nmatrix 0.2.3 → 0.2.4
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/ext/nmatrix/data/ruby_object.h +1 -1
- data/ext/nmatrix/math.cpp +274 -33
- data/ext/nmatrix/math/math.h +8 -2
- data/ext/nmatrix/ruby_nmatrix.c +81 -65
- data/lib/nmatrix/blas.rb +6 -2
- data/lib/nmatrix/cruby/math.rb +744 -0
- data/lib/nmatrix/enumerate.rb +3 -2
- data/lib/nmatrix/jruby/decomposition.rb +24 -0
- data/lib/nmatrix/jruby/enumerable.rb +13 -0
- data/lib/nmatrix/jruby/error.rb +4 -0
- data/lib/nmatrix/jruby/math.rb +501 -0
- data/lib/nmatrix/jruby/nmatrix_java.rb +840 -0
- data/lib/nmatrix/jruby/operators.rb +283 -0
- data/lib/nmatrix/jruby/slice.rb +264 -0
- data/lib/nmatrix/math.rb +233 -635
- data/lib/nmatrix/mkmf.rb +6 -9
- data/lib/nmatrix/monkeys.rb +2 -4
- data/lib/nmatrix/nmatrix.rb +62 -32
- data/lib/nmatrix/shortcuts.rb +8 -3
- data/lib/nmatrix/version.rb +1 -1
- data/spec/00_nmatrix_spec.rb +110 -3
- data/spec/01_enum_spec.rb +7 -1
- data/spec/02_slice_spec.rb +19 -1
- data/spec/03_nmatrix_monkeys_spec.rb +2 -0
- data/spec/elementwise_spec.rb +10 -2
- data/spec/homogeneous_spec.rb +1 -0
- data/spec/io_spec.rb +11 -1
- data/spec/math_spec.rb +346 -102
- data/spec/rspec_spec.rb +1 -0
- data/spec/shortcuts_spec.rb +47 -23
- data/spec/slice_set_spec.rb +7 -2
- data/spec/stat_spec.rb +11 -0
- metadata +20 -41
- data/ext/nmatrix/ttable_helper.rb +0 -115
data/lib/nmatrix/enumerate.rb
CHANGED
@@ -71,7 +71,8 @@ class NMatrix
|
|
71
71
|
#
|
72
72
|
def map(&bl)
|
73
73
|
return enum_for(:map) unless block_given?
|
74
|
-
|
74
|
+
# NMatrix-jruby currently supports only doubles
|
75
|
+
cp = jruby? ? self : self.cast(dtype: :object)
|
75
76
|
cp.map!(&bl)
|
76
77
|
cp
|
77
78
|
end
|
@@ -220,7 +221,7 @@ class NMatrix
|
|
220
221
|
|
221
222
|
return enum_for(:inject_rank, dimen, initial, dtype) unless block_given?
|
222
223
|
|
223
|
-
new_shape = shape
|
224
|
+
new_shape = shape.dup
|
224
225
|
new_shape[dimen] = 1
|
225
226
|
|
226
227
|
first_as_acc = false
|
@@ -0,0 +1,24 @@
|
|
1
|
+
class NMatrix
|
2
|
+
|
3
|
+
# discussion in https://github.com/SciRuby/nmatrix/issues/374
|
4
|
+
|
5
|
+
def matrix_solve rhs
|
6
|
+
if rhs.shape[1] > 1
|
7
|
+
nmatrix = NMatrix.new :copy
|
8
|
+
nmatrix.shape = rhs.shape
|
9
|
+
res = []
|
10
|
+
#Solve a matrix and store the vectors in a matrix
|
11
|
+
(0...rhs.shape[1]).each do |i|
|
12
|
+
res << self.solve(rhs.col(i)).s.toArray.to_a
|
13
|
+
end
|
14
|
+
#res is in col major format
|
15
|
+
result = ArrayGenerator.getArrayColMajorDouble res.to_java :double, rhs.shape[0], rhs.shape[1]
|
16
|
+
nmatrix.s = ArrayRealVector.new result
|
17
|
+
|
18
|
+
return nmatrix
|
19
|
+
else
|
20
|
+
return self.solve rhs
|
21
|
+
end
|
22
|
+
end
|
23
|
+
|
24
|
+
end
|
@@ -0,0 +1,13 @@
|
|
1
|
+
# Source: https://github.com/marcandre/backports/blob/master/lib/backports/rails/enumerable.rb
|
2
|
+
module Enumerable
|
3
|
+
# Standard in rails... See official documentation[http://api.rubyonrails.org/classes/Enumerable.html]
|
4
|
+
# Modified from rails 2.3 to not rely on size
|
5
|
+
def sum(identity = 0, &block)
|
6
|
+
if block_given?
