,2,0,1])
48
+ end
45
49
  expect(@m.yale_a).to eq([0,4,8,0, 1,2,3,5,6,7])
46
50
  end
47
51
  end
@@ -145,6 +149,7 @@ describe "Set slice operation" do
145
149
  end
146
150
 
147
151
  example "set a range of values to a matrix's contents" do
152
+ pending("not yet implemented for int dtype for NMatrix-JRuby") if jruby?
148
153
  x = NMatrix.new(4, stype: :yale, dtype: :int16)
149
154
  x.extend NMatrix::YaleFunctions if stype == :yale
150
155
  x[1..3,1..3] = @m
@@ -41,6 +41,7 @@ describe "Statistical functions" do
41
41
  end
42
42
 
43
43
  it "should calculate the mean along the specified dimension" do
44
+ pending("not yet implemented for NMatrix-JRuby") if jruby?
44
45
  unless stype == :yale then
45
46
  puts nm_1d.mean
46
47
  expect(nm_1d.mean).to eq NMatrix.new([1], [2.2], stype: stype, dtype: :float64)
@@ -50,27 +51,32 @@ describe "Statistical functions" do
50
51
  end
51
52
 
52
53
  it "should calculate the minimum along the specified dimension" do
54
+ pending("not yet implemented for NMatrix-JRuby") if jruby?
53
55
  expect(nm_1d.min).to eq 0.0 unless stype == :yale
54
56
  expect(nm_2d.min).to eq NMatrix[[0.0, 1.0], stype: stype]
55
57
  expect(nm_2d.min(1)).to eq NMatrix[[0.0], [2.0], stype: stype]
56
58
  end
57
59
 
58
60
  it "should calculate the maximum along the specified dimension" do
61
+ pending("not yet implemented for NMatrix-JRuby") if jruby?
59
62
  expect(nm_1d.max).to eq 5.0 unless stype == :yale
60
63
  expect(nm_2d.max).to eq NMatrix[[2.0, 3.0], stype: stype]
61
64
  end
62
65
 
63
66
  it "should calculate the variance along the specified dimension" do
67
+ pending("not yet implemented for NMatrix-JRuby") if jruby?
64
68
  expect(nm_1d.variance).to eq NMatrix[3.7, stype: stype] unless stype == :yale
65
69
  expect(nm_2d.variance(1)).to eq NMatrix[[0.5], [0.5], stype: stype]
66
70
  end
67
71
 
68
72
  it "should calculate the sum along the specified dimension" do
73
+ pending("not yet implemented for NMatrix-JRuby") if jruby?
69
74
  expect(nm_1d.sum).to eq NMatrix[11.0, stype: stype] unless stype == :yale
70
75
  expect(nm_2d.sum).to eq NMatrix[[2.0, 4.0], stype: stype]
71
76
  end
72
77
 
73
78
  it "should calculate the standard deviation along the specified dimension" do
79
+ pending("not yet implemented for NMatrix-JRuby") if jruby?
74
80
  expect(nm_1d.std).to eq NMatrix[Math.sqrt(3.7), stype: stype] unless stype == :yale
75
81
  expect(nm_2d.std(1)).to eq NMatrix[[Math.sqrt(0.5)], [Math.sqrt(0.5)], stype: stype]
76
82
  end
@@ -128,6 +134,7 @@ describe "Statistical functions" do
128
134
  end
129
135
 
130
136
  it "should iterate correctly for reduce without a block" do
137
+ pending("not yet implemented for NMatrix-JRuby") if jruby?
131
138
  unless stype == :yale then
132
139
  en = nm_1d.reduce_along_dim(0, 1.0)
133
140
  expect(en.each { |a, e| a+e }.to_f).to eq 12
@@ -170,6 +177,7 @@ describe "Statistical functions" do
170
177
  end
171
178
 
172
179
  it "should allow overriding the dtype for reduce_along_dim" do
180
+ pending("not yet implemented for NMatrix-JRuby") if jruby?
173
181
  m = NMatrix[[1,2,3], [3,4,5], dtype: :complex128]
174
182
  m.reduce_along_dim(1, 0.0, :float64) do |acc, sub_m|
175
183
  expect(acc.dtype).to eq :float64
@@ -184,16 +192,19 @@ describe "Statistical functions" do
184
192
  end
185
193
 
186
194
  it "should convert integer dtypes to float when calculating mean" do
195
+ pending("not yet implemented for NMatrix-JRuby") if jruby?
187
196
  m = NMatrix[[1,2,3], [3,4,5], dtype: :int32, stype: stype]
188
197
  expect(m.mean(0).dtype).to eq :float64
189
198
  end
190
199
 
