nmatrix 0.2.3 → 0.2.4
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/ext/nmatrix/data/ruby_object.h +1 -1
- data/ext/nmatrix/math.cpp +274 -33
- data/ext/nmatrix/math/math.h +8 -2
- data/ext/nmatrix/ruby_nmatrix.c +81 -65
- data/lib/nmatrix/blas.rb +6 -2
- data/lib/nmatrix/cruby/math.rb +744 -0
- data/lib/nmatrix/enumerate.rb +3 -2
- data/lib/nmatrix/jruby/decomposition.rb +24 -0
- data/lib/nmatrix/jruby/enumerable.rb +13 -0
- data/lib/nmatrix/jruby/error.rb +4 -0
- data/lib/nmatrix/jruby/math.rb +501 -0
- data/lib/nmatrix/jruby/nmatrix_java.rb +840 -0
- data/lib/nmatrix/jruby/operators.rb +283 -0
- data/lib/nmatrix/jruby/slice.rb +264 -0
- data/lib/nmatrix/math.rb +233 -635
- data/lib/nmatrix/mkmf.rb +6 -9
- data/lib/nmatrix/monkeys.rb +2 -4
- data/lib/nmatrix/nmatrix.rb +62 -32
- data/lib/nmatrix/shortcuts.rb +8 -3
- data/lib/nmatrix/version.rb +1 -1
- data/spec/00_nmatrix_spec.rb +110 -3
- data/spec/01_enum_spec.rb +7 -1
- data/spec/02_slice_spec.rb +19 -1
- data/spec/03_nmatrix_monkeys_spec.rb +2 -0
- data/spec/elementwise_spec.rb +10 -2
- data/spec/homogeneous_spec.rb +1 -0
- data/spec/io_spec.rb +11 -1
- data/spec/math_spec.rb +346 -102
- data/spec/rspec_spec.rb +1 -0
- data/spec/shortcuts_spec.rb +47 -23
- data/spec/slice_set_spec.rb +7 -2
- data/spec/stat_spec.rb +11 -0
- metadata +20 -41
- data/ext/nmatrix/ttable_helper.rb +0 -115
@@ -0,0 +1,840 @@
|
|
1
|
+
require 'java'
|
2
|
+
require_relative '../../../ext/nmatrix_java/vendor/commons-math3-3.6.1.jar'
|
3
|
+
require_relative '../../../ext/nmatrix_java/target/nmatrix.jar'
|
4
|
+
|
5
|
+
java_import 'org.apache.commons.math3.linear.ArrayRealVector'
|
6
|
+
java_import 'org.apache.commons.math3.linear.RealMatrix'
|
7
|
+
java_import 'org.apache.commons.math3.linear.MatrixUtils'
|
8
|
+
java_import 'org.apache.commons.math3.linear.DecompositionSolver'
|
9
|
+
java_import 'org.apache.commons.math3.linear.LUDecomposition'
|
10
|
+
java_import 'org.apache.commons.math3.linear.QRDecomposition'
|
11
|
+
java_import 'org.apache.commons.math3.linear.CholeskyDecomposition'
|
12
|
+
java_import 'MatrixGenerator'
|
13
|
+
java_import 'ArrayGenerator'
|
14
|
+
java_import 'MathHelper'
|
15
|
+
java_import 'ArrayComparator'
|
16
|
+
|
17
|
+
class NMatrix
|
18
|
+
include_package 'org.apache.commons.math3.analysis.function'
|
19
|
+
attr_accessor :shape, :dim, :dtype, :stype, :s
|
20
|
+
|
21
|
+
def initialize(*args)
|
22
|
+
if args[-1] == :copy
|
23
|
+
@shape = [2,2]
|
24
|
+
@s = [0,0,0,0]
|
25
|
+
@dim = shape.is_a?(Array) ? shape.length : 2
|
26
|
+
else
|
27
|
+
if (args.length <= 3)
|
28
|
+
@shape = args[0]
|
29
|
+
if args[1].is_a?(Array)
|
30
|
+
elements = args[1]
|
31
|
+
if args.length > 2
|
32
|
+
hash = args[2]
|
33
|
+
# puts hash
|
34
|
+
@dtype = hash[:dtype]
|
35
|
+
@stype = hash[:stype]
|
36
|
+
else
|
37
|
+
@dtype = :float64
|
38
|
+
@stype = :dense
|
39
|
+
end
|
40
|
+
else
|
41
|
+
# elements = Java::double[shape[0]*shape[1]].new{ Java::Double.NaN }
|
42
|
+
if args.length > 1
|
43
|
+
if args[1].is_a?(Symbol)
|
44
|
+
hash = args[1]
|
45
|
+
@dtype = hash[:dtype]
|
46
|
+
@stype = hash[:stype]
|
47
|
+
elements = Array.new(shape*shape) unless shape.is_a? Array
|
48
|
+
else
|
49
|
+
elements = Array.new(shape*shape) unless shape.is_a? Array
|
50
|
+
end
|
51
|
+
end
|
52
|
+
end
|
53
|
+
else
|
54
|
+
|
55
|
+
offset = 0
|
56
|
+
if (!args[0].is_a?(Symbol) && !args[0].is_a?(String))