|
7
|
+
map(&block).sum(identity)
|
8
|
+
else
|
9
|
+
inject { |sum, element| sum + element } || identity
|
10
|
+
end
|
11
|
+
end unless method_defined? :sum
|
12
|
+
|
13
|
+
end
|
@@ -0,0 +1,501 @@
|
|
1
|
+
#--
|
2
|
+
# = NMatrix
|
3
|
+
#
|
4
|
+
# A linear algebra library for scientific computation in Ruby.
|
5
|
+
# NMatrix is part of SciRuby.
|
6
|
+
#
|
7
|
+
# NMatrix was originally inspired by and derived from NArray, by
|
8
|
+
# Masahiro Tanaka: http://narray.rubyforge.org
|
9
|
+
#
|
10
|
+
# == Copyright Information
|
11
|
+
#
|
12
|
+
# SciRuby is Copyright (c) 2010 - 2014, Ruby Science Foundation
|
13
|
+
# NMatrix is Copyright (c) 2012 - 2014, John Woods and the Ruby Science Foundation
|
14
|
+
#
|
15
|
+
# Please see LICENSE.txt for additional copyright notices.
|
16
|
+
#
|
17
|
+
# == Contributing
|
18
|
+
#
|
19
|
+
# By contributing source code to SciRuby, you agree to be bound by
|
20
|
+
# our Contributor Agreement:
|
21
|
+
#
|
22
|
+
# * https://github.com/SciRuby/sciruby/wiki/Contributor-Agreement
|
23
|
+
#
|
24
|
+
# == math.rb
|
25
|
+
#
|
26
|
+
# Math functionality for NMatrix, along with any NMatrix instance
|
27
|
+
# methods that correspond to ATLAS/BLAS/LAPACK functions (e.g.,
|
28
|
+
# laswp).
|
29
|
+
#++
|
30
|
+
|
31
|
+
class NMatrix
|
32
|
+
|
33
|
+
#
|
34
|
+
# call-seq:
|
35
|
+
# getrf! -> Array
|
36
|
+
#
|
37
|
+
# LU factorization of a general M-by-N matrix +A+ using partial pivoting with
|
38
|
+
# row interchanges. The LU factorization is A = PLU, where P is a row permutation
|
39
|
+
# matrix, L is a lower triangular matrix with unit diagonals, and U is an upper
|
40
|
+
# triangular matrix (note that this convention is different from the
|
41
|
+
# clapack_getrf behavior, but matches the standard LAPACK getrf).
|
42
|
+
# +A+ is overwritten with the elements of L and U (the unit
|
43
|
+
# diagonal elements of L are not saved). P is not returned directly and must be
|
44
|
+
# constructed from the pivot array ipiv. The row indices in ipiv are indexed
|
45
|
+
# starting from 1.
|
46
|
+
# Only works for dense matrices.
|
47
|
+
#
|
48
|
+
# * *Returns* :
|
49
|
+
# - The IPIV vector. The L and U matrices are stored in A.
|
50
|
+
# * *Raises* :
|
51
|
+
# - +StorageTypeError+ -> ATLAS functions only work on dense matrices.
|
52
|
+
#
|
53
|
+
def getrf!
