nmatrix 0.2.3 → 0.2.4

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -102,8 +102,14 @@ extern "C" {
102
102
  void nm_math_solve(VALUE lu, VALUE b, VALUE x, VALUE ipiv);
103
103
  void nm_math_inverse(const int M, void* A_elements, nm::dtype_t dtype);
104
104
  void nm_math_hessenberg(VALUE a);
105
- void nm_math_det_exact(const int M, const void* elements, const int lda, nm::dtype_t dtype, void* result);
106
- void nm_math_inverse_exact(const int M, const void* A_elements, const int lda, void* B_elements, const int ldb, nm::dtype_t dtype);
105
+ void nm_math_det_exact_from_dense(const int M, const void* elements,
106
+ const int lda, nm::dtype_t dtype, void* result);
107
+ void nm_math_det_exact_from_yale(const int M, const YALE_STORAGE* storage,
108
+ const int lda, nm::dtype_t dtype, void* result);
109
+ void nm_math_inverse_exact_from_dense(const int M, const void* A_elements,
110
+ const int lda, void* B_elements, const int ldb, nm::dtype_t dtype);
111
+ void nm_math_inverse_exact_from_yale(const int M, const YALE_STORAGE* storage,
112
+ const int lda, YALE_STORAGE* inverse, const int ldb, nm::dtype_t dtype);
107
113
  }
108
114
 
109
115
 
@@ -53,7 +53,7 @@ static VALUE nm_each_stored_with_indices(VALUE nmatrix);
53
53
  static VALUE nm_each_ordered_stored_with_indices(VALUE nmatrix);
54
54
  static VALUE nm_map_stored(VALUE nmatrix);
55
55
 
56
- static SLICE* get_slice(size_t dim, int argc, VALUE* arg, size_t* shape);
56
+ static void init_slice_no_alloc(SLICE* slice, size_t dim, int argc, VALUE* arg, size_t* shape);
57
57
  static VALUE nm_xslice(int argc, VALUE* argv, void* (*slice_func)(const STORAGE*, SLICE*), void (*delete_func)(NMATRIX*), VALUE self);
58
58
  static VALUE nm_mset(int argc, VALUE* argv, VALUE self);
59
59
  static VALUE nm_mget(int argc, VALUE* argv, VALUE self);
@@ -398,28 +398,6 @@ void Init_nmatrix() {
398
398
  // Ruby Methods //
399
399
  //////////////////
400
400
 
401
-
402
- /*
403
- * Slice constructor.
404
- */
405
- static SLICE* alloc_slice(size_t dim) {
406
- SLICE* slice = NM_ALLOC(SLICE);
407
- slice->coords = NM_ALLOC_N(size_t, dim);
408
- slice->lengths = NM_ALLOC_N(size_t, dim);
409
- return slice;
410
- }
411
-
412
-
413
- /*
414
- * Slice destructor.
415
- */
416
- static void free_slice(SLICE* slice) {
417
- NM_FREE(slice->coords);
418
- NM_FREE(slice->lengths);
419
- NM_FREE(slice);
420
- }
421
-
422
-
423
401
  /*
424
402
  * Allocator.
425
403
  */
@@ -1272,7 +1250,12 @@ static VALUE nm_init_new_version(int argc, VALUE* argv, VALUE self) {
1272
1250
  tmp_shape[m] = shape[m];
1273
1251
  }
1274
1252
 
1275
- SLICE* slice = get_slice(dim, dim, slice_argv, shape);
1253
+ SLICE slice_s;
1254
+ SLICE* slice = &slice_s;
1255
+ slice->coords = NM_ALLOCA_N(size_t, dim);
1256
+ slice->lengths = NM_ALLOCA_N(size_t, dim);
1257
+ init_slice_no_alloc(slice, dim, dim, slice_argv, shape);
1258
+
1276
1259
  // Create a temporary dense matrix and use it to do a slice assignment on self.
1277
1260
  NMATRIX* tmp = nm_create(nm::DENSE_STORE, (STORAGE*)nm_dense_storage_create(dtype, tmp_shape, dim, v, v_size));
1278
1261
  nm_register_nmatrix(tmp);
@@ -1282,8 +1265,6 @@ static VALUE nm_init_new_version(int argc, VALUE* argv, VALUE self) {
1282
1265
  if (stype == nm::YALE_STORE) nm_yale_storage_set(self, slice, rb_tmp);
1283
1266
  else nm_list_storage_set(self, slice, rb_tmp);
1284
1267
 
1285
- free_slice(slice);
1286
-
1287
1268
  // We need to free v if it's not the same size as tmp -- because tmp will have made a copy instead.
1288
1269
  //if (nm_storage_count_max_elements(tmp->storage) != v_size)
1289
1270
  // NM_FREE(v);
@@ -1475,7 +1456,8 @@ static VALUE nm_init(int argc, VALUE* argv, VALUE nm) {
1475
1456
 
1476
1457
 
1477
1458
  /*
1478
- * Helper for nm_cast which uses the C types instead of the Ruby objects. Called by nm_cast.
1459
+ * Helper for nm_cast_with_types which uses the C types instead of the Ruby objects.
1460
+ * Called by nm_cast_with_types.
1479
1461
  */
1480
1462
  NMATRIX* nm_cast_with_ctype_args(NMATRIX* self, nm::stype_t new_stype, nm::dtype_t new_dtype, void* init_ptr) {
1481
1463
 
@@ -1493,6 +1475,23 @@ NMATRIX* nm_cast_with_ctype_args(NMATRIX* self, nm::stype_t new_stype, nm::dtype
1493
1475
  return lhs;
1494
1476
  }
1495
1477
 
1478
+ /*
1479
+ * Cast NMatrix with given new_stype and new_dtype. Called by nm_cast.
1480
+ */
1481
+ VALUE nm_cast_with_types(VALUE self, nm::stype_t new_stype, nm::dtype_t new_dtype,
1482
+ void* init_ptr) {
1483
+ NMATRIX *rhs;
1484
+
1485
+ UnwrapNMatrix( self, rhs );
1486
+
1487
+ NMATRIX* m = nm_cast_with_ctype_args(rhs, new_stype, new_dtype, init_ptr);
1488
+ nm_register_nmatrix(m);
1489
+
1490
+ VALUE to_return = Data_Wrap_Struct(CLASS_OF(self), nm_mark, nm_delete, m);
1491
+
1492
+ nm_unregister_nmatrix(m);
1493
+ return to_return;
1494
+ }
1496
1495
 