|
57
|
+
@stype = :dense
|
58
|
+
else
|
59
|
+
offset = 1
|
60
|
+
@stype = :dense
|
61
|
+
@dtype = args[-1]
|
62
|
+
end
|
63
|
+
|
64
|
+
@shape = args[offset]
|
65
|
+
elements = args[offset+1]
|
66
|
+
|
67
|
+
end
|
68
|
+
|
69
|
+
|
70
|
+
@shape = [shape,shape] unless shape.is_a?(Array)
|
71
|
+
# @dtype = interpret_dtype(argc-1-offset, argv+offset+1, stype);
|
72
|
+
# @dtype = args[:dtype] if args[:dtype]
|
73
|
+
@dtype_sym = nil
|
74
|
+
@stype_sym = nil
|
75
|
+
@default_val_num = nil
|
76
|
+
@capacity_num = nil
|
77
|
+
@size = (0...@shape.size).inject(1) { |x,i| x * @shape[i] }
|
78
|
+
|
79
|
+
j=0
|
80
|
+
|
81
|
+
if (elements.is_a?(ArrayRealVector))
|
82
|
+
@s = elements
|
83
|
+
# elsif elements.java_class.to_s == "[D"
|
84
|
+
# @s = ArrayRealVector.new(elements)
|
85
|
+
else
|
86
|
+
storage = Array.new(size)
|
87
|
+
elements = [elements,elements] unless elements.is_a?(Array)
|
88
|
+
if size > elements.length
|
89
|
+
(0...size).each do |i|
|
90
|
+
j=0 unless j!=elements.length
|
91
|
+
storage[i] = elements[j]
|
92
|
+
j+=1
|
93
|
+
end
|
94
|
+
else
|
95
|
+
storage = elements
|
96
|
+
end
|
97
|
+
if @dtype == :object
|
98
|
+
@s = storage
|
99
|
+
else
|
100
|
+
@s = ArrayRealVector.new(storage.to_java Java::double)
|
101
|
+
end
|
102
|
+
end
|
103
|
+
|
104
|
+
@dim = @shape.is_a?(Array) ? @shape.length : 2
|
105
|
+
|
106
|
+
end
|
107
|
+
end
|
108
|
+
|
109
|
+
# Needs to be properly implemented
|
110
|
+
def self.min_dtype(alpha)
|
111
|
+
:int8
|
112
|
+
end
|
113
|
+
|
114
|
+
def self.upcast(alpha, beta)
|
115
|
+
false
|
116
|
+
end
|
117
|
+
|
118
|
+
def clone
|
119
|
+
result = create_dummy_nmatrix
|
120
|
+
# ArrayRealVector#clone is disable, hence use copy
|
121
|
+
# that returns a deep copy of the object.
|
122
|
+
result.s = @s.copy
|
123
|
+
return result
|
124
|
+
end
|
125
|
+
|
126
|
+
def entries
|
127
|
+
return @s.toArray.to_a
|
128
|
+
end
|
129
|
+
|
130
|
+
def twoDMat
|
131
|
+
return MatrixUtils.createRealMatrix MatrixGenerator.getMatrixDouble(self.s.toArray, @shape[0], @shape[1])
|
132
|
+
end
|
133
|
+
|
134
|
+
def dtype
|
135
|
+
return @dtype
|
136
|
+
end
|
137
|
+
|
138
|
+
#FIXME
|
139
|
+
def self.guess_dtype arg
|
140
|
+
:float32
|
141
|
+
end
|
142
|
+
|
143
|
+
def stype
|
144
|
+
@stype = :dense
|
145
|
+
end
|
146
|
+
|
147
|
+
def cast_full *args
|
148
|
+
if args.is_a? Hash
|
149
|
+
self.dtype = args[:dtype]
|
150
|
+
else
|
151
|
+
self.dtype = args[1]
|
152
|
+
end
|
153
|
+
return self
|
154
|
+
end
|
155
|
+
|
156
|
+
def default_value
|
157
|
+
return nil
|
158
|
+
end
|
159
|
+
|
160
|
+
def __list_default_value__
|
161
|
+
#not implemented currently
|
162
|
+
end
|
163
|
+
|
164
|
+
def __yale_default_value__
|
165
|
+
#not implemented currently
|
166
|
+
end
|
167
|
+
|
168
|
+
def [] *args
|
169
|
+
return xslice(args)
|
170
|
+
end
|
171
|
+
|
172
|
+
def slice(*args)
|
173
|
+
return xslice(args)
|
174
|
+
end
|
175
|
+
|
176
|
+
def []=(*args)
|
177
|
+
to_return = nil
|
178
|
+
if args.length > @dim+1
|
179
|
+
raise(ArgumentError, "wrong number of arguments (#{args.length} for #{effective_dim(dim+1)})" )
|
180
|
+
else
|
181
|
+
slice = get_slice(@dim, args, @shape)
|
182
|
+
dense_storage_set(slice, args[-1])
|
183
|
+
to_return = args[-1]
|
184
|
+
end
|
185
|
+
return to_return
|
186
|
+
end
|
187
|
+
|
188
|
+
def is_ref?
