llama_cpp 0.15.4 → 0.16.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/ext/llama_cpp/extconf.rb +1 -2
- data/ext/llama_cpp/llama_cpp.cpp +15 -3
- data/lib/llama_cpp/version.rb +2 -2
- data/sig/llama_cpp.rbs +13 -1
- data/vendor/tmp/llama.cpp/Makefile +62 -35
- data/vendor/tmp/llama.cpp/ggml-alloc.c +4 -4
- data/vendor/tmp/llama.cpp/ggml-backend.c +5 -5
- data/vendor/tmp/llama.cpp/ggml-backend.h +1 -1
- data/vendor/tmp/llama.cpp/ggml-cuda/acc.cu +47 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/arange.cu +34 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/argsort.cu +103 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/binbcast.cu +280 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/clamp.cu +34 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/concat.cu +196 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/convert.cu +686 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/cpy.cu +490 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/diagmask.cu +40 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/dmmv.cu +662 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn-tile-f16.cu +319 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn-tile-f32.cu +312 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn.cu +345 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/getrows.cu +178 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/im2col.cu +104 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/mmq.cu +1564 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/mmvq.cu +404 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/norm.cu +221 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/pad.cu +49 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/pool2d.cu +94 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/quantize.cu +45 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/rope.cu +271 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/scale.cu +31 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/softmax.cu +205 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/sumrows.cu +40 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs256-f16-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs256-f16-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb16.cu +10 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb32.cu +9 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb16.cu +10 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb32.cu +10 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb8.cu +8 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/tsembd.cu +47 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/unary.cu +266 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/upscale.cu +51 -0
- data/vendor/tmp/llama.cpp/ggml-cuda.cu +8 -6
- data/vendor/tmp/llama.cpp/ggml-kompute.cpp +21 -6
- data/vendor/tmp/llama.cpp/ggml-metal.h +1 -1
- data/vendor/tmp/llama.cpp/ggml-metal.m +34 -24
- data/vendor/tmp/llama.cpp/ggml-metal.metal +83 -59
- data/vendor/tmp/llama.cpp/ggml-rpc.cpp +2 -2
- data/vendor/tmp/llama.cpp/ggml-sycl.cpp +7 -67
- data/vendor/tmp/llama.cpp/ggml-vulkan-shaders.hpp +99301 -39793
- data/vendor/tmp/llama.cpp/ggml-vulkan.cpp +456 -329
- data/vendor/tmp/llama.cpp/ggml.c +178 -330
- data/vendor/tmp/llama.cpp/ggml.h +9 -28
- data/vendor/tmp/llama.cpp/llama.cpp +242 -426
- data/vendor/tmp/llama.cpp/llama.h +17 -43
- metadata +121 -6
- data/vendor/tmp/llama.cpp/ggml-mpi.c +0 -216
- data/vendor/tmp/llama.cpp/ggml-mpi.h +0 -39
- data/vendor/tmp/llama.cpp/ggml-opencl.cpp +0 -2305
- data/vendor/tmp/llama.cpp/ggml-opencl.h +0 -36
@@ -0,0 +1,404 @@
|
|
1
|
+
#include "mmvq.cuh"
|
2
|
+
#include "vecdotq.cuh"
