llama_cpp 0.15.4 → 0.16.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/ext/llama_cpp/extconf.rb +1 -2
- data/ext/llama_cpp/llama_cpp.cpp +15 -3
- data/lib/llama_cpp/version.rb +2 -2
- data/sig/llama_cpp.rbs +13 -1
- data/vendor/tmp/llama.cpp/Makefile +62 -35
- data/vendor/tmp/llama.cpp/ggml-alloc.c +4 -4
- data/vendor/tmp/llama.cpp/ggml-backend.c +5 -5
- data/vendor/tmp/llama.cpp/ggml-backend.h +1 -1
- data/vendor/tmp/llama.cpp/ggml-cuda/acc.cu +47 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/arange.cu +34 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/argsort.cu +103 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/binbcast.cu +280 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/clamp.cu +34 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/concat.cu +196 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/convert.cu +686 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/cpy.cu +490 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/diagmask.cu +40 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/dmmv.cu +662 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn-tile-f16.cu +319 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn-tile-f32.cu +312 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn.cu +345 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/getrows.cu +178 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/im2col.cu +104 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/mmq.cu +1564 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/mmvq.cu +404 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/norm.cu +221 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/pad.cu +49 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/pool2d.cu +94 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/quantize.cu +45 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/rope.cu +271 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/scale.cu +31 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/softmax.cu +205 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/sumrows.cu +40 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs256-f16-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs256-f16-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-f16.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_1.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q8_0.cu +5 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb16.cu +10 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb32.cu +9 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb16.cu +10 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb32.cu +10 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb8.cu +8 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/tsembd.cu +47 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/unary.cu +266 -0
- data/vendor/tmp/llama.cpp/ggml-cuda/upscale.cu +51 -0
- data/vendor/tmp/llama.cpp/ggml-cuda.cu +8 -6
- data/vendor/tmp/llama.cpp/ggml-kompute.cpp +21 -6
- data/vendor/tmp/llama.cpp/ggml-metal.h +1 -1
- data/vendor/tmp/llama.cpp/ggml-metal.m +34 -24
- data/vendor/tmp/llama.cpp/ggml-metal.metal +83 -59
- data/vendor/tmp/llama.cpp/ggml-rpc.cpp +2 -2
- data/vendor/tmp/llama.cpp/ggml-sycl.cpp +7 -67
- data/vendor/tmp/llama.cpp/ggml-vulkan-shaders.hpp +99301 -39793
- data/vendor/tmp/llama.cpp/ggml-vulkan.cpp +456 -329
- data/vendor/tmp/llama.cpp/ggml.c +178 -330
- data/vendor/tmp/llama.cpp/ggml.h +9 -28
- data/vendor/tmp/llama.cpp/llama.cpp +242 -426
- data/vendor/tmp/llama.cpp/llama.h +17 -43
- metadata +121 -6
- data/vendor/tmp/llama.cpp/ggml-mpi.c +0 -216
- data/vendor/tmp/llama.cpp/ggml-mpi.h +0 -39
- data/vendor/tmp/llama.cpp/ggml-opencl.cpp +0 -2305
- data/vendor/tmp/llama.cpp/ggml-opencl.h +0 -36
@@ -0,0 +1,1564 @@
|
|
1
|
+
#include "mmq.cuh"
|
2
|
+
#include "vecdotq.cuh"
|
3
|
+
|
4
|
+
typedef void (*allocate_tiles_cuda_t)(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc);
|
5
|
+
typedef void (*load_tiles_cuda_t)(
|
6
|
+
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
7
|
+
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row);
|
8
|
+
typedef float (*vec_dot_q_mul_mat_cuda_t)(
|
9
|
+
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
10
|
+
const int * __restrict__ y_qs, const half2 * __restrict__ y_ms, const int & i, const int & j, const int & k);
|
11
|
+
typedef void (*dot_kernel_k_t)(const void * __restrict__ vx, const int ib, const int iqs, const float * __restrict__ y, float & v);
|
12
|
+
typedef void (mul_mat_q_t)(
|
13
|
+
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
14
|
+
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst);
|
15
|
+
|
16
|
+
struct mmq_arch_config_t {
|
17
|
+
int x;
|
18
|
+
int y;
|
19
|
+
int nwarps;
|
20
|
+
};
|
21
|
+
|
22
|
+
struct mmq_config_t {
|
23
|
+
mmq_arch_config_t rdna2;
|
24
|
+
mmq_arch_config_t rdna1;
|
25
|
+
mmq_arch_config_t ampere;
|
26
|
+
mmq_arch_config_t pascal;
|
27
|
+
};
|
28
|
+
|
29
|
+
constexpr mmq_config_t MMQ_CONFIG_Q4_0 = {
|
30
|
+
// x y nwarps
|
31
|
+
{ 64, 128, 8},
|
32
|
+
{ 64, 64, 8},
|
33
|
+
#ifdef CUDA_USE_TENSOR_CORES
|
34
|
+
{ 4, 32, 4},
|
35
|
+
#else
|
36
|
+
{ 64, 128, 4},
|
37
|
+
#endif // CUDA_USE_TENSOR_CORES
|
38
|
+
{ 64, 64, 8},
|
39
|
+
};
|
40
|
+
constexpr mmq_config_t MMQ_CONFIG_Q4_1 = {
|
41
|
+
// x y nwarps
|
42
|
+
{ 64, 128, 8},
|
43
|
+
{ 64, 64, 8},
|
44
|
+
#ifdef CUDA_USE_TENSOR_CORES
|
45
|
+
{ 4, 32, 4},
|
46
|
+
#else
|
47
|
+
{ 64, 128, 4},
|
48
|
+
#endif // CUDA_USE_TENSOR_CORES
|
49
|
+
{ 64, 64, 8},
|
50
|
+
};
|
51
|
+
constexpr mmq_config_t MMQ_CONFIG_Q5_0 = {
|
52
|
+
// x y nwarps
|
53
|
+
{ 64, 128, 8},
|
54
|
+
{ 64, 64, 8},
|
55
|
+
#ifdef CUDA_USE_TENSOR_CORES
|
56
|
+
{ 4, 32, 4},
|
57
|
+
#else
|
58
|
+
{128, 64, 4},
|
59
|
+
#endif // CUDA_USE_TENSOR_CORES
|
60
|
+
{ 64, 64, 8},
|
61
|
+
};
|
62
|
+
constexpr mmq_config_t MMQ_CONFIG_Q5_1 = {
|
63
|
+
// x y nwarps
|
64
|
+
{ 64, 128, 8},
|
65
|
+
{ 64, 64, 8},
|
66
|
+
#ifdef CUDA_USE_TENSOR_CORES
|
67
|
+
{ 4, 32, 4},
|
68
|
+
#else
|
69
|
+
{128, 64, 4},
|
70
|
+
#endif // CUDA_USE_TENSOR_CORES
|
71
|
+
{ 64, 64, 8},
|
72
|
+
};
|
73
|
+
constexpr mmq_config_t MMQ_CONFIG_Q8_0 = {
|
74
|
+
// x y nwarps
|
75
|
+
{ 64, 128, 8},
|
76
|
+
{ 64, 64, 8},
|
77
|
+
#ifdef CUDA_USE_TENSOR_CORES
|
78
|
+
{ 4, 32, 4},
|
79
|
+
#else
|
80
|
+
{128, 64, 4},
|
81
|
+
#endif // CUDA_USE_TENSOR_CORES
|
82
|
+
{ 64, 64, 8},
|
83
|
+
};
|
84
|
+
constexpr mmq_config_t MMQ_CONFIG_Q2_K = {
|
85
|
+
// x y nwarps
|
86
|
+
{ 64, 128, 8},
|
87
|
+
{128, 32, 8},
|
88
|
+
#ifdef CUDA_USE_TENSOR_CORES
|
89
|
+
{ 4, 32, 4},
|
90
|
+
#else
|
91
|
+
{ 64, 128, 4},
|
92
|
+
#endif // CUDA_USE_TENSOR_CORES
|
93
|
+
{ 64, 64, 8},
|
94
|
+
};
|
95
|
+
constexpr mmq_config_t MMQ_CONFIG_Q3_K = {
|
96
|
+
// x y nwarps
|
97
|
+
{128, 64, 8},
|
98
|
+
{ 32, 128, 8},
|
99
|
+
#ifdef CUDA_USE_TENSOR_CORES
|
100
|
+
{ 4, 32, 4},
|
101
|
+
#else
|
102
|
+
{128, 128, 4},
|
103
|
+
#endif // CUDA_USE_TENSOR_CORES
|
104
|
+
{ 64, 64, 8},
|
105
|
+
};
|
106
|
+
constexpr mmq_config_t MMQ_CONFIG_Q4_K = {
|
107
|
+
// x y nwarps
|
108
|
+
{ 64, 128, 8},
|
109
|
+
{ 32, 64, 8},
|
110
|
+
#ifdef CUDA_USE_TENSOR_CORES
|
111
|
+
{ 4, 32, 4},
|
112
|
+
#else
|
113
|
+
{ 64, 128, 4},
|
114
|
+
#endif // CUDA_USE_TENSOR_CORES
|
115
|
+
{ 64, 64, 8},
|
116
|
+
};
|
117
|
+
constexpr mmq_config_t MMQ_CONFIG_Q5_K = {
|
118
|
+
// x y nwarps
|
119
|
+
{ 64, 128, 8},
|
120
|
+
{ 32, 64, 8},
|
121
|
+
#ifdef CUDA_USE_TENSOR_CORES
|
122
|
+
{ 4, 32, 4},
|
123
|
+
#else
|
124
|
+
{ 64, 128, 4},
|
125
|
+
#endif // CUDA_USE_TENSOR_CORES
|
126
|
+
{ 64, 64, 8},
|
127
|
+
};
|
128
|
+
constexpr mmq_config_t MMQ_CONFIG_Q6_K = {
|
129
|
+
// x y nwarps
|
130
|
+
{ 64, 128, 8},
|
131
|
+
{ 32, 64, 8},
|
132
|
+
#ifdef CUDA_USE_TENSOR_CORES
|
133
|
+
{ 4, 32, 4},
|
134
|
+
#else
|
135
|
+
{ 64, 64, 4},
|
136
|
+
#endif // CUDA_USE_TENSOR_CORES
|
137
|
+
{ 64, 64, 8},
|
138
|
+
};
|
139
|
+
|
140
|
+
// ------------------------------------------------------------
|
141
|
+
|
142
|
+
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
143
|
+
GGML_UNUSED(x_qh);