|
189
|
+
|
190
|
+
end
|
191
|
+
|
192
|
+
# def dim
|
193
|
+
# shape.is_a?(Array) ? shape.length : 2
|
194
|
+
# end
|
195
|
+
|
196
|
+
alias :dimensions :dim
|
197
|
+
|
198
|
+
def effective_dim(s)
|
199
|
+
d = 0
|
200
|
+
(0...@dim).each do |i|
|
201
|
+
d+=1 unless @shape[i] == 1
|
202
|
+
end
|
203
|
+
return d
|
204
|
+
end
|
205
|
+
|
206
|
+
alias :effective_dimensions :effective_dim
|
207
|
+
|
208
|
+
|
209
|
+
|
210
|
+
protected
|
211
|
+
|
212
|
+
def create_dummy_nmatrix
|
213
|
+
nmatrix = NMatrix.new(:copy)
|
214
|
+
nmatrix.shape = self.shape
|
215
|
+
nmatrix.dim = self.dim
|
216
|
+
nmatrix.dtype = self.dtype
|
217
|
+
nmatrix.stype = self.stype
|
218
|
+
return nmatrix
|
219
|
+
end
|
220
|
+
|
221
|
+
def __list_to_hash__
|
222
|
+
|
223
|
+
end
|
224
|
+
|
225
|
+
public
|
226
|
+
|
227
|
+
def shape
|
228
|
+
@shape
|
229
|
+
end
|
230
|
+
|
231
|
+
def supershape s
|
232
|
+
if (s[:src] == @s)
|
233
|
+
return shape
|
234
|
+
# easy case (not a slice)
|
235
|
+
else
|
236
|
+
@s = s[:src]
|
237
|
+
end
|
238
|
+
|
239
|
+
new_shape = Array.new(dim)
|
240
|
+
(0...dim).each do |index|
|
241
|
+
new_shape[index] = shape[index]
|
242
|
+
end
|
243
|
+
|
244
|
+
return new_shape
|
245
|
+
end
|
246
|
+
|
247
|
+
def offset
|
248
|
+
# ArrayRealVector takes care of the offset value when indexing a Vector.
|
249
|
+
# Hence, return 0.
|
250
|
+
0
|
251
|
+
end
|
252
|
+
|
253
|
+
def det_exact
|
254
|
+
# if (:stype != :dense)
|
255
|
+
# raise Exception.new("can only calculate exact determinant for dense matrices")
|
256
|
+
# return nil
|
257
|
+
# end
|
258
|
+
raise(DataTypeError, "cannot call det_exact on unsigned type") if(self.dtype == :byte)
|
259
|
+
if (@dim != 2 || @shape[0] != @shape[1])
|
260
|
+
raise(ShapeError, "matrices must be square to have a determinant defined")
|
261
|
+
return nil
|
262
|
+
end
|
263
|
+
to_return = nil
|
264
|
+
if (dtype == :object)
|
265
|
+
# to_return = *reinterpret_cast<VALUE*>(result);
|
266
|
+
else
|
267
|
+
to_return = LUDecomposition.new(self.twoDMat).getDeterminant()
|
268
|
+
end
|
269
|
+
|
270
|
+
return to_return.round(3)
|
271
|
+
end
|
272
|
+
|
273
|
+
def det_exact2
|
274
|
+
if (@dim != 2 || @shape[0] != @shape[1])
|
275
|
+
raise(ShapeError, "matrices must be square to have a determinant defined")
|
276
|
+
return nil
|
277
|
+
end
|
278
|
+
to_return = nil
|
279
|
+
if (dtype == :object)
|
280
|
+
# to_return = *reinterpret_cast<VALUE*>(result);
|
281
|
+
else
|
282
|
+
to_return = LUDecomposition.new(self.twoDMat).getDeterminant()
|
283
|
+
end
|
284
|
+
|
285
|
+
return to_return.round(3)
|
286
|
+
end
|
287
|
+
|
288
|
+
def complex_conjugate!
