llama_cpp 0.15.4 → 0.16.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/ext/llama_cpp/extconf.rb +1 -2
- data/ext/llama_cpp/llama_cpp.cpp +15 -3
- data/lib/llama_cpp/version.rb +2 -2
- data/sig/llama_cpp.rbs +13 -1
- data/vendor/tmp/llama.cpp/Makefile +62 -35
- data/vendor/tmp/llama.cpp/ggml-alloc.c +4 -4
- data/vendor/tmp/llama.cpp/ggml-backend.c +5 -5
- data/vendor/tmp/llama.cpp/ggml-backend.h +1 -1
- data/vendor/tmp/llama.cpp/ggml-cuda/acc.cu +47 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/arange.cu +34 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/argsort.cu +103 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/binbcast.cu +280 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/clamp.cu +34 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/concat.cu +196 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/convert.cu +686 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/cpy.cu +490 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/diagmask.cu +40 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/dmmv.cu +662 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn-tile-f16.cu +319 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn-tile-f32.cu +312 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn.cu +345 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/getrows.cu +178 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/im2col.cu +104 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/mmq.cu +1564 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/mmvq.cu +404 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/norm.cu +221 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/pad.cu +49 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/pool2d.cu +94 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/quantize.cu +45 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/rope.cu +271 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/scale.cu +31 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/softmax.cu +205 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/sumrows.cu +40 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs256-f16-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs256-f16-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb16.cu +10 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb32.cu +9 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb16.cu +10 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb32.cu +10 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb8.cu +8 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/tsembd.cu +47 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/unary.cu +266 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/upscale.cu +51 -0
- data/vendor/tmp/llama.cpp/ggml-cuda.cu +8 -6
- data/vendor/tmp/llama.cpp/ggml-kompute.cpp +21 -6
- data/vendor/tmp/llama.cpp/ggml-metal.h +1 -1
- data/vendor/tmp/llama.cpp/ggml-metal.m +34 -24
- data/vendor/tmp/llama.cpp/ggml-metal.metal +83 -59
- data/vendor/tmp/llama.cpp/ggml-rpc.cpp +2 -2
- data/vendor/tmp/llama.cpp/ggml-sycl.cpp +7 -67
- data/vendor/tmp/llama.cpp/ggml-vulkan-shaders.hpp +99301 -39793
- data/vendor/tmp/llama.cpp/ggml-vulkan.cpp +456 -329
- data/vendor/tmp/llama.cpp/ggml.c +178 -330
- data/vendor/tmp/llama.cpp/ggml.h +9 -28
- data/vendor/tmp/llama.cpp/llama.cpp +242 -426
- data/vendor/tmp/llama.cpp/llama.h +17 -43
- metadata +121 -6
- data/vendor/tmp/llama.cpp/ggml-mpi.c +0 -216
- data/vendor/tmp/llama.cpp/ggml-mpi.h +0 -39
- data/vendor/tmp/llama.cpp/ggml-opencl.cpp +0 -2305
- data/vendor/tmp/llama.cpp/ggml-opencl.h +0 -36
data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb16.cu
ADDED
@@ -0,0 +1,10 @@
|
|
1
|
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
2
|
+
|
3
|
+
#include "../fattn-wmma-f16.cuh"
|
4
|
+
|
5
|
+
DECL_FATTN_WMMA_F16_CASE(64, 16, float);
|
6
|
+
DECL_FATTN_WMMA_F16_CASE(80, 16, float);
|
7
|
+
DECL_FATTN_WMMA_F16_CASE(96, 16, float);
|
8
|
+
DECL_FATTN_WMMA_F16_CASE(112, 16, float);
|
9
|
+