|
144
|
+
GGML_UNUSED(x_sc);
|
145
|
+
|
146
|
+
__shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
|
147
|
+
__shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI4_0) + mmq_y/QI4_0];
|
148
|
+
|
149
|
+
*x_ql = tile_x_qs;
|
150
|
+
*x_dm = (half2 *) tile_x_d;
|
151
|
+
}
|
152
|
+
|
153
|
+
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_0(
|
154
|
+
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
155
|
+
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
156
|
+
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
157
|
+
GGML_CUDA_ASSUME(i_offset >= 0);
|
158
|
+
GGML_CUDA_ASSUME(i_offset < nwarps);
|
159
|
+
GGML_CUDA_ASSUME(k >= 0);
|
160
|
+
GGML_CUDA_ASSUME(k < WARP_SIZE);
|
161
|
+
|
162
|
+
const int kbx = k / QI4_0;
|
163
|
+
const int kqsx = k % QI4_0;
|
164
|
+
|
165
|
+
const block_q4_0 * bx0 = (const block_q4_0 *) vx;
|
166
|
+
|
167
|
+
float * x_dmf = (float *) x_dm;
|
168
|
+
|
169
|
+
#pragma unroll
|
170
|
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
171
|
+
int i = i0 + i_offset;
|
172
|
+
|
173
|
+
if (need_check) {
|
174
|
+
i = min(i, i_max);
|
175
|
+
}
|
176
|
+
|
177
|
+
const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx;
|
178
|
+
|
179
|
+
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
|
180
|
+
// x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d;
|
181
|
+
}
|
182
|
+
|
183
|
+
const int blocks_per_tile_x_row = WARP_SIZE / QI4_0;
|
184
|
+
const int kbxd = k % blocks_per_tile_x_row;
|
185
|
+
|
186
|
+
#pragma unroll
|
187
|
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) {
|
188
|
+
int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row;
|
189
|
+
|
190
|
+
if (need_check) {
|
191
|
+
i = min(i, i_max);
|
192
|
+
}
|
193
|
+
|
194
|
+
const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd;
|
195
|
+
|
196
|
+
x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = bxi->d;
|
197
|
+
}
|
198
|
+
}
|
199
|
+
|
200
|
+
static __device__ __forceinline__ float vec_dot_q4_0_q8_1_mul_mat(
|
201
|
+
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
202
|
+
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
203
|
+
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
204
|
+
|
205
|
+
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
|
206
|
+
const float * x_dmf = (const float *) x_dm;
|
207
|
+
|
208
|
+
int u[2*VDR_Q4_0_Q8_1_MMQ];
|
209
|
+
|
210
|
+
#pragma unroll
|
211
|
+
for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
|
212
|
+
u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
|
213
|
+
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE];
|
214
|
+
}
|
215
|
+
|
216
|
+
return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
|
217
|
+
(&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0],
|
218
|
+
y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
|
219
|
+
}
|
220
|
+
|
221
|
+
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
222
|
+
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
223
|
+
|
224
|
+
__shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + + mmq_y];
|
225
|
+
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_1) + mmq_y/QI4_1];
|
226
|
+
|
227
|
+
*x_ql = tile_x_qs;
|
228
|
+
*x_dm = tile_x_dm;
|
229
|
+
}
|
230
|
+
|
231
|
+
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_1(
|
232
|
+
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
233
|
+
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
234
|
+
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
235
|
+
|
236
|
+
GGML_CUDA_ASSUME(i_offset >= 0);
|
237
|
+
GGML_CUDA_ASSUME(i_offset < nwarps);
|
238
|
+
GGML_CUDA_ASSUME(k >= 0);
|
239
|
+
GGML_CUDA_ASSUME(k < WARP_SIZE);
|
240
|
+
|
241
|
+
const int kbx = k / QI4_1;
|
242
|
+
const int kqsx = k % QI4_1;
|
243
|
+
|
244
|
+
const block_q4_1 * bx0 = (const block_q4_1 *) vx;
|
245
|
+
|
246
|
+
#pragma unroll
|
247
|
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
248
|
+
int i = i0 + i_offset;
|
249
|
+
|
250
|
+
if (need_check) {
|
251
|
+
i = min(i, i_max);
|
252
|
+
}
|
253
|
+
|
254
|
+
const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx;
|
255
|
+
|
256
|
+
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
257
|
+
}
|
258
|
+
|
259
|
+
const int blocks_per_tile_x_row = WARP_SIZE / QI4_1;
|
260
|
+
const int kbxd = k % blocks_per_tile_x_row;
|
261
|
+
|
262
|
+
#pragma unroll
|
263
|
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) {
|
264
|
+
int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row;
|
265
|
+
|
266
|
+
if (need_check) {
|
267
|
+
i = min(i, i_max);
|
268
|
+
}
|
269
|
+
|
270
|
+
const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd;
|
271
|
+
|
272
|
+
x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm;
|
273
|
+
}
|
274
|
+
}
|
275
|
+
|
276
|
+
static __device__ __forceinline__ float vec_dot_q4_1_q8_1_mul_mat(
|
277
|
+
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
278
|
+
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
279
|
+
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
280
|
+
|
281
|
+
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
|
282
|
+
|
283
|
+
int u[2*VDR_Q4_1_Q8_1_MMQ];
|
284
|
+
|
285
|
+
#pragma unroll
|
286
|
+
for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
|
287
|
+
u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
|
288
|
+
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE];
|
289
|
+
}
|
290
|
+
|
291
|
+
return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
|
292
|
+
(&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1],
|
293
|
+
y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
|
294
|
+
}
|
295
|
+
|
296
|
+
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
297
|
+
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
298
|
+
|
299
|
+
__shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
|
300
|
+
__shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI5_0) + mmq_y/QI5_0];
|
301
|
+
|
302
|
+
*x_ql = tile_x_ql;
|
303
|
+
*x_dm = (half2 *) tile_x_d;
|
304
|
+
}
|
305
|
+
|
306
|
+
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_0(
|
307
|
+
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
308
|
+
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
309
|
+
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
310
|
+
|
311
|
+
GGML_CUDA_ASSUME(i_offset >= 0);
|
312
|
+
GGML_CUDA_ASSUME(i_offset < nwarps);
|
313
|
+
GGML_CUDA_ASSUME(k >= 0);
|
314
|
+
GGML_CUDA_ASSUME(k < WARP_SIZE);
|
315
|
+
|
316
|
+
const int kbx = k / QI5_0;
|
317
|
+
const int kqsx = k % QI5_0;
|
318
|
+
|
319
|
+
const block_q5_0 * bx0 = (const block_q5_0 *) vx;
|
320
|
+
|
321
|
+
#pragma unroll
|
322
|
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
323
|
+
int i = i0 + i_offset;
|
324
|
+
|
325
|
+
if (need_check) {
|
326
|
+
i = min(i, i_max);
|
327
|
+
}
|
328
|
+
|
329
|
+
const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx;
|
330
|
+
|
331
|
+
const int ql = get_int_from_uint8(bxi->qs, kqsx);
|
332
|
+
const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0));
|
333
|
+
|
334
|
+
int qs0 = (ql >> 0) & 0x0F0F0F0F;
|
335
|
+
qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
|
336
|
+
qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
|
337
|
+
qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
|
338
|
+
qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
|
339
|
+
qs0 = __vsubss4(qs0, 0x10101010); // subtract 16
|
340
|
+
|
341
|
+
x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
|
342
|
+
|
343
|
+
int qs1 = (ql >> 4) & 0x0F0F0F0F;
|
344
|
+
qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
|
345
|
+
qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
|
346
|
+
qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
|
347
|
+
qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
|
348
|
+
qs1 = __vsubss4(qs1, 0x10101010); // subtract 16
|
349
|
+
|
350
|
+
x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
|
351
|
+
}
|
352
|
+
|
353
|
+
const int blocks_per_tile_x_row = WARP_SIZE / QI5_0;
|
354
|
+
const int kbxd = k % blocks_per_tile_x_row;
|
355
|
+
float * x_dmf = (float *) x_dm;
|
356
|
+
|
357
|
+
