jbarnette-johnson 1.0.0.200806240111 → 1.0.0.200807291507
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/MANIFEST +1 -0
- data/Rakefile +3 -10
- data/bin/johnson +2 -1
- data/ext/spidermonkey/context.c +3 -4
- data/ext/spidermonkey/context.h +1 -1
- data/ext/spidermonkey/conversions.c +39 -33
- data/ext/spidermonkey/debugger.c +5 -5
- data/ext/spidermonkey/immutable_node.c.erb +11 -11
- data/ext/spidermonkey/jroot.h +4 -4
- data/ext/spidermonkey/js_land_proxy.c +9 -8
- data/ext/spidermonkey/ruby_land_proxy.c +5 -4
- data/ext/spidermonkey/runtime.c +1 -1
- data/johnson.gemspec +36 -0
- data/lib/hoe.rb +0 -7
- data/lib/johnson/cli/options.rb +10 -4
- data/lib/johnson/spidermonkey/runtime.rb +2 -2
- data/lib/johnson/version.rb +4 -2
- data/lib/johnson.rb +1 -0
- data/test/johnson/runtime_test.rb +11 -0
- data/test/johnson/spidermonkey/ruby_land_proxy_test.rb +6 -0
- data/vendor/spidermonkey/.cvsignore +9 -0
- data/vendor/spidermonkey/Makefile.in +462 -0
- data/vendor/spidermonkey/Makefile.ref +364 -0
- data/vendor/spidermonkey/README.html +820 -0
- data/vendor/spidermonkey/SpiderMonkey.rsp +12 -0
- data/vendor/spidermonkey/Y.js +19 -0
- data/vendor/spidermonkey/build.mk +43 -0
- data/vendor/spidermonkey/config/AIX4.1.mk +65 -0
- data/vendor/spidermonkey/config/AIX4.2.mk +64 -0
- data/vendor/spidermonkey/config/AIX4.3.mk +65 -0
- data/vendor/spidermonkey/config/Darwin.mk +83 -0
- data/vendor/spidermonkey/config/Darwin1.3.mk +81 -0
- data/vendor/spidermonkey/config/Darwin1.4.mk +41 -0
- data/vendor/spidermonkey/config/Darwin5.2.mk +81 -0
- data/vendor/spidermonkey/config/Darwin5.3.mk +81 -0
- data/vendor/spidermonkey/config/HP-UXB.10.10.mk +77 -0
- data/vendor/spidermonkey/config/HP-UXB.10.20.mk +77 -0
- data/vendor/spidermonkey/config/HP-UXB.11.00.mk +80 -0
- data/vendor/spidermonkey/config/IRIX.mk +87 -0
- data/vendor/spidermonkey/config/IRIX5.3.mk +44 -0
- data/vendor/spidermonkey/config/IRIX6.1.mk +44 -0
- data/vendor/spidermonkey/config/IRIX6.2.mk +44 -0
- data/vendor/spidermonkey/config/IRIX6.3.mk +44 -0
- data/vendor/spidermonkey/config/IRIX6.5.mk +44 -0
- data/vendor/spidermonkey/config/Linux_All.mk +103 -0
- data/vendor/spidermonkey/config/Mac_OS10.0.mk +82 -0
- data/vendor/spidermonkey/config/OSF1V4.0.mk +72 -0
- data/vendor/spidermonkey/config/OSF1V5.0.mk +69 -0
- data/vendor/spidermonkey/config/SunOS4.1.4.mk +101 -0
- data/vendor/spidermonkey/config/SunOS5.10.mk +50 -0
- data/vendor/spidermonkey/config/SunOS5.3.mk +91 -0
- data/vendor/spidermonkey/config/SunOS5.4.mk +92 -0
- data/vendor/spidermonkey/config/SunOS5.5.1.mk +44 -0
- data/vendor/spidermonkey/config/SunOS5.5.mk +87 -0
- data/vendor/spidermonkey/config/SunOS5.6.mk +89 -0
- data/vendor/spidermonkey/config/SunOS5.7.mk +44 -0
- data/vendor/spidermonkey/config/SunOS5.8.mk +44 -0
- data/vendor/spidermonkey/config/SunOS5.9.mk +44 -0
- data/vendor/spidermonkey/config/WINNT4.0.mk +117 -0
- data/vendor/spidermonkey/config/WINNT5.0.mk +117 -0
- data/vendor/spidermonkey/config/WINNT5.1.mk +117 -0
- data/vendor/spidermonkey/config/WINNT5.2.mk +117 -0
- data/vendor/spidermonkey/config/WINNT6.0.mk +117 -0
- data/vendor/spidermonkey/config/dgux.mk +64 -0
- data/vendor/spidermonkey/config.mk +192 -0
- data/vendor/spidermonkey/editline/Makefile.ref +144 -0
- data/vendor/spidermonkey/editline/README +83 -0
- data/vendor/spidermonkey/editline/editline.3 +175 -0
- data/vendor/spidermonkey/editline/editline.c +1369 -0
- data/vendor/spidermonkey/editline/editline.h +135 -0
- data/vendor/spidermonkey/editline/sysunix.c +182 -0
- data/vendor/spidermonkey/editline/unix.h +82 -0
- data/vendor/spidermonkey/fdlibm/.cvsignore +7 -0
- data/vendor/spidermonkey/fdlibm/Makefile.in +127 -0
- data/vendor/spidermonkey/fdlibm/Makefile.ref +192 -0
- data/vendor/spidermonkey/fdlibm/e_acos.c +147 -0
- data/vendor/spidermonkey/fdlibm/e_acosh.c +105 -0
- data/vendor/spidermonkey/fdlibm/e_asin.c +156 -0
- data/vendor/spidermonkey/fdlibm/e_atan2.c +165 -0
- data/vendor/spidermonkey/fdlibm/e_atanh.c +110 -0
- data/vendor/spidermonkey/fdlibm/e_cosh.c +133 -0
- data/vendor/spidermonkey/fdlibm/e_exp.c +202 -0
- data/vendor/spidermonkey/fdlibm/e_fmod.c +184 -0
- data/vendor/spidermonkey/fdlibm/e_gamma.c +71 -0
- data/vendor/spidermonkey/fdlibm/e_gamma_r.c +70 -0
- data/vendor/spidermonkey/fdlibm/e_hypot.c +173 -0
- data/vendor/spidermonkey/fdlibm/e_j0.c +524 -0
- data/vendor/spidermonkey/fdlibm/e_j1.c +523 -0
- data/vendor/spidermonkey/fdlibm/e_jn.c +315 -0
- data/vendor/spidermonkey/fdlibm/e_lgamma.c +71 -0
- data/vendor/spidermonkey/fdlibm/e_lgamma_r.c +347 -0
- data/vendor/spidermonkey/fdlibm/e_log.c +184 -0
- data/vendor/spidermonkey/fdlibm/e_log10.c +134 -0
- data/vendor/spidermonkey/fdlibm/e_pow.c +386 -0
- data/vendor/spidermonkey/fdlibm/e_rem_pio2.c +222 -0
- data/vendor/spidermonkey/fdlibm/e_remainder.c +120 -0
- data/vendor/spidermonkey/fdlibm/e_scalb.c +89 -0
- data/vendor/spidermonkey/fdlibm/e_sinh.c +122 -0
- data/vendor/spidermonkey/fdlibm/e_sqrt.c +497 -0
- data/vendor/spidermonkey/fdlibm/fdlibm.h +273 -0
- data/vendor/spidermonkey/fdlibm/fdlibm.mak +1453 -0
- data/vendor/spidermonkey/fdlibm/fdlibm.mdp +0 -0
- data/vendor/spidermonkey/fdlibm/k_cos.c +135 -0
- data/vendor/spidermonkey/fdlibm/k_rem_pio2.c +354 -0
- data/vendor/spidermonkey/fdlibm/k_sin.c +114 -0
- data/vendor/spidermonkey/fdlibm/k_standard.c +785 -0
- data/vendor/spidermonkey/fdlibm/k_tan.c +170 -0
- data/vendor/spidermonkey/fdlibm/s_asinh.c +101 -0
- data/vendor/spidermonkey/fdlibm/s_atan.c +175 -0
- data/vendor/spidermonkey/fdlibm/s_cbrt.c +133 -0
- data/vendor/spidermonkey/fdlibm/s_ceil.c +120 -0
- data/vendor/spidermonkey/fdlibm/s_copysign.c +72 -0
- data/vendor/spidermonkey/fdlibm/s_cos.c +118 -0
- data/vendor/spidermonkey/fdlibm/s_erf.c +356 -0
- data/vendor/spidermonkey/fdlibm/s_expm1.c +267 -0
- data/vendor/spidermonkey/fdlibm/s_fabs.c +70 -0
- data/vendor/spidermonkey/fdlibm/s_finite.c +71 -0
- data/vendor/spidermonkey/fdlibm/s_floor.c +121 -0
- data/vendor/spidermonkey/fdlibm/s_frexp.c +99 -0
- data/vendor/spidermonkey/fdlibm/s_ilogb.c +85 -0
- data/vendor/spidermonkey/fdlibm/s_isnan.c +74 -0
- data/vendor/spidermonkey/fdlibm/s_ldexp.c +66 -0
- data/vendor/spidermonkey/fdlibm/s_lib_version.c +73 -0
- data/vendor/spidermonkey/fdlibm/s_log1p.c +211 -0
- data/vendor/spidermonkey/fdlibm/s_logb.c +79 -0
- data/vendor/spidermonkey/fdlibm/s_matherr.c +64 -0
- data/vendor/spidermonkey/fdlibm/s_modf.c +132 -0
- data/vendor/spidermonkey/fdlibm/s_nextafter.c +124 -0
- data/vendor/spidermonkey/fdlibm/s_rint.c +131 -0
- data/vendor/spidermonkey/fdlibm/s_scalbn.c +107 -0
- data/vendor/spidermonkey/fdlibm/s_signgam.c +40 -0
- data/vendor/spidermonkey/fdlibm/s_significand.c +68 -0
- data/vendor/spidermonkey/fdlibm/s_sin.c +118 -0
- data/vendor/spidermonkey/fdlibm/s_tan.c +112 -0
- data/vendor/spidermonkey/fdlibm/s_tanh.c +122 -0