|
3
|
+
|
4
|
+
typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
|
5
|
+
|
6
|
+
template <int ncols_y, int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda>
|
7
|
+
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
8
|
+
// tell the compiler to use as many registers as it wants, see nwarps definition below
|
9
|
+
__launch_bounds__((ncols_y <= 4 ? 4 : 2)*WARP_SIZE, 1)
|
10
|
+
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
11
|
+
static __global__ void mul_mat_vec_q(
|
12
|
+
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
13
|
+
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
|
14
|
+
|
15
|
+
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
|
16
|
+
constexpr int nwarps = 1;
|
17
|
+
constexpr int rows_per_cuda_block = 1;
|
18
|
+
#else
|
19
|
+
constexpr int nwarps = ncols_y <= 4 ? 4 : 2;
|
20
|
+
constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
|
21
|
+
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
|
22
|
+
|
23
|
+
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
24
|
+
const int row0 = rows_per_cuda_block*blockIdx.x;
|
25
|
+
const int blocks_per_row_x = ncols_x / qk;
|
26
|
+
const int blocks_per_col_y = nrows_y / QK8_1;
|
27
|
+
constexpr int blocks_per_iter = vdr * nwarps*WARP_SIZE / qi;
|
28
|
+
|
29
|
+
// partial sum for each thread
|
30
|
+
float tmp[ncols_y][rows_per_cuda_block] = {0.0f};
|
31
|
+
|
32
|
+
const block_q_t * x = (const block_q_t *) vx;
|
33
|
+
const block_q8_1 * y = (const block_q8_1 *) vy;
|
34
|
+
|
35
|
+
for (int kbx = tid / (qi/vdr); kbx < blocks_per_row_x; kbx += blocks_per_iter) {
|
36
|
+
const int kby = kbx * (qk/QK8_1); // y block index that aligns with kbx
|
37
|
+
|
38
|
+
// x block quant index when casting the quants to int
|
39
|
+
const int kqs = vdr * (tid % (qi/vdr));
|
40
|
+
|
41
|
+
#pragma unroll
|
42
|
+
for (int j = 0; j < ncols_y; ++j) {
|
43
|
+
#pragma unroll
|
44
|
+
for (int i = 0; i < rows_per_cuda_block; ++i) {
|
45
|
+
tmp[j][i] += vec_dot_q_cuda(
|
46
|
+
&x[kbx + (row0 + i)*blocks_per_row_x], &y[j*blocks_per_col_y + kby], kqs);
|
47
|
+
}
|
48
|
+
}
|
49
|
+
}
|
50
|
+
|
51
|
+
__shared__ float tmp_shared[nwarps-1 > 0 ? nwarps-1 : 1][ncols_y][rows_per_cuda_block][WARP_SIZE];
|
52
|
+
if (threadIdx.y > 0) {
|
53
|
+
#pragma unroll
|
54
|
+
for (int j = 0; j < ncols_y; ++j) {
|
55
|
+
#pragma unroll
|
56
|
+
for (int i = 0; i < rows_per_cuda_block; ++i) {
|
57
|
+
tmp_shared[threadIdx.y-1][j][i][threadIdx.x] = tmp[j][i];
|
58
|
+
}
|
59
|
+
}
|
60
|
+
}
|
61
|
+
__syncthreads();
|
62
|
+
if (threadIdx.y > 0) {
|
63
|
+
return;
|
64
|
+
}
|
65
|
+
|
66
|
+
// sum up partial sums and write back result
|
67
|
+
#pragma unroll
|
68
|
+
for (int j = 0; j < ncols_y; ++j) {
|
69
|
+
#pragma unroll
|
70
|
+
for (int i = 0; i < rows_per_cuda_block; ++i) {
|
71
|
+
#pragma unroll
|
72
|
+
for (int l = 0; l < nwarps-1; ++l) {
|
73
|
+
tmp[j][i] += tmp_shared[l][j][i][threadIdx.x];
|
74
|
+
}
|
75
|
+
tmp[j][i] = warp_reduce_sum(tmp[j][i]);
|
76
|
+
}
|
77
|
+
|
78
|
+
if (threadIdx.x < rows_per_cuda_block) {
|
79
|
+
dst[j*nrows_dst + row0 + threadIdx.x] = tmp[j][threadIdx.x];
|
80
|
+
}
|
81
|
+
}
|
82
|
+
}
|
83
|
+
|
84
|
+
template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot>
|
85
|
+
static void mul_mat_vec_q_cuda(
|
86
|
+
const void * vx, const void * vy, float * dst,
|
87
|
+
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
88
|
+
|
89
|
+
GGML_ASSERT(ncols_x % qk == 0);
|
90
|
+
GGML_ASSERT(ncols_y <= MMVQ_MAX_BATCH_SIZE);
|
91
|
+
|
92
|
+
int id = ggml_cuda_get_device();
|
93
|
+
|
94
|
+
int64_t nwarps = 1;
|
95
|
+
int64_t rows_per_cuda_block = 1;
|
96
|
+
|
97
|
+