1497
1496
  /*
1498
1497
  * call-seq:
@@ -1509,19 +1508,11 @@ VALUE nm_cast(VALUE self, VALUE new_stype_symbol, VALUE new_dtype_symbol, VALUE
1509
1508
  nm::stype_t new_stype = nm_stype_from_rbsymbol(new_stype_symbol);
1510
1509
 
1511
1510
  CheckNMatrixType(self);
1512
- NMATRIX *rhs;
1513
-
1514
- UnwrapNMatrix( self, rhs );
1515
-
1516
1511
  void* init_ptr = NM_ALLOCA_N(char, DTYPE_SIZES[new_dtype]);
1517
1512
  rubyval_to_cval(init, new_dtype, init_ptr);
1518
1513
 
1519
- NMATRIX* m = nm_cast_with_ctype_args(rhs, new_stype, new_dtype, init_ptr);
1520
- nm_register_nmatrix(m);
1514
+ VALUE to_return = nm_cast_with_types(self, new_stype, new_dtype, init_ptr);
1521
1515
 
1522
- VALUE to_return = Data_Wrap_Struct(CLASS_OF(self), nm_mark, nm_delete, m);
1523
-
1524
- nm_unregister_nmatrix(m);
1525
1516
  NM_CONSERVATIVE(nm_unregister_value(&self));
1526
1517
  NM_CONSERVATIVE(nm_unregister_value(&init));
1527
1518
  return to_return;
@@ -2018,7 +2009,11 @@ static VALUE nm_mset(int argc, VALUE* argv, VALUE self) {
2018
2009
  NM_CONSERVATIVE(nm_register_value(&self));
2019
2010
  NM_CONSERVATIVE(nm_register_values(argv, argc));
2020
2011
 
2021
- SLICE* slice = get_slice(dim, argc-1, argv, NM_STORAGE(self)->shape);
2012
+ SLICE slice_s;
2013
+ SLICE* slice = &slice_s;
2014
+ slice->coords = NM_ALLOCA_N(size_t, dim);
2015
+ slice->lengths = NM_ALLOCA_N(size_t, dim);
2016
+ init_slice_no_alloc(slice, dim, argc-1, argv, NM_STORAGE(self)->shape);
2022
2017
 
2023
2018
  static void (*ttable[nm::NUM_STYPES])(VALUE, SLICE*, VALUE) = {
2024
2019
  nm_dense_storage_set,
@@ -2028,8 +2023,6 @@ static VALUE nm_mset(int argc, VALUE* argv, VALUE self) {
2028
2023
 
2029
2024
  ttable[NM_STYPE(self)](self, slice, argv[argc-1]);
2030
2025
 
2031
- free_slice(slice);
2032
-
2033
2026
  to_return = argv[argc-1];
2034
2027
 
2035
2028
  NM_CONSERVATIVE(nm_unregister_value(&self));
@@ -2259,7 +2252,12 @@ static VALUE nm_xslice(int argc, VALUE* argv, void* (*slice_func)(const STORAGE*
2259
2252
 
2260
2253
  nm_register_value(&result);
2261
2254
 
2262
- SLICE* slice = get_slice(NM_DIM(self), argc, argv, s->shape);
2255
+ SLICE slice_s;
2256
+ SLICE* slice = &slice_s;
2257
+ size_t dim = NM_DIM(self);
2258
+ slice->coords = NM_ALLOCA_N(size_t, dim);
2259
+ slice->lengths = NM_ALLOCA_N(size_t, dim);
2260
+ init_slice_no_alloc(slice, dim, argc, argv, s->shape);
2263
2261
 
2264
2262
  if (slice->single) {
2265
2263
  static void* (*ttable[nm::NUM_STYPES])(const STORAGE*, SLICE*) = {
@@ -2280,8 +2278,6 @@ static VALUE nm_xslice(int argc, VALUE* argv, void* (*slice_func)(const STORAGE*
2280
2278
  result = Data_Wrap_Struct(CLASS_OF(self), nm_mark, delete_func, mat);
2281
2279
  nm_unregister_nmatrix(mat);
2282
2280
  }
2283
-
2284
- free_slice(slice);
2285
2281
  }
2286
2282
 
2287
2283
  nm_unregister_value(&result);
@@ -2623,19 +2619,17 @@ nm::dtype_t nm_dtype_guess(VALUE v) {
2623
2619
  }
2624
2620
  }
2625
2621
 
2626
-
2627
-
2628
2622
  /*
2629
- * Allocate and return a SLICE object, which will contain the appropriate coordinate and length information for
2630
- * accessing some part of a matrix.
2623
+ * Modify an existing SLICE object (with properly allocated memory),
2624
+ * so that it will contain the appropriate coordinate and length information
2625
+ * for accessing some part of a matrix.
2631
2626
  */
2632
- static SLICE* get_slice(size_t dim, int argc, VALUE* arg, size_t* shape) {
2627
+ static void init_slice_no_alloc(SLICE* slice, size_t dim, int argc, VALUE* arg, size_t* shape) {
2633
2628
  NM_CONSERVATIVE(nm_register_values(arg, argc));
2634
2629
 
2635
2630
  VALUE beg, end;
2636
2631
  int excl;
2637
2632
 
2638
- SLICE* slice = alloc_slice(dim);
2639
2633
  slice->single = true;
2640
2634
 
2641
2635
  // r is the shape position; t is the slice position. They may differ when we're dealing with a
@@ -2693,7 +2687,6 @@ static SLICE* get_slice(size_t dim, int argc, VALUE* arg, size_t* shape) {
2693
2687
  }
2694
2688
 
2695
2689
  NM_CONSERVATIVE(nm_unregister_values(arg, argc));
2696
- return slice;
2697
2690
  }
2698
2691
 
2699
2692
  #ifdef BENCHMARK
@@ -2963,21 +2956,38 @@ static VALUE nm_inverse(VALUE self, VALUE inverse, VALUE bang) {
2963
2956
  * Does not test for invertibility!
2964
2957
  */
2965
2958
  static VALUE nm_inverse_exact(VALUE self, VALUE inverse, VALUE lda, VALUE ldb) {
2966
-
2967
- if (NM_STYPE(self) != nm::DENSE_STORE) {
2968
- rb_raise(rb_eNotImpError, "needs exact determinant implementation for this matrix stype");
2969
- return Qnil;
2970
- }
2971
-
2972
2959
  if (NM_DIM(self) != 2 || NM_SHAPE0(self) != NM_SHAPE1(self)) {
2973
2960
  rb_raise(nm_eShapeError, "matrices must be square to have an inverse defined");
2974
2961
  return Qnil;
2975
2962
  }
2976
2963
 