|
54
|
+
ipiv = LUDecomposition.new(self.twoDMat).getPivot.to_a
|
55
|
+
return ipiv
|
56
|
+
end
|
57
|
+
|
58
|
+
#
|
59
|
+
# call-seq:
|
60
|
+
# geqrf! -> shape.min x 1 NMatrix
|
61
|
+
#
|
62
|
+
# QR factorization of a general M-by-N matrix +A+.
|
63
|
+
#
|
64
|
+
# The QR factorization is A = QR, where Q is orthogonal and R is Upper Triangular
|
65
|
+
# +A+ is overwritten with the elements of R and Q with Q being represented by the
|
66
|
+
# elements below A's diagonal and an array of scalar factors in the output NMatrix.
|
67
|
+
#
|
68
|
+
# The matrix Q is represented as a product of elementary reflectors
|
69
|
+
# Q = H(1) H(2) . . . H(k), where k = min(m,n).
|
70
|
+
#
|
71
|
+
# Each H(i) has the form
|
72
|
+
#
|
73
|
+
# H(i) = I - tau * v * v'
|
74
|
+
#
|
75
|
+
# http://www.netlib.org/lapack/explore-html/d3/d69/dgeqrf_8f.html
|
76
|
+
#
|
77
|
+
# Only works for dense matrices.
|
78
|
+
#
|
79
|
+
# * *Returns* :
|
80
|
+
# - Vector TAU. Q and R are stored in A. Q is represented by TAU and A
|
81
|
+
# * *Raises* :
|
82
|
+
# - +StorageTypeError+ -> LAPACK functions only work on dense matrices.
|
83
|
+
#
|
84
|
+
def geqrf!
|
85
|
+
# The real implementation is in lib/nmatrix/lapacke.rb
|
86
|
+
raise(NotImplementedError, "geqrf! requires the nmatrix-lapacke gem")
|
87
|
+
end
|
88
|
+
|
89
|
+
#
|
90
|
+
# call-seq:
|
91
|
+
# ormqr(tau) -> NMatrix
|
92
|
+
# ormqr(tau, side, transpose, c) -> NMatrix
|
93
|
+
#
|
94
|
+
# Returns the product Q * c or c * Q after a call to geqrf! used in QR factorization.
|
95
|
+
# +c+ is overwritten with the elements of the result NMatrix if supplied. Q is the orthogonal matrix
|
96
|
+
# represented by tau and the calling NMatrix
|
97
|
+
#
|
98
|
+
# Only works on float types, use unmqr for complex types.
|
99
|
+
#
|
100
|
+
# == Arguments
|
101
|
+
#
|
102
|
+
# * +tau+ - vector containing scalar factors of elementary reflectors
|
103
|
+
# * +side+ - direction of multiplication [:left, :right]
|
104
|
+
# * +transpose+ - apply Q with or without transpose [false, :transpose]
|
105
|
+
# * +c+ - NMatrix multplication argument that is overwritten, no argument assumes c = identity
|
106
|
+
#
|
107
|
+
# * *Returns* :
|
108
|
+
#
|
109
|
+
# - Q * c or c * Q Where Q may be transposed before multiplication.
|
110
|
+
#
|
111
|
+
#
|
112
|
+
# * *Raises* :
|
113
|
+
# - +StorageTypeError+ -> LAPACK functions only work on dense matrices.
|
114
|
+
# - +TypeError+ -> Works only on floating point matrices, use unmqr for complex types
|
115
|
+
# - +TypeError+ -> c must have the same dtype as the calling NMatrix
|
116
|
+
#
|
117
|
+
def ormqr(tau, side=:left, transpose=false, c=nil)
|
118
|
+
# The real implementation is in lib/nmatrix/lapacke.rb
|
119
|
+
raise(NotImplementedError, "ormqr requires the nmatrix-lapacke gem")