DECL_FATTN_WMMA_F16_CASE(128, 16, float);
|
10
|
+
DECL_FATTN_WMMA_F16_CASE(256, 16, float);
|
data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb32.cu
ADDED
@@ -0,0 +1,9 @@
|
|
1
|
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
2
|
+
|
3
|
+
#include "../fattn-wmma-f16.cuh"
|
4
|
+
|
5
|
+
DECL_FATTN_WMMA_F16_CASE(64, 32, float);
|
6
|
+
DECL_FATTN_WMMA_F16_CASE(80, 32, float);
|
7
|
+
DECL_FATTN_WMMA_F16_CASE(96, 32, float);
|
8
|
+
DECL_FATTN_WMMA_F16_CASE(112, 32, float);
|
9
|
+
DECL_FATTN_WMMA_F16_CASE(128, 32, float);
|
data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb16.cu
ADDED
@@ -0,0 +1,10 @@
|
|
1
|
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
2
|
+
|
3
|
+
#include "../fattn-wmma-f16.cuh"
|
4
|
+
|
5
|
+
DECL_FATTN_WMMA_F16_CASE(64, 16, half);
|
6
|
+
DECL_FATTN_WMMA_F16_CASE(80, 16, half);
|
7
|
+
DECL_FATTN_WMMA_F16_CASE(96, 16, half);
|
8
|
+
DECL_FATTN_WMMA_F16_CASE(112, 16, half);
|
9
|
+
DECL_FATTN_WMMA_F16_CASE(128, 16, half);
|
10
|
+
DECL_FATTN_WMMA_F16_CASE(256, 16, half);
|
data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb32.cu
ADDED
@@ -0,0 +1,10 @@
|
|
1
|
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
2
|
+
|
3
|
+
#include "../fattn-wmma-f16.cuh"
|
4
|
+
|
5
|
+
DECL_FATTN_WMMA_F16_CASE(64, 32, half);
|
6
|
+
DECL_FATTN_WMMA_F16_CASE(80, 32, half);
|
7
|
+
DECL_FATTN_WMMA_F16_CASE(96, 32, half);
|
8
|
+
DECL_FATTN_WMMA_F16_CASE(112, 32, half);
|
9
|
+
DECL_FATTN_WMMA_F16_CASE(128, 32, half);
|
10
|
+
DECL_FATTN_WMMA_F16_CASE(256, 32, half);
|
@@ -0,0 +1,8 @@
|
|
1
|
+
// This file has been autogenerated by generate-variants.py, do not edit manually.
|
2
|
+
|
3
|
+
#include "../fattn-wmma-f16.cuh"
|
4
|
+
|
5
|
+
DECL_FATTN_WMMA_F16_CASE(64, 8, half);
|
6
|
+
DECL_FATTN_WMMA_F16_CASE(96, 8, half);
|
7
|
+
DECL_FATTN_WMMA_F16_CASE(128, 8, half);
|
8
|
+
DECL_FATTN_WMMA_F16_CASE(256, 8, half);
|
@@ -0,0 +1,47 @@
|
|
1
|
+
#include "tsembd.cuh"
|
2
|
+
|
3
|
+
static __global__ void timestep_embedding_f32(const float * timesteps, float * dst, const int nb1, const int dim, const int max_period) {
|
4
|
+
// blockIDx.y: idx of timesteps->ne[0]
|
5
|
+
// blockIDx.x: idx of ((dim + 1) / 2) / BLOCK_SIZE
|
6
|
+
int i = blockIdx.y;
|
7
|
+
int j = threadIdx.x + blockIdx.x * blockDim.x;
|
8
|
+
float * embed_data = (float *)((char *)dst + i*nb1);
|
9
|
+
|
10
|
+
if (dim % 2 != 0 && j == ((dim + 1) / 2)) {
|
11
|
+
embed_data[dim] = 0.f;
|
12
|
+
}
|
13
|
+
|
14
|
+
int half = dim / 2;
|
15
|
+
if (j >= half) {
|
16
|
+
return;
|
17
|
+
}
|
18
|
+
|
19
|
+
float timestep = timesteps[i];
|
20
|
+
float freq = (float)expf(-logf(max_period) * j / half);
|
21
|
+
float arg = timestep * freq;
|
22
|
+
embed_data[j] = cosf(arg);
|
23
|
+
embed_data[j + half] = sinf(arg);
|
24
|
+
}
|
25
|
+
|
26
|
+
static void timestep_embedding_f32_cuda(const float * x, float * dst, const int ne00, const int nb1,
|
27
|
+
const int dim, const int max_period, cudaStream_t stream) {
|
28
|
+
int half_ceil = (dim + 1) / 2;
|
29
|
+
int num_blocks = (half_ceil + CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE - 1) / CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE;
|
30
|
+
dim3 gridDim(num_blocks, ne00, 1);
|
31
|
+
timestep_embedding_f32<<<gridDim, CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE, 0, stream>>>(x, dst, nb1, dim, max_period);
|
32
|
+
}
|
33
|
+
|
34
|
+
void ggml_cuda_op_timestep_embedding(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
35
|
+
const ggml_tensor * src0 = dst->src[0];
|
36
|
+
const float * src0_d = (const float *)src0->data;
|
37
|
+
float * dst_d = (float *)dst->data;
|
38
|
+
cudaStream_t stream = ctx.stream();
|
39
|
+
|
40
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
41
|
+
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
42
|
+
|
43
|
+
const int dim = dst->op_params[0];
|
44
|
+
const int max_period = dst->op_params[1];
|
45
|
+
|
46
|
+
timestep_embedding_f32_cuda(src0_d, dst_d, src0->ne[0], dst->nb[1], dim, max_period, stream);
|
47