if (ggml_cuda_info().devices[id].cc < CC_RDNA2) { // NVIDIA and AMD older than RDNA2
|
98
|
+
switch(ncols_y) {
|
99
|
+
case 1:
|
100
|
+
nwarps = 4;
|
101
|
+
rows_per_cuda_block = 1;
|
102
|
+
break;
|
103
|
+
case 2:
|
104
|
+
case 3:
|
105
|
+
case 4:
|
106
|
+
nwarps = 4;
|
107
|
+
rows_per_cuda_block = 2;
|
108
|
+
break;
|
109
|
+
case 5:
|
110
|
+
case 6:
|
111
|
+
case 7:
|
112
|
+
case 8:
|
113
|
+
nwarps = 2;
|
114
|
+
rows_per_cuda_block = 2;
|
115
|
+
break;
|
116
|
+
default:
|
117
|
+
GGML_ASSERT(false);
|
118
|
+
break;
|
119
|
+
}
|
120
|
+
}
|
121
|
+
const int64_t nblocks = (nrows_x + rows_per_cuda_block - 1) / rows_per_cuda_block;
|
122
|
+
const dim3 block_nums(nblocks, 1, 1);
|
123
|
+
const dim3 block_dims(WARP_SIZE, nwarps, 1);
|
124
|
+
|
125
|
+
switch (ncols_y) {
|
126
|
+
case 1:
|
127
|
+
mul_mat_vec_q<1, qk, qi, block_q_t, vdr, vec_dot>
|
128
|
+
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
129
|
+
break;
|
130
|
+
case 2:
|
131
|
+
mul_mat_vec_q<2, qk, qi, block_q_t, vdr, vec_dot>
|
132
|
+
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
133
|
+
break;
|
134
|
+
case 3:
|
135
|
+
mul_mat_vec_q<3, qk, qi, block_q_t, vdr, vec_dot>
|
136
|
+
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
137
|
+
break;
|
138
|
+
case 4:
|
139
|
+
mul_mat_vec_q<4, qk, qi, block_q_t, vdr, vec_dot>
|
140
|
+
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
141
|
+
break;
|
142
|
+
case 5:
|
143
|
+
mul_mat_vec_q<5, qk, qi, block_q_t, vdr, vec_dot>
|
144
|
+
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
145
|
+
break;
|
146
|
+
case 6:
|
147
|
+
mul_mat_vec_q<6, qk, qi, block_q_t, vdr, vec_dot>
|
148
|
+
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
149
|
+
break;
|
150
|
+
case 7:
|
151
|
+
mul_mat_vec_q<7, qk, qi, block_q_t, vdr, vec_dot>
|
152
|
+
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
153
|
+
break;
|
154
|
+
case 8:
|
155
|
+
mul_mat_vec_q<8, qk, qi, block_q_t, vdr, vec_dot>
|
156
|
+
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
157
|
+
break;
|
158
|
+
default:
|
159
|
+
GGML_ASSERT(false);
|
160
|
+
break;
|
161
|
+
}
|
162
|
+
}
|
163
|
+
|
164
|
+
static void mul_mat_vec_q4_0_q8_1_cuda(
|
165
|
+
const void * vx, const void * vy, float * dst,
|
166
|
+
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
167
|
+
|
168
|
+
mul_mat_vec_q_cuda<QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
|
169
|
+
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
170
|
+
}
|
171
|
+
|
172
|
+
static void mul_mat_vec_q4_1_q8_1_cuda(
|
173
|
+
const void * vx, const void * vy, float * dst,
|
174
|
+
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
175
|
+
|
176
|
+
mul_mat_vec_q_cuda<QK4_1, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
|
177
|
+
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
178
|
+
}
|
179
|
+
|
180
|
+
static void mul_mat_vec_q5_0_q8_1_cuda(
|
181
|
+
const void * vx, const void * vy, float * dst,
|
182
|
+
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
183
|
+
|
184
|
+
mul_mat_vec_q_cuda<QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
|
185
|
+
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
186
|
+
}
|
187
|
+
|
188
|
+
static void mul_mat_vec_q5_1_q8_1_cuda(
|
189
|
+
const void * vx, const void * vy, float * dst,
|
190
|
+
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
191
|
+
|
192
|
+
mul_mat_vec_q_cuda<QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
|
193
|
+
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
194
|
+
}
|
195
|
+
|
196
|
+
static void mul_mat_vec_q8_0_q8_1_cuda(
|
197
|
+
const void * vx, const void * vy, float * dst,
|
198
|
+