|
120
|
+
|
121
|
+
end
|
122
|
+
|
123
|
+
#
|
124
|
+
# call-seq:
|
125
|
+
# unmqr(tau) -> NMatrix
|
126
|
+
# unmqr(tau, side, transpose, c) -> NMatrix
|
127
|
+
#
|
128
|
+
# Returns the product Q * c or c * Q after a call to geqrf! used in QR factorization.
|
129
|
+
# +c+ is overwritten with the elements of the result NMatrix if it is supplied. Q is the orthogonal matrix
|
130
|
+
# represented by tau and the calling NMatrix
|
131
|
+
#
|
132
|
+
# Only works on complex types, use ormqr for float types.
|
133
|
+
#
|
134
|
+
# == Arguments
|
135
|
+
#
|
136
|
+
# * +tau+ - vector containing scalar factors of elementary reflectors
|
137
|
+
# * +side+ - direction of multiplication [:left, :right]
|
138
|
+
# * +transpose+ - apply Q as Q or its complex conjugate [false, :complex_conjugate]
|
139
|
+
# * +c+ - NMatrix multplication argument that is overwritten, no argument assumes c = identity
|
140
|
+
#
|
141
|
+
# * *Returns* :
|
142
|
+
#
|
143
|
+
# - Q * c or c * Q Where Q may be transformed to its complex conjugate before multiplication.
|
144
|
+
#
|
145
|
+
#
|
146
|
+
# * *Raises* :
|
147
|
+
# - +StorageTypeError+ -> LAPACK functions only work on dense matrices.
|
148
|
+
# - +TypeError+ -> Works only on floating point matrices, use unmqr for complex types
|
149
|
+
# - +TypeError+ -> c must have the same dtype as the calling NMatrix
|
150
|
+
#
|
151
|
+
def unmqr(tau, side=:left, transpose=false, c=nil)
|
152
|
+
# The real implementation is in lib/nmatrix/lapacke.rb
|
153
|
+
raise(NotImplementedError, "unmqr requires the nmatrix-lapacke gem")
|
154
|
+
end
|
155
|
+
|
156
|
+
#
|
157
|
+
# call-seq:
|
158
|
+
# potrf!(upper_or_lower) -> NMatrix
|
159
|
+
#
|
160
|
+
# Cholesky factorization of a symmetric positive-definite matrix -- or, if complex,
|
161
|
+
# a Hermitian positive-definite matrix +A+.
|
162
|
+
# The result will be written in either the upper or lower triangular portion of the
|
163
|
+
# matrix, depending on whether the argument is +:upper+ or +:lower+.
|
164
|
+
# Also the function only reads in the upper or lower part of the matrix,
|
165
|
+
# so it doesn't actually have to be symmetric/Hermitian.
|
166
|
+
# However, if the matrix (i.e. the symmetric matrix implied by the lower/upper
|
167
|
+
# half) is not positive-definite, the function will return nonsense.
|
168
|
+
#
|
169
|
+
# This functions requires either the nmatrix-atlas or nmatrix-lapacke gem
|
170
|
+
# installed.
|
171
|
+
#
|
172
|
+
# * *Returns* :
|
173
|
+
# the triangular portion specified by the parameter
|
174
|
+
# * *Raises* :
|
175
|
+
# - +StorageTypeError+ -> ATLAS functions only work on dense matrices.
|
176
|
+
# - +ShapeError+ -> Must be square.
|
177
|
+
# - +NotImplementedError+ -> If called without nmatrix-atlas or nmatrix-lapacke gem
|
178
|
+
#
|
179
|
+
def potrf!(which)
|
180
|
+
# The real implementation is in the plugin files.
|
181
|
+
cholesky = CholeskyDecomposition.new(self.twoDMat)
|
182
|
+
if which == :upper
|
183
|
+
u = create_dummy_nmatrix
|
184
|
+
twoDMat = cholesky.getLT
|
185
|
+
u.s = ArrayRealVector.new(ArrayGenerator.getArrayDouble(twoDMat.getData, @shape[0], @shape[1]))
|
186
|
+
return u
|
187
|
+
else
|
188
|
+
l = create_dummy_nmatrix
|
189
|
+
twoDMat = cholesky.getL
|
190
|
+
l.s = ArrayRealVector.new(ArrayGenerator.getArrayDouble(twoDMat.getData, @shape[0], @shape[1]))
|
191
|
+
return l
|
192
|
+
end
|
193
|
+
end
|
194
|
+
|
195
|
+
def potrf_upper!
|
196
|
+
potrf! :upper
|
197
|
+
end
|
198
|
+
|
199
|
+
def potrf_lower!