2977
- nm_math_inverse_exact(NM_SHAPE0(self),
2978
- NM_STORAGE_DENSE(self)->elements, FIX2INT(lda),
2979
- NM_STORAGE_DENSE(inverse)->elements, FIX2INT(ldb), NM_DTYPE(self));
2964
+ nm::dtype_t dtype = NM_DTYPE(self);
2965
+ void* result = NM_ALLOCA_N(char, DTYPE_SIZES[dtype]);
2966
+ if (dtype == nm::RUBYOBJ) {
2967
+ nm_register_values(reinterpret_cast<VALUE*>(result), 1);
2968
+ }
2969
+ nm::stype_t old_stype = NM_STYPE(self);
2970
+ if (old_stype == nm::LIST_STORE) {
2971
+ self = nm_cast_with_types(self, nm::YALE_STORE, dtype, result);
2972
+ inverse = nm_cast_with_types(inverse, nm::YALE_STORE, dtype, result);
2973
+ }
2974
+
2975
+ if (NM_STYPE(self) == nm::DENSE_STORE) {
2976
+ nm_math_inverse_exact_from_dense(NM_SHAPE0(self),
2977
+ NM_STORAGE_DENSE(self)->elements, FIX2INT(lda),
2978
+ NM_STORAGE_DENSE(inverse)->elements, FIX2INT(ldb), dtype);
2979
+ } else {
2980
+ nm_math_inverse_exact_from_yale(NM_SHAPE0(self),
2981
+ NM_STORAGE_YALE(self), FIX2INT(lda),
2982
+ NM_STORAGE_YALE(inverse), FIX2INT(ldb), dtype);
2983
+ }
2980
2984
 
2985
+ if (old_stype == nm::LIST_STORE) {
2986
+ inverse = nm_cast_with_types(inverse, nm::LIST_STORE, dtype, result);
2987
+ }
2988
+ if (dtype == nm::RUBYOBJ) {
2989
+ nm_unregister_values(reinterpret_cast<VALUE*>(result), 1);
2990
+ }
2981
2991
  return inverse;
2982
2992
  }
2983
2993
 
@@ -2990,21 +3000,27 @@ static VALUE nm_inverse_exact(VALUE self, VALUE inverse, VALUE lda, VALUE ldb) {
2990
3000
  */
2991
3001
  static VALUE nm_det_exact(VALUE self) {
2992
3002
 
2993
- if (NM_STYPE(self) != nm::DENSE_STORE) {
2994
- rb_raise(rb_eNotImpError, "can only calculate exact determinant for dense matrices");
2995
- return Qnil;
2996
- }
2997
3003
  if (NM_DIM(self) != 2 || NM_SHAPE0(self) != NM_SHAPE1(self)) {
2998
3004
  rb_raise(nm_eShapeError, "matrices must be square to have a determinant defined");
2999
3005
  return Qnil;
3000
3006
  }
3001
3007
 
3008
+ nm::dtype_t dtype = NM_DTYPE(self);
3009
+ void* result = NM_ALLOCA_N(char, DTYPE_SIZES[dtype]);
3010
+ if (NM_STYPE(self) == nm::LIST_STORE) {
3011
+ self = nm_cast_with_types(self, nm::YALE_STORE, dtype, result);
3012
+ }
3013
+
3002
3014
  NM_CONSERVATIVE(nm_register_value(&self));
3003
3015
 
3004
3016
  // Calculate the determinant and then assign it to the return value
3005
- void* result = NM_ALLOCA_N(char, DTYPE_SIZES[NM_DTYPE(self)]);
3006
- nm::dtype_t dtype = NM_DTYPE(self);
3007
- nm_math_det_exact(NM_SHAPE0(self), NM_STORAGE_DENSE(self)->elements, NM_SHAPE0(self), NM_DTYPE(self), result);
3017
+ if (NM_STYPE(self) == nm::DENSE_STORE) {
3018
+ nm_math_det_exact_from_dense(NM_SHAPE0(self), NM_STORAGE_DENSE(self)->elements,
3019
+ NM_SHAPE0(self), NM_DTYPE(self), result);
3020
+ } else {
3021
+ nm_math_det_exact_from_yale(NM_SHAPE0(self), NM_STORAGE_YALE(self),
3022
+ NM_SHAPE0(self), NM_DTYPE(self), result);
3023
+ }
3008
3024
 
3009
3025
  VALUE to_return;
3010
3026
  if (dtype == nm::RUBYOBJ) {
@@ -31,8 +31,12 @@ module NMatrix::BLAS
31
31
 
32
32
  #Add functions from C extension to main BLAS module
33
33
  class << self
34
- NMatrix::Internal::BLAS.singleton_methods.each do |m|
35
- define_method m, NMatrix::Internal::BLAS.method(m).to_proc
34
+ if jruby?
35
+ # BLAS functionalities for JRuby need to be implemented
36
+ else
37
+ NMatrix::Internal::BLAS.singleton_methods.each do |m|
38
+ define_method m, NMatrix::Internal::BLAS.method(m).to_proc
39
+ end
36
40
  end
37
41
  end
38
42
 