|
289
|
+
|
290
|
+
end
|
291
|
+
|
292
|
+
|
293
|
+
protected
|
294
|
+
|
295
|
+
def count_max_elements
|
296
|
+
return size
|
297
|
+
end
|
298
|
+
|
299
|
+
def reshape_bang arg
|
300
|
+
if(@stype == :dense)
|
301
|
+
shape_ary = arg
|
302
|
+
size = count_max_elements
|
303
|
+
new_size = 1
|
304
|
+
shape = interpret_shape(shape_ary, dim)
|
305
|
+
|
306
|
+
(0...dim).each do |index|
|
307
|
+
new_size *= shape[index]
|
308
|
+
end
|
309
|
+
|
310
|
+
if (size == new_size)
|
311
|
+
self.shape = shape
|
312
|
+
self.dim = dim
|
313
|
+
return self
|
314
|
+
else
|
315
|
+
raise(ArgumentError, "reshape cannot resize; size of new and old matrices must match")
|
316
|
+
end
|
317
|
+
else
|
318
|
+
raise(NotImplementedError, "reshape in place only for dense stype")
|
319
|
+
end
|
320
|
+
end
|
321
|
+
|
322
|
+
def interpret_shape(shape_ary, dim)
|
323
|
+
shape = []
|
324
|
+
|
325
|
+
if shape_ary.is_a?(Array)
|
326
|
+
dim = shape_ary.length
|
327
|
+
|
328
|
+
(0...dim).each do |index|
|
329
|
+
shape[index] = shape_ary[index].to_i
|
330
|
+
end
|
331
|
+
|
332
|
+
elsif shape_ary.is_a?(FIXNUM)
|
333
|
+
dim = 2
|
334
|
+
shape = Array.new(dim)
|
335
|
+
shape[0] = shape_ary.to_i
|
336
|
+
shape[1] = shape_ary.to_i
|
337
|
+
else
|
338
|
+
raise(ArgumentError, "Expected an array of numbers or a single Fixnum for matrix shape")
|
339
|
+
end
|
340
|
+
|
341
|
+
return shape
|
342
|
+
end
|
343
|
+
|
344
|
+
|
345
|
+
public
|
346
|
+
|
347
|
+
def each_with_indices
|
348
|
+
nmatrix = create_dummy_nmatrix
|
349
|
+
stride = get_stride(self)
|
350
|
+
offset = 0
|
351
|
+
#Create indices and initialize them to zero
|
352
|
+
coords = Array.new(dim){ 0 }
|
353
|
+
|
354
|
+
shape_copy = Array.new(dim)
|
355
|
+
(0...size).each do |k|
|
356
|
+
dense_storage_coords(nmatrix, k, coords, stride, offset)
|
357
|
+
slice_index = dense_storage_pos(coords,stride)
|
358
|
+
ary = Array.new
|
359
|
+
if (@dtype == :object)
|
360
|
+
ary << self.s[slice_index]
|
361
|
+
else
|
362
|
+
ary << self.s.toArray.to_a[slice_index]
|
363
|
+
end
|
364
|
+
(0...dim).each do |p|
|
365
|
+
ary << coords[p]
|
366
|
+
end
|
367
|
+
|
368
|
+
# yield the array which now consists of the value and the indices
|
369
|
+
yield(ary)
|
370
|
+
end if block_given?
|
371
|
+
|
372
|
+
return nmatrix
|
373
|
+
end
|
374
|
+
|
375
|
+
|
376
|
+
def each_stored_with_indices
|
377
|
+
nmatrix = create_dummy_nmatrix
|
378
|
+
stride = get_stride(self)
|
379
|
+
offset = 0
|
380
|
+
#Create indices and initialize them to zero
|
381
|
+
coords = Array.new(dim){ 0 }
|
382
|
+
|
383
|
+
shape_copy = Array.new(dim)
|
384
|
+
|
385
|
+
(0...size).each do |k|
|
386
|
+
dense_storage_coords(nmatrix, k, coords, stride, offset)
|
387
|
+
slice_index = dense_storage_pos(coords,stride)
|
388
|
+
ary = Array.new
|
389
|
+
if (@dtype == :object)
|
390
|
+
ary << self.s[slice_index]
|
391
|
+
else
|
392
|
+
ary << self.s.toArray.to_a[slice_index]
|
393
|
+
end
|
394
|
+
(0...dim).each do |p|
|
395
|
+
ary << coords[p]
|
396
|
+
end
|
397
|
+
# yield the array which now consists of the value and the indices
|
398
|
+
yield(ary)
|
399
|
+
end if block_given?