|
200
|
+
potrf! :lower
|
201
|
+
end
|
202
|
+
|
203
|
+
|
204
|
+
#
|
205
|
+
# call-seq:
|
206
|
+
# factorize_cholesky -> [upper NMatrix, lower NMatrix]
|
207
|
+
#
|
208
|
+
# Calculates the Cholesky factorization of a matrix and returns the
|
209
|
+
# upper and lower matrices such that A=LU and L=U*, where * is
|
210
|
+
# either the transpose or conjugate transpose.
|
211
|
+
#
|
212
|
+
# Unlike potrf!, this makes method requires that the original is matrix is
|
213
|
+
# symmetric or Hermitian. However, it is still your responsibility to make
|
214
|
+
# sure it is positive-definite.
|
215
|
+
def factorize_cholesky
|
216
|
+
# raise "Matrix must be symmetric/Hermitian for Cholesky factorization" unless self.hermitian?
|
217
|
+
cholesky = CholeskyDecomposition.new(self.twoDMat)
|
218
|
+
l = create_dummy_nmatrix
|
219
|
+
twoDMat = cholesky.getL
|
220
|
+
l.s = ArrayRealVector.new(ArrayGenerator.getArrayDouble(twoDMat.getData, @shape[0], @shape[1]))
|
221
|
+
u = create_dummy_nmatrix
|
222
|
+
twoDMat = cholesky.getLT
|
223
|
+
u.s = ArrayRealVector.new(ArrayGenerator.getArrayDouble(twoDMat.getData, @shape[0], @shape[1]))
|
224
|
+
return [u,l]
|
225
|
+
end
|
226
|
+
|
227
|
+
#
|
228
|
+
# call-seq:
|
229
|
+
# factorize_lu -> ...
|
230
|
+
#
|
231
|
+
# LU factorization of a matrix. Optionally return the permutation matrix.
|
232
|
+
# Note that computing the permutation matrix will introduce a slight memory
|
233
|
+
# and time overhead.
|
234
|
+
#
|
235
|
+
# == Arguments
|
236
|
+
#
|
237
|
+
# +with_permutation_matrix+ - If set to *true* will return the permutation
|
238
|
+
# matrix alongwith the LU factorization as a second return value.
|
239
|
+
#
|
240
|
+
def factorize_lu with_permutation_matrix=nil
|
241
|
+
raise(NotImplementedError, "only implemented for dense storage") unless self.stype == :dense
|
242
|
+
raise(NotImplementedError, "matrix is not 2-dimensional") unless self.dimensions == 2
|
243
|
+
t = self.clone
|
244
|
+
pivot = create_dummy_nmatrix
|
245
|
+
twoDMat = LUDecomposition.new(self.twoDMat).getP
|
246
|
+
pivot.s = ArrayRealVector.new(ArrayGenerator.getArrayDouble(twoDMat.getData, @shape[0], @shape[1]))
|
247
|
+
return [t,pivot]
|
248
|
+
end
|
249
|
+
|
250
|
+
#
|
251
|
+
# call-seq:
|
252
|
+
# factorize_qr -> [Q,R]
|
253
|
+
#
|
254
|
+
# QR factorization of a matrix without column pivoting.
|
255
|
+
# Q is orthogonal and R is upper triangular if input is square or upper trapezoidal if
|
256
|
+
# input is rectangular.
|
257
|
+
#
|
258
|
+
# Only works for dense matrices.
|
259
|
+
#
|
260
|
+
# * *Returns* :
|
261
|
+
# - Array containing Q and R matrices
|
262
|
+
#
|
263
|
+
# * *Raises* :
|
264
|
+
# - +StorageTypeError+ -> only implemented for desnse storage.
|
265
|
+
# - +ShapeError+ -> Input must be a 2-dimensional matrix to have a QR decomposition.
|
266
|
+
#
|
267
|
+
def factorize_qr
|
268
|
+
|
269
|
+
raise(NotImplementedError, "only implemented for dense storage") unless self.stype == :dense
|
270
|
+
raise(ShapeError, "Input must be a 2-dimensional matrix to have a QR decomposition") unless self.dim == 2
|
271
|
+
qrdecomp = QRDecomposition.new(self.twoDMat)
|
272
|
+
|
273
|
+
qmat = create_dummy_nmatrix
|
274
|
+
qtwoDMat = qrdecomp.getQ
|
275
|
+
qmat.s = ArrayRealVector.new(ArrayGenerator.getArrayDouble(qtwoDMat.getData, @shape[0], @shape[1]))
|
276
|
+
|
277
|
+
rmat = create_dummy_nmatrix
|
278
|
+
rtwoDMat = qrdecomp.getR
|
279
|
+
rmat.s = ArrayRealVector.new(ArrayGenerator.getArrayDouble(rtwoDMat.getData, @shape[0], @shape[1]))
|
280
|
+
return [qmat,rmat]