@@ -0,0 +1,744 @@
1
+ #--
2
+ # = NMatrix
3
+ #
4
+ # A linear algebra library for scientific computation in Ruby.
5
+ # NMatrix is part of SciRuby.
6
+ #
7
+ # NMatrix was originally inspired by and derived from NArray, by
8
+ # Masahiro Tanaka: http://narray.rubyforge.org
9
+ #
10
+ # == Copyright Information
11
+ #
12
+ # SciRuby is Copyright (c) 2010 - 2014, Ruby Science Foundation
13
+ # NMatrix is Copyright (c) 2012 - 2014, John Woods and the Ruby Science Foundation
14
+ #
15
+ # Please see LICENSE.txt for additional copyright notices.
16
+ #
17
+ # == Contributing
18
+ #
19
+ # By contributing source code to SciRuby, you agree to be bound by
20
+ # our Contributor Agreement:
21
+ #
22
+ # * https://github.com/SciRuby/sciruby/wiki/Contributor-Agreement
23
+ #
24
+ # == math.rb
25
+ #
26
+ # Math functionality for NMatrix, along with any NMatrix instance
27
+ # methods that correspond to ATLAS/BLAS/LAPACK functions (e.g.,
28
+ # laswp).
29
+ #++
30
+
31
+ class NMatrix
32
+
33
+ #
34
+ # call-seq:
35
+ # getrf! -> Array
36
+ #
37
+ # LU factorization of a general M-by-N matrix +A+ using partial pivoting with
38
+ # row interchanges. The LU factorization is A = PLU, where P is a row permutation
39
+ # matrix, L is a lower triangular matrix with unit diagonals, and U is an upper
40
+ # triangular matrix (note that this convention is different from the
41
+ # clapack_getrf behavior, but matches the standard LAPACK getrf).
42
+ # +A+ is overwritten with the elements of L and U (the unit
43
+ # diagonal elements of L are not saved). P is not returned directly and must be
44
+ # constructed from the pivot array ipiv. The row indices in ipiv are indexed
45
+ # starting from 1.
46
+ # Only works for dense matrices.
47
+ #
48
+ # * *Returns* :
49
+ # - The IPIV vector. The L and U matrices are stored in A.
50
+ # * *Raises* :
51
+ # - +StorageTypeError+ -> ATLAS functions only work on dense matrices.
52
+ #
53
+ def getrf!
54
+ raise(StorageTypeError, "ATLAS functions only work on dense matrices") unless self.dense?
55
+
56
+ #For row-major matrices, clapack_getrf uses a different convention than
57
+ #described above (U has unit diagonal elements instead of L and columns
58
+ #are interchanged rather than rows). For column-major matrices, clapack
59
+ #uses the stanard conventions. So we just transpose the matrix before
60
+ #and after calling clapack_getrf.
61
+ #Unfortunately, this is not a very good way, uses a lot of memory.
62
+ temp = self.transpose
63
+ ipiv = NMatrix::LAPACK::clapack_getrf(:col, self.shape[0], self.shape[1], temp, self.shape[0])
64
+ temp = temp.transpose
65
+ self[0...self.shape[0], 0...self.shape[1]] = temp
66
+
67
+ #for some reason, in clapack_getrf, the indices in ipiv start from 0
68
+ #instead of 1 as in LAPACK.
69
+ ipiv.each_index { |i| ipiv[i]+=1 }
70
+
71
+ return ipiv
72
+ end
73
+
74
+ #
75
+ # call-seq:
76
+ # geqrf! -> shape.min x 1 NMatrix
77
+ #
78
+ # QR factorization of a general M-by-N matrix +A+.
79
+ #
80
+ # The QR factorization is A = QR, where Q is orthogonal and R is Upper Triangular
81
+ # +A+ is overwritten with the elements of R and Q with Q being represented by the
82
+ # elements below A's diagonal and an array of scalar factors in the output NMatrix.
83
+ #
84
+ # The matrix Q is represented as a product of elementary reflectors
85
+ # Q = H(1) H(2) . . . H(k), where k = min(m,n).
86
+ #
87
+ # Each H(i) has the form
88
+ #
89
+ # H(i) = I - tau * v * v'
90
+ #
91
+ # http://www.netlib.org/lapack/explore-html/d3/d69/dgeqrf_8f.html
92
+ #
93
+ # Only works for dense matrices.
94
+ #
95
+ # * *Returns* :
96
+ # - Vector TAU. Q and R are stored in A. Q is represented by TAU and A
97
+ # * *Raises* :
98
+ # - +StorageTypeError+ -> LAPACK functions only work on dense matrices.
99
+ #
100
+ def geqrf!
101
+ # The real implementation is in lib/nmatrix/lapacke.rb
102
+ raise(NotImplementedError, "geqrf! requires the nmatrix-lapacke gem")
103
+ end
104
+
105
+ #
106
+ # call-seq:
107
+ # ormqr(tau) -> NMatrix
108
+ # ormqr(tau, side, transpose, c) -> NMatrix
109
+ #
110
+ # Returns the product Q * c or c * Q after a call to geqrf! used in QR factorization.
111
+ # +c+ is overwritten with the elements of the result NMatrix if supplied. Q is the orthogonal matrix
112
+ # represented by tau and the calling NMatrix
113
+ #
114
+ # Only works on float types, use unmqr for complex types.
115
+ #
116
+ # == Arguments
117
+ #
118
+ # * +tau+ - vector containing scalar factors of elementary reflectors
119
+ # * +side+ - direction of multiplication [:left, :right]
120
+ # * +transpose+ - apply Q with or without transpose [false, :transpose]
121
+ # * +c+ - NMatrix multplication argument that is overwritten, no argument assumes c = identity
122
+ #
123
+ # * *Returns* :
124
+ #
125
+ # - Q * c or c * Q Where Q may be transposed before multiplication.
126
+ #
127
+ #
128
+ # * *Raises* :
129
+ # - +StorageTypeError+ -> LAPACK functions only work on dense matrices.
130
+ # - +TypeError+ -> Works only on floating point matrices, use unmqr for complex types
131
+ # - +TypeError+ -> c must have the same dtype as the calling NMatrix
132
+ #
133
+ def ormqr(tau, side=:left, transpose=false, c=nil)
134
+ # The real implementation is in lib/nmatrix/lapacke.rb
135
+ raise(NotImplementedError, "ormqr requires the nmatrix-lapacke gem")
136
+
137
+ end
138
+
139
+ #
140
+ # call-seq:
141
+ # unmqr(tau) -> NMatrix
142
+ # unmqr(tau, side, transpose, c) -> NMatrix
143
+ #
144
+ # Returns the product Q * c or c * Q after a call to geqrf! used in QR factorization.
145
+ # +c+ is overwritten with the elements of the result NMatrix if it is supplied. Q is the orthogonal matrix
146