- data/vendor/spidermonkey/fdlibm/w_acos.c +78 -0
- data/vendor/spidermonkey/fdlibm/w_acosh.c +78 -0
- data/vendor/spidermonkey/fdlibm/w_asin.c +80 -0
- data/vendor/spidermonkey/fdlibm/w_atan2.c +79 -0
- data/vendor/spidermonkey/fdlibm/w_atanh.c +81 -0
- data/vendor/spidermonkey/fdlibm/w_cosh.c +77 -0
- data/vendor/spidermonkey/fdlibm/w_exp.c +88 -0
- data/vendor/spidermonkey/fdlibm/w_fmod.c +78 -0
- data/vendor/spidermonkey/fdlibm/w_gamma.c +85 -0
- data/vendor/spidermonkey/fdlibm/w_gamma_r.c +81 -0
- data/vendor/spidermonkey/fdlibm/w_hypot.c +78 -0
- data/vendor/spidermonkey/fdlibm/w_j0.c +105 -0
- data/vendor/spidermonkey/fdlibm/w_j1.c +106 -0
- data/vendor/spidermonkey/fdlibm/w_jn.c +128 -0
- data/vendor/spidermonkey/fdlibm/w_lgamma.c +85 -0
- data/vendor/spidermonkey/fdlibm/w_lgamma_r.c +81 -0
- data/vendor/spidermonkey/fdlibm/w_log.c +78 -0
- data/vendor/spidermonkey/fdlibm/w_log10.c +81 -0
- data/vendor/spidermonkey/fdlibm/w_pow.c +99 -0
- data/vendor/spidermonkey/fdlibm/w_remainder.c +77 -0
- data/vendor/spidermonkey/fdlibm/w_scalb.c +95 -0
- data/vendor/spidermonkey/fdlibm/w_sinh.c +77 -0
- data/vendor/spidermonkey/fdlibm/w_sqrt.c +77 -0
- data/vendor/spidermonkey/javascript-trace.d +73 -0
- data/vendor/spidermonkey/js.c +3951 -0
- data/vendor/spidermonkey/js.mak +4438 -0
- data/vendor/spidermonkey/js.mdp +0 -0
- data/vendor/spidermonkey/js.msg +307 -0
- data/vendor/spidermonkey/js.pkg +2 -0
- data/vendor/spidermonkey/js3240.rc +79 -0
- data/vendor/spidermonkey/jsOS240.def +654 -0
- data/vendor/spidermonkey/jsapi.c +5836 -0
- data/vendor/spidermonkey/jsapi.h +2624 -0
- data/vendor/spidermonkey/jsarena.c +450 -0
- data/vendor/spidermonkey/jsarena.h +318 -0
- data/vendor/spidermonkey/jsarray.c +2988 -0
- data/vendor/spidermonkey/jsarray.h +124 -0
- data/vendor/spidermonkey/jsatom.c +1045 -0
- data/vendor/spidermonkey/jsatom.h +442 -0
- data/vendor/spidermonkey/jsbit.h +253 -0
- data/vendor/spidermonkey/jsbool.c +176 -0
- data/vendor/spidermonkey/jsbool.h +73 -0
- data/vendor/spidermonkey/jsclist.h +139 -0
- data/vendor/spidermonkey/jscntxt.c +1348 -0
- data/vendor/spidermonkey/jscntxt.h +1120 -0
- data/vendor/spidermonkey/jscompat.h +57 -0
- data/vendor/spidermonkey/jsconfig.h +248 -0
- data/vendor/spidermonkey/jsconfig.mk +181 -0
- data/vendor/spidermonkey/jscpucfg.c +383 -0
- data/vendor/spidermonkey/jscpucfg.h +212 -0
- data/vendor/spidermonkey/jsdate.c +2398 -0
- data/vendor/spidermonkey/jsdate.h +124 -0
- data/vendor/spidermonkey/jsdbgapi.c +1799 -0
- data/vendor/spidermonkey/jsdbgapi.h +464 -0
- data/vendor/spidermonkey/jsdhash.c +868 -0
- data/vendor/spidermonkey/jsdhash.h +592 -0
- data/vendor/spidermonkey/jsdtoa.c +3167 -0
- data/vendor/spidermonkey/jsdtoa.h +130 -0
- data/vendor/spidermonkey/jsdtracef.c +317 -0
- data/vendor/spidermonkey/jsdtracef.h +77 -0
- data/vendor/spidermonkey/jsemit.c +6909 -0
- data/vendor/spidermonkey/jsemit.h +741 -0
- data/vendor/spidermonkey/jsexn.c +1371 -0
- data/vendor/spidermonkey/jsexn.h +96 -0
- data/vendor/spidermonkey/jsfile.c +2736 -0
- data/vendor/spidermonkey/jsfile.h +56 -0
- data/vendor/spidermonkey/jsfile.msg +90 -0
- data/vendor/spidermonkey/jsfun.c +2634 -0
- data/vendor/spidermonkey/jsfun.h +254 -0
- data/vendor/spidermonkey/jsgc.c +3554 -0
- data/vendor/spidermonkey/jsgc.h +403 -0
- data/vendor/spidermonkey/jshash.c +476 -0
- data/vendor/spidermonkey/jshash.h +151 -0
- data/vendor/spidermonkey/jsify.pl +485 -0
- data/vendor/spidermonkey/jsinterp.c +6981 -0
- data/vendor/spidermonkey/jsinterp.h +521 -0
- data/vendor/spidermonkey/jsinvoke.c +43 -0
- data/vendor/spidermonkey/jsiter.c +1067 -0
- data/vendor/spidermonkey/jsiter.h +122 -0
- data/vendor/spidermonkey/jskeyword.tbl +124 -0
- data/vendor/spidermonkey/jskwgen.c +460 -0
- data/vendor/spidermonkey/jslibmath.h +266 -0
- data/vendor/spidermonkey/jslock.c +1309 -0
- data/vendor/spidermonkey/jslock.h +313 -0
- data/vendor/spidermonkey/jslocko.asm +60 -0
- data/vendor/spidermonkey/jslog2.c +94 -0
- data/vendor/spidermonkey/jslong.c +264 -0
- data/vendor/spidermonkey/jslong.h +412 -0
- data/vendor/spidermonkey/jsmath.c +568 -0
- data/vendor/spidermonkey/jsmath.h +57 -0
- data/vendor/spidermonkey/jsnum.c +1228 -0
- data/vendor/spidermonkey/jsnum.h +283 -0
- data/vendor/spidermonkey/jsobj.c +5266 -0
- data/vendor/spidermonkey/jsobj.h +709 -0
- data/vendor/spidermonkey/jsopcode.c +5245 -0
- data/vendor/spidermonkey/jsopcode.h +394 -0
- data/vendor/spidermonkey/jsopcode.tbl +523 -0
- data/vendor/spidermonkey/jsotypes.h +202 -0
- data/vendor/spidermonkey/jsparse.c +6680 -0
- data/vendor/spidermonkey/jsparse.h +511 -0
- data/vendor/spidermonkey/jsprf.c +1262 -0
- data/vendor/spidermonkey/jsprf.h +150 -0
- data/vendor/spidermonkey/jsproto.tbl +128 -0
- data/vendor/spidermonkey/jsprvtd.h +267 -0
- data/vendor/spidermonkey/jspubtd.h +744 -0
- data/vendor/spidermonkey/jsregexp.c +4352 -0
- data/vendor/spidermonkey/jsregexp.h +183 -0
- data/vendor/spidermonkey/jsreops.tbl +145 -0
- data/vendor/spidermonkey/jsscan.c +2003 -0
- data/vendor/spidermonkey/jsscan.h +387 -0
- data/vendor/spidermonkey/jsscope.c +1948 -0
- data/vendor/spidermonkey/jsscope.h +418 -0
- data/vendor/spidermonkey/jsscript.c +1832 -0
- data/vendor/spidermonkey/jsscript.h +287 -0
- data/vendor/spidermonkey/jsshell.msg +50 -0
- data/vendor/spidermonkey/jsstddef.h +83 -0
- data/vendor/spidermonkey/jsstr.c +5004 -0
- data/vendor/spidermonkey/jsstr.h +641 -0
- data/vendor/spidermonkey/jstypes.h +475 -0
- data/vendor/spidermonkey/jsutil.c +345 -0
- data/vendor/spidermonkey/jsutil.h +157 -0
- data/vendor/spidermonkey/jsxdrapi.c +800 -0
- data/vendor/spidermonkey/jsxdrapi.h +218 -0
- data/vendor/spidermonkey/jsxml.c +8471 -0
- data/vendor/spidermonkey/jsxml.h +349 -0
- data/vendor/spidermonkey/lock_SunOS.s +119 -0
- data/vendor/spidermonkey/perfect.js +39 -0
- data/vendor/spidermonkey/plify_jsdhash.sed +36 -0
- data/vendor/spidermonkey/prmjtime.c +846 -0
- data/vendor/spidermonkey/prmjtime.h +103 -0
- data/vendor/spidermonkey/resource.h +15 -0
- data/vendor/spidermonkey/rules.mk +197 -0
- data/vendor/spidermonkey/win32.order +384 -0
- metadata +4 -3
@@ -0,0 +1,3167 @@
|
|
1
|
+
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
2
|
+
*
|
3
|
+
* ***** BEGIN LICENSE BLOCK *****
|
4
|
+
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
5
|
+
*
|
6
|
+
* The contents of this file are subject to the Mozilla Public License Version
|
7
|
+
* 1.1 (the "License"); you may not use this file except in compliance with
|
8
|
+
* the License. You may obtain a copy of the License at
|
9
|
+
* http://www.mozilla.org/MPL/
|
10
|
+
*
|
11
|
+
* Software distributed under the License is distributed on an "AS IS" basis,
|
12
|
+
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
13
|
+
* for the specific language governing rights and limitations under the
|
14
|
+
* License.