|
+
}
|
@@ -0,0 +1,266 @@
|
|
1
|
+
#include "unary.cuh"
|
2
|
+
|
3
|
+
static __global__ void gelu_f32(const float * x, float * dst, const int k) {
|
4
|
+
const float GELU_COEF_A = 0.044715f;
|
5
|
+
const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
6
|
+
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
7
|
+
|
8
|
+
if (i >= k) {
|
9
|
+
return;
|
10
|
+
}
|
11
|
+
|
12
|
+
float xi = x[i];
|
13
|
+
dst[i] = 0.5f*xi*(1.0f + tanhf(SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi)));
|
14
|
+
}
|
15
|
+
|
16
|
+
static __global__ void gelu_quick_f32(const float * x, float * dst, int k) {
|
17
|
+
const float GELU_QUICK_COEF = -1.702f;
|
18
|
+
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
19
|
+
if (i >= k) {
|
20
|
+
return;
|
21
|
+
}
|
22
|
+
dst[i] = x[i] * (1.0f / (1.0f + expf(GELU_QUICK_COEF * x[i])));
|
23
|
+
}
|
24
|
+
|
25
|
+
static __global__ void silu_f32(const float * x, float * dst, const int k) {
|
26
|
+
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
27
|
+
|
28
|
+
if (i >= k) {
|
29
|
+
return;
|
30
|
+
}
|
31
|
+
dst[i] = x[i] / (1.0f + expf(-x[i]));
|
32
|
+
}
|
33
|
+
|
34
|
+
static __global__ void tanh_f32(const float * x, float * dst, int k) {
|
35
|
+
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
36
|
+
if (i >= k) {
|
37
|
+
return;
|
38
|
+
}
|
39
|
+
dst[i] = tanhf(x[i]);
|
40
|
+
}
|
41
|
+
|
42
|
+
static __global__ void relu_f32(const float * x, float * dst, const int k) {
|
43
|
+
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
44
|
+
|
45
|
+
if (i >= k) {
|
46
|
+
return;
|
47
|
+
}
|
48
|
+
dst[i] = fmaxf(x[i], 0);
|
49
|
+
}
|
50
|
+
|
51
|
+
static __global__ void sigmoid_f32(const float * x, float * dst, const int k) {
|
52
|
+
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
53
|
+
|
54
|
+
if (i >= k) {
|
55
|
+
return;
|
56
|
+
}
|
57
|
+
dst[i] = 1.0f / (1.0f + expf(-x[i]));
|
58
|
+
}
|
59
|
+
|
60
|
+
static __global__ void hardsigmoid_f32(const float * x, float * dst, const int k) {
|
61
|
+
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
62
|
+
|
63
|
+
if (i >= k) {
|
64
|
+
return;
|
65
|
+
}
|
66
|
+
dst[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
|
67
|
+
}
|
68
|
+
|
69
|
+
static __global__ void hardswish_f32(const float * x, float * dst, const int k) {
|
70
|
+
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
71
|
+
|
72
|
+
if (i >= k) {
|
73
|
+
return;
|
74
|
+
}
|
75
|
+
dst[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
|
76
|
+
}
|
77
|
+
|
78
|
+
static __global__ void leaky_relu_f32(const float * x, float * dst, const int k, const float negative_slope) {
|
79
|
+
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
80
|
+
if (i >= k) {
|
81
|
+
return;
|
82
|
+
}
|
83
|
+
dst[i] = fmaxf(x[i], 0) + fminf(x[i], 0.0f) * negative_slope;
|
84
|
+
}
|
85
|
+
|
86
|
+
static __global__ void sqr_f32(const float * x, float * dst, const int k) {
|
87
|
+
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
88
|
+
|
89
|
+
if (i >= k) {
|
90
|
+
return;
|
91
|
+
}
|
92
|
+
dst[i] = x[i] * x[i];
|
93
|
+
}
|
94
|
+
|
95
|
+
static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
96
|
+
const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
|
97
|
+
gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
98
|
+
}
|
99
|
+
|
100
|
+
static void gelu_quick_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
101
|
+
const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
|
102
|
+
gelu_quick_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
103
|
+
}
|
104
|
+
|
105
|
+
static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
106
|
+
const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
|
107
|
+
silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
108
|
+
}
|
109
|
+
|
110
|
+
static void tanh_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
111
|
+
const int num_blocks = (k + CUDA_TANH_BLOCK_SIZE - 1) / CUDA_TANH_BLOCK_SIZE;
|
112
|
+
tanh_f32<<<num_blocks, CUDA_TANH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