+ # represented by tau and the calling NMatrix
147
+ #
148
+ # Only works on complex types, use ormqr for float types.
149
+ #
150
+ # == Arguments
151
+ #
152
+ # * +tau+ - vector containing scalar factors of elementary reflectors
153
+ # * +side+ - direction of multiplication [:left, :right]
154
+ # * +transpose+ - apply Q as Q or its complex conjugate [false, :complex_conjugate]
155
+ # * +c+ - NMatrix multplication argument that is overwritten, no argument assumes c = identity
156
+ #
157
+ # * *Returns* :
158
+ #
159
+ # - Q * c or c * Q Where Q may be transformed to its complex conjugate before multiplication.
160
+ #
161
+ #
162
+ # * *Raises* :
163
+ # - +StorageTypeError+ -> LAPACK functions only work on dense matrices.
164
+ # - +TypeError+ -> Works only on floating point matrices, use unmqr for complex types
165
+ # - +TypeError+ -> c must have the same dtype as the calling NMatrix
166
+ #
167
+ def unmqr(tau, side=:left, transpose=false, c=nil)
168
+ # The real implementation is in lib/nmatrix/lapacke.rb
169
+ raise(NotImplementedError, "unmqr requires the nmatrix-lapacke gem")
170
+ end
171
+
172
+ #
173
+ # call-seq:
174
+ # potrf!(upper_or_lower) -> NMatrix
175
+ #
176
+ # Cholesky factorization of a symmetric positive-definite matrix -- or, if complex,
177
+ # a Hermitian positive-definite matrix +A+.
178
+ # The result will be written in either the upper or lower triangular portion of the
179
+ # matrix, depending on whether the argument is +:upper+ or +:lower+.
180
+ # Also the function only reads in the upper or lower part of the matrix,
181
+ # so it doesn't actually have to be symmetric/Hermitian.
182
+ # However, if the matrix (i.e. the symmetric matrix implied by the lower/upper
183
+ # half) is not positive-definite, the function will return nonsense.
184
+ #
185
+ # This functions requires either the nmatrix-atlas or nmatrix-lapacke gem
186
+ # installed.
187
+ #
188
+ # * *Returns* :
189
+ # the triangular portion specified by the parameter
190
+ # * *Raises* :
191
+ # - +StorageTypeError+ -> ATLAS functions only work on dense matrices.
192
+ # - +ShapeError+ -> Must be square.
193
+ # - +NotImplementedError+ -> If called without nmatrix-atlas or nmatrix-lapacke gem
194
+ #
195
+ def potrf!(which)
196
+ # The real implementation is in the plugin files.
197
+ raise(NotImplementedError, "potrf! requires either the nmatrix-atlas or nmatrix-lapacke gem")
198
+ end
199
+
200
+ def potrf_upper!
201
+ potrf! :upper
202
+ end
203
+
204
+ def potrf_lower!
205
+ potrf! :lower
206
+ end
207
+
208
+
209
+ #
210
+ # call-seq:
211
+ # factorize_cholesky -> [upper NMatrix, lower NMatrix]
212
+ #
213
+ # Calculates the Cholesky factorization of a matrix and returns the
214
+ # upper and lower matrices such that A=LU and L=U*, where * is
215
+ # either the transpose or conjugate transpose.
216
+ #
217
+ # Unlike potrf!, this makes method requires that the original is matrix is
218
+ # symmetric or Hermitian. However, it is still your responsibility to make
219
+ # sure it is positive-definite.
220
+ def factorize_cholesky
221
+ raise "Matrix must be symmetric/Hermitian for Cholesky factorization" unless self.hermitian?
222
+ l = self.clone.potrf_lower!.tril!
223
+ u = l.conjugate_transpose
224
+ [u,l]
225
+ end
226
+
227
+ #
228
+ # call-seq:
229
+ # factorize_lu -> ...
230
+ #
231
+ # LU factorization of a matrix. Optionally return the permutation matrix.
232
+ # Note that computing the permutation matrix will introduce a slight memory
233
+ # and time overhead.
234
+ #
235
+ # == Arguments
236
+ #
237
+ # +with_permutation_matrix+ - If set to *true* will return the permutation
238
+ # matrix alongwith the LU factorization as a second return value.
239
+ #
240
+ def factorize_lu with_permutation_matrix=nil
241
+ raise(NotImplementedError, "only implemented for dense storage") unless self.stype == :dense
242
+ raise(NotImplementedError, "matrix is not 2-dimensional") unless self.dimensions == 2
243
+
244
+ t = self.clone
245
+ pivot = t.getrf!
246
+ return t unless with_permutation_matrix
247
+
248
+ [t, FactorizeLUMethods.permutation_matrix_from(pivot)]
249
+ end
250
+
251
+ #
252
+ # call-seq:
253
+ # factorize_qr -> [Q,R]
254
+ #
255
+ # QR factorization of a matrix without column pivoting.
256
+ # Q is orthogonal and R is upper triangular if input is square or upper trapezoidal if
257
+ # input is rectangular.
258
+ #
259
+ # Only works for dense matrices.
260
+ #
261
+ # * *Returns* :
262
+ # - Array containing Q and R matrices
263
+ #
264
+ # * *Raises* :
265
+ # - +StorageTypeError+ -> only implemented for desnse storage.
266
+ # - +ShapeError+ -> Input must be a 2-dimensional matrix to have a QR decomposition.
267
+ #
268
+ def factorize_qr
269
+ raise(NotImplementedError, "only implemented for dense storage") unless self.stype == :dense
270
+ raise(ShapeError, "Input must be a 2-dimensional matrix to have a QR decomposition") unless self.dim == 2
271
+
272
+ rows, columns = self.shape
273
+ r = self.clone
274
+ tau = r.geqrf!
275
+
276
+ #Obtain Q
277
+ q = self.complex_dtype? ? r.unmqr(tau) : r.ormqr(tau)
278
+
279
+ #Obtain R
280
+ if rows <= columns
281
+ r.upper_triangle!
282
+ #Need to account for upper trapezoidal structure if R is a tall rectangle (rows > columns)
283
+ else
284
+ r[0...columns, 0...columns].upper_triangle!
285
+ r[columns...rows, 0...columns] = 0
286
+ end
287
+
288
+ [q,r]
289
+ end
290
+
291
+ # Solve the matrix equation AX = B, where A is +self+, B is the first
292
+ # argument, and X is returned. A must be a nxn square matrix, while B must be
293
+ # nxm. Only works with dense matrices and non-integer, non-object data types.
294
+ #
295
+ # == Arguments