|
15
|
+
*
|
16
|
+
* The Original Code is Mozilla Communicator client code, released
|
17
|
+
* March 31, 1998.
|
18
|
+
*
|
19
|
+
* The Initial Developer of the Original Code is
|
20
|
+
* Netscape Communications Corporation.
|
21
|
+
* Portions created by the Initial Developer are Copyright (C) 1998
|
22
|
+
* the Initial Developer. All Rights Reserved.
|
23
|
+
*
|
24
|
+
* Contributor(s):
|
25
|
+
*
|
26
|
+
* Alternatively, the contents of this file may be used under the terms of
|
27
|
+
* either of the GNU General Public License Version 2 or later (the "GPL"),
|
28
|
+
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
29
|
+
* in which case the provisions of the GPL or the LGPL are applicable instead
|
30
|
+
* of those above. If you wish to allow use of your version of this file only
|
31
|
+
* under the terms of either the GPL or the LGPL, and not to allow others to
|
32
|
+
* use your version of this file under the terms of the MPL, indicate your
|
33
|
+
* decision by deleting the provisions above and replace them with the notice
|
34
|
+
* and other provisions required by the GPL or the LGPL. If you do not delete
|
35
|
+
* the provisions above, a recipient may use your version of this file under
|
36
|
+
* the terms of any one of the MPL, the GPL or the LGPL.
|
37
|
+
*
|
38
|
+
* ***** END LICENSE BLOCK ***** */
|
39
|
+
|
40
|
+
/*
|
41
|
+
* Portable double to alphanumeric string and back converters.
|
42
|
+
*/
|
43
|
+
#include "jsstddef.h"
|
44
|
+
#include "jslibmath.h"
|
45
|
+
#include "jstypes.h"
|
46
|
+
#include "jsdtoa.h"
|
47
|
+
#include "jsprf.h"
|
48
|
+
#include "jsutil.h" /* Added by JSIFY */
|
49
|
+
#include "jspubtd.h"
|
50
|
+
#include "jsnum.h"
|
51
|
+
#include "jsbit.h"
|
52
|
+
|
53
|
+
#ifdef JS_THREADSAFE
|
54
|
+
#include "prlock.h"
|
55
|
+
#endif
|
56
|
+
|
57
|
+
/****************************************************************
|
58
|
+
*
|
59
|
+
* The author of this software is David M. Gay.
|
60
|
+
*
|
61
|
+
* Copyright (c) 1991 by Lucent Technologies.
|
62
|
+
*
|
63
|
+
* Permission to use, copy, modify, and distribute this software for any
|
64
|
+
* purpose without fee is hereby granted, provided that this entire notice
|
65
|
+
* is included in all copies of any software which is or includes a copy
|
66
|
+
* or modification of this software and in all copies of the supporting
|
67
|
+
* documentation for such software.
|
68
|
+
*
|
69
|
+
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
|
70
|
+
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
|
71
|
+
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
|
72
|
+
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
|
73
|
+
*
|
74
|
+
***************************************************************/
|
75
|
+
|
76
|
+
/* Please send bug reports to
|
77
|
+
David M. Gay
|
78
|
+
Bell Laboratories, Room 2C-463
|
79
|
+
600 Mountain Avenue
|
80
|
+
Murray Hill, NJ 07974-0636
|
81
|
+
U.S.A.
|
82
|
+
dmg@bell-labs.com
|
83
|
+
*/
|
84
|
+
|
85
|
+
/* On a machine with IEEE extended-precision registers, it is
|
86
|
+
* necessary to specify double-precision (53-bit) rounding precision
|
87
|
+
* before invoking strtod or dtoa. If the machine uses (the equivalent
|
88
|
+
* of) Intel 80x87 arithmetic, the call
|
89
|
+
* _control87(PC_53, MCW_PC);
|
90
|
+
* does this with many compilers. Whether this or another call is
|
91
|
+
* appropriate depends on the compiler; for this to work, it may be
|
92
|
+
* necessary to #include "float.h" or another system-dependent header
|
93
|
+
* file.
|
94
|
+
*/
|
95
|
+
|
96
|
+
/* strtod for IEEE-arithmetic machines.
|
97
|
+
*
|
98
|
+
* This strtod returns a nearest machine number to the input decimal
|
99
|
+
* string (or sets err to JS_DTOA_ERANGE or JS_DTOA_ENOMEM). With IEEE
|
100
|
+
* arithmetic, ties are broken by the IEEE round-even rule. Otherwise
|
101
|
+
* ties are broken by biased rounding (add half and chop).
|
102
|
+
*
|
103
|
+
* Inspired loosely by William D. Clinger's paper "How to Read Floating
|
104
|
+
* Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
|
105
|
+
*
|
106
|
+
* Modifications:
|
107
|
+
*
|
108
|
+
* 1. We only require IEEE double-precision
|
109
|
+
* arithmetic (not IEEE double-extended).
|
110
|
+
* 2. We get by with floating-point arithmetic in a case that
|
111
|
+
* Clinger missed -- when we're computing d * 10^n
|
112
|
+
* for a small integer d and the integer n is not too
|
113
|
+
* much larger than 22 (the maximum integer k for which
|
114
|
+
* we can represent 10^k exactly), we may be able to
|
115
|
+
* compute (d*10^k) * 10^(e-k) with just one roundoff.
|
116
|
+
* 3. Rather than a bit-at-a-time adjustment of the binary
|
117
|
+
* result in the hard case, we use floating-point
|
118
|
+
* arithmetic to determine the adjustment to within
|
119
|
+
* one bit; only in really hard cases do we need to
|
120
|
+
* compute a second residual.
|
121
|
+
* 4. Because of 3., we don't need a large table of powers of 10
|
122
|
+
* for ten-to-e (just some small tables, e.g. of 10^k
|
123
|
+
* for 0 <= k <= 22).
|
124
|
+
*/
|
125
|
+
|
126
|
+
/*
|
127
|
+
* #define IEEE_8087 for IEEE-arithmetic machines where the least
|
128
|
+
* significant byte has the lowest address.
|
129
|
+
* #define IEEE_MC68k for IEEE-arithmetic machines where the most
|
130
|
+
* significant byte has the lowest address.
|
131
|
+
* #define Long int on machines with 32-bit ints and 64-bit longs.
|
132
|
+
* #define Sudden_Underflow for IEEE-format machines without gradual
|
133
|
+
* underflow (i.e., that flush to zero on underflow).
|
134
|
+
* #define No_leftright to omit left-right logic in fast floating-point
|
135
|
+
* computation of js_dtoa.
|
136
|
+
* #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
|
137
|
+
* #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
|
138
|
+
* that use extended-precision instructions to compute rounded
|
139
|
+
* products and quotients) with IBM.
|
140
|
+
* #define ROUND_BIASED for IEEE-format with biased rounding.
|
141
|
+
* #define Inaccurate_Divide for IEEE-format with correctly rounded
|
142
|
+
* products but inaccurate quotients, e.g., for Intel i860.
|
143
|
+
* #define JS_HAVE_LONG_LONG on machines that have a "long long"
|
144
|
+
* integer type (of >= 64 bits). If long long is available and the name is
|
145
|
+
* something other than "long long", #define Llong to be the name,
|
146
|
+
* and if "unsigned Llong" does not work as an unsigned version of
|
147
|
+
* Llong, #define #ULLong to be the corresponding unsigned type.
|
148
|
+
* #define Bad_float_h if your system lacks a float.h or if it does not
|
149
|
+
* define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
|
150
|
+
* FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
|
151
|
+
* #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
|
152
|
+
* if memory is available and otherwise does something you deem
|
153
|
+
* appropriate. If MALLOC is undefined, malloc will be invoked
|
154
|
+
* directly -- and assumed always to succeed.
|
155
|
+
* #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
|
156
|
+
* memory allocations from a private pool of memory when possible.
|
157
|
+
* When used, the private pool is PRIVATE_MEM bytes long: 2000 bytes,
|
158
|
+
* unless #defined to be a different length. This default length
|
159
|
+
* suffices to get rid of MALLOC calls except for unusual cases,
|
160
|
+
* such as decimal-to-binary conversion of a very long string of
|
161
|
+
* digits.
|
162
|
+
* #define INFNAN_CHECK on IEEE systems to cause strtod to check for
|
163
|
+
* Infinity and NaN (case insensitively). On some systems (e.g.,
|
164
|
+
* some HP systems), it may be necessary to #define NAN_WORD0
|
165
|
+
* appropriately -- to the most significant word of a quiet NaN.
|
166
|
+
* (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
|
167
|
+
* #define MULTIPLE_THREADS if the system offers preemptively scheduled
|
168
|
+
* multiple threads. In this case, you must provide (or suitably
|
169
|
+
* #define) two locks, acquired by ACQUIRE_DTOA_LOCK() and released
|
170
|
+
* by RELEASE_DTOA_LOCK(). (The second lock, accessed
|
171
|
+
* in pow5mult, ensures lazy evaluation of only one copy of high
|
172
|
+
* powers of 5; omitting this lock would introduce a small
|
173
|
+
* probability of wasting memory, but would otherwise be harmless.)
|
174
|
+
* You must also invoke freedtoa(s) to free the value s returned by
|
175
|
+
* dtoa. You may do so whether or not MULTIPLE_THREADS is #defined.
|
176
|
+
* #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
|
177
|
+
* avoids underflows on inputs whose result does not underflow.