191
200
  it "should convert integer dtypes to float when calculating variance" do
201
+ pending("not yet implemented for NMatrix-JRuby") if jruby?
192
202
  m = NMatrix[[1,2,3], [3,4,5], dtype: :int32, stype: stype]
193
203
  expect(m.variance(0).dtype).to eq :float64
194
204
  end
195
205
 
196
206
  it "should convert integer dtypes to float when calculating standard deviation" do
207
+ pending("not yet implemented for NMatrix-JRuby") if jruby?
197
208
  m = NMatrix[[1,2,3], [3,4,5], dtype: :int32, stype: stype]
198
209
  expect(m.std(0).dtype).to eq :float64
199
210
  end
metadata CHANGED
@@ -1,7 +1,7 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: nmatrix
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.2.3
4
+ version: 0.2.4
5
5
  platform: ruby
6
6
  authors:
7
7
  - John Woods
@@ -10,7 +10,7 @@ authors:
10
10
  autorequire:
11
11
  bindir: bin
12
12
  cert_chain: []
13
- date: 2016-07-25 00:00:00.000000000 Z
13
+ date: 2017-12-14 00:00:00.000000000 Z
14
14
  dependencies:
15
15
  - !ruby/object:Gem::Dependency
16
16
  name: packable
@@ -46,20 +46,6 @@ dependencies:
46
46
  - - "~>"
47
47
  - !ruby/object:Gem::Version
48
48
  version: '1.6'
49
- - !ruby/object:Gem::Dependency
50
- name: json
51
- requirement: !ruby/object:Gem::Requirement
52
- requirements:
53
- - - "~>"
54
- - !ruby/object:Gem::Version
55
- version: 2.0.1
56
- type: :development
57
- prerelease: false
58
- version_requirements: !ruby/object:Gem::Requirement
59
- requirements:
60
- - - "~>"
61
- - !ruby/object:Gem::Version
62
- version: 2.0.1
63
49
  - !ruby/object:Gem::Dependency
64
50
  name: pry
65
51
  requirement: !ruby/object:Gem::Requirement
@@ -209,7 +195,6 @@ files:
209
195
  - ext/nmatrix/storage/yale/math/transpose.h
210
196
  - ext/nmatrix/storage/yale/yale.cpp
211
197
  - ext/nmatrix/storage/yale/yale.h
212
- - ext/nmatrix/ttable_helper.rb
213
198
  - ext/nmatrix/types.h
214
199
  - ext/nmatrix/util/io.cpp
215
200
  - ext/nmatrix/util/io.h
@@ -218,6 +203,7 @@ files:
218
203
  - ext/nmatrix/util/util.h
219
204
  - lib/nmatrix.rb
220
205
  - lib/nmatrix/blas.rb
206
+ - lib/nmatrix/cruby/math.rb
221
207
  - lib/nmatrix/enumerate.rb
222
208
  - lib/nmatrix/homogeneous.rb
223
209
  - lib/nmatrix/io/fortran_format.rb
@@ -226,6 +212,13 @@ files:
226
212
  - lib/nmatrix/io/mat5_reader.rb
227
213
  - lib/nmatrix/io/mat_reader.rb
228
214
  - lib/nmatrix/io/point_cloud.rb
215
+ - lib/nmatrix/jruby/decomposition.rb
216
+ - lib/nmatrix/jruby/enumerable.rb
217
+ - lib/nmatrix/jruby/error.rb
218
+ - lib/nmatrix/jruby/math.rb
219
+ - lib/nmatrix/jruby/nmatrix_java.rb
220
+ - lib/nmatrix/jruby/operators.rb
221
+ - lib/nmatrix/jruby/slice.rb
229
222
  - lib/nmatrix/lapack_core.rb
230
223
  - lib/nmatrix/lapack_plugin.rb
231
224
  - lib/nmatrix/math.rb
@@ -267,29 +260,15 @@ homepage: http://sciruby.com
267
260
  licenses:
268
261
  - BSD-3-Clause
269
262
  metadata: {}
270
- post_install_message: |
271
- ***********************************************************
272
- Welcome to SciRuby: Tools for Scientific Computing in Ruby!
273
-
274
- NMatrix requires a C compiler, and has been tested only
275
- with GCC 4.6+. We are happy to accept contributions
276
- which improve the portability of this project.
277
-
278
- If you are upgrading from NMatrix 0.1.0 and rely on
279
- ATLAS features, please check the README.
280
-
281
- Faster matrix calculations and more advanced linear
282
- algebra features are available by installing either
283
- the nmatrix-atlas or nmatrix-lapacke plugins.
284
-
285
- More explicit instructions for NMatrix and SciRuby should
286