113
|
+
}
|
114
|
+
|
115
|
+
static void relu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
116
|
+
const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
|
117
|
+
relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
118
|
+
}
|
119
|
+
|
120
|
+
static void sigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
121
|
+
const int num_blocks = (k + CUDA_SIGMOID_BLOCK_SIZE - 1) / CUDA_SIGMOID_BLOCK_SIZE;
|
122
|
+
sigmoid_f32<<<num_blocks, CUDA_SIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
123
|
+
}
|
124
|
+
|
125
|
+
static void hardsigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
126
|
+
const int num_blocks = (k + CUDA_HARDSIGMOID_BLOCK_SIZE - 1) / CUDA_HARDSIGMOID_BLOCK_SIZE;
|
127
|
+
hardsigmoid_f32<<<num_blocks, CUDA_HARDSIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
128
|
+
}
|
129
|
+
|
130
|
+
static void hardswish_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
131
|
+
const int num_blocks = (k + CUDA_HARDSWISH_BLOCK_SIZE - 1) / CUDA_HARDSWISH_BLOCK_SIZE;
|
132
|
+
hardswish_f32<<<num_blocks, CUDA_HARDSWISH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
133
|
+
}
|
134
|
+
|
135
|
+
static void leaky_relu_f32_cuda(const float * x, float * dst, const int k, const float negative_slope, cudaStream_t stream) {
|
136
|
+
const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
|
137
|
+
leaky_relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k, negative_slope);
|
138
|
+
}
|
139
|
+
|
140
|
+
static void sqr_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
141
|
+
const int num_blocks = (k + CUDA_SQR_BLOCK_SIZE - 1) / CUDA_SQR_BLOCK_SIZE;
|
142
|
+
sqr_f32<<<num_blocks, CUDA_SQR_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
143
|
+
}
|
144
|
+
|
145
|
+
void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
146
|
+
const ggml_tensor * src0 = dst->src[0];
|
147
|
+
const float * src0_d = (const float *)src0->data;
|
148
|
+
float * dst_d = (float *)dst->data;
|
149
|
+
cudaStream_t stream = ctx.stream();
|
150
|
+
|
151
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
152
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
153
|
+
|
154
|
+
gelu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
155
|
+
}
|
156
|
+
|
157
|
+
void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
158
|
+
const ggml_tensor * src0 = dst->src[0];
|
159
|
+
const float * src0_d = (const float *)src0->data;
|
160
|
+
float * dst_d = (float *)dst->data;
|
161
|
+
cudaStream_t stream = ctx.stream();
|
162
|
+
|
163
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
164
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
165
|
+
|
166
|
+
silu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
167
|
+
}
|
168
|
+
|
169
|
+
void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
170
|
+
const ggml_tensor * src0 = dst->src[0];
|
171
|
+
const float * src0_d = (const float *)src0->data;
|
172
|
+
float * dst_d = (float *)dst->data;
|
173
|
+
cudaStream_t stream = ctx.stream();
|
174
|
+
|
175
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
176
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
177
|
+
|
178
|
+
gelu_quick_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
179
|
+
}
|
180
|
+
|
181
|
+
void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
182
|
+
const ggml_tensor * src0 = dst->src[0];
|
183
|
+
const float * src0_d = (const float *)src0->data;
|
184
|
+
float * dst_d = (float *)dst->data;
|
185
|
+
cudaStream_t stream = ctx.stream();
|
186
|
+
|
187
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
188
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
189
|
+
|
190
|
+
tanh_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
191
|
+
}
|
192
|
+
|
193
|
+
void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
194
|
+
const ggml_tensor * src0 = dst->src[0];
|
195
|
+
const float * src0_d = (const float *)src0->data;
|
196
|
+
float * dst_d = (float *)dst->data;
|
197
|
+
cudaStream_t stream = ctx.stream();