|
178
|
+
*/
|
179
|
+
#ifdef IS_LITTLE_ENDIAN
|
180
|
+
#define IEEE_8087
|
181
|
+
#else
|
182
|
+
#define IEEE_MC68k
|
183
|
+
#endif
|
184
|
+
|
185
|
+
#ifndef Long
|
186
|
+
#define Long int32
|
187
|
+
#endif
|
188
|
+
|
189
|
+
#ifndef ULong
|
190
|
+
#define ULong uint32
|
191
|
+
#endif
|
192
|
+
|
193
|
+
#define Bug(errorMessageString) JS_ASSERT(!errorMessageString)
|
194
|
+
|
195
|
+
#include "stdlib.h"
|
196
|
+
#include "string.h"
|
197
|
+
|
198
|
+
#ifdef MALLOC
|
199
|
+
extern void *MALLOC(size_t);
|
200
|
+
#else
|
201
|
+
#define MALLOC malloc
|
202
|
+
#endif
|
203
|
+
|
204
|
+
#define Omit_Private_Memory
|
205
|
+
/* Private memory currently doesn't work with JS_THREADSAFE */
|
206
|
+
#ifndef Omit_Private_Memory
|
207
|
+
#ifndef PRIVATE_MEM
|
208
|
+
#define PRIVATE_MEM 2000
|
209
|
+
#endif
|
210
|
+
#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
|
211
|
+
static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
|
212
|
+
#endif
|
213
|
+
|
214
|
+
#ifdef Bad_float_h
|
215
|
+
#undef __STDC__
|
216
|
+
|
217
|
+
#define DBL_DIG 15
|
218
|
+
#define DBL_MAX_10_EXP 308
|
219
|
+
#define DBL_MAX_EXP 1024
|
220
|
+
#define FLT_RADIX 2
|
221
|
+
#define FLT_ROUNDS 1
|
222
|
+
#define DBL_MAX 1.7976931348623157e+308
|
223
|
+
|
224
|
+
|
225
|
+
|
226
|
+
#ifndef LONG_MAX
|
227
|
+
#define LONG_MAX 2147483647
|
228
|
+
#endif
|
229
|
+
|
230
|
+
#else /* ifndef Bad_float_h */
|
231
|
+
#include "float.h"
|
232
|
+
#endif /* Bad_float_h */
|
233
|
+
|
234
|
+
#ifndef __MATH_H__
|
235
|
+
#include "math.h"
|
236
|
+
#endif
|
237
|
+
|
238
|
+
#ifndef CONST
|
239
|
+
#define CONST const
|
240
|
+
#endif
|
241
|
+
|
242
|
+
#if defined(IEEE_8087) + defined(IEEE_MC68k) != 1
|
243
|
+
Exactly one of IEEE_8087 or IEEE_MC68k should be defined.
|
244
|
+
#endif
|
245
|
+
|
246
|
+
#define word0(x) JSDOUBLE_HI32(x)
|
247
|
+
#define set_word0(x, y) JSDOUBLE_SET_HI32(x, y)
|
248
|
+
#define word1(x) JSDOUBLE_LO32(x)
|
249
|
+
#define set_word1(x, y) JSDOUBLE_SET_LO32(x, y)
|
250
|
+
|
251
|
+
#define Storeinc(a,b,c) (*(a)++ = (b) << 16 | (c) & 0xffff)
|
252
|
+
|
253
|
+
/* #define P DBL_MANT_DIG */
|
254
|
+
/* Ten_pmax = floor(P*log(2)/log(5)) */
|
255
|
+
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
|
256
|
+
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
|
257
|
+
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
|
258
|
+
|
259
|
+
#define Exp_shift 20
|
260
|
+
#define Exp_shift1 20
|
261
|
+
#define Exp_msk1 0x100000
|
262
|
+
#define Exp_msk11 0x100000
|
263
|
+
#define Exp_mask 0x7ff00000
|
264
|
+
#define P 53
|
265
|
+
#define Bias 1023
|
266
|
+
#define Emin (-1022)
|
267
|
+
#define Exp_1 0x3ff00000
|
268
|
+
#define Exp_11 0x3ff00000
|
269
|
+
#define Ebits 11
|
270
|
+
#define Frac_mask 0xfffff
|
271
|
+
#define Frac_mask1 0xfffff
|
272
|
+
#define Ten_pmax 22
|
273
|
+
#define Bletch 0x10
|
274
|
+
#define Bndry_mask 0xfffff
|
275
|
+
#define Bndry_mask1 0xfffff
|
276
|
+
#define LSB 1
|
277
|
+
#define Sign_bit 0x80000000
|
278
|
+
#define Log2P 1
|
279
|
+
#define Tiny0 0
|
280
|
+
#define Tiny1 1
|
281
|
+
#define Quick_max 14
|
282
|
+
#define Int_max 14
|
283
|
+
#define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */
|
284
|
+
#ifndef NO_IEEE_Scale
|
285
|
+
#define Avoid_Underflow
|
286
|
+
#endif
|
287
|
+
|
288
|
+
|
289
|
+
|
290
|
+
#ifdef RND_PRODQUOT
|
291
|
+
#define rounded_product(a,b) a = rnd_prod(a, b)
|
292
|
+
#define rounded_quotient(a,b) a = rnd_quot(a, b)
|
293
|
+
extern double rnd_prod(double, double), rnd_quot(double, double);
|
294
|
+
#else
|
295
|
+
#define rounded_product(a,b) a *= b
|
296
|
+
#define rounded_quotient(a,b) a /= b
|
297
|
+
#endif
|
298
|
+
|
299
|
+
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
|
300
|
+
#define Big1 0xffffffff
|
301
|
+
|
302
|
+
#ifndef JS_HAVE_LONG_LONG
|
303
|
+
#undef ULLong
|
304
|
+
#else /* long long available */
|
305
|
+
#ifndef Llong
|
306
|
+
#define Llong JSInt64
|
307
|
+
#endif
|
308
|
+
#ifndef ULLong
|
309
|
+
#define ULLong JSUint64
|
310
|
+
#endif
|
311
|
+
#endif /* JS_HAVE_LONG_LONG */
|
312
|
+
|
313
|
+
#ifdef JS_THREADSAFE
|
314
|
+
#define MULTIPLE_THREADS
|
315
|
+
static PRLock *freelist_lock;
|
316
|
+
#define ACQUIRE_DTOA_LOCK() \
|
317
|
+
JS_BEGIN_MACRO \
|
318
|
+
if (!initialized) \
|
319
|
+
InitDtoa(); \
|
320
|
+
PR_Lock(freelist_lock); \
|
321
|
+
JS_END_MACRO
|
322
|
+
#define RELEASE_DTOA_LOCK() PR_Unlock(freelist_lock)
|
323
|
+
#else
|
324
|
+
#undef MULTIPLE_THREADS
|
325
|
+
#define ACQUIRE_DTOA_LOCK() /*nothing*/
|
326
|
+
#define RELEASE_DTOA_LOCK() /*nothing*/
|
327
|
+
#endif
|
328
|
+
|
329
|
+
#define Kmax 15
|
330
|
+
|
331
|
+
struct Bigint {
|
332
|
+
struct Bigint *next; /* Free list link */
|
333
|
+
int32 k; /* lg2(maxwds) */
|
334
|
+
int32 maxwds; /* Number of words allocated for x */
|
335
|
+
int32 sign; /* Zero if positive, 1 if negative. Ignored by most Bigint routines! */
|
336
|
+
int32 wds; /* Actual number of words. If value is nonzero, the most significant word must be nonzero. */
|
337
|
+
ULong x[1]; /* wds words of number in little endian order */
|
338
|
+
};
|
339
|
+
|
340
|
+
#ifdef ENABLE_OOM_TESTING
|
341
|
+
/* Out-of-memory testing. Use a good testcase (over and over) and then use
|
342
|
+
* these routines to cause a memory failure on every possible Balloc allocation,
|
343
|
+
* to make sure that all out-of-memory paths can be followed. See bug 14044.
|
344
|
+
*/
|
345
|
+
|
346
|
+
static int allocationNum; /* which allocation is next? */
|
347
|
+
static int desiredFailure; /* which allocation should fail? */
|
348
|
+
|
349
|
+
/**
|
350
|
+
* js_BigintTestingReset
|
351
|
+
*
|
352
|
+
* Call at the beginning of a test run to set the allocation failure position.
|
353
|
+
* (Set to 0 to just have the engine count allocations without failing.)
|
354
|
+
*/
|
355
|
+
JS_PUBLIC_API(void)
|
356
|
+
js_BigintTestingReset(int newFailure)
|
357
|
+
{
|
358
|
+
allocationNum = 0;
|
359
|
+
desiredFailure = newFailure;
|
360
|
+
}
|
361
|
+
|
362
|
+
/**
|
363
|
+
* js_BigintTestingWhere
|
364
|
+
*
|
365
|
+
* Report the current allocation position. This is really only useful when you
|
366
|
+
* want to learn how many allocations a test run has.
|
367
|
+
*/
|
368
|
+
JS_PUBLIC_API(int)
|
369
|
+
js_BigintTestingWhere()
|
370
|
+
{
|
371
|
+
return allocationNum;
|
372
|
+
}
|
373
|
+
|
374
|
+
|
375
|
+
/*
|
376
|
+
* So here's what you do: Set up a fantastic test case that exercises the
|
377
|
+
* elements of the code you wish. Set the failure point at 0 and run the test,
|
378
|
+
* then get the allocation position. This number is the number of allocations
|
379
|
+
* your test makes. Now loop from 1 to that number, setting the failure point
|
380
|
+
* at each loop count, and run the test over and over, causing failures at each
|
381
|
+
* step. Any memory failure *should* cause a Out-Of-Memory exception; if it
|
382
|
+
* doesn't, then there's still an error here.