#pragma unroll
|
358
|
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) {
|
359
|
+
int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row;
|
360
|
+
|
361
|
+
if (need_check) {
|
362
|
+
i = min(i, i_max);
|
363
|
+
}
|
364
|
+
|
365
|
+
const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd;
|
366
|
+
|
367
|
+
x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d;
|
368
|
+
}
|
369
|
+
}
|
370
|
+
|
371
|
+
static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat(
|
372
|
+
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
373
|
+
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
374
|
+
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
375
|
+
|
376
|
+
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
|
377
|
+
const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0;
|
378
|
+
const float * x_dmf = (const float *) x_dm;
|
379
|
+
const float * y_df = (const float *) y_ds;
|
380
|
+
|
381
|
+
int u[2*VDR_Q5_0_Q8_1_MMQ];
|
382
|
+
|
383
|
+
#pragma unroll
|
384
|
+
for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) {
|
385
|
+
u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
|
386
|
+
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
|
387
|
+
}
|
388
|
+
|
389
|
+
return vec_dot_q8_0_q8_1_impl<float, QR5_0*VDR_Q5_0_Q8_1_MMQ>
|
390
|
+
(&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
|
391
|
+
}
|
392
|
+
|
393
|
+
|
394
|
+
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
395
|
+
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
396
|
+
|
397
|
+
__shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
|
398
|
+
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_1) + mmq_y/QI5_1];
|
399
|
+
|
400
|
+
*x_ql = tile_x_ql;
|
401
|
+
*x_dm = tile_x_dm;
|
402
|
+
}
|
403
|
+
|
404
|
+
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_1(
|
405
|
+
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
406
|
+
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
407
|
+
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
408
|
+
|
409
|
+
GGML_CUDA_ASSUME(i_offset >= 0);
|
410
|
+
GGML_CUDA_ASSUME(i_offset < nwarps);
|
411
|
+
GGML_CUDA_ASSUME(k >= 0);
|
412
|
+
GGML_CUDA_ASSUME(k < WARP_SIZE);
|
413
|
+
|
414
|
+
const int kbx = k / QI5_1;
|
415
|
+
const int kqsx = k % QI5_1;
|
416
|
+
|
417
|
+
const block_q5_1 * bx0 = (const block_q5_1 *) vx;
|
418
|
+
|
419
|
+
#pragma unroll
|
420
|
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
421
|
+
int i = i0 + i_offset;
|
422
|
+
|
423
|
+
if (need_check) {
|
424
|
+
i = min(i, i_max);
|
425
|
+
}
|
426
|
+
|
427
|
+
const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx;
|
428
|
+
|
429
|
+
const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
430
|
+
const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1));
|
431
|
+
|
432
|
+
int qs0 = (ql >> 0) & 0x0F0F0F0F;
|
433
|
+
qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
|
434
|
+
qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
|
435
|
+
qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
|
436
|
+
qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
|
437
|
+
|
438
|
+
x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
|
439
|
+
|
440
|
+
int qs1 = (ql >> 4) & 0x0F0F0F0F;
|
441
|
+
qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
|
442
|
+
qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
|
443
|
+
qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
|
444
|
+
qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
|
445
|
+
|
446
|
+
x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
|
447
|
+
}
|
448
|
+
|
449
|
+
const int blocks_per_tile_x_row = WARP_SIZE / QI5_1;
|
450
|
+
const int kbxd = k % blocks_per_tile_x_row;
|
451
|
+
|
452
|
+
#pragma unroll
|
453
|
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) {
|
454
|
+
int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row;
|
455
|
+
|
456
|
+
if (need_check) {
|
457
|
+
i = min(i, i_max);
|
458
|
+
}
|
459
|
+
|
460
|
+
const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd;
|
461
|
+
|
462
|
+
x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm;
|
463
|
+
}
|
464
|
+
}
|
465
|
+
|
466
|
+
static __device__ __forceinline__ float vec_dot_q5_1_q8_1_mul_mat(
|
467
|
+
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
468
|
+
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
469
|
+
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
470
|
+
|
471
|
+
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
|
472
|
+
const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1;
|
473
|
+
|
474
|
+
int u[2*VDR_Q5_1_Q8_1_MMQ];
|
475
|
+
|
476
|
+
#pragma unroll
|
477
|
+
for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) {
|
478
|
+
u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
|
479
|
+
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE];
|
480
|
+
}
|
481
|
+
|
482
|
+
return vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
|
483
|
+
(&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
|
484
|
+
}
|
485
|
+
|
486
|
+
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
487
|
+
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
488
|
+
|
489
|
+
__shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
|
490
|
+
__shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI8_0) + mmq_y/QI8_0];
|
491
|
+
|
492
|
+
*x_ql = tile_x_qs;
|
493
|
+
*x_dm = (half2 *) tile_x_d;
|
494
|
+
}
|
495
|
+
|
496
|
+
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q8_0(
|
497
|
+
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
498
|
+
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
499
|
+
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
500
|
+
|
501
|
+
GGML_CUDA_ASSUME(i_offset >= 0);
|
502
|
+
GGML_CUDA_ASSUME(i_offset < nwarps);
|
503
|
+
GGML_CUDA_ASSUME(k >= 0);
|
504
|
+
GGML_CUDA_ASSUME(k < WARP_SIZE);
|
505
|
+
|
506
|
+
const int kbx = k / QI8_0;
|
507
|
+
const int kqsx = k % QI8_0;
|
508
|
+
float * x_dmf = (float *) x_dm;
|
509
|
+
|
510
|
+
const block_q8_0 * bx0 = (const block_q8_0 *) vx;
|
511
|
+
|
512
|
+
#pragma unroll
|
513
|
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
514
|
+
int i = i0 + i_offset;
|
515
|
+
|
516
|
+
if (need_check) {
|
517
|
+
i = min(i, i_max);
|
518
|
+
}
|
519
|
+
|
520
|
+
const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx;
|
521
|
+
|
522
|
+
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx);
|
523
|
+
}
|
524
|
+
|
525
|
+
const int blocks_per_tile_x_row = WARP_SIZE / QI8_0;
|
526
|
+
const int kbxd = k % blocks_per_tile_x_row;
|
527
|
+
|
528
|
+
#pragma unroll
|
529
|
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) {
|
530
|
+
int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row;
|
531
|
+
|
532
|
+
if (need_check) {
|
533
|
+
i = min(i, i_max);
|
534
|
+
}
|
535
|
+
|
536
|
+
const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd;
|
537
|
+
|
538
|
+
x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = bxi->d;
|
539
|
+
}
|
540
|
+
}
|
541
|
+
|
542
|
+
static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat(
|
543
|
+
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
544
|
+
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
545
|
+
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
|
546
|
+
|
547
|
+
const float * x_dmf = (const float *) x_dm;
|
548
|
+
const float * y_df = (const float *) y_ds;
|
549
|
+
|
550
|
+
return vec_dot_q8_0_q8_1_impl<float, VDR_Q8_0_Q8_1_MMQ>
|
551
|
+
(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
|
552
|
+
y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
|
553
|
+
}
|
554
|
+
|
555
|
+
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q2_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
556
|
+
GGML_UNUSED(x_qh);
|
557
|
+
|
558
|
+
__shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
|
559
|
+
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI2_K) + mmq_y/QI2_K];
|
560
|
+
__shared__ int tile_x_sc[mmq_y * (WARP_SIZE/4) + mmq_y/4];
|
561
|
+
|
562
|
+
*x_ql = tile_x_ql;
|
563
|
+
*x_dm = tile_x_dm;
|
564
|
+
*x_sc = tile_x_sc;
|
565
|
+
}
|
566
|
+
|
567
|
+
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q2_K(