|
198
|
+
|
199
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
200
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
201
|
+
|
202
|
+
relu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
203
|
+
}
|
204
|
+
|
205
|
+
void ggml_cuda_op_sigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
206
|
+
const ggml_tensor * src0 = dst->src[0];
|
207
|
+
const float * src0_d = (const float *)src0->data;
|
208
|
+
float * dst_d = (float *)dst->data;
|
209
|
+
cudaStream_t stream = ctx.stream();
|
210
|
+
|
211
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
212
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
213
|
+
|
214
|
+
sigmoid_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
215
|
+
}
|
216
|
+
|
217
|
+
void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
218
|
+
const ggml_tensor * src0 = dst->src[0];
|
219
|
+
const float * src0_d = (const float *)src0->data;
|
220
|
+
float * dst_d = (float *)dst->data;
|
221
|
+
cudaStream_t stream = ctx.stream();
|
222
|
+
|
223
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
224
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
225
|
+
|
226
|
+
hardsigmoid_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
227
|
+
}
|
228
|
+
|
229
|
+
void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
230
|
+
const ggml_tensor * src0 = dst->src[0];
|
231
|
+
const float * src0_d = (const float *)src0->data;
|
232
|
+
float * dst_d = (float *)dst->data;
|
233
|
+
cudaStream_t stream = ctx.stream();
|
234
|
+
|
235
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
236
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
237
|
+
|
238
|
+
hardswish_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
239
|
+
}
|
240
|
+
|
241
|
+
void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
242
|
+
const ggml_tensor * src0 = dst->src[0];
|
243
|
+
const float * src0_d = (const float *)src0->data;
|
244
|
+
float * dst_d = (float *)dst->data;
|
245
|
+
cudaStream_t stream = ctx.stream();
|
246
|
+
|
247
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
248
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
249
|
+
|
250
|
+
float negative_slope;
|
251
|
+
memcpy(&negative_slope, dst->op_params, sizeof(float));
|
252
|
+
|
253
|
+
leaky_relu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), negative_slope, stream);
|
254
|
+
}
|
255
|
+
|
256
|
+
void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
257
|
+
const ggml_tensor * src0 = dst->src[0];
|
258
|
+
const float * src0_d = (const float *)src0->data;
|
259
|
+
float * dst_d = (float *)dst->data;
|
260
|
+
cudaStream_t stream = ctx.stream();
|
261
|
+
|
262
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
263
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
264
|
+
|
265
|
+
sqr_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
266
|
+
}
|
@@ -0,0 +1,51 @@
|
|
1
|
+
#include "upscale.cuh"
|
2
|
+
|
3
|
+
static __global__ void upscale_f32(const float * x, float * dst,
|
4
|
+
const int nb00, const int nb01, const int nb02, const int nb03,
|
5
|
+
const int ne10, const int ne11, const int ne12, const int ne13,
|
6
|
+
const float sf0, const float sf1, const float sf2, const float sf3) {
|
7
|
+
int index = threadIdx.x + blockIdx.x * blockDim.x;
|
8
|
+
if (index >= ne10 * ne11 * ne12 * ne13) {
|
9
|
+
return;
|
10
|
+
}
|
11
|
+
|
12
|
+
int i10 = index % ne10;
|
13
|
+
int i11 = (index / ne10) % ne11;
|
14
|
+
int i12 = (index / (ne10 * ne11)) % ne12;
|
15
|
+
int i13 = (index / (ne10 * ne11 * ne12)) % ne13;
|
16
|
+
|
17
|
+
int i00 = i10 / sf0;
|
18
|
+
int i01 = i11 / sf1;
|
19
|
+
int i02 = i12 / sf2;
|
20
|
+
int i03 = i13 / sf3;
|
21
|
+
|
22
|
+
dst[index] = *(float *)((char *)x + i03 * nb03 + i02 * nb02 + i01 * nb01 + i00 * nb00);
|
23
|
+
}
|
24
|
+
|
25
|
+
static void upscale_f32_cuda(const float * x, float * dst,
|
26
|
+
const int nb00, const int nb01, const int nb02, const int nb03,
|
27
|
+
const int ne10, const int ne11, const int ne12, const int ne13,
|