|
383
|
+
*/
|
384
|
+
#endif
|
385
|
+
|
386
|
+
typedef struct Bigint Bigint;
|
387
|
+
|
388
|
+
static Bigint *freelist[Kmax+1];
|
389
|
+
|
390
|
+
/*
|
391
|
+
* Allocate a Bigint with 2^k words.
|
392
|
+
* This is not threadsafe. The caller must use thread locks
|
393
|
+
*/
|
394
|
+
static Bigint *Balloc(int32 k)
|
395
|
+
{
|
396
|
+
int32 x;
|
397
|
+
Bigint *rv;
|
398
|
+
#ifndef Omit_Private_Memory
|
399
|
+
uint32 len;
|
400
|
+
#endif
|
401
|
+
|
402
|
+
#ifdef ENABLE_OOM_TESTING
|
403
|
+
if (++allocationNum == desiredFailure) {
|
404
|
+
printf("Forced Failing Allocation number %d\n", allocationNum);
|
405
|
+
return NULL;
|
406
|
+
}
|
407
|
+
#endif
|
408
|
+
|
409
|
+
if ((rv = freelist[k]) != NULL)
|
410
|
+
freelist[k] = rv->next;
|
411
|
+
if (rv == NULL) {
|
412
|
+
x = 1 << k;
|
413
|
+
#ifdef Omit_Private_Memory
|
414
|
+
rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
|
415
|
+
#else
|
416
|
+
len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
|
417
|
+
/sizeof(double);
|
418
|
+
if (pmem_next - private_mem + len <= PRIVATE_mem) {
|
419
|
+
rv = (Bigint*)pmem_next;
|
420
|
+
pmem_next += len;
|
421
|
+
}
|
422
|
+
else
|
423
|
+
rv = (Bigint*)MALLOC(len*sizeof(double));
|
424
|
+
#endif
|
425
|
+
if (!rv)
|
426
|
+
return NULL;
|
427
|
+
rv->k = k;
|
428
|
+
rv->maxwds = x;
|
429
|
+
}
|
430
|
+
rv->sign = rv->wds = 0;
|
431
|
+
return rv;
|
432
|
+
}
|
433
|
+
|
434
|
+
static void Bfree(Bigint *v)
|
435
|
+
{
|
436
|
+
if (v) {
|
437
|
+
v->next = freelist[v->k];
|
438
|
+
freelist[v->k] = v;
|
439
|
+
}
|
440
|
+
}
|
441
|
+
|
442
|
+
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
|
443
|
+
y->wds*sizeof(Long) + 2*sizeof(int32))
|
444
|
+
|
445
|
+
/* Return b*m + a. Deallocate the old b. Both a and m must be between 0 and
|
446
|
+
* 65535 inclusive. NOTE: old b is deallocated on memory failure.
|
447
|
+
*/
|
448
|
+
static Bigint *multadd(Bigint *b, int32 m, int32 a)
|
449
|
+
{
|
450
|
+
int32 i, wds;
|
451
|
+
#ifdef ULLong
|
452
|
+
ULong *x;
|
453
|
+
ULLong carry, y;
|
454
|
+
#else
|
455
|
+
ULong carry, *x, y;
|
456
|
+
ULong xi, z;
|
457
|
+
#endif
|
458
|
+
Bigint *b1;
|
459
|
+
|
460
|
+
#ifdef ENABLE_OOM_TESTING
|
461
|
+
if (++allocationNum == desiredFailure) {
|
462
|
+
/* Faux allocation, because I'm not getting all of the failure paths
|
463
|
+
* without it.
|
464
|
+
*/
|
465
|
+
printf("Forced Failing Allocation number %d\n", allocationNum);
|
466
|
+
Bfree(b);
|
467
|
+
return NULL;
|
468
|
+
}
|
469
|
+
#endif
|
470
|
+
|
471
|
+
wds = b->wds;
|
472
|
+
x = b->x;
|
473
|
+
i = 0;
|
474
|
+
carry = a;
|
475
|
+
do {
|
476
|
+
#ifdef ULLong
|
477
|
+
y = *x * (ULLong)m + carry;
|
478
|
+
carry = y >> 32;
|
479
|
+
*x++ = (ULong)(y & 0xffffffffUL);
|
480
|
+
#else
|
481
|
+
xi = *x;
|
482
|
+
y = (xi & 0xffff) * m + carry;
|
483
|
+
z = (xi >> 16) * m + (y >> 16);
|
484
|
+
carry = z >> 16;
|
485
|
+
*x++ = (z << 16) + (y & 0xffff);
|
486
|
+
#endif
|
487
|
+
}
|
488
|
+
while(++i < wds);
|
489
|
+
if (carry) {
|
490
|
+
if (wds >= b->maxwds) {
|
491
|
+
b1 = Balloc(b->k+1);
|
492
|
+
if (!b1) {
|
493
|
+
Bfree(b);
|
494
|
+
return NULL;
|
495
|
+
}
|
496
|
+
Bcopy(b1, b);
|
497
|
+
Bfree(b);
|
498
|
+
b = b1;
|
499
|
+
}
|
500
|
+
b->x[wds++] = (ULong)carry;
|
501
|
+
b->wds = wds;
|
502
|
+
}
|
503
|
+
return b;
|
504
|
+
}
|
505
|
+
|
506
|
+
static Bigint *s2b(CONST char *s, int32 nd0, int32 nd, ULong y9)
|
507
|
+
{
|
508
|
+
Bigint *b;
|
509
|
+
int32 i, k;
|
510
|
+
Long x, y;
|
511
|
+
|
512
|
+
x = (nd + 8) / 9;
|
513
|
+
for(k = 0, y = 1; x > y; y <<= 1, k++) ;
|
514
|
+
b = Balloc(k);
|
515
|
+
if (!b)
|
516
|
+
return NULL;
|
517
|
+
b->x[0] = y9;
|
518
|
+
b->wds = 1;
|
519
|
+
|
520
|
+
i = 9;
|
521
|
+
if (9 < nd0) {
|
522
|
+
s += 9;
|
523
|
+
do {
|
524
|
+
b = multadd(b, 10, *s++ - '0');
|
525
|
+
if (!b)
|
526
|
+
return NULL;
|
527
|
+
} while(++i < nd0);
|
528
|
+
s++;
|
529
|
+
}
|
530
|
+
else
|
531
|
+
s += 10;
|
532
|
+
for(; i < nd; i++) {
|
533
|
+
b = multadd(b, 10, *s++ - '0');
|
534
|
+
if (!b)
|
535
|
+
return NULL;
|
536
|
+
}
|
537
|
+
return b;
|
538
|
+
}
|
539
|
+
|
540
|
+
|
541
|
+
/* Return the number (0 through 32) of most significant zero bits in x. */
|
542
|
+
static int32 hi0bits(register ULong x)
|
543
|
+
{
|
544
|
+
#ifdef JS_HAS_BUILTIN_BITSCAN32
|
545
|
+
return( (!x) ? 32 : js_bitscan_clz32(x) );
|
546
|
+
#else
|
547
|
+
register int32 k = 0;
|
548
|
+
|
549
|
+
if (!(x & 0xffff0000)) {
|
550
|
+
k = 16;
|
551
|
+
x <<= 16;
|
552
|
+
}
|
553
|
+
if (!(x & 0xff000000)) {
|
554
|
+
k += 8;
|
555
|
+
x <<= 8;
|
556
|
+
}
|
557
|
+
if (!(x & 0xf0000000)) {
|
558
|
+
k += 4;
|
559
|
+
x <<= 4;
|
560
|
+
}
|
561
|
+
if (!(x & 0xc0000000)) {
|
562
|
+
k += 2;
|
563
|
+
x <<= 2;
|
564
|
+
}
|
565
|
+
if (!(x & 0x80000000)) {
|
566
|
+
k++;
|
567
|
+
if (!(x & 0x40000000))
|
568
|
+
return 32;
|
569
|
+
}
|
570
|
+
return k;
|
571
|
+
#endif /* JS_HAS_BUILTIN_BITSCAN32 */
|
572
|
+
}
|
573
|
+
|
574
|
+
|
575
|
+
/* Return the number (0 through 32) of least significant zero bits in y.
