llama_cpp 0.15.4 → 0.16.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/ext/llama_cpp/extconf.rb +1 -2
- data/ext/llama_cpp/llama_cpp.cpp +15 -3
- data/lib/llama_cpp/version.rb +2 -2
- data/sig/llama_cpp.rbs +13 -1
- data/vendor/tmp/llama.cpp/Makefile +62 -35
- data/vendor/tmp/llama.cpp/ggml-alloc.c +4 -4
- data/vendor/tmp/llama.cpp/ggml-backend.c +5 -5
- data/vendor/tmp/llama.cpp/ggml-backend.h +1 -1
- data/vendor/tmp/llama.cpp/ggml-cuda/acc.cu +47 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/arange.cu +34 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/argsort.cu +103 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/binbcast.cu +280 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/clamp.cu +34 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/concat.cu +196 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/convert.cu +686 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/cpy.cu +490 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/diagmask.cu +40 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/dmmv.cu +662 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn-tile-f16.cu +319 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn-tile-f32.cu +312 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn.cu +345 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/getrows.cu +178 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/im2col.cu +104 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/mmq.cu +1564 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/mmvq.cu +404 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/norm.cu +221 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/pad.cu +49 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/pool2d.cu +94 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/quantize.cu +45 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/rope.cu +271 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/scale.cu +31 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/softmax.cu +205 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/sumrows.cu +40 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs256-f16-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs256-f16-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb16.cu +10 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb32.cu +9 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb16.cu +10 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb32.cu +10 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb8.cu +8 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/tsembd.cu +47 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/unary.cu +266 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/upscale.cu +51 -0
- data/vendor/tmp/llama.cpp/ggml-cuda.cu +8 -6
- data/vendor/tmp/llama.cpp/ggml-kompute.cpp +21 -6
- data/vendor/tmp/llama.cpp/ggml-metal.h +1 -1
- data/vendor/tmp/llama.cpp/ggml-metal.m +34 -24
- data/vendor/tmp/llama.cpp/ggml-metal.metal +83 -59
- data/vendor/tmp/llama.cpp/ggml-rpc.cpp +2 -2
- data/vendor/tmp/llama.cpp/ggml-sycl.cpp +7 -67
- data/vendor/tmp/llama.cpp/ggml-vulkan-shaders.hpp +99301 -39793
- data/vendor/tmp/llama.cpp/ggml-vulkan.cpp +456 -329
- data/vendor/tmp/llama.cpp/ggml.c +178 -330
- data/vendor/tmp/llama.cpp/ggml.h +9 -28
- data/vendor/tmp/llama.cpp/llama.cpp +242 -426
- data/vendor/tmp/llama.cpp/llama.h +17 -43
- metadata +121 -6
- data/vendor/tmp/llama.cpp/ggml-mpi.c +0 -216
- data/vendor/tmp/llama.cpp/ggml-mpi.h +0 -39
- data/vendor/tmp/llama.cpp/ggml-opencl.cpp +0 -2305
- data/vendor/tmp/llama.cpp/ggml-opencl.h +0 -36
@@ -0,0 +1,345 @@
|
|
1
|
+
#include "common.cuh"
|
2
|
+
#include "fattn-common.cuh"
|
3
|
+
#include "fattn-tile-f16.cuh"
|
4
|
+
#include "fattn-tile-f32.cuh"
|
5
|
+
#include "fattn-vec-f16.cuh"
|
6
|
+
#include "fattn-vec-f32.cuh"
|
7
|
+
#include "fattn-wmma-f16.cuh"
|
8
|
+
#include "fattn.cuh"
|
9
|
+
|
10
|
+
#include <cstdint>
|
11
|
+
|
12
|
+
static void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
13
|
+
const ggml_tensor * KQV = dst;
|
14
|
+
const ggml_tensor * Q = dst->src[0];
|
15
|
+
|
16
|
+
const int32_t precision = KQV->op_params[2];
|
17
|
+
|
18
|
+
if (precision != GGML_PREC_DEFAULT) {