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
199
|
+
|
200
|
+
mul_mat_vec_q_cuda<QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
|
201
|
+
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
202
|
+
}
|
203
|
+
|
204
|
+
static void mul_mat_vec_q2_K_q8_1_cuda(
|
205
|
+
const void * vx, const void * vy, float * dst,
|
206
|
+
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
207
|
+
|
208
|
+
mul_mat_vec_q_cuda<QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
|
209
|
+
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
210
|
+
}
|
211
|
+
|
212
|
+
static void mul_mat_vec_q3_K_q8_1_cuda(
|
213
|
+
const void * vx, const void * vy, float * dst,
|
214
|
+
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
215
|
+
|
216
|
+
mul_mat_vec_q_cuda<QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
|
217
|
+
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
218
|
+
}
|
219
|
+
|
220
|
+
static void mul_mat_vec_q4_K_q8_1_cuda(
|
221
|
+
const void * vx, const void * vy, float * dst,
|
222
|
+
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
223
|
+
|
224
|
+
mul_mat_vec_q_cuda<QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
|
225
|
+
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
226
|
+
}
|
227
|
+
|
228
|
+
static void mul_mat_vec_q5_K_q8_1_cuda(
|
229
|
+
const void * vx, const void * vy, float * dst,
|
230
|
+
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
231
|
+
|
232
|
+
mul_mat_vec_q_cuda<QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
|
233
|
+
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
234
|
+
}
|
235
|
+
|
236
|
+
static void mul_mat_vec_q6_K_q8_1_cuda(
|
237
|
+
const void * vx, const void * vy, float * dst,
|
238
|
+
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
239
|
+
|
240
|
+
mul_mat_vec_q_cuda<QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
|
241
|
+
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
242
|
+
}
|
243
|
+
|
244
|
+
static void mul_mat_vec_iq2_xxs_q8_1_cuda(
|
245
|
+
const void * vx, const void * vy, float * dst,
|
246
|
+
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
247
|
+
|
248
|
+
mul_mat_vec_q_cuda<QK_K, QI2_XXS, block_iq2_xxs, 1, vec_dot_iq2_xxs_q8_1>
|
249
|
+
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
250
|
+
}
|
251
|
+
|
252
|
+
static void mul_mat_vec_iq2_xs_q8_1_cuda(
|
253
|
+
const void * vx, const void * vy, float * dst,
|
254
|
+
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
255
|
+
|
256
|
+
mul_mat_vec_q_cuda<QK_K, QI2_XS, block_iq2_xs, 1, vec_dot_iq2_xs_q8_1>
|
257
|
+
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
258
|
+
}
|
259
|
+
|
260
|
+
static void mul_mat_vec_iq2_s_q8_1_cuda(
|
261
|
+
const void * vx, const void * vy, float * dst,
|
262
|
+
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
263
|
+
|
264
|
+
mul_mat_vec_q_cuda<QK_K, QI2_S, block_iq2_s, 1, vec_dot_iq2_s_q8_1>
|
265
|
+
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
266
|
+
}
|
267
|
+
|
268
|
+
static void mul_mat_vec_iq3_xxs_q8_1_cuda(
|
269
|
+
const void * vx, const void * vy, float * dst,
|
270
|
+
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
271
|
+
|
272
|
+
mul_mat_vec_q_cuda<QK_K, QI3_XXS, block_iq3_xxs, 1, vec_dot_iq3_xxs_q8_1>
|
273
|
+
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
274
|
+
}
|
275
|
+
|
276
|
+
static void mul_mat_vec_iq1_s_q8_1_cuda(
|
277
|
+
const void * vx, const void * vy, float * dst,
|
278
|
+
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
279
|
+
|
280
|
+
mul_mat_vec_q_cuda<QK_K, QI1_S, block_iq1_s, 1, vec_dot_iq1_s_q8_1>
|
281
|
+
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
282
|
+
}
|
283
|