|
576
|
+
* Also shift y to the right past these 0 through 32 zeros so that y's
|
577
|
+
* least significant bit will be set unless y was originally zero. */
|
578
|
+
static int32 lo0bits(ULong *y)
|
579
|
+
{
|
580
|
+
#ifdef JS_HAS_BUILTIN_BITSCAN32
|
581
|
+
int32 k;
|
582
|
+
ULong x = *y;
|
583
|
+
|
584
|
+
if (x>1)
|
585
|
+
*y = ( x >> (k = js_bitscan_ctz32(x)) );
|
586
|
+
else
|
587
|
+
k = ((x ^ 1) << 5);
|
588
|
+
#else
|
589
|
+
register int32 k;
|
590
|
+
register ULong x = *y;
|
591
|
+
|
592
|
+
if (x & 7) {
|
593
|
+
if (x & 1)
|
594
|
+
return 0;
|
595
|
+
if (x & 2) {
|
596
|
+
*y = x >> 1;
|
597
|
+
return 1;
|
598
|
+
}
|
599
|
+
*y = x >> 2;
|
600
|
+
return 2;
|
601
|
+
}
|
602
|
+
k = 0;
|
603
|
+
if (!(x & 0xffff)) {
|
604
|
+
k = 16;
|
605
|
+
x >>= 16;
|
606
|
+
}
|
607
|
+
if (!(x & 0xff)) {
|
608
|
+
k += 8;
|
609
|
+
x >>= 8;
|
610
|
+
}
|
611
|
+
if (!(x & 0xf)) {
|
612
|
+
k += 4;
|
613
|
+
x >>= 4;
|
614
|
+
}
|
615
|
+
if (!(x & 0x3)) {
|
616
|
+
k += 2;
|
617
|
+
x >>= 2;
|
618
|
+
}
|
619
|
+
if (!(x & 1)) {
|
620
|
+
k++;
|
621
|
+
x >>= 1;
|
622
|
+
if (!x & 1)
|
623
|
+
return 32;
|
624
|
+
}
|
625
|
+
*y = x;
|
626
|
+
#endif /* JS_HAS_BUILTIN_BITSCAN32 */
|
627
|
+
return k;
|
628
|
+
}
|
629
|
+
|
630
|
+
/* Return a new Bigint with the given integer value, which must be nonnegative. */
|
631
|
+
static Bigint *i2b(int32 i)
|
632
|
+
{
|
633
|
+
Bigint *b;
|
634
|
+
|
635
|
+
b = Balloc(1);
|
636
|
+
if (!b)
|
637
|
+
return NULL;
|
638
|
+
b->x[0] = i;
|
639
|
+
b->wds = 1;
|
640
|
+
return b;
|
641
|
+
}
|
642
|
+
|
643
|
+
/* Return a newly allocated product of a and b. */
|
644
|
+
static Bigint *mult(CONST Bigint *a, CONST Bigint *b)
|
645
|
+
{
|
646
|
+
CONST Bigint *t;
|
647
|
+
Bigint *c;
|
648
|
+
int32 k, wa, wb, wc;
|
649
|
+
ULong y;
|
650
|
+
ULong *xc, *xc0, *xce;
|
651
|
+
CONST ULong *x, *xa, *xae, *xb, *xbe;
|
652
|
+
#ifdef ULLong
|
653
|
+
ULLong carry, z;
|
654
|
+
#else
|
655
|
+
ULong carry, z;
|
656
|
+
ULong z2;
|
657
|
+
#endif
|
658
|
+
|
659
|
+
if (a->wds < b->wds) {
|
660
|
+
t = a;
|
661
|
+
a = b;
|
662
|
+
b = t;
|
663
|
+
}
|
664
|
+
k = a->k;
|
665
|
+
wa = a->wds;
|
666
|
+
wb = b->wds;
|
667
|
+
wc = wa + wb;
|
668
|
+
if (wc > a->maxwds)
|
669
|
+
k++;
|
670
|
+
c = Balloc(k);
|
671
|
+
if (!c)
|
672
|
+
return NULL;
|
673
|
+
for(xc = c->x, xce = xc + wc; xc < xce; xc++)
|
674
|
+
*xc = 0;
|
675
|
+
xa = a->x;
|
676
|
+
xae = xa + wa;
|
677
|
+
xb = b->x;
|
678
|
+
xbe = xb + wb;
|
679
|
+
xc0 = c->x;
|
680
|
+
#ifdef ULLong
|
681
|
+
for(; xb < xbe; xc0++) {
|
682
|
+
if ((y = *xb++) != 0) {
|
683
|
+
x = xa;
|
684
|
+
xc = xc0;
|
685
|
+
carry = 0;
|
686
|
+
do {
|
687
|
+
z = *x++ * (ULLong)y + *xc + carry;
|
688
|
+
carry = z >> 32;
|
689
|
+
*xc++ = (ULong)(z & 0xffffffffUL);
|
690
|
+
}
|
691
|
+
while(x < xae);
|
692
|
+
*xc = (ULong)carry;
|
693
|
+
}
|
694
|
+
}
|
695
|
+
#else
|
696
|
+
for(; xb < xbe; xb++, xc0++) {
|
697
|
+
if ((y = *xb & 0xffff) != 0) {
|
698
|
+
x = xa;
|
699
|
+
xc = xc0;
|
700
|
+
carry = 0;
|
701
|
+
do {
|
702
|
+
z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
|
703
|
+
carry = z >> 16;
|
704
|
+
z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
|
705
|
+
carry = z2 >> 16;
|
706
|
+
Storeinc(xc, z2, z);
|
707
|
+
}
|
708
|
+
while(x < xae);
|
709
|
+
*xc = carry;
|
710
|
+
}
|
711
|
+
if ((y = *xb >> 16) != 0) {
|
712
|
+
x = xa;
|
713
|
+
xc = xc0;
|
714
|
+
carry = 0;
|
715
|
+
z2 = *xc;
|
716
|
+
do {
|
717
|
+
z = (*x & 0xffff) * y + (*xc >> 16) + carry;
|
718
|
+
carry = z >> 16;
|
719
|
+
Storeinc(xc, z, z2);
|
720
|
+
z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
|
721
|
+
carry = z2 >> 16;
|
722
|
+
}
|
723
|
+
while(x < xae);
|
724
|
+
*xc = z2;
|
725
|
+
}
|
726
|
+
}
|
727
|
+
#endif
|
728
|
+
for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
|
729
|
+
c->wds = wc;
|
730
|
+
return c;
|
731
|
+
}
|
732
|
+
|
733
|
+
/*
|
734
|
+
* 'p5s' points to a linked list of Bigints that are powers of 5.
|
735
|
+
* This list grows on demand, and it can only grow: it won't change
|
736
|
+
* in any other way. So if we read 'p5s' or the 'next' field of
|
737
|
+
* some Bigint on the list, and it is not NULL, we know it won't
|
738
|
+
* change to NULL or some other value. Only when the value of
|
739
|
+
* 'p5s' or 'next' is NULL do we need to acquire the lock and add
|
740
|
+
* a new Bigint to the list.
|
741
|
+
*/
|
742
|
+
|
743
|
+
static Bigint *p5s;
|
744
|
+
|
745
|
+
#ifdef JS_THREADSAFE
|
746
|
+
static PRLock *p5s_lock;
|
747
|
+
#endif
|
748
|
+
|
749
|
+
/* Return b * 5^k. Deallocate the old b. k must be nonnegative. */
|
750
|
+
/* NOTE: old b is deallocated on memory failure. */
|
751
|
+
static Bigint *pow5mult(Bigint *b, int32 k)
|
752
|
+
{
|
753
|
+
Bigint *b1, *p5, *p51;
|
754
|
+
int32 i;
|
755
|
+
static CONST int32 p05[3] = { 5, 25, 125 };
|
756
|
+
|
757
|
+
if ((i = k & 3) != 0) {
|
758
|
+
b = multadd(b, p05[i-1], 0);
|
759
|
+
if (!b)
|
760
|
+
return NULL;
|
761
|
+
}
|
762
|
+
|
763
|
+
if (!(k >>= 2))
|
764
|
+
return b;
|
765
|
+
if (!(p5 = p5s)) {
|
766
|
+
#ifdef JS_THREADSAFE
|
767
|
+
/*
|
768
|
+
* We take great care to not call i2b() and Bfree()
|
769
|
+
* while holding the lock.
|
770
|
+
*/
|
771
|
+
Bigint *wasted_effort = NULL;
|
772
|
+
p5 = i2b(625);
|
773
|
+
if (!p5) {
|
774
|
+
Bfree(b);
|
775
|
+
return NULL;
|
776
|
+
}
|
777
|
+
/* lock and check again */
|
778
|
+
PR_Lock(p5s_lock);
|
779
|
+
if (!p5s) {
|
780
|
+
/* first time */
|
781
|
+
p5s = p5;
|
782
|
+
p5->next = 0;
|
783
|
+
} else {
|
784
|
+
/* some other thread just beat us */
|
785
|
+
wasted_effort = p5;
|
786
|
+
p5 = p5s;
|
787
|
+
}
|
788
|
+
PR_Unlock(p5s_lock);
|
789
|
+
if (wasted_effort) {
|
790
|
+
Bfree(wasted_effort);
|
791
|
+
}
|
792
|
+
#else
|
793
|
+
/* first time */
|
794
|
+
p5 = p5s = i2b(625);
|
795
|
+
if (!p5) {
|
796
|
+
Bfree(b);
|
797
|
+
return NULL;
|
798
|
+
}
|
799
|
+
p5->next = 0;
|
800
|
+
#endif
|
801
|
+
}
|
802
|
+
for(;;) {
|
803
|
+
if (k & 1) {
|
804
|
+
b1 = mult(b, p5);
|
805
|
+
Bfree(b);
|
806
|
+
if (!b1)
|
807
|
+
return NULL;
|
808
|
+
b = b1;
|
809
|
+
}
|
810
|
+
if (!(k >>= 1))
|
811
|
+
break;
|
812
|
+
if (!(p51 = p5->next)) {
|
813
|
+
#ifdef JS_THREADSAFE
|
814
|
+
Bigint *wasted_effort = NULL;
|
815
|
+
p51 = mult(p5, p5);
|
816
|
+
if (!p51) {
|
817
|
+
Bfree(b);
|
818
|
+
return NULL;
|
819
|
+
}
|
820
|
+
PR_Lock(p5s_lock);
|
821
|
+
if (!p5->next) {
|
822
|
+
p5->next = p51;
|
823
|
+
p51->next = 0;
|
824
|
+
} else {
|
825
|
+
wasted_effort = p51;
|
826
|
+
p51 = p5->next;
|
827
|
+
}
|
828
|
+
PR_Unlock(p5s_lock);
|
829
|
+
if (wasted_effort) {
|
830
|
+
Bfree(wasted_effort);
|
831
|
+
}
|
832
|
+
#else
|
833
|
+
p51 = mult(p5,p5);
|
834
|
+
if (!p51) {
|
835
|
+
Bfree(b);
|
836
|
+
return NULL;
|
837
|
+
}
|
838
|
+
p51->next = 0;
|
839
|
+
p5->next = p51;
|
840
|
+
#endif
|
841
|
+
}
|
842
|
+
p5 = p51;
|
843
|
+
}
|
844
|
+
return b;
|
845
|
+
}
|
846
|
+
|
847
|
+
/* Return b * 2^k. Deallocate the old b. k must be nonnegative.