|
568
|
+
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
569
|
+
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
570
|
+
GGML_UNUSED(x_qh);
|
571
|
+
|
572
|
+
GGML_CUDA_ASSUME(i_offset >= 0);
|
573
|
+
GGML_CUDA_ASSUME(i_offset < nwarps);
|
574
|
+
GGML_CUDA_ASSUME(k >= 0);
|
575
|
+
GGML_CUDA_ASSUME(k < WARP_SIZE);
|
576
|
+
|
577
|
+
const int kbx = k / QI2_K;
|
578
|
+
const int kqsx = k % QI2_K;
|
579
|
+
|
580
|
+
const block_q2_K * bx0 = (const block_q2_K *) vx;
|
581
|
+
|
582
|
+
#pragma unroll
|
583
|
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
584
|
+
int i = i0 + i_offset;
|
585
|
+
|
586
|
+
if (need_check) {
|
587
|
+
i = min(i, i_max);
|
588
|
+
}
|
589
|
+
|
590
|
+
const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx;
|
591
|
+
|
592
|
+
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
593
|
+
}
|
594
|
+
|
595
|
+
const int blocks_per_tile_x_row = WARP_SIZE / QI2_K;
|
596
|
+
const int kbxd = k % blocks_per_tile_x_row;
|
597
|
+
|
598
|
+
#pragma unroll
|
599
|
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) {
|
600
|
+
int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % mmq_y;
|
601
|
+
|
602
|
+
if (need_check) {
|
603
|
+
i = min(i, i_max);
|
604
|
+
}
|
605
|
+
|
606
|
+
const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
607
|
+
|
608
|
+
x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm;
|
609
|
+
}
|
610
|
+
|
611
|
+
#pragma unroll
|
612
|
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
|
613
|
+
int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
|
614
|
+
|
615
|
+
if (need_check) {
|
616
|
+
i = min(i, i_max);
|
617
|
+
}
|
618
|
+
|
619
|
+
const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4);
|
620
|
+
|
621
|
+
x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4));
|
622
|
+
}
|
623
|
+
}
|
624
|
+
|
625
|
+
static __device__ __forceinline__ float vec_dot_q2_K_q8_1_mul_mat(
|
626
|
+
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
627
|
+
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
628
|
+
GGML_UNUSED(x_qh);
|
629
|
+
|
630
|
+
const int kbx = k / QI2_K;
|
631
|
+
const int ky = (k % QI2_K) * QR2_K;
|
632
|
+
const float * y_df = (const float *) y_ds;
|
633
|
+
|
634
|
+
int v[QR2_K*VDR_Q2_K_Q8_1_MMQ];
|
635
|
+
|
636
|
+
const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2);
|
637
|
+
const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2));
|
638
|
+
|
639
|
+
#pragma unroll
|
640
|
+
for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) {
|
641
|
+
v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303;
|
642
|
+
}
|
643
|
+
|
644
|
+
const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4;
|
645
|
+
|
646
|
+
const int index_y = j * WARP_SIZE + (QR2_K*k) % WARP_SIZE;
|
647
|
+
return vec_dot_q2_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]);
|
648
|
+
}
|
649
|
+
|
650
|
+
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q3_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
651
|
+
|
652
|
+
__shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
|
653
|
+
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI3_K) + mmq_y/QI3_K];
|
654
|
+
__shared__ int tile_x_qh[mmq_y * (WARP_SIZE/2) + mmq_y/2];
|
655
|
+
__shared__ int tile_x_sc[mmq_y * (WARP_SIZE/4) + mmq_y/4];
|
656
|
+
|
657
|
+
*x_ql = tile_x_ql;
|
658
|
+
*x_dm = tile_x_dm;
|
659
|
+
*x_qh = tile_x_qh;
|
660
|
+
*x_sc = tile_x_sc;
|
661
|
+
}
|
662
|
+
|
663
|
+
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q3_K(
|
664
|
+
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
665
|
+
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
666
|
+
|
667
|
+
GGML_CUDA_ASSUME(i_offset >= 0);
|
668
|
+
GGML_CUDA_ASSUME(i_offset < nwarps);
|
669
|
+
GGML_CUDA_ASSUME(k >= 0);
|
670
|
+
GGML_CUDA_ASSUME(k < WARP_SIZE);
|
671
|
+
|
672
|
+
const int kbx = k / QI3_K;
|
673
|
+
const int kqsx = k % QI3_K;
|
674
|
+
|
675
|
+
const block_q3_K * bx0 = (const block_q3_K *) vx;
|
676
|
+
|
677
|
+
#pragma unroll
|
678
|
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
679
|
+
int i = i0 + i_offset;
|
680
|
+
|
681
|
+
if (need_check) {
|
682
|
+
i = min(i, i_max);
|
683
|
+
}
|
684
|
+
|
685
|
+
const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx;
|
686
|
+
|
687
|
+
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
|
688
|
+
}
|
689
|
+
|
690
|
+
const int blocks_per_tile_x_row = WARP_SIZE / QI3_K;
|
691
|
+
const int kbxd = k % blocks_per_tile_x_row;
|
692
|
+
float * x_dmf = (float *) x_dm;
|
693
|
+
|
694
|
+
#pragma unroll
|
695
|
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) {
|
696
|
+
int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % mmq_y;
|
697
|
+
|
698
|
+
if (need_check) {
|
699
|
+
i = min(i, i_max);
|
700
|
+
}
|
701
|
+
|
702
|
+
const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
703
|
+
|
704
|
+
x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = bxi->d;
|
705
|
+
}
|
706
|
+
|
707
|
+
#pragma unroll
|
708
|
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) {
|
709
|
+
int i = i0 + i_offset * 2 + k / (WARP_SIZE/2);
|
710
|
+
|
711
|
+
if (need_check) {
|
712
|
+
i = min(i, i_max);
|
713
|
+
}
|
714
|
+
|
715
|
+
const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2);
|
716
|
+
|
717
|
+
// invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
|
718
|
+
x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, k % (QI3_K/2));
|
719
|
+
}
|
720
|
+
|
721
|
+
#pragma unroll
|
722
|
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
|
723
|
+
int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
|
724
|
+
|
725
|
+
if (need_check) {
|
726
|
+
i = min(i, i_max);
|
727
|
+
}
|
728
|
+
|
729
|
+
const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4);
|
730
|
+
|
731
|
+
const int ksc = k % (QI3_K/4);
|
732
|
+
|
733
|
+
const int ksc_low = ksc % (QI3_K/8);
|
734
|
+
const int shift_low = 4 * (ksc / (QI3_K/8));
|
735
|
+
const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;
|
736
|
+
|
737
|
+
const int ksc_high = QI3_K/8;
|
738
|
+
const int shift_high = 2 * ksc;
|
739
|
+
const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;
|
740
|
+
|
741
|
+
const int sc = __vsubss4(sc_low | sc_high, 0x20202020);
|
742
|
+
|
743
|
+
x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = sc;
|
744
|
+
}
|
745
|
+
}
|
746
|
+
|
747
|
+
static __device__ __forceinline__ float vec_dot_q3_K_q8_1_mul_mat(
|
748
|
+
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
749
|
+
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
750
|
+
|
751
|
+
const int kbx = k / QI3_K;
|
752
|
+
const int ky = (k % QI3_K) * QR3_K;
|
753
|
+
const float * x_dmf = (const float *) x_dm;
|
754
|
+
const float * y_df = (const float *) y_ds;
|
755
|
+
|
756
|
+
const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
|
757
|
+
|
758
|
+
int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
|
759
|
+
|
760
|
+
#pragma unroll
|
761
|
+
for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) {
|
762
|
+
const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2);
|
763
|
+
const int shift = 2 * ((ky % 32) / 8);
|
764
|
+
const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303;
|
765
|
+
|
766
|
+
const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8);
|
767
|
+
const int vlh = (vh << 2) & 0x04040404;
|
768
|
+
|
769
|
+
v[l] = __vsubss4(vll, vlh);
|
770
|
+
}
|
771
|
+
|
772
|
+
const int index_y = j * WARP_SIZE + (k*QR3_K) % WARP_SIZE;
|
773
|
+
return vec_dot_q3_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]);
|
774
|
+
}
|
775
|
+
|
776
|
+
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
777
|
+
GGML_UNUSED(x_qh);
|
778
|
+
|
779
|
+
__shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
|
780
|
+
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_K) + mmq_y/QI4_K];
|
781
|
+
__shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
|
782
|
+
|
783
|
+
*x_ql = tile_x_ql;
|
784
|
+
*x_dm = tile_x_dm;
|
785
|
+
*x_sc = tile_x_sc;
|
786
|
+
}
|
787
|
+
|
788
|
+
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_K(
|
789
|
+
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