296
+ #
297
+ # * +b+ - the right hand side
298
+ #
299
+ # == Options
300
+ #
301
+ # * +form+ - Signifies the form of the matrix A in the linear system AX=B.
302
+ # If not set then it defaults to +:general+, which uses an LU solver.
303
+ # Other possible values are +:lower_tri+, +:upper_tri+ and +:pos_def+ (alternatively,
304
+ # non-abbreviated symbols +:lower_triangular+, +:upper_triangular+,
305
+ # and +:positive_definite+ can be used.
306
+ # If +:lower_tri+ or +:upper_tri+ is set, then a specialized linear solver for linear
307
+ # systems AX=B with a lower or upper triangular matrix A is used. If +:pos_def+ is chosen,
308
+ # then the linear system is solved via the Cholesky factorization.
309
+ # Note that when +:lower_tri+ or +:upper_tri+ is used, then the algorithm just assumes that
310
+ # all entries in the lower/upper triangle of the matrix are zeros without checking (which
311
+ # can be useful in certain applications).
312
+ #
313
+ #
314
+ # == Usage
315
+ #
316
+ # a = NMatrix.new [2,2], [3,1,1,2], dtype: dtype
317
+ # b = NMatrix.new [2,1], [9,8], dtype: dtype
318
+ # a.solve(b)
319
+ #
320
+ # # solve an upper triangular linear system more efficiently:
321
+ # require 'benchmark'
322
+ # require 'nmatrix/lapacke'
323
+ # rand_mat = NMatrix.random([10000, 10000], dtype: :float64)
324
+ # a = rand_mat.triu
325
+ # b = NMatrix.random([10000, 10], dtype: :float64)
326
+ # Benchmark.bm(10) do |bm|
327
+ # bm.report('general') { a.solve(b) }
328
+ # bm.report('upper_tri') { a.solve(b, form: :upper_tri) }
329
+ # end
330
+ # # user system total real
331
+ # # general 73.170000 0.670000 73.840000 ( 73.810086)
332
+ # # upper_tri 0.180000 0.000000 0.180000 ( 0.182491)
333
+ #
334
+ def solve(b, opts = {})
335
+ raise(ShapeError, "Must be called on square matrix") unless self.dim == 2 && self.shape[0] == self.shape[1]
336
+ raise(ShapeError, "number of rows of b must equal number of cols of self") if
337
+ self.shape[1] != b.shape[0]
338
+ raise(ArgumentError, "only works with dense matrices") if self.stype != :dense
339
+ raise(ArgumentError, "only works for non-integer, non-object dtypes") if
340
+ integer_dtype? or object_dtype? or b.integer_dtype? or b.object_dtype?
341
+
342
+ opts = { form: :general }.merge(opts)
343
+ x = b.clone
344
+ n = self.shape[0]
345
+ nrhs = b.shape[1]
346
+
347
+ case opts[:form]
348
+ when :general
349
+ clone = self.clone
350
+ ipiv = NMatrix::LAPACK.clapack_getrf(:row, n, n, clone, n)
351
+ # When we call clapack_getrs with :row, actually only the first matrix
352
+ # (i.e. clone) is interpreted as row-major, while the other matrix (x)
353
+ # is interpreted as column-major. See here: http://math-atlas.sourceforge.net/faq.html#RowSolve
354
+ # So we must transpose x before and after
355
+ # calling it.
356
+ x = x.transpose
357
+ NMatrix::LAPACK.clapack_getrs(:row, :no_transpose, n, nrhs, clone, n, ipiv, x, n)
358
+ x.transpose
359
+ when :upper_tri, :upper_triangular
360
+ raise(ArgumentError, "upper triangular solver does not work with complex dtypes") if
361
+ complex_dtype? or b.complex_dtype?
362
+ # this is the correct function call; see https://github.com/SciRuby/nmatrix/issues/374
363
+ NMatrix::BLAS::cblas_trsm(:row, :left, :upper, false, :nounit, n, nrhs, 1.0, self, n, x, nrhs)
364
+ x
365
+ when :lower_tri, :lower_triangular
366
+ raise(ArgumentError, "lower triangular solver does not work with complex dtypes") if
367
+ complex_dtype? or b.complex_dtype?
368
+ NMatrix::BLAS::cblas_trsm(:row, :left, :lower, false, :nounit, n, nrhs, 1.0, self, n, x, nrhs)
369
+ x
370
+ when :pos_def, :positive_definite
371
+ u, l = self.factorize_cholesky
372
+ z = l.solve(b, form: :lower_tri)
373
+ u.solve(z, form: :upper_tri)
374
+ else
375
+ raise(ArgumentError, "#{opts[:form]} is not a valid form option")
376
+ end
377
+ end
378
+
379
+ #
380
+ # call-seq:
381
+ # least_squares(b) -> NMatrix
382
+ # least_squares(b, tolerance: 10e-10) -> NMatrix
383
+ #
384
+ # Provides the linear least squares approximation of an under-determined system
385
+ # using QR factorization provided that the matrix is not rank-deficient.
386
+ #
387
+ # Only works for dense matrices.
388
+ #
389
+ # * *Arguments* :
390
+ # - +b+ -> The solution column vector NMatrix of A * X = b.
391
+ # - +tolerance:+ -> Absolute tolerance to check if a diagonal element in A = QR is near 0
392
+ #
393
+ # * *Returns* :
394
+ # - NMatrix that is a column vector with the LLS solution
395
+ #
396
+ # * *Raises* :
397
+ # - +ArgumentError+ -> least squares approximation only works for non-complex types
398
+ # - +ShapeError+ -> system must be under-determined ( rows > columns )
399
+ #
400
+ # Examples :-
401
+ #
402
+ # a = NMatrix.new([3,2], [2.0, 0, -1, 1, 0, 2])
403
+ #
404
+ # b = NMatrix.new([3,1], [1.0, 0, -1])
405
+ #
406
+ # a.least_squares(b)
407
+ # =>[
408
+ # [ 0.33333333333333326 ]
409
+ # [ -0.3333333333333334 ]
410
+ # ]
411
+ #
412
+ def least_squares(b, tolerance: 10e-6)
413
+ raise(ArgumentError, "least squares approximation only works for non-complex types") if
414
+ self.complex_dtype?
415
+
416
+ rows, columns = self.shape
417
+
418
+ raise(ShapeError, "system must be under-determined ( rows > columns )") unless
419
+ rows > columns
420
+
421
+ #Perform economical QR factorization
422
+ r = self.clone
423
+ tau = r.geqrf!
424
+ q_transpose_b = r.ormqr(tau, :left, :transpose, b)
425
+
426
+ #Obtain R from geqrf! intermediate
427
+ r[0...columns, 0...columns].upper_triangle!
428
+ r[columns...rows, 0...columns] = 0
429
+
430
+ diagonal = r.diagonal
431
+
432
+ raise(ArgumentError, "rank deficient matrix") if diagonal.any? { |x| x == 0 }
433
+
434
+ if diagonal.any? { |x| x.abs < tolerance }