|
281
|
+
|
282
|
+
end
|
283
|
+
|
284
|
+
# Solve the matrix equation AX = B, where A is +self+, B is the first
|
285
|
+
# argument, and X is returned. A must be a nxn square matrix, while B must be
|
286
|
+
# nxm. Only works with dense matrices and non-integer, non-object data types.
|
287
|
+
#
|
288
|
+
# == Arguments
|
289
|
+
#
|
290
|
+
# * +b+ - the right hand side
|
291
|
+
#
|
292
|
+
# == Options
|
293
|
+
#
|
294
|
+
# * +form+ - Signifies the form of the matrix A in the linear system AX=B.
|
295
|
+
# If not set then it defaults to +:general+, which uses an LU solver.
|
296
|
+
# Other possible values are +:lower_tri+, +:upper_tri+ and +:pos_def+ (alternatively,
|
297
|
+
# non-abbreviated symbols +:lower_triangular+, +:upper_triangular+,
|
298
|
+
# and +:positive_definite+ can be used.
|
299
|
+
# If +:lower_tri+ or +:upper_tri+ is set, then a specialized linear solver for linear
|
300
|
+
# systems AX=B with a lower or upper triangular matrix A is used. If +:pos_def+ is chosen,
|
301
|
+
# then the linear system is solved via the Cholesky factorization.
|
302
|
+
# Note that when +:lower_tri+ or +:upper_tri+ is used, then the algorithm just assumes that
|
303
|
+
# all entries in the lower/upper triangle of the matrix are zeros without checking (which
|
304
|
+
# can be useful in certain applications).
|
305
|
+
#
|
306
|
+
#
|
307
|
+
# == Usage
|
308
|
+
#
|
309
|
+
# a = NMatrix.new [2,2], [3,1,1,2], dtype: dtype
|
310
|
+
# b = NMatrix.new [2,1], [9,8], dtype: dtype
|
311
|
+
# a.solve(b)
|
312
|
+
#
|
313
|
+
# # solve an upper triangular linear system more efficiently:
|
314
|
+
# require 'benchmark'
|
315
|
+
# require 'nmatrix/lapacke'
|
316
|
+
# rand_mat = NMatrix.random([10000, 10000], dtype: :float64)
|
317
|
+
# a = rand_mat.triu
|
318
|
+
# b = NMatrix.random([10000, 10], dtype: :float64)
|
319
|
+
# Benchmark.bm(10) do |bm|
|
320
|
+
# bm.report('general') { a.solve(b) }
|
321
|
+
# bm.report('upper_tri') { a.solve(b, form: :upper_tri) }
|
322
|
+
# end
|
323
|
+
# # user system total real
|
324
|
+
# # general 73.170000 0.670000 73.840000 ( 73.810086)
|
325
|
+
# # upper_tri 0.180000 0.000000 0.180000 ( 0.182491)
|
326
|
+
#
|
327
|
+
def solve(b, opts = {})
|
328
|
+
raise(ShapeError, "Must be called on square matrix") unless self.dim == 2 && self.shape[0] == self.shape[1]
|
329
|
+
raise(ShapeError, "number of rows of b must equal number of cols of self") if
|
330
|
+
self.shape[1] != b.shape[0]
|
331
|
+
raise(ArgumentError, "only works with dense matrices") if self.stype != :dense
|
332
|
+
raise(ArgumentError, "only works for non-integer, non-object dtypes") if
|
333
|
+
integer_dtype? or object_dtype? or b.integer_dtype? or b.object_dtype?