|
848
|
+
* NOTE: on memory failure, old b is deallocated. */
|
849
|
+
static Bigint *lshift(Bigint *b, int32 k)
|
850
|
+
{
|
851
|
+
int32 i, k1, n, n1;
|
852
|
+
Bigint *b1;
|
853
|
+
ULong *x, *x1, *xe, z;
|
854
|
+
|
855
|
+
n = k >> 5;
|
856
|
+
k1 = b->k;
|
857
|
+
n1 = n + b->wds + 1;
|
858
|
+
for(i = b->maxwds; n1 > i; i <<= 1)
|
859
|
+
k1++;
|
860
|
+
b1 = Balloc(k1);
|
861
|
+
if (!b1)
|
862
|
+
goto done;
|
863
|
+
x1 = b1->x;
|
864
|
+
for(i = 0; i < n; i++)
|
865
|
+
*x1++ = 0;
|
866
|
+
x = b->x;
|
867
|
+
xe = x + b->wds;
|
868
|
+
if (k &= 0x1f) {
|
869
|
+
k1 = 32 - k;
|
870
|
+
z = 0;
|
871
|
+
do {
|
872
|
+
*x1++ = *x << k | z;
|
873
|
+
z = *x++ >> k1;
|
874
|
+
}
|
875
|
+
while(x < xe);
|
876
|
+
if ((*x1 = z) != 0)
|
877
|
+
++n1;
|
878
|
+
}
|
879
|
+
else do
|
880
|
+
*x1++ = *x++;
|
881
|
+
while(x < xe);
|
882
|
+
b1->wds = n1 - 1;
|
883
|
+
done:
|
884
|
+
Bfree(b);
|
885
|
+
return b1;
|
886
|
+
}
|
887
|
+
|
888
|
+
/* Return -1, 0, or 1 depending on whether a<b, a==b, or a>b, respectively. */
|
889
|
+
static int32 cmp(Bigint *a, Bigint *b)
|
890
|
+
{
|
891
|
+
ULong *xa, *xa0, *xb, *xb0;
|
892
|
+
int32 i, j;
|
893
|
+
|
894
|
+
i = a->wds;
|
895
|
+
j = b->wds;
|
896
|
+
#ifdef DEBUG
|
897
|
+
if (i > 1 && !a->x[i-1])
|
898
|
+
Bug("cmp called with a->x[a->wds-1] == 0");
|
899
|
+
if (j > 1 && !b->x[j-1])
|
900
|
+
Bug("cmp called with b->x[b->wds-1] == 0");
|
901
|
+
#endif
|
902
|
+
if (i -= j)
|
903
|
+
return i;
|
904
|
+
xa0 = a->x;
|
905
|
+
xa = xa0 + j;
|
906
|
+
xb0 = b->x;
|
907
|
+
xb = xb0 + j;
|
908
|
+
for(;;) {
|
909
|
+
if (*--xa != *--xb)
|
910
|
+
return *xa < *xb ? -1 : 1;
|
911
|
+
if (xa <= xa0)
|
912
|
+
break;
|
913
|
+
}
|
914
|
+
return 0;
|
915
|
+
}
|
916
|
+
|
917
|
+
static Bigint *diff(Bigint *a, Bigint *b)
|
918
|
+
{
|
919
|
+
Bigint *c;
|
920
|
+
int32 i, wa, wb;
|
921
|
+
ULong *xa, *xae, *xb, *xbe, *xc;
|
922
|
+
#ifdef ULLong
|
923
|
+
ULLong borrow, y;
|
924
|
+
#else
|
925
|
+
ULong borrow, y;
|
926
|
+
ULong z;
|
927
|
+
#endif
|
928
|
+
|
929
|
+
i = cmp(a,b);
|
930
|
+
if (!i) {
|
931
|
+
c = Balloc(0);
|
932
|
+
if (!c)
|
933
|
+
return NULL;
|
934
|
+
c->wds = 1;
|
935
|
+
c->x[0] = 0;
|
936
|
+
return c;
|
937
|
+
}
|
938
|
+
if (i < 0) {
|
939
|
+
c = a;
|
940
|
+
a = b;
|
941
|
+
b = c;
|
942
|
+
i = 1;
|
943
|
+
}
|
944
|
+
else
|
945
|
+
i = 0;
|
946
|
+
c = Balloc(a->k);
|
947
|
+
if (!c)
|
948
|
+
return NULL;
|
949
|
+
c->sign = i;
|
950
|
+
wa = a->wds;
|
951
|
+
xa = a->x;
|
952
|
+
xae = xa + wa;
|
953
|
+
wb = b->wds;
|
954
|
+
xb = b->x;
|
955
|
+
xbe = xb + wb;
|
956
|
+
xc = c->x;
|
957
|
+
borrow = 0;
|
958
|
+
#ifdef ULLong
|
959
|
+
do {
|
960
|
+
y = (ULLong)*xa++ - *xb++ - borrow;
|
961
|
+
borrow = y >> 32 & 1UL;
|
962
|
+
*xc++ = (ULong)(y & 0xffffffffUL);
|
963
|
+
}
|
964
|
+
while(xb < xbe);
|
965
|
+
while(xa < xae) {
|
966
|
+
y = *xa++ - borrow;
|
967
|
+
borrow = y >> 32 & 1UL;
|
968
|
+
*xc++ = (ULong)(y & 0xffffffffUL);
|
969
|
+
}
|
970
|
+
#else
|
971
|
+
do {
|
972
|
+
y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
|
973
|
+
borrow = (y & 0x10000) >> 16;
|
974
|
+
z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
|
975
|
+
borrow = (z & 0x10000) >> 16;
|
976
|
+
Storeinc(xc, z, y);
|
977
|
+
}
|
978
|
+
while(xb < xbe);
|
979
|
+
while(xa < xae) {
|
980
|
+
y = (*xa & 0xffff) - borrow;
|
981
|
+
borrow = (y & 0x10000) >> 16;
|
982
|
+
z = (*xa++ >> 16) - borrow;
|
983
|
+
borrow = (z & 0x10000) >> 16;
|
984
|
+
Storeinc(xc, z, y);
|
985
|
+
}
|
986
|
+
#endif
|
987
|
+
while(!*--xc)
|
988
|
+
wa--;
|
989
|
+
c->wds = wa;
|
990
|
+
return c;
|
991
|
+
}
|
992
|
+
|
993
|
+
/* Return the absolute difference between x and the adjacent greater-magnitude double number (ignoring exponent overflows). */
|
994
|
+
static double ulp(double x)
|
995
|
+
{
|
996
|
+
register Long L;
|
997
|
+
double a = 0;
|
998
|
+
|
999
|
+
L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
|
1000
|
+
#ifndef Sudden_Underflow
|
1001
|
+
if (L > 0) {
|
1002
|
+
#endif
|
1003
|
+
set_word0(a, L);
|
1004
|
+
set_word1(a, 0);
|
1005
|
+
#ifndef Sudden_Underflow
|
1006
|
+
}
|
1007
|
+
else {
|
1008
|
+
L = -L >> Exp_shift;
|
1009
|
+
if (L < Exp_shift) {
|
1010
|
+
set_word0(a, 0x80000 >> L);
|
1011
|
+
set_word1(a, 0);
|
1012
|
+
}
|
1013
|
+
else {
|
1014
|
+
set_word0(a, 0);
|
1015
|
+
L -= Exp_shift;
|
1016
|
+
set_word1(a, L >= 31 ? 1 : 1 << (31 - L));
|
1017
|
+
}
|
1018
|
+
}
|
1019
|
+
#endif
|
1020
|
+
return a;
|
1021
|
+
}
|
1022
|
+
|
1023
|
+
|
1024
|
+
static double b2d(Bigint *a, int32 *e)
|
1025
|
+
{
|
1026
|
+
ULong *xa, *xa0, w, y, z;
|
1027
|
+
int32 k;
|
1028
|
+
double d = 0;
|
1029
|
+
#define d0 word0(d)
|
1030
|
+
#define d1 word1(d)
|
1031
|
+
#define set_d0(x) set_word0(d, x)
|
1032
|
+
#define set_d1(x) set_word1(d, x)
|
1033
|
+
|
1034
|
+
xa0 = a->x;
|
1035
|
+
xa = xa0 + a->wds;
|
1036
|
+
y = *--xa;
|
1037
|
+
#ifdef DEBUG
|
1038
|
+
if (!y) Bug("zero y in b2d");
|
1039
|
+
#endif
|
1040
|
+
k = hi0bits(y);
|
1041
|
+
*e = 32 - k;
|
1042
|
+
if (k < Ebits) {
|
1043
|
+
set_d0(Exp_1 | y >> (Ebits - k));
|
1044
|
+
w = xa > xa0 ? *--xa : 0;
|
1045
|
+
set_d1(y << (32-Ebits + k) | w >> (Ebits - k));
|
1046
|
+
goto ret_d;
|
1047
|
+
}
|
1048
|
+
z = xa > xa0 ? *--xa : 0;
|
1049
|
+
if (k -= Ebits) {
|
1050
|
+
set_d0(Exp_1 | y << k | z >> (32 - k));
|
1051
|
+
y = xa > xa0 ? *--xa : 0;
|
1052
|
+
set_d1(z << k | y >> (32 - k));
|
1053
|
+
}
|
1054
|
+
else {
|
1055
|
+
set_d0(Exp_1 | y);
|
1056
|
+
set_d1(z);
|
1057
|
+
}
|
1058
|
+
ret_d:
|
1059
|
+
#undef d0
|
1060
|
+
#undef d1
|
1061
|
+
#undef set_d0
|
1062
|
+
#undef set_d1
|
1063
|
+
return d;
|
1064
|
+
}
|
1065
|
+
|
1066
|
+
|
1067
|
+
/* Convert d into the form b*2^e, where b is an odd integer. b is the returned
|
1068
|
+
* Bigint and e is the returned binary exponent. Return the number of significant
|
1069
|
+
* bits in b in bits. d must be finite and nonzero. */
|
1070
|
+
static Bigint *d2b(double d, int32 *e, int32 *bits)
|
1071
|
+
{
|
1072
|
+
Bigint *b;
|
1073
|
+
int32 de, i, k;
|
1074
|
+
ULong *x, y, z;
|
1075
|
+
#define d0 word0(d)