|
19
|
+
if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
|
20
|
+
constexpr int cols_per_block = 16;
|
21
|
+
switch (Q->ne[0]) {
|
22
|
+
case 64:
|
23
|
+
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, float>(ctx, dst);
|
24
|
+
break;
|
25
|
+
case 80:
|
26
|
+
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, float>(ctx, dst);
|
27
|
+
break;
|
28
|
+
case 96:
|
29
|
+
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, float>(ctx, dst);
|
30
|
+
break;
|
31
|
+
case 112:
|
32
|
+
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, float>(ctx, dst);
|
33
|
+
break;
|
34
|
+
case 128:
|
35
|
+
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
|
36
|
+
break;
|
37
|
+
case 256:
|
38
|
+
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, float>(ctx, dst);
|
39
|
+
break;
|
40
|
+
default:
|
41
|
+
GGML_ASSERT(false);
|
42
|
+
break;
|
43
|
+
}
|
44
|
+
} else {
|
45
|
+
constexpr int cols_per_block = 32;
|
46
|
+
switch (Q->ne[0]) {
|
47
|
+
case 64:
|
48
|
+
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, float>(ctx, dst);
|
49
|
+
break;
|
50
|
+
case 80:
|
51
|
+
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, float>(ctx, dst);
|
52
|
+
break;
|
53
|
+
case 96:
|
54
|
+
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, float>(ctx, dst);
|
55
|
+
break;
|
56
|
+
case 112:
|
57
|
+
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, float>(ctx, dst);
|
58
|
+
break;
|
59
|
+
case 128:
|
60
|
+
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
|
61
|
+
break;
|
62
|
+
// case 256:
|
63
|
+
// ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
|
64
|
+
// break;
|
65
|
+
default:
|
66
|
+
GGML_ASSERT(false);
|
67
|
+
break;
|
68
|
+
}
|
69
|
+
}
|
70
|
+
return;
|
71
|
+
}
|
72
|
+
|
73
|
+
if (Q->ne[1] <= 8 && Q->ne[0] % WARP_SIZE == 0) {
|
74
|
+
constexpr int cols_per_block = 8;
|
75
|
+
switch (Q->ne[0]) {
|
76
|
+
case 64:
|
77
|
+
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
|
78
|
+
break;
|
79
|
+
case 96:
|
80
|
+
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
|
81
|
+
break;
|
82
|
+
case 128:
|
83
|
+
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
|
84
|
+
break;
|
85
|
+
case 256:
|
86
|
+
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
|
87
|
+
break;
|
88
|
+
default:
|
89
|
+
GGML_ASSERT(false);
|
90
|
+
break;
|
91
|
+
}
|
92
|
+
return;
|
93
|
+
}
|
94
|
+
|
95
|
+
if (Q->ne[1] <= 32) {
|
96
|
+
constexpr int cols_per_block = 16;
|
97
|
+
switch (Q->ne[0]) {
|
98
|
+
case 64:
|
99
|
+
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
|
100
|
+
break;
|
101
|
+
case 80:
|
102
|
+
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, half>(ctx, dst);
|
103
|
+
break;
|
104
|
+
case 96:
|
105
|
+
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
|
106
|
+
break;
|
107
|
+
case 112:
|
108
|
+
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, half>(ctx, dst);
|
109
|
+
break;
|
110
|
+
case 128:
|
111
|
+
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
|
112
|
+
break;
|
113
|
+
case 256:
|
114
|
+
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
|
115
|
+
break;
|
116
|
+
default:
|
117
|
+
GGML_ASSERT(false);
|
118
|
+
break;
|
119
|
+
}
|
120
|
+
return;
|
121
|
+
}
|
122
|
+
|
123
|
+
constexpr int cols_per_block = 32;
|
124
|
+
switch (Q->ne[0]) {
|
125
|
+
case 64:
|
126
|
+
ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
|
127
|
+
break;
|
128
|
+
case 80:
|
129
|
+
ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, half>(ctx, dst);
|
130
|
+
break;
|
131
|
+
case 96:
|
132
|
+
ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
|
133
|
+
break;
|
134
|
+
case 112:
|
135
|
+
ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, half>(ctx, dst);
|
136
|
+
break;
|
137
|
+
case 128:
|
138
|
+
ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
|
139
|
+
break;
|
140
|
+
case 256:
|
141
|
+
ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
|
142
|
+
break;
|
143
|
+
default:
|
144
|
+
GGML_ASSERT(false);
|
145
|
+
break;
|
146
|
+
}
|
147
|
+
}
|
148
|
+
#define FATTN_VEC_F16_CASE(D, type_K, type_V) \
|
149
|
+
if (Q->ne[0] == (D) && K->type == (type_K) && V->type == (type_V)) { \
|
150
|