790
|
+
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
791
|
+
GGML_UNUSED(x_qh);
|
792
|
+
|
793
|
+
GGML_CUDA_ASSUME(i_offset >= 0);
|
794
|
+
GGML_CUDA_ASSUME(i_offset < nwarps);
|
795
|
+
GGML_CUDA_ASSUME(k >= 0);
|
796
|
+
GGML_CUDA_ASSUME(k < WARP_SIZE);
|
797
|
+
|
798
|
+
const int kbx = k / QI4_K; // == 0 if QK_K == 256
|
799
|
+
const int kqsx = k % QI4_K; // == k if QK_K == 256
|
800
|
+
|
801
|
+
const block_q4_K * bx0 = (const block_q4_K *) vx;
|
802
|
+
|
803
|
+
#pragma unroll
|
804
|
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
805
|
+
int i = i0 + i_offset;
|
806
|
+
|
807
|
+
if (need_check) {
|
808
|
+
i = min(i, i_max);
|
809
|
+
}
|
810
|
+
|
811
|
+
const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx;
|
812
|
+
|
813
|
+
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
814
|
+
}
|
815
|
+
|
816
|
+
const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256
|
817
|
+
const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
|
818
|
+
|
819
|
+
#pragma unroll
|
820
|
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) {
|
821
|
+
int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % mmq_y;
|
822
|
+
|
823
|
+
if (need_check) {
|
824
|
+
i = min(i, i_max);
|
825
|
+
}
|
826
|
+
|
827
|
+
const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
828
|
+
|
829
|
+
x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
|
830
|
+
}
|
831
|
+
|
832
|
+
#pragma unroll
|
833
|
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
|
834
|
+
int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
|
835
|
+
|
836
|
+
if (need_check) {
|
837
|
+
i = min(i, i_max);
|
838
|
+
}
|
839
|
+
|
840
|
+
const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8);
|
841
|
+
|
842
|
+
const int * scales = (const int *) bxi->scales;
|
843
|
+
|
844
|
+
const int ksc = k % (WARP_SIZE/8);
|
845
|
+
|
846
|
+
// scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
|
847
|
+
int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
|
848
|
+
scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
|
849
|
+
|
850
|
+
x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
|
851
|
+
}
|
852
|
+
}
|
853
|
+
|
854
|
+
static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat(
|
855
|
+
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
856
|
+
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
857
|
+
GGML_UNUSED(x_qh);
|
858
|
+
|
859
|
+
const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
|
860
|
+
|
861
|
+
const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE;
|
862
|
+
return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[index_y], sc, sc+8,
|
863
|
+
x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
|
864
|
+
}
|
865
|
+
|
866
|
+
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
867
|
+
GGML_UNUSED(x_qh);
|
868
|
+
|
869
|
+
__shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
|
870
|
+
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_K) + mmq_y/QI5_K];
|
871
|
+
__shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
|
872
|
+
|
873
|
+
*x_ql = tile_x_ql;
|
874
|
+
*x_dm = tile_x_dm;
|
875
|
+
*x_sc = tile_x_sc;
|
876
|
+
}
|
877
|
+
|
878
|
+
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_K(
|
879
|
+
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
880
|
+
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
881
|
+
GGML_UNUSED(x_qh);
|
882
|
+
|
883
|
+
GGML_CUDA_ASSUME(i_offset >= 0);
|
884
|
+
GGML_CUDA_ASSUME(i_offset < nwarps);
|
885
|
+
GGML_CUDA_ASSUME(k >= 0);
|
886
|
+
GGML_CUDA_ASSUME(k < WARP_SIZE);
|
887
|
+
|
888
|
+
const int kbx = k / QI5_K; // == 0 if QK_K == 256
|
889
|
+
const int kqsx = k % QI5_K; // == k if QK_K == 256
|
890
|
+
|
891
|
+
const block_q5_K * bx0 = (const block_q5_K *) vx;
|
892
|
+
|
893
|
+
#pragma unroll
|
894
|
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
895
|
+
int i = i0 + i_offset;
|
896
|
+
|
897
|
+
if (need_check) {
|
898
|
+
i = min(i, i_max);
|
899
|
+
}
|
900
|
+
|
901
|
+
const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx;
|
902
|
+
const int ky = QR5_K*kqsx;
|
903
|
+
|
904
|
+
const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
|
905
|
+
const int ql0 = (ql >> 0) & 0x0F0F0F0F;
|
906
|
+
const int ql1 = (ql >> 4) & 0x0F0F0F0F;
|
907
|
+
|
908
|
+
const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4));
|
909
|
+
const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010;
|
910
|
+
const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010;
|
911
|
+
|
912
|
+
const int kq0 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + 0;
|
913
|
+
const int kq1 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + (QI5_K/4);
|
914
|
+
|
915
|
+
x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0;
|
916
|
+
x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
|
917
|
+
}
|
918
|
+
|
919
|
+
const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256
|
920
|
+
const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
|
921
|
+
|
922
|
+
#pragma unroll
|
923
|
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) {
|
924
|
+
int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % mmq_y;
|
925
|
+
|
926
|
+
if (need_check) {
|
927
|
+
i = min(i, i_max);
|
928
|
+
}
|
929
|
+
|
930
|
+
const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
931
|
+
|
932
|
+
x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
|
933
|
+
}
|
934
|
+
|
935
|
+
#pragma unroll
|
936
|
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
|
937
|
+
int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
|
938
|
+
|
939
|
+
if (need_check) {
|
940
|
+
i = min(i, i_max);
|
941
|
+
}
|
942
|
+
|
943
|
+
const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8);
|
944
|
+
|
945
|
+
const int * scales = (const int *) bxi->scales;
|
946
|
+
|
947
|
+
const int ksc = k % (WARP_SIZE/8);
|
948
|
+
|
949
|
+
// scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
|
950
|
+
int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
|
951
|
+
scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
|
952
|
+
|
953
|
+
x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
|
954
|
+
}
|
955
|
+
}
|
956
|
+
|
957
|
+
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat(
|
958
|
+
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
959
|
+
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
960
|
+
GGML_UNUSED(x_qh);
|
961
|
+
|
962
|
+
const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8);
|
963
|
+
|
964
|
+
const int index_x = i * (QR5_K*WARP_SIZE + 1) + QR5_K*k;
|
965
|
+
const int index_y = j * WARP_SIZE + (QR5_K*k) % WARP_SIZE;
|
966
|
+
return vec_dot_q5_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8,
|
967
|
+
x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
|
968
|
+
}
|
969
|
+
|
970
|
+
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q6_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
|
971
|
+
GGML_UNUSED(x_qh);
|
972
|
+
|
973
|
+
__shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
|
974
|
+
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI6_K) + mmq_y/QI6_K];
|
975
|
+
__shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
|
976
|
+
|
977
|
+
*x_ql = tile_x_ql;
|
978
|
+
*x_dm = tile_x_dm;
|
979
|
+
*x_sc = tile_x_sc;
|
980
|
+
}
|
981
|
+
|
982
|
+
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q6_K(
|
983
|
+
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
|
984
|
+
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
|
985
|
+
GGML_UNUSED(x_qh);
|
986
|
+
|
987
|
+
GGML_CUDA_ASSUME(i_offset >= 0);
|
988
|
+
GGML_CUDA_ASSUME(i_offset < nwarps);
|
989
|
+
GGML_CUDA_ASSUME(k >= 0);
|
990
|
+
GGML_CUDA_ASSUME(k < WARP_SIZE);
|
991
|
+
|
992
|
+
const int kbx = k / QI6_K; // == 0 if QK_K == 256
|
993
|
+
const int kqsx = k % QI6_K; // == k if QK_K == 256
|
994
|
+
|
995
|
+
const block_q6_K * bx0 = (const block_q6_K *) vx;
|
996
|
+
|
997
|
+
#pragma unroll
|
998
|
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
|
999
|
+
int i = i0 + i_offset;
|
1000
|
+
|
1001
|
+
if (need_check) {
|
1002
|
+
i = min(i, i_max);
|
1003
|
+
}
|
1004
|
+
|
1005
|
+