+
|
284
|
+
static void mul_mat_vec_iq1_m_q8_1_cuda(
|
285
|
+
const void * vx, const void * vy, float * dst,
|
286
|
+
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
287
|
+
|
288
|
+
mul_mat_vec_q_cuda<QK_K, QI1_S, block_iq1_m, 1, vec_dot_iq1_m_q8_1>
|
289
|
+
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
290
|
+
}
|
291
|
+
|
292
|
+
static void mul_mat_vec_iq4_nl_q8_1_cuda(
|
293
|
+
const void * vx, const void * vy, float * dst,
|
294
|
+
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
295
|
+
|
296
|
+
mul_mat_vec_q_cuda<QK4_NL, QI4_NL, block_iq4_nl, VDR_Q4_0_Q8_1_MMVQ, vec_dot_iq4_nl_q8_1>
|
297
|
+
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
298
|
+
}
|
299
|
+
|
300
|
+
static void mul_mat_vec_iq4_xs_q8_1_cuda(
|
301
|
+
const void * vx, const void * vy, float * dst,
|
302
|
+
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
303
|
+
|
304
|
+
mul_mat_vec_q_cuda<QK_K, QI4_XS, block_iq4_xs, 1, vec_dot_iq4_xs_q8_1>
|
305
|
+
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
306
|
+
}
|
307
|
+
|
308
|
+
static void mul_mat_vec_iq3_s_q8_1_cuda(
|
309
|
+
const void * vx, const void * vy, float * dst,
|
310
|
+
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
311
|
+
|
312
|
+
mul_mat_vec_q_cuda<QK_K, QI3_XS, block_iq3_s, 1, vec_dot_iq3_s_q8_1>
|
313
|
+
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
314
|
+
}
|
315
|
+
|
316
|
+
void ggml_cuda_op_mul_mat_vec_q(
|
317
|
+
ggml_backend_cuda_context & ctx,
|
318
|
+
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
319
|
+
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
320
|
+
const int64_t src1_padded_row_size, cudaStream_t stream) {
|
321
|
+
|
322
|
+
const int64_t ne00 = src0->ne[0];
|
323
|
+
const int64_t row_diff = row_high - row_low;
|
324
|
+
|
325
|
+
const int64_t ne10 = src1->ne[0];
|
326
|
+
GGML_ASSERT(ne10 % QK8_1 == 0);
|
327
|
+
|
328
|
+
const int64_t ne0 = dst->ne[0];
|
329
|
+
|
330
|
+
int id = ggml_cuda_get_device();
|
331
|
+
|
332
|
+
// the main device has a larger memory buffer to hold the results from all GPUs
|
333
|
+
// nrows_dst == nrows of the matrix that the kernel writes into
|
334
|
+
const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
|
335
|
+
|
336
|
+
switch (src0->type) {
|
337
|
+
case GGML_TYPE_Q4_0:
|
338
|
+
mul_mat_vec_q4_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
339
|
+
break;
|
340
|
+
case GGML_TYPE_Q4_1:
|
341
|
+
mul_mat_vec_q4_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
342
|
+
break;
|
343
|
+
case GGML_TYPE_Q5_0:
|
344
|
+
mul_mat_vec_q5_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
345
|
+
break;
|
346
|
+
case GGML_TYPE_Q5_1:
|
347
|
+
mul_mat_vec_q5_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
348
|
+
break;
|
349
|
+
case GGML_TYPE_Q8_0:
|
350
|
+
mul_mat_vec_q8_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
351
|
+
break;
|
352
|
+
case GGML_TYPE_Q2_K:
|
353
|
+
mul_mat_vec_q2_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
354
|
+
break;
|
355
|
+
case GGML_TYPE_Q3_K:
|
356
|
+
mul_mat_vec_q3_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
357
|
+
break;
|
358
|
+
case GGML_TYPE_Q4_K:
|
359
|
+
mul_mat_vec_q4_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
360
|
+
break;
|
361
|
+
case GGML_TYPE_Q5_K:
|
362
|
+
mul_mat_vec_q5_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
363
|
+
break;
|
364
|
+
case GGML_TYPE_Q6_K:
|
365
|
+
mul_mat_vec_q6_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
366
|
+
break;
|
367
|
+
case GGML_TYPE_IQ2_XXS:
|
368
|
+
mul_mat_vec_iq2_xxs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
369
|
+
break;
|
370
|
+
case GGML_TYPE_IQ2_XS:
|
371
|
+
mul_mat_vec_iq2_xs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
372
|
+
break;
|
373
|
+
case GGML_TYPE_IQ2_S:
|
374
|
+
mul_mat_vec_iq2_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
375
|
+
break;
|
376
|
+
case GGML_TYPE_IQ3_XXS:
|
377
|
+
mul_mat_vec_iq3_xxs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
378
|
+
break;
|
379
|
+
case GGML_TYPE_IQ1_S:
|
380
|
+
mul_mat_vec_iq1_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
381
|
+
break;
|
382
|
+
case GGML_TYPE_IQ1_M:
|
383
|
+
mul_mat_vec_iq1_m_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
384
|
+
break;
|
385
|
+
case GGML_TYPE_IQ4_NL:
|
386
|
+
mul_mat_vec_iq4_nl_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
387
|
+
break;
|
388
|
+
case GGML_TYPE_IQ4_XS:
|
389
|
+
mul_mat_vec_iq4_xs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
390
|
+
break;
|
391
|
+
case GGML_TYPE_IQ3_S:
|
392
|
+
mul_mat_vec_iq3_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
393
|
+
break;
|
394
|
+
default:
|
395
|
+
GGML_ASSERT(false);
|
396
|
+
break;
|
397
|
+
}
|
398
|
+
|
399
|
+
GGML_UNUSED(src1);
|
400
|
+
GGML_UNUSED(dst);
|
401
|
+
GGML_UNUSED(src1_ddf_i);
|
402
|
+
GGML_UNUSED(src1_ncols);
|
403
|
+
GGML_UNUSED(src1_padded_row_size);
|
404
|
+
}
|
@@ -0,0 +1,221 @@
|
|
1
|
+
#include "norm.cuh"
|
2
|
+
|
3
|
+
template <int block_size>
|
4
|
+
static __global__ void norm_f32(const float * x, float * dst, const int ncols, const float eps) {
|
5
|
+
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
6
|
+
const int tid = threadIdx.x;
|
7
|
+
|
8
|
+
float2 mean_var = make_float2(0.f, 0.f);
|
9
|
+
|
10
|
+
for (int col = tid; col < ncols; col += block_size) {
|
11
|
+
const float xi = x[row*ncols + col];
|
12
|
+
mean_var.x += xi;
|
13
|
+
mean_var.y += xi * xi;
|
14
|
+
}
|
15
|
+
|
16
|
+
// sum up partial sums
|
17
|
+
mean_var = warp_reduce_sum(mean_var);
|
18
|
+
if (block_size > WARP_SIZE) {
|
19
|
+
__shared__ float2 s_sum[32];
|
20
|
+
int warp_id = threadIdx.x / WARP_SIZE;
|
21
|
+
int lane_id = threadIdx.x % WARP_SIZE;
|
22
|
+
if (lane_id == 0) {
|
23
|
+
s_sum[warp_id] = mean_var;
|
24
|
+
}
|
25
|
+
__syncthreads();
|
26
|
+
mean_var = s_sum[lane_id];
|
27
|
+
mean_var = warp_reduce_sum(mean_var);
|
28
|
+
}
|
29
|
+
|
30
|
+
const float mean = mean_var.x / ncols;
|
31
|
+
const float var = mean_var.y / ncols - mean * mean;
|
32
|
+
const float inv_std = rsqrtf(var + eps);
|
33
|
+
|
34
|
+
for (int col = tid; col < ncols; col += block_size) {
|
35
|
+
dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
|
36
|
+
}
|
37
|
+
}
|
38
|
+
|
39
|
+
template <int block_size>
|
40
|
+
static __global__ void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps) {
|
41
|
+
// blockIdx.x: num_groups idx
|
42
|
+
// threadIdx.x: block_size idx
|
43
|
+
int start = blockIdx.x * group_size;
|
44
|
+
int end = start + group_size;
|
45
|
+
|
46
|
+
start += threadIdx.x;
|
47
|
+
|
48
|
+
if (end >= ne_elements) {
|
49
|
+
end = ne_elements;
|
50
|
+
}
|
51
|
+
|
52
|
+
float tmp = 0.0f; // partial sum for thread in warp
|
53
|
+
|
54
|
+
for (int j = start; j < end; j += block_size) {
|
55
|
+
tmp += x[j];
|
56
|
+
}
|
57
|
+
|
58
|
+
tmp = warp_reduce_sum(tmp);
|
59
|
+
if (block_size > WARP_SIZE) {
|
60
|
+
__shared__ float s_sum[32];
|
61
|
+
int warp_id = threadIdx.x / WARP_SIZE;
|
62
|
+
int lane_id = threadIdx.x % WARP_SIZE;
|
63
|
+
if (lane_id == 0) {
|
64
|
+
s_sum[warp_id] = tmp;
|
65
|
+
}
|
66
|
+
__syncthreads();
|
67
|
+
tmp = s_sum[lane_id];
|
68
|
+
tmp = warp_reduce_sum(tmp);
|
69
|
+
}
|
70
|
+
|
71
|
+
float mean = tmp / group_size;
|
72
|
+
tmp = 0.0f;
|
73
|
+
|
74
|
+