|
334
|
+
|
335
|
+
opts = { form: :general }.merge(opts)
|
336
|
+
x = b.clone
|
337
|
+
n = self.shape[0]
|
338
|
+
nrhs = b.shape[1]
|
339
|
+
|
340
|
+
nmatrix = create_dummy_nmatrix
|
341
|
+
case opts[:form]
|
342
|
+
when :general, :upper_tri, :upper_triangular, :lower_tri, :lower_triangular
|
343
|
+
#LU solver
|
344
|
+
solver = LUDecomposition.new(self.twoDMat).getSolver
|
345
|
+
nmatrix.s = solver.solve(b.s)
|
346
|
+
return nmatrix
|
347
|
+
when :pos_def, :positive_definite
|
348
|
+
solver = CholeskyDecomposition.new(self.twoDMat).getSolver
|
349
|
+
nmatrix.s = solver.solve(b.s)
|
350
|
+
return nmatrix
|
351
|
+
else
|
352
|
+
raise(ArgumentError, "#{opts[:form]} is not a valid form option")
|
353
|
+
end
|
354
|
+
|
355
|
+
end
|
356
|
+
|
357
|
+
#
|
358
|
+
# call-seq:
|
359
|
+
# det -> determinant
|
360
|
+
#
|
361
|
+
# Calculate the determinant by way of LU decomposition. This is accomplished
|
362
|
+
# using clapack_getrf, and then by taking the product of the diagonal elements. There is a
|
363
|
+
# risk of underflow/overflow.
|
364
|
+
#
|
365
|
+
# There are probably also more efficient ways to calculate the determinant.
|
366
|
+
# This method requires making a copy of the matrix, since clapack_getrf
|
367
|
+
# modifies its input.
|
368
|
+
#
|
369
|
+
# For smaller matrices, you may be able to use +#det_exact+.
|
370
|
+
#
|
371
|
+
# This function is guaranteed to return the same type of data in the matrix
|
372
|
+
# upon which it is called.
|
373
|
+
#
|
374
|
+
# Integer matrices are converted to floating point matrices for the purposes of
|
375
|
+
# performing the calculation, as xGETRF can't work on integer matrices.
|
376
|
+
#
|
377
|
+
# * *Returns* :
|
378
|
+
# - The determinant of the matrix. It's the same type as the matrix's dtype.
|
379
|
+
# * *Raises* :
|
380
|
+
# - +ShapeError+ -> Must be used on square matrices.
|
381
|
+
#
|
382
|
+
def det
|
383
|
+
raise(ShapeError, "determinant can be calculated only for square matrices") unless self.dim == 2 && self.shape[0] == self.shape[1]
|
384
|
+
self.det_exact2
|
385
|
+
end
|
386
|
+
|
387
|
+
#
|
388
|
+
# call-seq:
|
389
|
+
# complex_conjugate -> NMatrix
|
390
|
+
# complex_conjugate(new_stype) -> NMatrix
|
391
|
+
#
|
392
|
+
# Get the complex conjugate of this matrix. See also complex_conjugate! for
|
393
|
+
# an in-place operation (provided the dtype is already +:complex64+ or
|
394
|
+
# +:complex128+).
|
395
|
+
#
|
396
|
+
# Doesn't work on list matrices, but you can optionally pass in the stype you
|
397
|
+
# want to cast to if you're dealing with a list matrix.
|
398
|
+
#
|
399
|
+
# * *Arguments* :
|
400
|
+
# - +new_stype+ -> stype for the new matrix.
|
401
|
+
# * *Returns* :
|
402
|
+
# - If the original NMatrix isn't complex, the result is a +:complex128+ NMatrix. Otherwise, it's the original dtype.
|
403
|
+
#
|
404
|
+
def complex_conjugate(new_stype = self.stype)
|
405
|
+
self.cast(new_stype, NMatrix::upcast(dtype, :complex64)).complex_conjugate!
|
406
|
+
end
|
407
|
+
|
408
|
+
#
|
409
|
+
# call-seq:
|
410
|
+
# conjugate_transpose -> NMatrix
|
411
|
+
#
|
412
|
+
# Calculate the conjugate transpose of a matrix. If your dtype is already
|
413
|
+
# complex, this should only require one copy (for the transpose).
|
414
|
+
#
|
415
|
+
# * *Returns* :
|
416
|
+
# - The conjugate transpose of the matrix as a copy.
|
417
|
+
#
|
418
|
+
def conjugate_transpose
|
419
|
+
self.transpose.complex_conjugate!