const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx;
|
1006
|
+
const int ky = QR6_K*kqsx;
|
1007
|
+
|
1008
|
+
const int ql = get_int_from_uint8(bxi->ql, kqsx);
|
1009
|
+
const int ql0 = (ql >> 0) & 0x0F0F0F0F;
|
1010
|
+
const int ql1 = (ql >> 4) & 0x0F0F0F0F;
|
1011
|
+
|
1012
|
+
const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4));
|
1013
|
+
const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030;
|
1014
|
+
const int qh1 = (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) & 0x30303030;
|
1015
|
+
|
1016
|
+
const int kq0 = ky - ky % QI6_K + k % (QI6_K/2) + 0;
|
1017
|
+
const int kq1 = ky - ky % QI6_K + k % (QI6_K/2) + (QI6_K/2);
|
1018
|
+
|
1019
|
+
x_ql[i * (2*WARP_SIZE + 1) + kq0] = __vsubss4(ql0 | qh0, 0x20202020);
|
1020
|
+
x_ql[i * (2*WARP_SIZE + 1) + kq1] = __vsubss4(ql1 | qh1, 0x20202020);
|
1021
|
+
}
|
1022
|
+
|
1023
|
+
const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
|
1024
|
+
const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
|
1025
|
+
float * x_dmf = (float *) x_dm;
|
1026
|
+
|
1027
|
+
#pragma unroll
|
1028
|
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) {
|
1029
|
+
int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % mmq_y;
|
1030
|
+
|
1031
|
+
if (need_check) {
|
1032
|
+
i = min(i, i_max);
|
1033
|
+
}
|
1034
|
+
|
1035
|
+
const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd;
|
1036
|
+
|
1037
|
+
x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = bxi->d;
|
1038
|
+
}
|
1039
|
+
|
1040
|
+
#pragma unroll
|
1041
|
+
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
|
1042
|
+
int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
|
1043
|
+
|
1044
|
+
if (need_check) {
|
1045
|
+
i = min(i, i_max);
|
1046
|
+
}
|
1047
|
+
|
1048
|
+
const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4;
|
1049
|
+
|
1050
|
+
x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8));
|
1051
|
+
}
|
1052
|
+
}
|
1053
|
+
|
1054
|
+
static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat(
|
1055
|
+
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
|
1056
|
+
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
|
1057
|
+
GGML_UNUSED(x_qh);
|
1058
|
+
|
1059
|
+
const float * x_dmf = (const float *) x_dm;
|
1060
|
+
const float * y_df = (const float *) y_ds;
|
1061
|
+
|
1062
|
+
const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/8]);
|
1063
|
+
|
1064
|
+
const int index_x = i * (QR6_K*WARP_SIZE + 1) + QR6_K*k;
|
1065
|
+
const int index_y = j * WARP_SIZE + (QR6_K*k) % WARP_SIZE;
|
1066
|
+
return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]);
|
1067
|
+
}
|
1068
|
+
|
1069
|
+
template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x, int mmq_y, int nwarps,
|
1070
|
+
allocate_tiles_cuda_t allocate_tiles, load_tiles_cuda_t load_tiles, int vdr, vec_dot_q_mul_mat_cuda_t vec_dot>
|
1071
|
+
static __device__ __forceinline__ void mul_mat_q(
|
1072
|
+
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
1073
|
+
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
1074
|
+
|
1075
|
+
const block_q_t * x = (const block_q_t *) vx;
|
1076
|
+
const block_q8_1 * y = (const block_q8_1 *) vy;
|
1077
|
+
|
1078
|
+
const int blocks_per_row_x = ncols_x / qk;
|
1079
|
+
const int blocks_per_col_y = nrows_y / QK8_1;
|
1080
|
+
const int blocks_per_warp = WARP_SIZE / qi;
|
1081
|
+
|
1082
|
+
const int & ncols_dst = ncols_y;
|
1083
|
+
|
1084
|
+
const int row_dst_0 = blockIdx.x*mmq_y;
|
1085
|
+
const int & row_x_0 = row_dst_0;
|
1086
|
+
|
1087
|
+
const int col_dst_0 = blockIdx.y*mmq_x;
|
1088
|
+
const int & col_y_0 = col_dst_0;
|
1089
|
+
|
1090
|
+
int * tile_x_ql = nullptr;
|
1091
|
+
half2 * tile_x_dm = nullptr;
|
1092
|
+
int * tile_x_qh = nullptr;
|
1093
|
+
int * tile_x_sc = nullptr;
|
1094
|
+
|
1095
|
+
allocate_tiles(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc);
|
1096
|
+
|
1097
|
+
__shared__ int tile_y_qs[mmq_x * WARP_SIZE];
|
1098
|
+
__shared__ half2 tile_y_ds[mmq_x * WARP_SIZE/QI8_1];
|
1099
|
+
|
1100
|
+
float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {{0.0f}};
|
1101
|
+
|
1102
|
+
for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) {
|
1103
|
+
|
1104
|
+
load_tiles(x + row_x_0*blocks_per_row_x + ib0, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc,
|
1105
|
+
threadIdx.y, nrows_x-row_x_0-1, threadIdx.x, blocks_per_row_x);
|
1106
|
+
|
1107
|
+
#pragma unroll
|
1108
|
+
for (int ir = 0; ir < qr; ++ir) {
|
1109
|
+
const int kqs = ir*WARP_SIZE + threadIdx.x;
|
1110
|
+
const int kbxd = kqs / QI8_1;
|
1111
|
+
|
1112
|
+
#pragma unroll
|
1113
|
+
for (int i = 0; i < mmq_x; i += nwarps) {
|
1114
|
+
const int col_y_eff = min(col_y_0 + threadIdx.y + i, ncols_y-1); // to prevent out-of-bounds memory accesses
|
1115
|
+
|
1116
|
+
const block_q8_1 * by0 = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kbxd];
|
1117
|
+
|
1118
|
+
const int index_y = (threadIdx.y + i) * WARP_SIZE + kqs % WARP_SIZE;
|
1119
|
+
tile_y_qs[index_y] = get_int_from_int8_aligned(by0->qs, threadIdx.x % QI8_1);
|
1120
|
+
}
|
1121
|
+
|
1122
|
+
#pragma unroll
|
1123
|
+
for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) {
|
1124
|
+
const int ids = (ids0 + threadIdx.y * QI8_1 + threadIdx.x / (WARP_SIZE/QI8_1)) % mmq_x;
|
1125
|
+
const int kby = threadIdx.x % (WARP_SIZE/QI8_1);
|
1126
|
+
const int col_y_eff = min(col_y_0 + ids, ncols_y-1);
|
1127
|
+
|
1128
|
+
// if the sum is not needed it's faster to transform the scale to f32 ahead of time
|
1129
|
+
const half2 * dsi_src = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + ir*(WARP_SIZE/QI8_1) + kby].ds;
|
1130
|
+
half2 * dsi_dst = &tile_y_ds[ids * (WARP_SIZE/QI8_1) + kby];
|
1131
|
+
if (need_sum) {
|
1132
|
+
*dsi_dst = *dsi_src;
|
1133
|
+
} else {
|
1134
|
+
float * dfi_dst = (float *) dsi_dst;
|
1135
|
+
*dfi_dst = __low2float(*dsi_src);
|
1136
|
+
}
|
1137
|
+
}
|
1138
|
+
|
1139
|
+
__syncthreads();
|
1140
|
+
|
1141
|
+
// #pragma unroll // unrolling this loop causes too much register pressure
|
1142
|
+
for (int k = ir*WARP_SIZE/qr; k < (ir+1)*WARP_SIZE/qr; k += vdr) {
|
1143
|
+
#pragma unroll
|
1144
|
+
for (int j = 0; j < mmq_x; j += nwarps) {
|
1145
|
+
#pragma unroll
|
1146
|
+
for (int i = 0; i < mmq_y; i += WARP_SIZE) {
|
1147
|
+
sum[i/WARP_SIZE][j/nwarps] += vec_dot(
|
1148
|
+
tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, tile_y_qs, tile_y_ds,
|
1149
|
+
threadIdx.x + i, threadIdx.y + j, k);
|
1150
|
+
}
|
1151
|
+
}
|
1152
|
+
}
|
1153
|
+
|
1154
|
+
__syncthreads();
|
1155
|
+
}
|
1156
|
+
}
|
1157
|
+
|
1158
|
+
#pragma unroll
|
1159
|
+
for (int j = 0; j < mmq_x; j += nwarps) {
|
1160
|
+
const int col_dst = col_dst_0 + j + threadIdx.y;
|
1161
|
+
|
1162
|
+
if (col_dst >= ncols_dst) {
|
1163
|
+
return;
|
1164
|
+
}
|
1165
|
+
|
1166
|
+
#pragma unroll
|
1167
|
+
for (int i = 0; i < mmq_y; i += WARP_SIZE) {
|
1168
|
+
const int row_dst = row_dst_0 + threadIdx.x + i;
|
1169
|
+
|
1170
|
+
if (row_dst >= nrows_dst) {
|
1171
|
+
continue;
|
1172
|
+
}
|
1173
|
+
|
1174
|
+
dst[col_dst*nrows_dst + row_dst] = sum[i/WARP_SIZE][j/nwarps];
|
1175
|
+
}
|
1176
|
+
}
|
1177
|
+
}
|
1178
|
+
|
1179
|
+
static constexpr __device__ mmq_arch_config_t get_arch_config_device(mmq_config_t mmq_config) {
|
1180
|
+
|
1181
|
+
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
1182
|
+
|
1183
|
+
#if defined(RDNA3) || defined(RDNA2)
|
1184
|
+
return mmq_config.rdna2;
|
1185
|
+
#else
|
1186
|
+
return mmq_config.rdna1;
|
1187
|
+
#endif // defined(RDNA3) || defined(RDNA2)
|
1188
|
+
|
1189
|
+
#else
|
1190
|
+
|
1191
|
+
#if __CUDA_ARCH__ >= CC_VOLTA
|
1192
|
+
return mmq_config.ampere;
|
1193
|
+
#else
|
1194
|
+
return mmq_config.pascal;
|
1195
|
+
#endif // __CUDA_ARCH__ >= CC_VOLTA
|
1196
|
+
|
1197
|
+
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
1198
|
+
}
|
1199
|
+
|
1200
|
+
template <bool need_check> static __global__ void
|
1201
|
+
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
1202
|
+
#if defined(RDNA3) || defined(RDNA2)
|
1203
|
+
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_0.rdna2.nwarps, 2)
|
1204
|
+
#endif // defined(RDNA3) || defined(RDNA2)