|
400
|
+
|
401
|
+
return nmatrix
|
402
|
+
end
|
403
|
+
|
404
|
+
def map_stored
|
405
|
+
|
406
|
+
end
|
407
|
+
|
408
|
+
def each_ordered_stored_with_indices
|
409
|
+
|
410
|
+
end
|
411
|
+
|
412
|
+
|
413
|
+
protected
|
414
|
+
|
415
|
+
def __dense_each__
|
416
|
+
nmatrix = create_dummy_nmatrix
|
417
|
+
stride = get_stride(self)
|
418
|
+
offset = 0
|
419
|
+
#Create indices and initialize them to zero
|
420
|
+
coords = Array.new(dim){ 0 }
|
421
|
+
|
422
|
+
shape_copy = Array.new(dim)
|
423
|
+
(0...size).each do |k|
|
424
|
+
if (@dtype == :object)
|
425
|
+
dense_storage_coords(nmatrix, k, coords, stride, offset)
|
426
|
+
slice_index = dense_storage_pos(coords,stride)
|
427
|
+
yield self.s[slice_index]
|
428
|
+
else
|
429
|
+
dense_storage_coords(nmatrix, k, coords, stride, offset)
|
430
|
+
slice_index = dense_storage_pos(coords,stride)
|
431
|
+
yield self.s.toArray.to_a[slice_index]
|
432
|
+
end
|
433
|
+
end if block_given?
|
434
|
+
if (@dtype == :object)
|
435
|
+
return @s.to_enum
|
436
|
+
else
|
437
|
+
return @s.toArray().to_a.to_enum
|
438
|
+
end
|
439
|
+
end
|
440
|
+
|
441
|
+
def __dense_map__
|
442
|
+
nmatrix = create_dummy_nmatrix
|
443
|
+
stride = get_stride(self)
|
444
|
+
offset = 0
|
445
|
+
coords = Array.new(dim){ 0 }
|
446
|
+
shape_copy = Array.new(dim)
|
447
|
+
|
448
|
+
s= Java::double[size].new
|
449
|
+
(0...size).each do |k|
|
450
|
+
dense_storage_coords(nmatrix, k, coords, stride, offset)
|
451
|
+
slice_index = dense_storage_pos(coords,stride)
|
452
|
+
|
453
|
+
y = yield @s.getEntry(slice_index)
|
454
|
+
@s.setEntry(slice_index, y)
|
455
|
+
end
|
456
|
+
nmatrix.s = ArrayRealVector.new s
|
457
|
+
|
458
|
+
return nmatrix
|
459
|
+
end
|
460
|
+
|
461
|
+
def __dense_map_pair__
|
462
|
+
|
463
|
+
end
|
464
|
+
|
465
|
+
def __list_map_merged_stored__
|
466
|
+
|
467
|
+
end
|
468
|
+
|
469
|
+
def __list_map_stored__
|
470
|
+
|
471
|
+
end
|
472
|
+
|
473
|
+
def __yale_map_merged_stored__
|
474
|
+
|
475
|
+
end
|
476
|
+
|
477
|
+
def __yale_map_stored__
|
478
|
+
|
479
|
+
end
|
480
|
+
|
481
|
+
def __yale_stored_diagonal_each_with_indices__
|
482
|
+
|
483
|
+
end
|
484
|
+
|
485
|
+
def __yale_stored_nondiagonal_each_with_indices__
|
486
|
+
|
487
|
+
end
|
488
|
+
|
489
|
+
|
490
|
+
public
|
491
|
+
|
492
|
+
def ==(otherNmatrix)
|
493
|
+
result = false
|
494
|
+
if (otherNmatrix.is_a?(NMatrix))
|
495
|
+
#check dimension
|
496
|
+
if (@dim != otherNmatrix.dim)
|
497
|
+
raise(ShapeError, "cannot compare matrices with different dimension")
|
498
|
+
end
|
499
|
+
#check shape
|
500
|
+
(0...dim).each do |i|
|
501
|
+
if (@shape[i] != otherNmatrix.shape[i])
|
502
|
+
raise(ShapeError, "cannot compare matrices with different shapes");
|
503
|
+
end
|
504
|
+
end
|
505
|
+
|
506
|
+
#check the entries
|
507
|
+
if dtype == :object
|
508
|
+
result = @s == otherNmatrix.s
|
509
|
+
else
|
510
|
+
result = ArrayComparator.equals(@s.toArray, otherNmatrix.s.toArray)
|
511
|
+
end
|
512
|
+
end
|
513
|
+
result
|
514
|
+
end
|
515
|
+
|
516
|
+
def =~ (other)
|
517
|
+
lha = @s.toArray.to_a
|
518
|
+
rha = other.s.toArray.to_a
|
519
|
+
resultArray = Array.new(lha.length)
|
520
|
+
if (other.is_a?(NMatrix))
|
521
|
+
#check dimension
|
522
|
+
if (@dim != other.dim)
|
523
|
+
raise(ShapeError, "cannot compare matrices with different dimension")
|
524
|
+
return nil
|
525
|
+
end
|
526
|
+
#check shape
|
527