|
420
|
+
end
|
421
|
+
|
422
|
+
#
|
423
|
+
# call-seq:
|
424
|
+
# absolute_sum -> Numeric
|
425
|
+
#
|
426
|
+
# == Arguments
|
427
|
+
# - +incx+ -> the skip size (defaults to 1, no skip)
|
428
|
+
# - +n+ -> the number of elements to include
|
429
|
+
#
|
430
|
+
# Return the sum of the contents of the vector. This is the BLAS asum routine.
|
431
|
+
def asum incx=1, n=nil
|
432
|
+
if self.shape == [1]
|
433
|
+
return self[0].abs unless self.complex_dtype?
|
434
|
+
return self[0].real.abs + self[0].imag.abs
|
435
|
+
end
|
436
|
+
return method_missing(:asum, incx, n) unless vector?
|
437
|
+
NMatrix::BLAS::asum(self, incx, self.size / incx)
|
438
|
+
end
|
439
|
+
alias :absolute_sum :asum
|
440
|
+
|
441
|
+
#
|
442
|
+
# call-seq:
|
443
|
+
# norm2 -> Numeric
|
444
|
+
#
|
445
|
+
# == Arguments
|
446
|
+
# - +incx+ -> the skip size (defaults to 1, no skip)
|
447
|
+
# - +n+ -> the number of elements to include
|
448
|
+
#
|
449
|
+
# Return the 2-norm of the vector. This is the BLAS nrm2 routine.
|
450
|
+
def nrm2 incx=1, n=nil
|
451
|
+
self.twoDMat.getFrobeniusNorm()
|
452
|
+
end
|
453
|
+
alias :norm2 :nrm2
|
454
|
+
|
455
|
+
#
|
456
|
+
# call-seq:
|
457
|
+
# scale! -> NMatrix
|
458
|
+
#
|
459
|
+
# == Arguments
|
460
|
+
# - +alpha+ -> Scalar value used in the operation.
|
461
|
+
# - +inc+ -> Increment used in the scaling function. Should generally be 1.
|
462
|
+
# - +n+ -> Number of elements of +vector+.
|
463
|
+
#
|
464
|
+
# This is a destructive method, modifying the source NMatrix. See also #scale.
|
465
|
+
# Return the scaling result of the matrix. BLAS scal will be invoked if provided.
|
466
|
+
|
467
|
+
def scale!(alpha, incx=1, n=nil)
|
468
|
+
#FIXME
|
469
|
+
# raise(DataTypeError, "Incompatible data type for the scaling factor") unless
|
470
|
+
# NMatrix::upcast(self.dtype, NMatrix::min_dtype(alpha)) == self.dtype
|
471
|
+
raise(DataTypeError, "Incompatible data type for the scaling factor") if
|
472
|
+
self.dtype == :int8
|
473
|
+
@s.mapMultiplyToSelf(alpha)
|
474
|
+
return self
|
475
|
+
end
|
476
|
+
|
477
|
+
#
|
478
|
+
# call-seq:
|
479
|
+
# scale -> NMatrix
|
480
|
+
#
|
481
|
+
# == Arguments
|
482
|
+
# - +alpha+ -> Scalar value used in the operation.
|
483
|
+
# - +inc+ -> Increment used in the scaling function. Should generally be 1.
|
484
|
+
# - +n+ -> Number of elements of +vector+.
|
485
|
+
#
|
486
|
+
# Return the scaling result of the matrix. BLAS scal will be invoked if provided.
|
487
|
+
|
488
|
+
def scale(alpha, incx=1, n=nil)
|
489
|
+
# FIXME
|
490
|
+
# raise(DataTypeError, "Incompatible data type for the scaling factor") unless
|
491
|
+
# NMatrix::upcast(self.dtype, NMatrix::min_dtype(alpha)) == self.dtype
|
492
|
+
raise(DataTypeError, "Incompatible data type for the scaling factor") if
|
493
|
+
self.dtype == :byte || self.dtype == :int8 || self.dtype == :int16 ||
|
494
|
+
self.dtype == :int32 || self.dtype == :int64
|
495
|
+
nmatrix = NMatrix.new :copy
|
496
|
+
nmatrix.shape = @shape.clone
|
497
|
+
nmatrix.s = ArrayRealVector.new(@s.toArray.clone).mapMultiplyToSelf(alpha)
|
498
|
+
return nmatrix
|
499
|
+
end
|
500
|
+
|
501
|
+
end
|