+
ggml_cuda_flash_attn_ext_vec_f16_case<D, type_K, type_V>(ctx, dst); \
|
151
|
+
return; \
|
152
|
+
} \
|
153
|
+
|
154
|
+
static void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
155
|
+
ggml_tensor * Q = dst->src[1];
|
156
|
+
ggml_tensor * K = dst->src[1];
|
157
|
+
ggml_tensor * V = dst->src[2];
|
158
|
+
|
159
|
+
#ifdef GGML_CUDA_FA_ALL_QUANTS
|
160
|
+
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0)
|
161
|
+
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1)
|
162
|
+
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0)
|
163
|
+
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1)
|
164
|
+
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0)
|
165
|
+
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16 )
|
166
|
+
|
167
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
|
168
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0)
|
169
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0)
|
170
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0)
|
171
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0)
|
172
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0)
|
173
|
+
|
174
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1)
|
175
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1)
|
176
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1)
|
177
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1)
|
178
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1)
|
179
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1)
|
180
|
+
|
181
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0)
|
182
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0)
|
183
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0)
|
184
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0)
|
185
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0)
|
186
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0)
|
187
|
+
|
188
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1)
|
189
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1)
|
190
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1)
|
191
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1)
|
192
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1)
|
193
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1)
|
194
|
+
|
195
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0)
|
196
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0)
|
197
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0)
|
198
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0)
|
199
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
|
200
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0)
|
201
|
+
|
202
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16)
|
203
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16)
|
204
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16)
|
205
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16)
|
206
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16)
|
207
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
|
208
|
+
|
209
|
+
FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
|
210
|
+
#else
|
211
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
|
212
|
+
|
213
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
|
214
|
+
|
215
|
+
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16)
|
216
|
+
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
|
217
|
+
FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
|
218
|
+
#endif // GGML_CUDA_FA_ALL_QUANTS
|
219
|
+
|
220
|
+
on_no_fattn_vec_case(Q->ne[0]);
|
221
|
+
}
|
222
|
+
|
223
|
+
#define FATTN_VEC_F32_CASE(D, type_K, type_V) \
|
224
|
+
if (Q->ne[0] == (D) && K->type == (type_K) && V->type == (type_V)) { \
|
225
|
+
ggml_cuda_flash_attn_ext_vec_f32_case<D, type_K, type_V>(ctx, dst); \
|
226
|
+
return; \
|
227
|
+
} \
|
228
|
+
|
229
|
+
static void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
230
|
+
ggml_tensor * Q = dst->src[1];
|
231
|
+
ggml_tensor * K = dst->src[1];
|
232
|
+
ggml_tensor * V = dst->src[2];
|
233
|
+
|
234
|
+
#ifdef GGML_CUDA_FA_ALL_QUANTS
|
235
|
+
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0)
|
236
|
+
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1)