435
+ warn "warning: A diagonal element of R in A = QR is close to zero ;" <<
436
+ " indicates a possible loss of precision"
437
+ end
438
+
439
+ # Transform the system A * X = B to R1 * X = B2 where B2 = Q1_t * B
440
+ r1 = r[0...columns, 0...columns]
441
+ b2 = q_transpose_b[0...columns]
442
+
443
+ nrhs = b2.shape[1]
444
+
445
+ #Solve the upper triangular system
446
+ NMatrix::BLAS::cblas_trsm(:row, :left, :upper, false, :nounit, r1.shape[0], nrhs, 1.0, r1, r1.shape[0], b2, nrhs)
447
+ b2
448
+ end
449
+
450
+ #
451
+ # call-seq:
452
+ # gesvd! -> [u, sigma, v_transpose]
453
+ # gesvd! -> [u, sigma, v_conjugate_transpose] # complex
454
+ #
455
+ # Compute the singular value decomposition of a matrix using LAPACK's GESVD function.
456
+ # This is destructive, modifying the source NMatrix. See also #gesdd.
457
+ #
458
+ # Optionally accepts a +workspace_size+ parameter, which will be honored only if it is larger than what LAPACK
459
+ # requires.
460
+ #
461
+ def gesvd!(workspace_size=1)
462
+ NMatrix::LAPACK::gesvd(self, workspace_size)
463
+ end
464
+
465
+ #
466
+ # call-seq:
467
+ # gesvd -> [u, sigma, v_transpose]
468
+ # gesvd -> [u, sigma, v_conjugate_transpose] # complex
469
+ #
470
+ # Compute the singular value decomposition of a matrix using LAPACK's GESVD function.
471
+ #
472
+ # Optionally accepts a +workspace_size+ parameter, which will be honored only if it is larger than what LAPACK
473
+ # requires.
474
+ #
475
+ def gesvd(workspace_size=1)
476
+ self.clone.gesvd!(workspace_size)
477
+ end
478
+
479
+
480
+
481
+ #
482
+ # call-seq:
483
+ # gesdd! -> [u, sigma, v_transpose]
484
+ # gesdd! -> [u, sigma, v_conjugate_transpose] # complex
485
+ #
486
+ # Compute the singular value decomposition of a matrix using LAPACK's GESDD function. This uses a divide-and-conquer
487
+ # strategy. This is destructive, modifying the source NMatrix. See also #gesvd.
488
+ #
489
+ # Optionally accepts a +workspace_size+ parameter, which will be honored only if it is larger than what LAPACK
490
+ # requires.
491
+ #
492
+ def gesdd!(workspace_size=nil)
493
+ NMatrix::LAPACK::gesdd(self, workspace_size)
494
+ end
495
+
496
+ #
497
+ # call-seq:
498
+ # gesdd -> [u, sigma, v_transpose]
499
+ # gesdd -> [u, sigma, v_conjugate_transpose] # complex
500
+ #
501
+ # Compute the singular value decomposition of a matrix using LAPACK's GESDD function. This uses a divide-and-conquer
502
+ # strategy. See also #gesvd.
503
+ #
504
+ # Optionally accepts a +workspace_size+ parameter, which will be honored only if it is larger than what LAPACK
505
+ # requires.
506
+ #
507
+ def gesdd(workspace_size=nil)
508
+ self.clone.gesdd!(workspace_size)
509
+ end
510
+
511
+ #
512
+ # call-seq:
513
+ # laswp!(ary) -> NMatrix
514
+ #
515
+ # In-place permute the columns of a dense matrix using LASWP according to the order given as an array +ary+.
516
+ #
517
+ # If +:convention+ is +:lapack+, then +ary+ represents a sequence of pair-wise permutations which are
518
+ # performed successively. That is, the i'th entry of +ary+ is the index of the column to swap
519
+ # the i'th column with, having already applied all earlier swaps.
520
+ #
521
+ # If +:convention+ is +:intuitive+, then +ary+ represents the order of columns after the permutation.
522
+ # That is, the i'th entry of +ary+ is the index of the column that will be in position i after the
523
+ # reordering (Matlab-like behaviour). This is the default.
524
+ #
525
+ # Not yet implemented for yale or list.
526
+ #
527
+ # == Arguments
528
+ #
529
+ # * +ary+ - An Array specifying the order of the columns. See above for details.
530
+ #
531
+ # == Options
532
+ #
533
+ # * +:covention+ - Possible values are +:lapack+ and +:intuitive+. Default is +:intuitive+. See above for details.
534
+ #
535
+ def laswp!(ary, opts={})
536
+ raise(StorageTypeError, "ATLAS functions only work on dense matrices") unless self.dense?
537
+ opts = { convention: :intuitive }.merge(opts)
538
+
539
+ if opts[:convention] == :intuitive
540
+ if ary.length != ary.uniq.length
541
+ raise(ArgumentError, "No duplicated entries in the order array are allowed under convention :intuitive")
542
+ end
543
+ n = self.shape[1]
544
+ p = []
545
+ order = (0...n).to_a
546
+ 0.upto(n-2) do |i|
547
+ p[i] = order.index(ary[i])
548
+ order[i], order[p[i]] = order[p[i]], order[i]
549
+ end
550
+ p[n-1] = n-1
551
+ else
552
+ p = ary
553
+ end
554
+
555
+ NMatrix::LAPACK::laswp(self, p)
556
+ end
557
+
558
+ #
559
+ # call-seq:
560
+ # laswp(ary) -> NMatrix
561
+ #
562
+ # Permute the columns of a dense matrix using LASWP according to the order given in an array +ary+.
563
+ #
564
+ # If +:convention+ is +:lapack+, then +ary+ represents a sequence of pair-wise permutations which are
565
+ # performed successively. That is, the i'th entry of +ary+ is the index of the column to swap
566
+ # the i'th column with, having already applied all earlier swaps. This is the default.
567
+ #
568
+ # If +:convention+ is +:intuitive+, then +ary+ represents the order of columns after the permutation.
569
+ # That is, the i'th entry of +ary+ is the index of the column that will be in position i after the
570
+ # reordering (Matlab-like behaviour).
571
+ #
572
+ # Not yet implemented for yale or list.
573
+ #
574
+ # == Arguments
575
+ #
576
+ # * +ary+ - An Array specifying the order of the columns. See above for details.
577
+ #
578
+ # == Options
579
+ #
580
+ # * +:covention+ - Possible values are +:lapack+ and +:intuitive+. Default is +:lapack+. See above for details.
581
+ #
582
+ def laswp(ary, opts={})
583
+ self.clone.laswp!(ary, opts)
584
+ end
585
+
586
+ #
587
+ # call-seq:
588
+ # det -> determinant