|
+
(0...dim).each do |i|
|
528
|
+
if (@shape[i] != other.shape[i])
|
529
|
+
raise(ShapeError, "cannot compare matrices with different shapes");
|
530
|
+
return nil
|
531
|
+
end
|
532
|
+
end
|
533
|
+
#check the entries
|
534
|
+
(0...lha.length).each do |i|
|
535
|
+
resultArray[i] = lha[i] == rha[i] ? true : false
|
536
|
+
end
|
537
|
+
result = NMatrix.new(:copy)
|
538
|
+
result.shape = @shape
|
539
|
+
result.dtype = :object
|
540
|
+
result.s = resultArray
|
541
|
+
end
|
542
|
+
result
|
543
|
+
end
|
544
|
+
|
545
|
+
def !~ (other)
|
546
|
+
lha = @s.toArray.to_a
|
547
|
+
rha = other.s.toArray.to_a
|
548
|
+
resultArray = Array.new(lha.length)
|
549
|
+
if (other.is_a?(NMatrix))
|
550
|
+
#check dimension
|
551
|
+
if (@dim != other.dim)
|
552
|
+
raise(ShapeError, "cannot compare matrices with different dimension")
|
553
|
+
return nil
|
554
|
+
end
|
555
|
+
#check shape
|
556
|
+
(0...dim).each do |i|
|
557
|
+
if (@shape[i] != other.shape[i])
|
558
|
+
raise(ShapeError, "cannot compare matrices with different shapes");
|
559
|
+
return nil
|
560
|
+
end
|
561
|
+
end
|
562
|
+
#check the entries
|
563
|
+
(0...lha.length).each do |i|
|
564
|
+
resultArray[i] = lha[i] != rha[i] ? true : false
|
565
|
+
end
|
566
|
+
result = NMatrix.new(:copy)
|
567
|
+
result.shape = @shape
|
568
|
+
result.dtype = :object
|
569
|
+
result.s = resultArray
|
570
|
+
end
|
571
|
+
result
|
572
|
+
end
|
573
|
+
|
574
|
+
def <= (other)
|
575
|
+
lha = @s.toArray.to_a
|
576
|
+
rha = other.s.toArray.to_a
|
577
|
+
resultArray = Array.new(lha.length)
|
578
|
+
if (other.is_a?(NMatrix))
|
579
|
+
#check dimension
|
580
|
+
if (@dim != other.dim)
|
581
|
+
raise(ShapeError, "cannot compare matrices with different dimension")
|
582
|
+
return nil
|
583
|
+
end
|
584
|
+
#check shape
|
585
|
+
(0...dim).each do |i|
|
586
|
+
if (@shape[i] != other.shape[i])
|
587
|
+
raise(ShapeError, "cannot compare matrices with different shapes");
|
588
|
+
return nil
|
589
|
+
end
|
590
|
+
end
|
591
|
+
#check the entries
|
592
|
+
(0...lha.length).each do |i|
|
593
|
+
resultArray[i] = lha[i] <= rha[i] ? true : false
|
594
|
+
end
|
595
|
+
result = NMatrix.new(:copy)
|
596
|
+
result.shape = @shape
|
597
|
+
result.dtype = :object
|
598
|
+
result.s = resultArray
|
599
|
+
end
|
600
|
+
result
|
601
|
+
end
|
602
|
+
|
603
|
+
def >= (other)
|
604
|
+
lha = @s.toArray.to_a
|
605
|
+
rha = other.s.toArray.to_a
|
606
|
+
resultArray = Array.new(lha.length)
|
607
|
+
if (other.is_a?(NMatrix))
|
608
|
+
#check dimension
|
609
|
+
if (@dim != other.dim)
|
610
|
+
raise(ShapeError, "cannot compare matrices with different dimension")
|
611
|
+
return nil
|
612
|
+
end
|
613
|
+
#check shape
|
614
|
+
(0...dim).each do |i|
|
615
|
+
if (@shape[i] != other.shape[i])
|
616
|
+
raise(ShapeError, "cannot compare matrices with different shapes");
|
617
|
+
return nil
|
618
|
+
end
|
619
|
+
end
|
620
|
+
#check the entries
|
621
|
+
(0...lha.length).each do |i|
|
622
|
+
resultArray[i] = lha[i] >= rha[i] ? true : false
|
623
|
+
end
|
624
|
+
result = NMatrix.new(:copy)
|
625
|
+
result.shape = @shape
|
626
|
+
result.dtype = :object
|
627
|
+
result.s = resultArray
|
628
|
+
end
|
629
|
+
result
|
630
|
+
end
|
631
|
+
|
632
|
+
def < (other)
|
633
|
+
lha = @s.toArray.to_a
|
634
|
+
rha = other.s.toArray.to_a
|
635
|
+
resultArray = Array.new(lha.length)
|
636
|
+
if (other.is_a?(NMatrix))
|
637