|
237
|
+
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0)
|
238
|
+
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1)
|
239
|
+
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0)
|
240
|
+
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16)
|
241
|
+
|
242
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
|
243
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0)
|
244
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0)
|
245
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0)
|
246
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0)
|
247
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0)
|
248
|
+
|
249
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1)
|
250
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1)
|
251
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1)
|
252
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1)
|
253
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1)
|
254
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1)
|
255
|
+
|
256
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0)
|
257
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0)
|
258
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0)
|
259
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0)
|
260
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0)
|
261
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0)
|
262
|
+
|
263
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1)
|
264
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1)
|
265
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1)
|
266
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1)
|
267
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1)
|
268
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1)
|
269
|
+
|
270
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0)
|
271
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0)
|
272
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0)
|
273
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0)
|
274
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
|
275
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0)
|
276
|
+
|
277
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16)
|
278
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16)
|
279
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16)
|
280
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16)
|
281
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16)
|
282
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
|
283
|
+
|
284
|
+
FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
|
285
|
+
#else
|
286
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
|
287
|
+
|
288
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
|
289
|
+
|
290
|
+
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16)
|
291
|
+
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
|
292
|
+
FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
|
293
|
+
#endif // GGML_CUDA_FA_ALL_QUANTS
|
294
|
+
|
295
|
+
on_no_fattn_vec_case(Q->ne[0]);
|
296
|
+
}
|
297
|
+
|
298
|
+
void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
299
|
+
const ggml_tensor * KQV = dst;
|
300
|
+
const ggml_tensor * Q = dst->src[0];
|
301
|
+
|
302
|
+
ggml_cuda_set_device(ctx.device);
|
303
|
+
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
304
|
+
const int32_t precision = KQV->op_params[2];
|
305
|
+
|
306
|
+
// On AMD the tile kernels perform poorly, use the vec kernel instead:
|
307
|
+
if (cc >= CC_OFFSET_AMD) {
|
308
|
+
if (precision == GGML_PREC_DEFAULT && fast_fp16_available(cc)) {
|
309
|
+
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
310
|
+
} else {
|
311
|
+
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
312
|
+
}
|
313
|
+
return;
|
314
|
+
}
|
315
|
+
|
316
|
+
if (!fast_fp16_available(cc)) {
|
317
|
+
if (Q->ne[1] <= 8) {
|
318
|
+
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
319
|
+
} else {
|
320
|
+
ggml_cuda_flash_attn_ext_tile_f32(ctx, dst);
|
321
|
+
}
|
322
|
+
return;
|
323
|
+
}
|
324
|
+
|
325
|
+
if (!fp16_mma_available(cc)) {
|
326
|
+
if (Q->ne[1] <= 8) {
|
327
|
+
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