589
+ #
590
+ # Calculate the determinant by way of LU decomposition. This is accomplished
591
+ # using clapack_getrf, and then by taking the product of the diagonal elements. There is a
592
+ # risk of underflow/overflow.
593
+ #
594
+ # There are probably also more efficient ways to calculate the determinant.
595
+ # This method requires making a copy of the matrix, since clapack_getrf
596
+ # modifies its input.
597
+ #
598
+ # For smaller matrices, you may be able to use +#det_exact+.
599
+ #
600
+ # This function is guaranteed to return the same type of data in the matrix
601
+ # upon which it is called.
602
+ #
603
+ # Integer matrices are converted to floating point matrices for the purposes of
604
+ # performing the calculation, as xGETRF can't work on integer matrices.
605
+ #
606
+ # * *Returns* :
607
+ # - The determinant of the matrix. It's the same type as the matrix's dtype.
608
+ # * *Raises* :
609
+ # - +ShapeError+ -> Must be used on square matrices.
610
+ #
611
+ def det
612
+ raise(ShapeError, "determinant can be calculated only for square matrices") unless self.dim == 2 && self.shape[0] == self.shape[1]
613
+
614
+ # Cast to a dtype for which getrf is implemented
615
+ new_dtype = self.integer_dtype? ? :float64 : self.dtype
616
+ copy = self.cast(:dense, new_dtype)
617
+
618
+ # Need to know the number of permutations. We'll add up the diagonals of
619
+ # the factorized matrix.
620
+ pivot = copy.getrf!
621
+
622
+ num_perm = 0 #number of permutations
623
+ pivot.each_with_index do |swap, i|
624
+ #pivot indexes rows starting from 1, instead of 0, so need to subtract 1 here
625
+ num_perm += 1 if swap-1 != i
626
+ end
627
+ prod = num_perm % 2 == 1 ? -1 : 1 # odd permutations => negative
628
+ [shape[0],shape[1]].min.times do |i|
629
+ prod *= copy[i,i]
630
+ end
631
+
632
+ # Convert back to an integer if necessary
633
+ new_dtype != self.dtype ? prod.round : prod #prevent rounding errors
634
+ end
635
+
636
+ #
637
+ # call-seq:
638
+ # complex_conjugate -> NMatrix
639
+ # complex_conjugate(new_stype) -> NMatrix
640
+ #
641
+ # Get the complex conjugate of this matrix. See also complex_conjugate! for
642
+ # an in-place operation (provided the dtype is already +:complex64+ or
643
+ # +:complex128+).
644
+ #
645
+ # Doesn't work on list matrices, but you can optionally pass in the stype you
646
+ # want to cast to if you're dealing with a list matrix.
647
+ #
648
+ # * *Arguments* :
649
+ # - +new_stype+ -> stype for the new matrix.
650
+ # * *Returns* :
651
+ # - If the original NMatrix isn't complex, the result is a +:complex128+ NMatrix. Otherwise, it's the original dtype.
652
+ #
653
+ def complex_conjugate(new_stype = self.stype)
654
+ self.cast(new_stype, NMatrix::upcast(dtype, :complex64)).complex_conjugate!
655
+ end
656
+
657
+ #
658
+ # call-seq:
659
+ # conjugate_transpose -> NMatrix
660
+ #
661
+ # Calculate the conjugate transpose of a matrix. If your dtype is already
662
+ # complex, this should only require one copy (for the transpose).
663
+ #
664
+ # * *Returns* :
665
+ # - The conjugate transpose of the matrix as a copy.
666
+ #
667
+ def conjugate_transpose
668
+ self.transpose.complex_conjugate!
669
+ end
670
+
671
+ #
672
+ # call-seq:
673
+ # absolute_sum -> Numeric
674
+ #
675
+ # == Arguments
676
+ # - +incx+ -> the skip size (defaults to 1, no skip)
677
+ # - +n+ -> the number of elements to include
678
+ #
679
+ # Return the sum of the contents of the vector. This is the BLAS asum routine.
680
+ def asum incx=1, n=nil
681
+ if self.shape == [1]
682
+ return self[0].abs unless self.complex_dtype?
683
+ return self[0].real.abs + self[0].imag.abs
684
+ end
685
+ return method_missing(:asum, incx, n) unless vector?
686
+ NMatrix::BLAS::asum(self, incx, self.size / incx)
687
+ end
688
+ alias :absolute_sum :asum
689
+
690
+ #
691
+ # call-seq:
692
+ # norm2 -> Numeric
693
+ #
694
+ # == Arguments
695
+ # - +incx+ -> the skip size (defaults to 1, no skip)
696
+ # - +n+ -> the number of elements to include
697
+ #
698
+ # Return the 2-norm of the vector. This is the BLAS nrm2 routine.
699
+ def nrm2 incx=1, n=nil
700
+ return method_missing(:nrm2, incx, n) unless vector?
701
+ NMatrix::BLAS::nrm2(self, incx, self.size / incx)
702
+ end
703
+ alias :norm2 :nrm2
704
+
705
+ #
706
+ # call-seq:
707
+ # scale! -> NMatrix
708
+ #
709
+ # == Arguments
710
+ # - +alpha+ -> Scalar value used in the operation.
711
+ # - +inc+ -> Increment used in the scaling function. Should generally be 1.
712
+ # - +n+ -> Number of elements of +vector+.
713
+ #
714
+ # This is a destructive method, modifying the source NMatrix. See also #scale.
715
+ # Return the scaling result of the matrix. BLAS scal will be invoked if provided.
716
+
717
+ def scale!(alpha, incx=1, n=nil)
718
+ raise(DataTypeError, "Incompatible data type for the scaling factor") unless
719
+ NMatrix::upcast(self.dtype, NMatrix::min_dtype(alpha)) == self.dtype
720
+ return NMatrix::BLAS::scal(alpha, self, incx, self.size / incx) if NMatrix::BLAS.method_defined? :scal
721
+ self.each_stored_with_indices do |e, *i|
722
+ self[*i] = e*alpha
723
+ end
724
+ end
725
+
726
+ #
727
+ # call-seq:
728
+ # scale -> NMatrix
729
+ #
730
+ # == Arguments
731
+ # - +alpha+ -> Scalar value used in the operation.
732
+ # - +inc+ -> Increment used in the scaling function. Should generally be 1.
733
+ # - +n+ -> Number of elements of +vector+.
734
+ #
735
+ # Return the scaling result of the matrix. BLAS scal will be invoked if provided.
736
+
737
+ def scale(alpha, incx=1, n=nil)
738
+ return self.clone.scale!(alpha, incx, n)
739
+ end
740
+
741
+ alias :permute_columns :laswp
742
+ alias :permute_columns! :laswp!
743
+
744
+ end