28
|
+
const float sf0, const float sf1, const float sf2, const float sf3,
|
29
|
+
cudaStream_t stream) {
|
30
|
+
int dst_size = ne10 * ne11 * ne12 * ne13;
|
31
|
+
int num_blocks = (dst_size + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE;
|
32
|
+
|
33
|
+
upscale_f32<<<num_blocks, CUDA_UPSCALE_BLOCK_SIZE,0,stream>>>(x, dst, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, sf0, sf1, sf2, sf3);
|
34
|
+
}
|
35
|
+
|
36
|
+
void ggml_cuda_op_upscale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
37
|
+
const ggml_tensor * src0 = dst->src[0];
|
38
|
+
const float * src0_d = (const float *)src0->data;
|
39
|
+
float * dst_d = (float *)dst->data;
|
40
|
+
cudaStream_t stream = ctx.stream();
|
41
|
+
|
42
|
+
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
43
|
+
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
44
|
+
|
45
|
+
const float sf0 = (float)dst->ne[0]/src0->ne[0];
|
46
|
+
const float sf1 = (float)dst->ne[1]/src0->ne[1];
|
47
|
+
const float sf2 = (float)dst->ne[2]/src0->ne[2];
|
48
|
+
const float sf3 = (float)dst->ne[3]/src0->ne[3];
|
49
|
+
|
50
|
+
upscale_f32_cuda(src0_d, dst_d, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], sf0, sf1, sf2, sf3, stream);
|
51
|
+
}
|
@@ -2702,10 +2702,8 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
|
|
2702
2702
|
|
2703
2703
|
if (cuda_graph_update_required) {
|
2704
2704
|
// Extract nodes from graph
|
2705
|
-
|
2706
|
-
|
2707
|
-
CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes));
|
2708
|
-
}
|
2705
|
+
// First call with null argument gets number of nodes in graph
|
2706
|
+
CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes));
|
2709
2707
|
// Subsequent call with non-null argument gets nodes
|
2710
2708
|
cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes);
|
2711
2709
|
cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes);
|
@@ -2905,10 +2903,14 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
|
2905
2903
|
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
2906
2904
|
return op->src[0]->ne[0] == 64 || op->src[0]->ne[0] == 128;
|
2907
2905
|
#else
|
2908
|
-
if (op->src[0]->ne[0] ==
|
2906
|
+
if (op->src[0]->ne[0] == 128) {
|
2907
|
+
return true;
|
2908
|
+
}
|
2909
|
+
if (op->src[0]->ne[0] == 64 && op->src[1]->type == GGML_TYPE_F16) {
|
2909
2910
|
return true;
|
2910
2911
|
}
|
2911
|
-
return ggml_cuda_info().devices[cuda_ctx->device].cc >= CC_VOLTA
|
2912
|
+
return ggml_cuda_info().devices[cuda_ctx->device].cc >= CC_VOLTA &&
|
2913
|
+
op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
|
2912
2914
|
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
2913
2915
|
default:
|
2914
2916
|
return false;
|
@@ -22,6 +22,7 @@
|
|
22
22
|
#include "shaderop_mul_mat_q4_1.h"
|
23
23
|
#include "shaderop_mul_mat_q6_k.h"
|
24
24
|
#include "shaderop_mul_mat_mat_f32.h"
|
25
|
+
#include "shaderop_getrows_f32.h"
|
25
26
|
#include "shaderop_getrows_f16.h"
|
26
27
|
#include "shaderop_getrows_q4_0.h"
|
27
28
|
#include "shaderop_getrows_q4_1.h"
|
@@ -1146,6 +1147,14 @@ static void ggml_vk_get_rows(
|
|
1146
1147
|
seq.record<kp::OpAlgoDispatch>(s_algo);
|
1147
1148
|
}
|
1148
1149
|
|
1150
|
+
template <typename... Args>
|
1151
|
+
static void ggml_vk_get_rows_f32(Args&&... args) {
|
1152
|
+
const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_f32_comp_spv,
|
1153
|
+
kp::shader_data::op_getrows_f32_comp_spv_len);
|
1154
|
+
|
1155
|
+
ggml_vk_get_rows(spirv, "f32", sizeof(float), 0, std::forward<Args>(args)...);
|
1156
|
+
}
|
1157
|
+
|
1149
1158
|
template <typename... Args>
|
1150
1159
|
static void ggml_vk_get_rows_f16(Args&&... args) {
|
1151
1160
|
const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_f16_comp_spv,
|
@@ -1183,7 +1192,7 @@ static void ggml_vk_rope(
|
|
1183
1192
|
const std::shared_ptr<kp::Tensor>& inB,
|
1184
1193
|
const std::shared_ptr<kp::Tensor>& out,
|
1185
1194
|
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
1186
|
-
ggml_type src0t, int32_t n_dims, int32_t mode, int32_t