328
|
+
} else {
|
329
|
+
ggml_cuda_flash_attn_ext_tile_f16(ctx, dst);
|
330
|
+
}
|
331
|
+
return;
|
332
|
+
}
|
333
|
+
|
334
|
+
if (Q->ne[1] == 1 && Q->ne[0] % (2*WARP_SIZE) == 0) {
|
335
|
+
if (precision == GGML_PREC_DEFAULT) {
|
336
|
+
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
337
|
+
return;
|
338
|
+
} else if(Q->ne[0] <= 128) {
|
339
|
+
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
340
|
+
return;
|
341
|
+
}
|
342
|
+
}
|
343
|
+
|
344
|
+
ggml_cuda_flash_attn_ext_wmma_f16(ctx, dst);
|
345
|
+
}
|
@@ -0,0 +1,178 @@
|
|
1
|
+
#include "getrows.cuh"
|
2
|
+
#include "dequantize.cuh"
|
3
|
+
|
4
|
+
template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
5
|
+
static __global__ void k_get_rows(
|
6
|
+
const void * src0, const int32_t * src1, dst_t * dst,
|
7
|
+
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
|
8
|
+
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
|
9
|
+
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
|
10
|
+
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
|
11
|
+
size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
|
12
|
+
|
13
|
+
const int i00 = (blockIdx.x*blockDim.x + threadIdx.x)*2;
|
14
|
+
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
|
15
|
+
const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
|
16
|
+
const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
|
17
|
+
|
18
|
+
if (i00 >= ne00) {
|
19
|
+
return;
|
20
|
+
}
|
21
|
+
|
22
|
+
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
|
23
|
+
|
24
|
+
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
25
|
+
const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
|
26
|
+
|
27
|
+
const int ib = i00/qk; // block index
|
28
|
+
const int iqs = (i00%qk)/qr; // quant index
|
29
|
+
const int iybs = i00 - i00%qk; // dst block start index
|
30
|
+
const int y_offset = qr == 1 ? 1 : qk/2;
|
31
|
+
|
32
|
+
// dequantize
|
33
|
+
dfloat2 v;
|
34
|
+
dequantize_kernel(src0_row, ib, iqs, v);
|
35
|
+
|
36
|
+
dst_row[iybs + iqs + 0] = v.x;
|
37
|
+
dst_row[iybs + iqs + y_offset] = v.y;
|
38
|
+
}
|
39
|
+
|
40
|
+
template<typename src0_t, typename dst_t>
|
41
|
+
static __global__ void k_get_rows_float(
|
42
|
+
const src0_t * src0, const int32_t * src1, dst_t * dst,
|
43
|
+
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
|
44
|
+
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
|
45
|
+
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
|
46
|
+
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
|
47
|
+
size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
|
48
|
+
|
49
|
+
const int i00 = blockIdx.x*blockDim.x + threadIdx.x;
|
50
|
+
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
|
51
|
+
const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
|
52
|
+
const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
|
53
|
+
|
54
|
+
if (i00 >= ne00) {
|
55
|
+
return;
|
56
|
+
}
|
57
|
+
|
58
|
+
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
|
59
|
+
|
60
|
+
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
|
61
|
+
const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
|
62
|
+
|
63
|
+
dst_row[i00] = src0_row[i00];
|
64
|
+
}
|
65
|
+
|
66
|
+
template<int qk, int qr, dequantize_kernel_t dq>
|
67
|
+
static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
68
|
+
const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
|
69
|
+
|
70
|
+
GGML_TENSOR_BINARY_OP_LOCALS
|
71
|
+
|
72
|
+
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
|
73
|
+
const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
|
74
|
+
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
|
75
|
+
|
76
|
+
// strides in elements
|
77
|
+
//const size_t s0 = nb0 / ggml_element_size(dst);
|
78
|
+
const size_t s1 = nb1 / ggml_element_size(dst);
|
79
|
+
const size_t s2 = nb2 / ggml_element_size(dst);
|
80
|
+
const size_t s3 = nb3 / ggml_element_size(dst);
|
81
|
+
|
82
|
+
const size_t s10 = nb10 / ggml_element_size(src1);
|
83
|
+
const size_t s11 = nb11 / ggml_element_size(src1);
|
84
|
+
const size_t s12 = nb12 / ggml_element_size(src1);
|
85
|
+
//const size_t s13 = nb13 / ggml_element_size(src1);
|
86
|
+
|
87
|
+
GGML_ASSERT(ne00 % 2 == 0);