for (int j = start; j < end; j += block_size) {
|
75
|
+
float xi = x[j] - mean;
|
76
|
+
dst[j] = xi;
|
77
|
+
tmp += xi * xi;
|
78
|
+
}
|
79
|
+
|
80
|
+
tmp = warp_reduce_sum(tmp);
|
81
|
+
if (block_size > WARP_SIZE) {
|
82
|
+
__shared__ float s_sum[32];
|
83
|
+
int warp_id = threadIdx.x / WARP_SIZE;
|
84
|
+
int lane_id = threadIdx.x % WARP_SIZE;
|
85
|
+
if (lane_id == 0) {
|
86
|
+
s_sum[warp_id] = tmp;
|
87
|
+
}
|
88
|
+
__syncthreads();
|
89
|
+
tmp = s_sum[lane_id];
|
90
|
+
tmp = warp_reduce_sum(tmp);
|
91
|
+
}
|
92
|
+
|
93
|
+
float variance = tmp / group_size;
|
94
|
+
float scale = rsqrtf(variance + eps);
|
95
|
+
for (int j = start; j < end; j += block_size) {
|
96
|
+
dst[j] *= scale;
|
97
|
+
}
|
98
|
+
}
|
99
|
+
|
100
|
+
template <int block_size>
|
101
|
+
static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
|
102
|
+
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
103
|
+
const int tid = threadIdx.x;
|
104
|
+
|
105
|
+
float tmp = 0.0f; // partial sum for thread in warp
|
106
|
+
|
107
|
+
for (int col = tid; col < ncols; col += block_size) {
|
108
|
+
const float xi = x[row*ncols + col];
|
109
|
+
tmp += xi * xi;
|
110
|
+
}
|
111
|
+
|
112
|
+
// sum up partial sums
|
113
|
+
tmp = warp_reduce_sum(tmp);
|
114
|
+
if (block_size > WARP_SIZE) {
|
115
|
+
__shared__ float s_sum[32];
|
116
|
+
int warp_id = threadIdx.x / WARP_SIZE;
|
117
|
+
int lane_id = threadIdx.x % WARP_SIZE;
|
118
|
+
if (lane_id == 0) {
|
119
|
+
s_sum[warp_id] = tmp;
|
120
|
+
}
|
121
|
+
__syncthreads();
|
122
|
+
tmp = s_sum[lane_id];
|
123
|
+
tmp = warp_reduce_sum(tmp);
|
124
|
+
}
|
125
|
+
|
126
|
+
const float mean = tmp / ncols;
|
127
|
+
const float scale = rsqrtf(mean + eps);
|
128
|
+
|
129
|
+
for (int col = tid; col < ncols; col += block_size) {
|
130
|
+
dst[row*ncols + col] = scale * x[row*ncols + col];
|
131
|
+
}
|
132
|
+
}
|
133
|
+
|
134
|
+
static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
|
135
|
+
GGML_ASSERT(ncols % WARP_SIZE == 0);
|
136
|
+
if (ncols < 1024) {
|
137
|
+
const dim3 block_dims(WARP_SIZE, 1, 1);
|
138
|
+
norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
|
139
|
+
} else {
|
140
|
+
const dim3 block_dims(1024, 1, 1);
|
141
|
+
norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
|
142
|
+
}
|
143
|
+
}
|
144
|
+
|
145
|
+
static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const int group_size, const int ne_elements, cudaStream_t stream) {
|
146
|
+
static const float eps = 1e-6f;
|
147
|
+
if (group_size < 1024) {
|
148
|
+
const dim3 block_dims(WARP_SIZE, 1, 1);
|
149
|
+
group_norm_f32<WARP_SIZE><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
|
150
|
+
} else {
|
151
|
+
const dim3 block_dims(1024, 1, 1);
|
152
|
+
group_norm_f32<1024><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
|
153
|
+
}
|
154
|
+
}
|
155
|
+
|
156
|
+
static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
|
157
|
+
GGML_ASSERT(ncols % WARP_SIZE == 0);
|
158
|
+
if (ncols < 1024) {
|
159
|
+
const dim3 block_dims(WARP_SIZE, 1, 1);
|
160
|
+
rms_norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
|
161
|
+
} else {
|
162
|
+
const dim3 block_dims(1024, 1, 1);
|
163
|
+
rms_norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
|
164
|
+
}
|
165
|
+
}
|
166
|
+
|
167
|
+
void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
168
|
+
const ggml_tensor * src0 = dst->src[0];
|
169
|
+
const float * src0_d = (const float *)src0->data;
|
170
|
+
float * dst_d = (float *)dst->data;
|
171
|
+
cudaStream_t stream = ctx.stream();
|
172
|
+
|
173
|
+
GGML_ASSERT(ggml_is_contiguous(src0));
|
174
|
+
|
175
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