|
1195
|
+
ggml_type src0t, int32_t n_dims, int32_t mode, int32_t n_ctx_orig,
|
1187
1196
|
float freq_base, float freq_scale, float ext_factor, float attn_factor, float beta_fast, float beta_slow,
|
1188
1197
|
int32_t ne01, int32_t ne02, int32_t ne03,
|
1189
1198
|
uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03,
|
@@ -1212,14 +1221,14 @@ static void ggml_vk_rope(
|
|
1212
1221
|
|
1213
1222
|
struct PushConstants {
|
1214
1223
|
uint32_t inAOff, inBOff, outOff;
|
1215
|
-
int32_t n_dims, mode,
|
1224
|
+
int32_t n_dims, mode, n_ctx_orig;
|
1216
1225
|
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
1217
1226
|
uint32_t nb00, nb01, nb02, nb03;
|
1218
1227
|
int32_t ne0;
|
1219
1228
|
uint32_t nb0, nb1, nb2, nb3;
|
1220
1229
|
} pushConsts {
|
1221
1230
|
safe_divide(inAOff, type_size), safe_divide(inBOff, 4), safe_divide(outOff, type_size),
|
1222
|
-
n_dims, mode,
|
1231
|
+
n_dims, mode, n_ctx_orig,
|
1223
1232
|
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow,
|
1224
1233
|
nb00, nb01, nb02, nb03,
|
1225
1234
|
ne0,
|
@@ -1371,6 +1380,7 @@ static bool ggml_vk_supports_op(const struct ggml_tensor * op) {
|
|
1371
1380
|
return op->ne[3] == 1;
|
1372
1381
|
case GGML_OP_GET_ROWS:
|
1373
1382
|
switch (op->src[0]->type) {
|
1383
|
+
case GGML_TYPE_F32:
|
1374
1384
|
case GGML_TYPE_F16:
|
1375
1385
|
case GGML_TYPE_Q4_0:
|
1376
1386
|
case GGML_TYPE_Q4_1:
|
@@ -1661,7 +1671,9 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
|
|
1661
1671
|
} break;
|
1662
1672
|
case GGML_OP_GET_ROWS:
|
1663
1673
|
{
|
1664
|
-
if (src0t ==
|
1674
|
+
if (src0t == GGML_TYPE_F32) {
|
1675
|
+
ggml_vk_get_rows_f32(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
|
1676
|
+
} else if (src0t == GGML_TYPE_F16) {
|
1665
1677
|
ggml_vk_get_rows_f16(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
|
1666
1678
|
} else if (src0t == GGML_TYPE_Q4_0) {
|
1667
1679
|
ggml_vk_get_rows_q4_0(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
|
@@ -1680,13 +1692,16 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
|
|
1680
1692
|
#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7225")
|
1681
1693
|
GGML_ASSERT(dst->src[2] == nullptr && "phi3 frequency factors not implemented yet");
|
1682
1694
|
|
1695
|
+
#pragma message("TODO: update rope NORM mode to match NEOX mode")
|
1696
|
+
#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7634")
|
1697
|
+
|
1683
1698
|
GGML_ASSERT(ne10 == ne02);
|
1684
1699
|
GGML_ASSERT(src0t == dstt);
|
1685
1700
|
// const int n_past = ((int32_t *) dst->op_params)[0];
|
1686
1701
|
const int n_dims = ((int32_t *) dst->op_params)[1];
|
1687
1702
|
const int mode = ((int32_t *) dst->op_params)[2];
|
1688
1703
|
// skip 3, n_ctx used in GLM RoPE, unimplemented in Vulkan
|
1689
|
-
const int
|
1704
|
+
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
|
1690
1705
|
|
1691
1706
|
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
1692
1707
|
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
|
@@ -1696,7 +1711,7 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
|
|
1696
1711
|
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
1697
1712
|
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
1698
1713
|
ggml_vk_rope(
|
1699
|
-
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, src0t, n_dims, mode,
|
1714
|
+
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, src0t, n_dims, mode, n_ctx_orig,
|
1700
1715
|
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow,
|
1701
1716
|
ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, nb0, nb1, nb2, nb3
|
1702
1717
|
);
|
@@ -1,7 +1,7 @@
|
|
1
1
|
// An interface allowing to compute ggml_cgraph with Metal
|
2
2
|
//
|
3
3
|
// This is a fully functional interface that extends ggml with GPU support for Apple devices.
|
4
|
-
// A similar interface can be created for other GPU backends (e.g. Vulkan, CUDA,
|
4
|
+
// A similar interface can be created for other GPU backends (e.g. Vulkan, CUDA, etc.)
|
5
5
|
//
|
6
6
|
// How it works?