|
+
#check dimension
|
638
|
+
if (@dim != other.dim)
|
639
|
+
raise(ShapeError, "cannot compare matrices with different dimension")
|
640
|
+
return nil
|
641
|
+
end
|
642
|
+
#check shape
|
643
|
+
(0...dim).each do |i|
|
644
|
+
if (@shape[i] != other.shape[i])
|
645
|
+
raise(ShapeError, "cannot compare matrices with different shapes");
|
646
|
+
return nil
|
647
|
+
end
|
648
|
+
end
|
649
|
+
#check the entries
|
650
|
+
(0...lha.length).each do |i|
|
651
|
+
resultArray[i] = lha[i] < rha[i] ? true : false
|
652
|
+
end
|
653
|
+
result = NMatrix.new(:copy)
|
654
|
+
result.shape = @shape
|
655
|
+
result.dtype = :object
|
656
|
+
result.s = resultArray
|
657
|
+
end
|
658
|
+
result
|
659
|
+
end
|
660
|
+
|
661
|
+
def > (other)
|
662
|
+
lha = @s.toArray.to_a
|
663
|
+
rha = other.s.toArray.to_a
|
664
|
+
resultArray = Array.new(lha.length)
|
665
|
+
if (other.is_a?(NMatrix))
|
666
|
+
#check dimension
|
667
|
+
if (@dim != other.dim)
|
668
|
+
raise(ShapeError, "cannot compare matrices with different dimension")
|
669
|
+
return nil
|
670
|
+
end
|
671
|
+
#check shape
|
672
|
+
(0...dim).each do |i|
|
673
|
+
if (@shape[i] != other.shape[i])
|
674
|
+
raise(ShapeError, "cannot compare matrices with different shapes");
|
675
|
+
return nil
|
676
|
+
end
|
677
|
+
end
|
678
|
+
#check the entries
|
679
|
+
(0...lha.length).each do |i|
|
680
|
+
resultArray[i] = lha[i] > rha[i] ? true : false
|
681
|
+
end
|
682
|
+
result = NMatrix.new(:copy)
|
683
|
+
result.shape = @shape
|
684
|
+
result.dtype = :object
|
685
|
+
result.s = resultArray
|
686
|
+
end
|
687
|
+
result
|
688
|
+
end
|
689
|
+
|
690
|
+
# /////////////////////////
|
691
|
+
# // Matrix Math Methods //
|
692
|
+
# /////////////////////////
|
693
|
+
|
694
|
+
def dot(other)
|
695
|
+
result = nil
|
696
|
+
if (other.is_a?(NMatrix))
|
697
|
+
#check dimension
|
698
|
+
if (@shape.length!=2 || other.shape.length!=2)
|
699
|
+
raise(NotImplementedError, "please convert array to nx1 or 1xn NMatrix first")
|
700
|
+
return nil
|
701
|
+
end
|
702
|
+
#check shape
|
703
|
+
if (@shape[1] != other.shape[0])
|
704
|
+
raise(ArgumentError, "incompatible dimensions")
|
705
|
+
return nil
|
706
|
+
end
|
707
|
+
|
708
|
+
# if(@stype != other.stype)
|
709
|
+
# raise(NotImplementedError, "matrices must have same stype")
|
710
|
+
# end
|
711
|
+
|
712
|
+
result = create_dummy_nmatrix
|
713
|
+
result.shape = [@shape[0],other.shape[1]]
|
714
|
+
twoDMat = self.twoDMat.multiply(other.twoDMat)
|
715
|
+
result.s = ArrayRealVector.new(ArrayGenerator.getArrayDouble(twoDMat.getData, @shape[0],other.shape[1]))
|
716
|
+
else
|
717
|
+
raise(ArgumentError, "cannot have dot product with a scalar");
|
718
|
+
end
|
719
|
+
return result;
|
720
|
+
end
|
721
|
+
|
722
|
+
def symmetric?
|
723
|
+
return is_symmetric(false)
|
724
|
+
end
|
725
|
+
|
726
|
+
def is_symmetric(hermitian)
|
727
|
+
is_symmetric = true
|
728
|
+
|
729
|
+
if (@shape[0] == @shape[1] and @dim == 2)
|
730
|
+
if @stype == :dense
|
731
|
+
if (hermitian)
|
732
|
+
#Currently, we are not dealing with complex matrices.
|
733
|
+
eps = 0
|
734
|
+
is_symmetric = MatrixUtils.isSymmetric(self.twoDMat, eps)
|
735
|
+
else
|
736
|
+
eps = 0
|
737
|
+
is_symmetric = MatrixUtils.isSymmetric(self.twoDMat, eps)
|
738
|
+
end
|
739
|
+
|
740
|
+
else
|
741
|
+
#TODO: Implement, at the very least, yale_is_symmetric. Model it after yale/transp.template.c.