176
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
177
|
+
|
178
|
+
const int64_t ne00 = src0->ne[0];
|
179
|
+
const int64_t nrows = ggml_nrows(src0);
|
180
|
+
|
181
|
+
float eps;
|
182
|
+
memcpy(&eps, dst->op_params, sizeof(float));
|
183
|
+
|
184
|
+
norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream);
|
185
|
+
}
|
186
|
+
|
187
|
+
void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
188
|
+
const ggml_tensor * src0 = dst->src[0];
|
189
|
+
const float * src0_d = (const float *)src0->data;
|
190
|
+
float * dst_d = (float *)dst->data;
|
191
|
+
cudaStream_t stream = ctx.stream();
|
192
|
+
|
193
|
+
GGML_ASSERT(ggml_is_contiguous(src0));
|
194
|
+
|
195
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
196
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
197
|
+
|
198
|
+
int num_groups = dst->op_params[0];
|
199
|
+
int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
|
200
|
+
group_norm_f32_cuda(src0_d, dst_d, num_groups * src0->ne[3], group_size, ggml_nelements(src0), stream);
|
201
|
+
}
|
202
|
+
|
203
|
+
void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
204
|
+
const ggml_tensor * src0 = dst->src[0];
|
205
|
+
const float * src0_d = (const float *)src0->data;
|
206
|
+
float * dst_d = (float *)dst->data;
|
207
|
+
cudaStream_t stream = ctx.stream();
|
208
|
+
|
209
|
+
GGML_ASSERT(ggml_is_contiguous(src0));
|
210
|
+
|
211
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
212
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
213
|
+
|
214
|
+
const int64_t ne00 = src0->ne[0];
|
215
|
+
const int64_t nrows = ggml_nrows(src0);
|
216
|
+
|
217
|
+
float eps;
|
218
|
+
memcpy(&eps, dst->op_params, sizeof(float));
|
219
|
+
|
220
|
+
rms_norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream);
|
221
|
+
}
|
@@ -0,0 +1,49 @@
|
|
1
|
+
#include "pad.cuh"
|
2
|
+
|
3
|
+
static __global__ void pad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
|
4
|
+
// blockIdx.z: idx of ne2*ne3, aka ne02*ne03
|
5
|
+
// blockIdx.y: idx of ne1
|
6
|
+
// blockIDx.x: idx of ne0 / BLOCK_SIZE
|
7
|
+
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
8
|
+
if (nidx >= ne0) {
|
9
|
+
return;
|
10
|
+
}
|
11
|
+
|
12
|
+
// operation
|
13
|
+
int offset_dst =
|
14
|
+
nidx +
|
15
|
+
blockIdx.y * ne0 +
|
16
|
+
blockIdx.z * ne0 * gridDim.y;
|
17
|
+
if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) {
|
18
|
+
int offset_src =
|
19
|
+
nidx +
|
20
|
+
blockIdx.y * ne00 +
|
21
|
+
blockIdx.z * ne00 * ne01;
|
22
|
+
dst[offset_dst] = x[offset_src];
|
23
|
+
} else {
|
24
|
+
dst[offset_dst] = 0.0f;
|
25
|
+
}
|
26
|
+
}
|
27
|
+
|
28
|
+
static void pad_f32_cuda(const float * x, float * dst,
|
29
|
+
const int ne00, const int ne01, const int ne02, const int ne03,
|
30
|
+
const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
|
31
|
+
int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
|
32
|
+
dim3 gridDim(num_blocks, ne1, ne2*ne3);
|
33
|
+
pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
|
34
|
+
}
|
35
|
+
|
36
|
+
void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
37
|
+
const ggml_tensor * src0 = dst->src[0];
|
38
|
+
const float * src0_d = (const float *)src0->data;
|
39
|
+
float * dst_d = (float *)dst->data;
|
40
|
+
cudaStream_t stream = ctx.stream();
|
41
|
+
|
42
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
43
|
+
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
44
|
+
GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
|
45
|
+
|
46
|
+
pad_f32_cuda(src0_d, dst_d,
|
47
|
+
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
|
48
|
+
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
|
49
|
+
}
|