|
88
|
+
|
89
|
+
k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
|
90
|
+
src0_dd, src1_dd, dst_dd,
|
91
|
+
ne00, /*ne01, ne02, ne03,*/
|
92
|
+
/*ne10, ne11,*/ ne12, /*ne13,*/
|
93
|
+
/* s0,*/ s1, s2, s3,
|
94
|
+
/* nb00,*/ nb01, nb02, nb03,
|
95
|
+
s10, s11, s12/*, s13*/);
|
96
|
+
|
97
|
+
GGML_UNUSED(dst);
|
98
|
+
}
|
99
|
+
|
100
|
+
template<typename src0_t>
|
101
|
+
static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
102
|
+
const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
|
103
|
+
|
104
|
+
GGML_TENSOR_BINARY_OP_LOCALS
|
105
|
+
|
106
|
+
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
|
107
|
+
const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
|
108
|
+
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
|
109
|
+
|
110
|
+
// strides in elements
|
111
|
+
//const size_t s0 = nb0 / ggml_element_size(dst);
|
112
|
+
const size_t s1 = nb1 / ggml_element_size(dst);
|
113
|
+
const size_t s2 = nb2 / ggml_element_size(dst);
|
114
|
+
const size_t s3 = nb3 / ggml_element_size(dst);
|
115
|
+
|
116
|
+
const size_t s10 = nb10 / ggml_element_size(src1);
|
117
|
+
const size_t s11 = nb11 / ggml_element_size(src1);
|
118
|
+
const size_t s12 = nb12 / ggml_element_size(src1);
|
119
|
+
//const size_t s13 = nb13 / ggml_element_size(src1);
|
120
|
+
|
121
|
+
k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
|
122
|
+
src0_dd, src1_dd, dst_dd,
|
123
|
+
ne00, /*ne01, ne02, ne03,*/
|
124
|
+
/*ne10, ne11,*/ ne12, /*ne13,*/
|
125
|
+
/* s0,*/ s1, s2, s3,
|
126
|
+
/* nb00,*/ nb01, nb02, nb03,
|
127
|
+
s10, s11, s12/*, s13*/);
|
128
|
+
|
129
|
+
GGML_UNUSED(dst);
|
130
|
+
}
|
131
|
+
|
132
|
+
void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
133
|
+
const ggml_tensor * src0 = dst->src[0];
|
134
|
+
const ggml_tensor * src1 = dst->src[1];
|
135
|
+
const float * src0_d = (const float *)src0->data;
|
136
|
+
const float * src1_d = (const float *)src1->data;
|
137
|
+
float * dst_d = (float *)dst->data;
|
138
|
+
cudaStream_t stream = ctx.stream();
|
139
|
+
|
140
|
+
|
141
|
+
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
142
|
+
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
143
|
+
|
144
|
+
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
|
145
|
+
GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
|
146
|
+
GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
|
147
|
+
|
148
|
+
const int32_t * src1_i32 = (const int32_t *) src1_d;
|
149
|
+
|
150
|
+
switch (src0->type) {
|
151
|
+
case GGML_TYPE_F16:
|
152
|
+
get_rows_cuda_float(src0, src1, dst, (const half *)src0_d, src1_i32, dst_d, stream);
|
153
|
+
break;
|
154
|
+
case GGML_TYPE_F32:
|
155
|
+
get_rows_cuda_float(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
156
|
+
break;
|
157
|
+
case GGML_TYPE_Q4_0:
|
158
|
+
get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
159
|
+
break;
|
160
|
+
case GGML_TYPE_Q4_1:
|
161
|
+
get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
162
|
+
break;
|
163
|
+
case GGML_TYPE_Q5_0:
|
164
|
+
get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
165
|
+
break;
|
166
|
+
case GGML_TYPE_Q5_1:
|
167
|
+
get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
168
|
+
break;
|
169
|
+
case GGML_TYPE_Q8_0:
|
170
|
+
get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
|
171
|
+
break;
|
172
|
+
default:
|
173
|
+
// TODO: k-quants
|
174
|
+
fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
|
175
|
+
GGML_ASSERT(false);
|
176
|
+
break;
|
177
|
+
}
|
178
|
+
}
|
@@ -0,0 +1,104 @@
|
|
1
|
+
#include "im2col.cuh"
|
2
|
+
|
3
|
+
template <typename T>
|
4
|
+
static __global__ void im2col_kernel(
|
5
|
+
const float * x, T * dst, int64_t batch_offset,
|
6
|
+
int64_t offset_delta, int64_t IC, int64_t IW, int64_t IH, int64_t OH, int64_t OW, int64_t KW, int64_t KH, int64_t pelements, int64_t CHW,
|
7
|
+
int s0, int s1, int p0, int p1, int d0, int d1) {
|
8
|
+
const int64_t i = threadIdx.x + blockIdx.x * blockDim.x;
|
9
|
+
if (i >= pelements) {
|
10
|
+
return;
|
11
|
+
}
|
12
|
+
|
13
|
+
const int64_t ksize = OW * (KH > 1 ? KW : 1);
|
14
|
+
const int64_t kx = i / ksize;
|
15
|
+
const int64_t kd = kx * ksize;
|
16
|
+
const int64_t ky = (i - kd) / OW;