|
742
|
+
# raise Exception.new("symmetric? and hermitian? only implemented for dense currently")
|
743
|
+
end
|
744
|
+
end
|
745
|
+
return is_symmetric ? true : false
|
746
|
+
end
|
747
|
+
|
748
|
+
def hermitian?
|
749
|
+
return is_symmetric(true)
|
750
|
+
end
|
751
|
+
|
752
|
+
def capacity
|
753
|
+
|
754
|
+
end
|
755
|
+
|
756
|
+
# // protected methods
|
757
|
+
|
758
|
+
protected
|
759
|
+
|
760
|
+
def __inverse__(matrix, bool =true)
|
761
|
+
# if (:stype != :dense)
|
762
|
+
# raise Exception.new("needs exact determinant implementation for this matrix stype")
|
763
|
+
# return nil
|
764
|
+
# end
|
765
|
+
|
766
|
+
if (@dim != 2 || @shape[0] != @shape[1])
|
767
|
+
raise Exception.new("matrices must be square to have an inverse defined")
|
768
|
+
return nil
|
769
|
+
end
|
770
|
+
to_return = nil
|
771
|
+
if (dtype == :RUBYOBJ)
|
772
|
+
# to_return = *reinterpret_cast<VALUE*>(result);
|
773
|
+
else
|
774
|
+
to_return = create_dummy_nmatrix
|
775
|
+
twoDMat = MatrixUtils.inverse(matrix.twoDMat)
|
776
|
+
to_return.s = ArrayRealVector.new(ArrayGenerator.getArrayDouble(twoDMat.getData, @shape[0], @shape[1]))
|
777
|
+
end
|
778
|
+
|
779
|
+
return to_return
|
780
|
+
end
|
781
|
+
|
782
|
+
def __inverse__!
|
783
|
+
# if (:stype != :dense)
|
784
|
+
# raise Exception.new("needs exact determinant implementation for this matrix stype")
|
785
|
+
# return nil
|
786
|
+
# end
|
787
|
+
|
788
|
+
if (@dim != 2 || @shape[0] != @shape[1])
|
789
|
+
raise Exception.new("matrices must be square to have an inverse defined")
|
790
|
+
return nil
|
791
|
+
end
|
792
|
+
to_return = nil
|
793
|
+
if (dtype == :RUBYOBJ)
|
794
|
+
# to_return = *reinterpret_cast<VALUE*>(result);
|
795
|
+
else
|
796
|
+
twoDMat = MatrixUtils.inverse(self.twoDMat)
|
797
|
+
@s = ArrayRealVector.new(ArrayGenerator.getArrayDouble(twoDMat.getData, @shape[0], @shape[1]))
|
798
|
+
end
|
799
|
+
|
800
|
+
return self
|
801
|
+
end
|
802
|
+
|
803
|
+
def __inverse_exact__
|
804
|
+
# if (:stype != :dense)
|
805
|
+
# raise Exception.new("needs exact determinant implementation for this matrix stype")
|
806
|
+
# return nil
|
807
|
+
# end
|
808
|
+
|
809
|
+
if (@dim != 2 || @shape[0] != @shape[1])
|
810
|
+
raise Exception.new("matrices must be square to have an inverse defined")
|
811
|
+
return nil
|
812
|
+
end
|
813
|
+
to_return = nil
|
814
|
+
if (dtype == :RUBYOBJ)
|
815
|
+
# to_return = *reinterpret_cast<VALUE*>(result);
|
816
|
+
else
|
817
|
+
to_return = create_dummy_nmatrix
|
818
|
+
twoDMat = MatrixUtils.inverse(self.twoDMat)
|
819
|
+
to_return.s = ArrayRealVector.new(ArrayGenerator.getArrayDouble(twoDMat.getData, @shape[0], @shape[1]))
|
820
|
+
end
|
821
|
+
|
822
|
+
return to_return
|
823
|
+
|
824
|
+
end
|
825
|
+
|
826
|
+
private
|
827
|
+
|
828
|
+
# // private methods
|
829
|
+
|
830
|
+
def __hessenberg__(param)
|
831
|
+
raise(NotImplementedError, "Hessenberg Transformer not implemented for NMatrix-JRuby")
|
832
|
+
end
|
833
|
+
end
|
834
|
+
|
835
|
+
# load jruby implementation of operators.
|
836
|
+
require_relative './slice.rb'
|
837
|
+
require_relative './operators.rb'
|
838
|
+
require_relative './decomposition.rb'
|
839
|
+
require_relative './error.rb'
|
840
|
+
require_relative './enumerable.rb'
|