- be available on the SciRuby website, sciruby.com, or
287
- through our mailing list (which can be found on our web-
288
- site).
289
-
290
- Thanks for trying out NMatrix! Happy coding!
291
-
292
- ***********************************************************
263
+ post_install_message: "***********************************************************\nWelcome
264
+ to SciRuby: Tools for Scientific Computing in Ruby!\n\nNMatrix requires a C/C++
265
+ compiler. Clang and GCC are \nrecommended. JRuby support is experimental, and requires\nJava.\n\nIf
266
+ you are upgrading from NMatrix 0.1.0 and rely on\nATLAS features, please check the
267
+ README.\n\nFaster matrix calculations and more advanced linear\nalgebra features
268
+ are available by installing either\nthe nmatrix-atlas or nmatrix-lapacke plugins.\n\nMore
269
+ explicit instructions for NMatrix and SciRuby should\nbe available on the SciRuby
270
+ website, sciruby.com, or\nthrough our mailing list (which can be found on our web-\nsite).\n\nThanks
271
+ for trying out NMatrix! Happy coding!\n\n***********************************************************\n"
293
272
  rdoc_options: []
294
273
  require_paths:
295
274
  - lib
@@ -305,7 +284,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
305
284
  version: '0'
306
285
  requirements: []
307
286
  rubyforge_project:
308
- rubygems_version: 2.5.1
287
+ rubygems_version: 2.6.13
309
288
  signing_key:
310
289
  specification_version: 4
311
290
  summary: NMatrix is a linear algebra library for Ruby
@@ -1,115 +0,0 @@
1
- #!/usr/bin/ruby
2
-
3
- # A helper file for generating and maintaining template tables.
4
-
5
- DTYPES = [
6
- :uint8_t,
7
- :int8_t,
8
- :int16_t,
9
- :int32_t,
10
- :int64_t,
11
- :float32_t,
12
- :float64_t,
13
- :'nm::Complex64',
14
- :'nm::Complex128',
15
- :'nm::RubyObject'
16
- ]
17
-
18
- def nullify(disabled = []) #:nodoc:
19
- DTYPES.map { |t| if disabled.include?(t) then :NULL else t end }
20
- end
21
-
22
- ITYPES = [
23
- :uint8_t,
24
- :uint16_t,
25
- :uint32_t,
26
- :uint64_t
27
- ]
28
-
29
- EWOPS = [
30
- :'nm::EW_ADD',
31
- :'nm::EW_SUB',
32
- :'nm::EW_MUL',
33
- :'nm::EW_DIV',
34
- :'nm::EW_POW',
35
- :'nm::EW_MOD',
36
- :'nm::EW_EQEQ',
37
- :'nm::EW_NEQ',
38
- :'nm::EW_LT',
39
- :'nm::EW_GT',
40
- :'nm::EW_LEQ',
41
- :'nm::EW_GEQ'
42
- ]
43
-
44
- LR_ALLOWED = {
45
- :uint8_t => DTYPES,
46
- :int8_t => DTYPES,
47
- :int16_t => DTYPES,
48
- :int32_t => DTYPES,
49
- :int64_t => DTYPES,
50
- :float32_t => DTYPES,
51
- :float64_t => DTYPES,
52
- :'nm::Complex64' => DTYPES,
53
- :'nm::Complex128' => DTYPES,
54
- :'nm::RubyObject' => DTYPES
55
- }
56
-
57
- lines =
58
- case ARGV[0]
59
- when 'OPLR'
60
- '{' +
61
- EWOPS.map do |op|
62
-
63
- '{' +
64
- DTYPES.map do |l_dtype|
65
-
66
- '{' +
67
- LR_ALLOWED[l_dtype].map do |r_dtype|
68
- if r_dtype == :NULL
69
- 'NULL'
70
- else
71
- "fun<#{op}, #{l_dtype}, #{r_dtype}>"
72
- end
73
- end.join(', ') +
74
- '}'
75
-
76
- end.join(",\n") +
77
- '}'
78
-
79
- end.join(",\n") +
80
- '}'
81
-
82
- when 'OPID'
83
- '{' +
84
- EWOPS.map do |op|
85
- '{' +
86
- ITYPES.map do |itype|
87
- '{' +
88
- DTYPES.map do |dtype|
89
-
90
- if dtype == :NULL
91
- 'NULL'
92
- else
93
- "fun<#{op}, #{itype}, #{dtype}>"
94
- end
95
-
96
- end.join(",") +
97
- '}'
98
- end.join(",\\\n") +
99
- '}'
100
- end.join(",\\\n") +
101
- '}'
102
-
103
- when 'LR'
104
- '{' + DTYPES.map do |l_dtype|
105
- '{' + LR_ALLOWED[l_dtype].map do |r_dtype|
106
- if r_dtype == :NULL
107
- 'NULL'
108
- else
109
- "fun<#{l_dtype}, #{r_dtype}>"
110
- end
111
- end.join(', ') + '}'
112
- end.join(",\n") + '}'
113
- end
114
-
115
- puts lines