|
1205
|
+
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
1206
|
+
mul_mat_q4_0(
|
1207
|
+
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
1208
|
+
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
1209
|
+
|
1210
|
+
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
1211
|
+
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q4_0);
|
1212
|
+
|
1213
|
+
mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q4_0<arch_config.y>,
|
1214
|
+
load_tiles_q4_0<arch_config.y, arch_config.nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
|
1215
|
+
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
1216
|
+
#else
|
1217
|
+
GGML_UNUSED(get_arch_config_device);
|
1218
|
+
GGML_UNUSED(vec_dot_q4_0_q8_1_mul_mat);
|
1219
|
+
NO_DEVICE_CODE;
|
1220
|
+
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
1221
|
+
}
|
1222
|
+
|
1223
|
+
template <bool need_check> static __global__ void
|
1224
|
+
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
1225
|
+
#if defined(RDNA3) || defined(RDNA2)
|
1226
|
+
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_1.rdna2.nwarps, 2)
|
1227
|
+
#endif // defined(RDNA3) || defined(RDNA2)
|
1228
|
+
#elif __CUDA_ARCH__ < CC_VOLTA
|
1229
|
+
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_1.pascal.nwarps, 2)
|
1230
|
+
#endif // __CUDA_ARCH__ < CC_VOLTA
|
1231
|
+
mul_mat_q4_1(
|
1232
|
+
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
1233
|
+
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
1234
|
+
|
1235
|
+
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
1236
|
+
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q4_1);
|
1237
|
+
|
1238
|
+
mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q4_1<arch_config.y>,
|
1239
|
+
load_tiles_q4_1<arch_config.y, arch_config.nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
|
1240
|
+
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
1241
|
+
#else
|
1242
|
+
GGML_UNUSED(get_arch_config_device);
|
1243
|
+
GGML_UNUSED(vec_dot_q4_1_q8_1_mul_mat);
|
1244
|
+
NO_DEVICE_CODE;
|
1245
|
+
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
1246
|
+
}
|
1247
|
+
|
1248
|
+
template <bool need_check> static __global__ void
|
1249
|
+
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
1250
|
+
#if defined(RDNA3) || defined(RDNA2)
|
1251
|
+
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q5_0.rdna2.nwarps, 2)
|
1252
|
+
#endif // defined(RDNA3) || defined(RDNA2)
|
1253
|
+
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
1254
|
+
mul_mat_q5_0(
|
1255
|
+
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
1256
|
+
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
1257
|
+
|
1258
|
+
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
1259
|
+
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q5_0);
|
1260
|
+
|
1261
|
+
mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q5_0<arch_config.y>,
|
1262
|
+
load_tiles_q5_0<arch_config.y, arch_config.nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
|
1263
|
+
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
1264
|
+
#else
|
1265
|
+
GGML_UNUSED(get_arch_config_device);
|
1266
|
+
GGML_UNUSED(vec_dot_q5_0_q8_1_mul_mat);
|
1267
|
+
NO_DEVICE_CODE;
|
1268
|
+
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
1269
|
+
}
|
1270
|
+
|
1271
|
+
template <bool need_check> static __global__ void
|
1272
|
+
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
1273
|
+
#if defined(RDNA3) || defined(RDNA2)
|
1274
|
+
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q5_1.rdna2.nwarps, 2)
|
1275
|
+
#endif // defined(RDNA3) || defined(RDNA2)
|
1276
|
+
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
1277
|
+
mul_mat_q5_1(
|
1278
|
+
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
1279
|
+
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
1280
|
+
|
1281
|
+
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
1282
|
+
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q5_1);
|
1283
|
+
|
1284
|
+
mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q5_1<arch_config.y>,
|
1285
|
+
load_tiles_q5_1<arch_config.y, arch_config.nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
|
1286
|
+
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
1287
|
+
#else
|
1288
|
+
GGML_UNUSED(get_arch_config_device);
|
1289
|
+
GGML_UNUSED(vec_dot_q5_1_q8_1_mul_mat);
|
1290
|
+
NO_DEVICE_CODE;
|
1291
|
+
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
1292
|
+
}
|
1293
|
+
|
1294
|
+
template <bool need_check> static __global__ void
|
1295
|
+
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
1296
|
+
#if defined(RDNA3) || defined(RDNA2)
|
1297
|
+
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q8_0.rdna2.nwarps, 2)
|
1298
|
+
#endif // defined(RDNA3) || defined(RDNA2)
|
1299
|
+
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
1300
|
+
mul_mat_q8_0(
|
1301
|
+
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
1302
|
+
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
1303
|
+
|
1304
|
+
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
1305
|
+
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q8_0);
|
1306
|
+
|
1307
|
+
mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q8_0<arch_config.y>,
|
1308
|
+
load_tiles_q8_0<arch_config.y, arch_config.nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
|
1309
|
+
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
1310
|
+
#else
|
1311
|
+
GGML_UNUSED(get_arch_config_device);
|
1312
|
+
GGML_UNUSED(vec_dot_q8_0_q8_1_mul_mat);
|
1313
|
+
NO_DEVICE_CODE;
|
1314
|
+
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
1315
|
+
}
|
1316
|
+
|
1317
|
+
template <bool need_check> static __global__ void
|
1318
|
+
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
1319
|
+
#if defined(RDNA3) || defined(RDNA2)
|
1320
|
+
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q2_K.rdna2.nwarps, 2)
|
1321
|
+
#endif // defined(RDNA3) || defined(RDNA2)
|
1322
|
+
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
1323
|
+
mul_mat_q2_K(
|
1324
|
+
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
1325
|
+
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
1326
|
+
|
1327
|
+
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
1328
|
+
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q2_K);
|
1329
|
+
|
1330
|
+
mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q2_K<arch_config.y>,
|
1331
|
+
load_tiles_q2_K<arch_config.y, arch_config.nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
|
1332
|
+
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
1333
|
+
#else
|
1334
|
+
GGML_UNUSED(get_arch_config_device);
|
1335
|
+
GGML_UNUSED(vec_dot_q2_K_q8_1_mul_mat);
|
1336
|
+
NO_DEVICE_CODE;
|
1337
|
+
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
1338
|
+
}
|
1339
|
+
|
1340
|
+
template <bool need_check> static __global__ void
|
1341
|
+
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
1342
|
+
#if defined(RDNA3) || defined(RDNA2)
|
1343
|
+
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q3_K.rdna2.nwarps, 2)
|
1344
|
+
#endif // defined(RDNA3) || defined(RDNA2)
|
1345
|
+
#elif __CUDA_ARCH__ < CC_VOLTA
|
1346
|
+
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q3_K.pascal.nwarps, 2)
|
1347
|
+
#endif // __CUDA_ARCH__ < CC_VOLTA
|
1348
|
+
mul_mat_q3_K(
|
1349
|
+
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
1350
|
+
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
1351
|
+
|
1352
|
+
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
1353
|
+
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q3_K);
|
1354
|
+
|
1355
|
+
mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q3_K<arch_config.y>,
|
1356
|
+
load_tiles_q3_K<arch_config.y, arch_config.nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
|
1357
|
+
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
1358
|
+
#else
|
1359
|
+
GGML_UNUSED(get_arch_config_device);
|
1360
|
+
GGML_UNUSED(vec_dot_q3_K_q8_1_mul_mat);
|
1361
|
+
NO_DEVICE_CODE;
|
1362
|
+
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
1363
|
+
}
|
1364
|
+
|
1365
|
+
template <bool need_check> static __global__ void