|
7
7
|
//
|
@@ -172,8 +172,10 @@ enum ggml_metal_kernel_type {
|
|
172
172
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32,
|
173
173
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32,
|
174
174
|
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32,
|
175
|
-
|
176
|
-
|
175
|
+
GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32,
|
176
|
+
GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16,
|
177
|
+
GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32,
|
178
|
+
GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16,
|
177
179
|
GGML_METAL_KERNEL_TYPE_IM2COL_F16,
|
178
180
|
GGML_METAL_KERNEL_TYPE_IM2COL_F32,
|
179
181
|
GGML_METAL_KERNEL_TYPE_UPSCALE_F32,
|
@@ -626,8 +628,10 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|
626
628
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32, mul_mm_id_iq1_m_f32, ctx->support_simdgroup_mm);
|
627
629
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32, mul_mm_id_iq4_nl_f32, ctx->support_simdgroup_mm);
|
628
630
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, mul_mm_id_iq4_xs_f32, ctx->support_simdgroup_mm);
|
629
|
-
GGML_METAL_ADD_KERNEL(
|
630
|
-
GGML_METAL_ADD_KERNEL(
|
631
|
+
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32, rope_norm_f32, true);
|
632
|
+
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16, rope_norm_f16, true);
|
633
|
+
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32, rope_neox_f32, true);
|
634
|
+
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16, rope_neox_f16, true);
|
631
635
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F16, im2col_f16, true);
|
632
636
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32, im2col_f32, true);
|
633
637
|
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true);
|
@@ -779,6 +783,12 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
|
|
779
783
|
case GGML_OP_LEAKY_RELU:
|
780
784
|
return true;
|
781
785
|
case GGML_OP_FLASH_ATTN_EXT:
|
786
|
+
if (op->src[1]->type != GGML_TYPE_F16) {
|
787
|
+
return false;
|
788
|
+
}
|
789
|
+
if (op->src[2]->type != GGML_TYPE_F16) {
|
790
|
+
return false;
|
791
|
+
}
|
782
792
|
if (op->src[0]->ne[0] == 256) {
|
783
793
|
return false;
|
784
794
|
}
|
@@ -2279,7 +2289,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
|
2279
2289
|
const int n_dims = ((int32_t *) dst->op_params)[1];
|
2280
2290
|
const int mode = ((int32_t *) dst->op_params)[2];
|
2281
2291
|
// skip 3, n_ctx, used in GLM RoPE, unimplemented in metal
|
2282
|
-
const int
|
2292
|
+
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
|
2283
2293
|
|
2284
2294
|
float freq_base;
|
2285
2295
|
float freq_scale;
|
@@ -2296,22 +2306,23 @@ static enum ggml_status ggml_metal_graph_compute(
|
|
2296
2306
|
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
2297
2307
|
|
2298
2308
|
const bool is_neox = mode & 2;
|
2299
|
-
const bool is_glm = mode & 4;
|
2300
2309
|
|
2301
|
-
|
2310
|
+
id<MTLComputePipelineState> pipeline = nil;
|
2302
2311
|
|
2303
2312
|
if (!is_neox) {
|
2304
|
-
|
2313
|
+
switch (src0->type) {
|
2314
|
+
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32].pipeline; break;
|
2315
|
+
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16].pipeline; break;
|
2316
|
+
default: GGML_ASSERT(false);
|
2317
|
+
};
|
2318
|
+
} else {
|
2319
|
+
switch (src0->type) {
|
2320
|
+
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32].pipeline; break;
|
2321
|
+
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16].pipeline; break;
|
2322
|
+
default: GGML_ASSERT(false);
|
2323
|
+
};
|
2305
2324
|
}
|
2306
2325
|
|
2307
|
-
id<MTLComputePipelineState> pipeline = nil;
|
2308
|
-
|
2309
|
-
switch (src0->type) {
|
2310
|
-
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_F32].pipeline; break;
|
2311
|
-
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_F16].pipeline; break;
|
2312
|
-
default: GGML_ASSERT(false);
|
2313
|
-
};
|
2314
|
-
|
2315
2326
|
[encoder setComputePipelineState:pipeline];
|
2316
2327
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
2317
2328
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
@@ -2339,14 +2350,13 @@ static enum ggml_status ggml_metal_graph_compute(
|
|
2339
2350
|
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:19];
|
2340
2351
|
[encoder setBytes:&n_past length:sizeof( int) atIndex:20];
|
2341
2352
|
[encoder setBytes:&n_dims length:sizeof( int) atIndex:21];
|
2342
|
-
[encoder setBytes:&
|
2343
|
-
[encoder setBytes:&
|
2344
|
-
[encoder setBytes:&
|
2345
|
-
[encoder setBytes:&
|
2346
|
-
[encoder setBytes:&
|
2347
|
-
[encoder setBytes:&
|
2348
|
-
[encoder setBytes:&
|
2349
|
-
[encoder setBytes:&beta_slow length:sizeof( float) atIndex:29];
|
2353
|
+
[encoder setBytes:&n_ctx_orig length:sizeof( int) atIndex:22];
|
2354
|
+
[encoder setBytes:&freq_base length:sizeof( float) atIndex:23];
|
2355
|
+
[encoder setBytes:&freq_scale length:sizeof( float) atIndex:24];
|
2356
|
+
[encoder setBytes:&ext_factor length:sizeof( float) atIndex:25];
|
2357
|
+
[encoder setBytes:&attn_factor length:sizeof( float) atIndex:26];
|
2358
|
+
[encoder setBytes:&beta_fast length:sizeof( float) atIndex:27];
|
2359
|
+
[encoder setBytes:&beta_slow length:sizeof( float) atIndex:28];
|
2350
2360
|
|
2351
2361
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
2352
2362
|
} break;
|