|
17
|
+
const int64_t ix = i % OW;
|
18
|
+
|
19
|
+
const int64_t oh = blockIdx.y;
|
20
|
+
const int64_t batch = blockIdx.z / IC;
|
21
|
+
const int64_t ic = blockIdx.z % IC;
|
22
|
+
|
23
|
+
const int64_t iiw = ix * s0 + kx * d0 - p0;
|
24
|
+
const int64_t iih = oh * s1 + ky * d1 - p1;
|
25
|
+
|
26
|
+
const int64_t offset_dst =
|
27
|
+
((batch * OH + oh) * OW + ix) * CHW +
|
28
|
+
(ic * (KW * KH) + ky * KW + kx);
|
29
|
+
|
30
|
+
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
|
31
|
+
dst[offset_dst] = 0.0f;
|
32
|
+
} else {
|
33
|
+
const int64_t offset_src = ic * offset_delta + batch * batch_offset;
|
34
|
+
dst[offset_dst] = x[offset_src + iih * IW + iiw];
|
35
|
+
}
|
36
|
+
}
|
37
|
+
|
38
|
+
template <typename T>
|
39
|
+
static void im2col_cuda(const float * x, T* dst,
|
40
|
+
int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
|
41
|
+
int64_t batch, int64_t batch_offset, int64_t offset_delta,
|
42
|
+
int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
|
43
|
+
const int parallel_elements = OW * KW * KH;
|
44
|
+
const int num_blocks = (parallel_elements + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE;
|
45
|
+
dim3 block_nums(num_blocks, OH, batch * IC);
|
46
|
+
im2col_kernel<<<block_nums, CUDA_IM2COL_BLOCK_SIZE, 0, stream>>>(x, dst, batch_offset, offset_delta, IC, IW, IH, OH, OW, KW, KH, parallel_elements, (IC * KH * KW), s0, s1, p0, p1, d0, d1);
|
47
|
+
}
|
48
|
+
|
49
|
+
static void im2col_cuda_f16(const float * x, half * dst,
|
50
|
+
int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
|
51
|
+
int64_t batch, int64_t batch_offset, int64_t offset_delta,
|
52
|
+
int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
|
53
|
+
|
54
|
+
im2col_cuda<half>(x, dst, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, offset_delta, s0, s1, p0, p1, d0, d1, stream);
|
55
|
+
}
|
56
|
+
|
57
|
+
static void im2col_cuda_f32(const float * x, float * dst,
|
58
|
+
int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
|
59
|
+
int64_t batch, int64_t batch_offset, int64_t offset_delta,
|
60
|
+
int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
|
61
|
+
|
62
|
+
im2col_cuda<float>(x, dst, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, offset_delta, s0, s1, p0, p1, d0, d1, stream);
|
63
|
+
}
|
64
|
+
|
65
|
+
void ggml_cuda_op_im2col(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
66
|
+
const ggml_tensor * src0 = dst->src[0];
|
67
|
+
const ggml_tensor * src1 = dst->src[1];
|
68
|
+
const float * src1_d = (const float *)src1->data;
|
69
|
+
float * dst_d = (float *)dst->data;
|
70
|
+
cudaStream_t stream = ctx.stream();
|
71
|
+
|
72
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
73
|
+
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
74
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
|
75
|
+
|
76
|
+
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
|
77
|
+
const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
|
78
|
+
const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
|
79
|
+
const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
|
80
|
+
const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
|
81
|
+
const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
|
82
|
+
|
83
|
+
const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
|
84
|
+
|
85
|
+
const int64_t IC = src1->ne[is_2D ? 2 : 1];
|
86
|
+
const int64_t IH = is_2D ? src1->ne[1] : 1;
|
87
|
+
const int64_t IW = src1->ne[0];
|
88
|
+
|
89
|
+
const int64_t KH = is_2D ? src0->ne[1] : 1;
|
90
|
+
const int64_t KW = src0->ne[0];
|
91
|
+
|
92
|
+
const int64_t OH = is_2D ? dst->ne[2] : 1;
|
93
|
+
const int64_t OW = dst->ne[1];
|
94
|
+
|
95
|
+
const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
|
96
|
+
const int64_t batch = src1->ne[3];
|
97
|
+
const size_t batch_offset = src1->nb[3] / 4; // nb is byte offset, src is type float32
|
98
|
+
|
99
|
+
if(dst->type == GGML_TYPE_F16) {
|
100
|
+
im2col_cuda_f16(src1_d, (half *) dst_d, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, stream);
|
101
|
+
} else {
|
102
|
+
im2col_cuda_f32(src1_d, (float *) dst_d, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, stream);
|
103
|
+
}
|
104
|
+
}
|