|
1366
|
+
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
1367
|
+
#if defined(RDNA3) || defined(RDNA2)
|
1368
|
+
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_K.rdna2.nwarps, 2)
|
1369
|
+
#endif // defined(RDNA3) || defined(RDNA2)
|
1370
|
+
#elif __CUDA_ARCH__ < CC_VOLTA
|
1371
|
+
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_K.pascal.nwarps, 2)
|
1372
|
+
#endif // __CUDA_ARCH__ < CC_VOLTA
|
1373
|
+
mul_mat_q4_K(
|
1374
|
+
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
1375
|
+
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
1376
|
+
|
1377
|
+
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
1378
|
+
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q4_K);
|
1379
|
+
|
1380
|
+
mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q4_K<arch_config.y>,
|
1381
|
+
load_tiles_q4_K<arch_config.y, arch_config.nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
|
1382
|
+
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
1383
|
+
#else
|
1384
|
+
GGML_UNUSED(get_arch_config_device);
|
1385
|
+
GGML_UNUSED(vec_dot_q4_K_q8_1_mul_mat);
|
1386
|
+
NO_DEVICE_CODE;
|
1387
|
+
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
1388
|
+
}
|
1389
|
+
|
1390
|
+
template <bool need_check> static __global__ void
|
1391
|
+
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
1392
|
+
#if defined(RDNA3) || defined(RDNA2)
|
1393
|
+
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q5_K.rdna2.nwarps, 2)
|
1394
|
+
#endif // defined(RDNA3) || defined(RDNA2)
|
1395
|
+
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
1396
|
+
mul_mat_q5_K(
|
1397
|
+
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
1398
|
+
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
1399
|
+
|
1400
|
+
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
1401
|
+
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q5_K);
|
1402
|
+
|
1403
|
+
mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q5_K<arch_config.y>,
|
1404
|
+
load_tiles_q5_K<arch_config.y, arch_config.nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
|
1405
|
+
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
1406
|
+
#else
|
1407
|
+
GGML_UNUSED(get_arch_config_device);
|
1408
|
+
GGML_UNUSED(vec_dot_q5_K_q8_1_mul_mat);
|
1409
|
+
NO_DEVICE_CODE;
|
1410
|
+
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
1411
|
+
}
|
1412
|
+
|
1413
|
+
template <bool need_check> static __global__ void
|
1414
|
+
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
|
1415
|
+
#if defined(RDNA3) || defined(RDNA2)
|
1416
|
+
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q6_K.rdna2.nwarps, 2)
|
1417
|
+
#endif // defined(RDNA3) || defined(RDNA2)
|
1418
|
+
#elif __CUDA_ARCH__ < CC_VOLTA
|
1419
|
+
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_K.pascal.nwarps, 2)
|
1420
|
+
#endif // __CUDA_ARCH__ < CC_VOLTA
|
1421
|
+
mul_mat_q6_K(
|
1422
|
+
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
1423
|
+
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
|
1424
|
+
|
1425
|
+
#if __CUDA_ARCH__ >= MIN_CC_DP4A
|
1426
|
+
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q6_K);
|
1427
|
+
|
1428
|
+
mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q6_K<arch_config.y>,
|
1429
|
+
load_tiles_q6_K<arch_config.y, arch_config.nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
|
1430
|
+
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
|
1431
|
+
#else
|
1432
|
+
GGML_UNUSED(get_arch_config_device);
|
1433
|
+
GGML_UNUSED(vec_dot_q6_K_q8_1_mul_mat);
|
1434
|
+
NO_DEVICE_CODE;
|
1435
|
+
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
|
1436
|
+
}
|
1437
|
+
|
1438
|
+
#define MMQ_SWITCH_CASE(type_suffix) \
|
1439
|
+
case GGML_TYPE_Q##type_suffix: if (row_diff % arch_config.y == 0) { \
|
1440
|
+
const bool need_check = false; \
|
1441
|
+
mul_mat_q##type_suffix<need_check><<<block_nums, block_dims, 0, stream>>> \
|
1442
|
+
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst); \
|
1443
|
+
} else { \
|
1444
|
+
const bool need_check = true; \
|
1445
|
+
mul_mat_q##type_suffix<need_check><<<block_nums, block_dims, 0, stream>>> \
|
1446
|
+
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst); \
|
1447
|
+
} break; \
|
1448
|
+
|
1449
|
+
void ggml_cuda_op_mul_mat_q(
|
1450
|
+
ggml_backend_cuda_context & ctx,
|
1451
|
+
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
1452
|
+
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
1453
|
+
const int64_t src1_padded_row_size, cudaStream_t stream) {
|
1454
|
+
|
1455
|
+
const int64_t ne00 = src0->ne[0];
|
1456
|
+
|
1457
|
+
const int64_t ne10 = src1->ne[0];
|
1458
|
+
GGML_ASSERT(ne10 % QK8_1 == 0);
|
1459
|
+
|
1460
|
+
const int64_t ne0 = dst->ne[0];
|
1461
|
+
|
1462
|
+
const int64_t row_diff = row_high - row_low;
|
1463
|
+
|
1464
|
+
int id = ggml_cuda_get_device();
|
1465
|
+
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
1466
|
+
|
1467
|
+
// the main device has a larger memory buffer to hold the results from all GPUs
|
1468
|
+
// nrows_dst == nrows of the matrix that the kernel writes into
|
1469
|
+
const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
|
1470
|
+
|
1471
|
+
mmq_config_t mmq_config;
|
1472
|
+
|
1473
|
+
switch (src0->type) {
|
1474
|
+
case GGML_TYPE_Q4_0:
|
1475
|
+
mmq_config = MMQ_CONFIG_Q4_0;
|
1476
|
+
break;
|
1477
|
+
case GGML_TYPE_Q4_1:
|
1478
|
+
mmq_config = MMQ_CONFIG_Q4_1;
|
1479
|
+
break;
|
1480
|
+
case GGML_TYPE_Q5_0:
|
1481
|
+
mmq_config = MMQ_CONFIG_Q5_0;
|
1482
|
+
break;
|
1483
|
+
case GGML_TYPE_Q5_1:
|
1484
|
+
mmq_config = MMQ_CONFIG_Q5_1;
|
1485
|
+
break;
|
1486
|
+
case GGML_TYPE_Q8_0:
|
1487
|
+
mmq_config = MMQ_CONFIG_Q8_0;
|
1488
|
+
break;
|
1489
|
+
case GGML_TYPE_Q2_K:
|
1490
|
+
mmq_config = MMQ_CONFIG_Q2_K;
|
1491
|
+
break;
|
1492
|
+
case GGML_TYPE_Q3_K:
|
1493
|
+
mmq_config = MMQ_CONFIG_Q3_K;
|
1494
|
+
break;
|
1495
|
+
case GGML_TYPE_Q4_K:
|
1496
|
+
mmq_config = MMQ_CONFIG_Q4_K;
|
1497
|
+
break;
|
1498
|
+
case GGML_TYPE_Q5_K:
|
1499
|
+
mmq_config = MMQ_CONFIG_Q5_K;
|
1500
|
+
break;
|
1501
|
+
case GGML_TYPE_Q6_K:
|
1502
|
+
mmq_config = MMQ_CONFIG_Q6_K;
|
1503
|
+
break;
|
1504
|
+
default:
|
1505
|
+
GGML_ASSERT(false);
|
1506
|
+
break;
|
1507
|
+
}
|
1508
|
+
|
1509
|
+
mmq_arch_config_t arch_config;
|
1510
|
+
if (compute_capability >= CC_RDNA2) {
|
1511
|
+
arch_config = mmq_config.rdna2;
|
1512
|
+
} else if (compute_capability >= CC_OFFSET_AMD) {
|
1513
|
+
arch_config = mmq_config.rdna1;
|
1514
|
+
} else if (compute_capability >= CC_VOLTA) {
|
1515
|
+
arch_config = mmq_config.ampere;
|
1516
|
+
} else if (compute_capability >= MIN_CC_DP4A) {
|
1517
|
+
arch_config = mmq_config.pascal;
|
1518
|
+
} else {
|
1519
|
+
GGML_ASSERT(false);
|
1520
|
+
}
|
1521
|
+
|
1522
|
+
const int block_num_x = (row_diff + arch_config.y - 1) / arch_config.y;
|
1523
|
+
const int block_num_y = (src1_ncols + arch_config.x - 1) / arch_config.x;
|
1524
|
+
const dim3 block_nums(block_num_x, block_num_y, 1);
|
1525
|
+
const dim3 block_dims(WARP_SIZE, arch_config.nwarps, 1);
|
1526
|
+
|
1527
|
+
switch (src0->type) {
|
1528
|
+
MMQ_SWITCH_CASE(4_0)
|
1529
|
+
MMQ_SWITCH_CASE(4_1)
|
1530
|
+
MMQ_SWITCH_CASE(5_0)
|
1531
|
+
MMQ_SWITCH_CASE(5_1)
|
1532
|
+
MMQ_SWITCH_CASE(8_0)
|
1533
|
+
MMQ_SWITCH_CASE(2_K)
|
1534
|
+
MMQ_SWITCH_CASE(3_K)
|
1535
|
+
MMQ_SWITCH_CASE(4_K)
|
1536
|
+
MMQ_SWITCH_CASE(5_K)
|
1537
|
+
MMQ_SWITCH_CASE(6_K)
|
1538
|
+
default:
|
1539
|
+
GGML_ASSERT(false);
|
1540
|
+
break;
|
1541
|
+
}
|
1542
|
+
|
1543
|
+
GGML_UNUSED(src1);
|
1544
|
+
GGML_UNUSED(dst);
|
1545
|
+
GGML_UNUSED(src1_ddf_i);
|
1546
|
+
}
|
1547
|
+
|
1548
|
+
bool ggml_cuda_supports_mmq(enum ggml_type type) {
|
1549
|
+
switch (type) {
|
1550
|
+
case GGML_TYPE_Q4_0:
|
1551
|
+
case GGML_TYPE_Q4_1:
|
1552
|
+
case GGML_TYPE_Q5_0:
|
1553
|
+
case GGML_TYPE_Q5_1:
|
1554
|
+
case GGML_TYPE_Q8_0:
|
1555
|
+
case GGML_TYPE_Q2_K:
|
1556
|
+
case GGML_TYPE_Q3_K:
|
1557
|
+
case GGML_TYPE_Q4_K:
|
1558
|
+
case GGML_TYPE_Q5_K:
|
1559
|
+
case GGML_TYPE_Q6_K:
|
1560
|
+
return true;
|
1561
|
+
default:
|
1562
|
+
return false;
|
1563
|
+
}
|
1564
|
+
}
|