|
1076
|
+
#define d1 word1(d)
|
1077
|
+
#define set_d0(x) set_word0(d, x)
|
1078
|
+
#define set_d1(x) set_word1(d, x)
|
1079
|
+
|
1080
|
+
b = Balloc(1);
|
1081
|
+
if (!b)
|
1082
|
+
return NULL;
|
1083
|
+
x = b->x;
|
1084
|
+
|
1085
|
+
z = d0 & Frac_mask;
|
1086
|
+
set_d0(d0 & 0x7fffffff); /* clear sign bit, which we ignore */
|
1087
|
+
#ifdef Sudden_Underflow
|
1088
|
+
de = (int32)(d0 >> Exp_shift);
|
1089
|
+
z |= Exp_msk11;
|
1090
|
+
#else
|
1091
|
+
if ((de = (int32)(d0 >> Exp_shift)) != 0)
|
1092
|
+
z |= Exp_msk1;
|
1093
|
+
#endif
|
1094
|
+
if ((y = d1) != 0) {
|
1095
|
+
if ((k = lo0bits(&y)) != 0) {
|
1096
|
+
x[0] = y | z << (32 - k);
|
1097
|
+
z >>= k;
|
1098
|
+
}
|
1099
|
+
else
|
1100
|
+
x[0] = y;
|
1101
|
+
i = b->wds = (x[1] = z) ? 2 : 1;
|
1102
|
+
}
|
1103
|
+
else {
|
1104
|
+
JS_ASSERT(z);
|
1105
|
+
k = lo0bits(&z);
|
1106
|
+
x[0] = z;
|
1107
|
+
i = b->wds = 1;
|
1108
|
+
k += 32;
|
1109
|
+
}
|
1110
|
+
#ifndef Sudden_Underflow
|
1111
|
+
if (de) {
|
1112
|
+
#endif
|
1113
|
+
*e = de - Bias - (P-1) + k;
|
1114
|
+
*bits = P - k;
|
1115
|
+
#ifndef Sudden_Underflow
|
1116
|
+
}
|
1117
|
+
else {
|
1118
|
+
*e = de - Bias - (P-1) + 1 + k;
|
1119
|
+
*bits = 32*i - hi0bits(x[i-1]);
|
1120
|
+
}
|
1121
|
+
#endif
|
1122
|
+
return b;
|
1123
|
+
}
|
1124
|
+
#undef d0
|
1125
|
+
#undef d1
|
1126
|
+
#undef set_d0
|
1127
|
+
#undef set_d1
|
1128
|
+
|
1129
|
+
|
1130
|
+
static double ratio(Bigint *a, Bigint *b)
|
1131
|
+
{
|
1132
|
+
double da, db;
|
1133
|
+
int32 k, ka, kb;
|
1134
|
+
|
1135
|
+
da = b2d(a, &ka);
|
1136
|
+
db = b2d(b, &kb);
|
1137
|
+
k = ka - kb + 32*(a->wds - b->wds);
|
1138
|
+
if (k > 0)
|
1139
|
+
set_word0(da, word0(da) + k*Exp_msk1);
|
1140
|
+
else {
|
1141
|
+
k = -k;
|
1142
|
+
set_word0(db, word0(db) + k*Exp_msk1);
|
1143
|
+
}
|
1144
|
+
return da / db;
|
1145
|
+
}
|
1146
|
+
|
1147
|
+
static CONST double
|
1148
|
+
tens[] = {
|
1149
|
+
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
|
1150
|
+
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
|
1151
|
+
1e20, 1e21, 1e22
|
1152
|
+
};
|
1153
|
+
|
1154
|
+
static CONST double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
|
1155
|
+
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
|
1156
|
+
#ifdef Avoid_Underflow
|
1157
|
+
9007199254740992.e-256
|
1158
|
+
#else
|
1159
|
+
1e-256
|
1160
|
+
#endif
|
1161
|
+
};
|
1162
|
+
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
|
1163
|
+
/* flag unnecessarily. It leads to a song and dance at the end of strtod. */
|
1164
|
+
#define Scale_Bit 0x10
|
1165
|
+
#define n_bigtens 5
|
1166
|
+
|
1167
|
+
|
1168
|
+
#ifdef INFNAN_CHECK
|
1169
|
+
|
1170
|
+
#ifndef NAN_WORD0
|
1171
|
+
#define NAN_WORD0 0x7ff80000
|
1172
|
+
#endif
|
1173
|
+
|
1174
|
+
#ifndef NAN_WORD1
|
1175
|
+
#define NAN_WORD1 0
|
1176
|
+
#endif
|
1177
|
+
|
1178
|
+
static int match(CONST char **sp, char *t)
|
1179
|
+
{
|
1180
|
+
int c, d;
|
1181
|
+
CONST char *s = *sp;
|
1182
|
+
|
1183
|
+
while(d = *t++) {
|
1184
|
+
if ((c = *++s) >= 'A' && c <= 'Z')
|
1185
|
+
c += 'a' - 'A';
|
1186
|
+
if (c != d)
|
1187
|
+
return 0;
|
1188
|
+
}
|
1189
|
+
*sp = s + 1;
|
1190
|
+
return 1;
|
1191
|
+
}
|
1192
|
+
#endif /* INFNAN_CHECK */
|
1193
|
+
|
1194
|
+
|
1195
|
+
#ifdef JS_THREADSAFE
|
1196
|
+
static JSBool initialized = JS_FALSE;
|
1197
|
+
|
1198
|
+
/* hacked replica of nspr _PR_InitDtoa */
|
1199
|
+
static void InitDtoa(void)
|
1200
|
+
{
|
1201
|
+
freelist_lock = PR_NewLock();
|
1202
|
+
p5s_lock = PR_NewLock();
|
1203
|
+
initialized = JS_TRUE;
|
1204
|
+
}
|
1205
|
+
#endif
|
1206
|
+
|
1207
|
+
void js_FinishDtoa(void)
|
1208
|
+
{
|
1209
|
+
int count;
|
1210
|
+
Bigint *temp;
|
1211
|
+
|
1212
|
+
#ifdef JS_THREADSAFE
|
1213
|
+
if (initialized == JS_TRUE) {
|
1214
|
+
PR_DestroyLock(freelist_lock);
|
1215
|
+
PR_DestroyLock(p5s_lock);
|
1216
|
+
initialized = JS_FALSE;
|
1217
|
+
}
|
1218
|
+
#endif
|
1219
|
+
|
1220
|
+
/* clear down the freelist array and p5s */
|
1221
|
+
|
1222
|
+
/* static Bigint *freelist[Kmax+1]; */
|
1223
|
+
for (count = 0; count <= Kmax; count++) {
|
1224
|
+
Bigint **listp = &freelist[count];
|
1225
|
+
while ((temp = *listp) != NULL) {
|
1226
|
+
*listp = temp->next;
|
1227
|
+
free(temp);
|
1228
|
+
}
|
1229
|
+
freelist[count] = NULL;
|
1230
|
+
}
|
1231
|
+
|
1232
|
+
/* static Bigint *p5s; */
|
1233
|
+
while (p5s) {
|
1234
|
+
temp = p5s;
|
1235
|
+
p5s = p5s->next;
|
1236
|
+
free(temp);
|
1237
|
+
}
|
1238
|
+
}
|
1239
|
+
|
1240
|
+
/* nspr2 watcom bug ifdef omitted */
|
1241
|
+
|
1242
|
+
JS_FRIEND_API(double)
|
1243
|
+
JS_strtod(CONST char *s00, char **se, int *err)
|
1244
|
+
{
|
1245
|
+
int32 scale;
|
1246
|
+
int32 bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
|
1247
|
+
e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
|
1248
|
+
CONST char *s, *s0, *s1;
|
1249
|
+
double aadj, aadj1, adj, rv, rv0;
|
1250
|
+
Long L;
|
1251
|
+
ULong y, z;
|
1252
|
+
Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
|
1253
|
+
|
1254
|
+
*err = 0;
|
1255
|
+
|
1256
|
+
bb = bd = bs = delta = NULL;
|
1257
|
+
sign = nz0 = nz = 0;
|
1258
|
+
rv = 0.;
|
1259
|
+
|
1260
|
+
/* Locking for Balloc's shared buffers that will be used in this block */
|
1261
|
+
ACQUIRE_DTOA_LOCK();
|
1262
|
+
|
1263
|
+
for(s = s00;;s++) switch(*s) {
|
1264
|
+
case '-':
|
1265
|
+
sign = 1;
|
1266
|
+
/* no break */
|
1267
|
+
case '+':
|
1268
|
+
if (*++s)
|
1269
|
+
goto break2;
|
1270
|
+
/* no break */
|
1271
|
+
case 0:
|
1272
|
+
s = s00;
|
1273
|
+
goto ret;
|
1274
|
+
case '\t':
|
1275
|
+
case '\n':
|
1276
|
+
case '\v':
|
1277
|
+
case '\f':
|
1278
|
+
case '\r':
|
1279
|
+
case ' ':
|
1280
|
+
continue;
|
1281
|
+
default:
|
1282
|
+
goto break2;
|
1283
|
+
}
|
1284
|
+
break2:
|
1285
|
+
|
1286
|
+
if (*s == '0') {
|
1287
|
+
nz0 = 1;
|
1288
|
+
while(*++s == '0') ;
|
1289
|
+
if (!*s)
|
1290
|
+
goto ret;
|
1291
|
+
}
|
1292
|
+
s0 = s;
|
1293
|
+
y = z = 0;
|
1294
|
+
for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
|
1295
|
+
if (nd < 9)
|
1296
|
+
y = 10*y + c - '0';
|
1297
|
+
else if (nd < 16)
|
1298
|
+
z = 10*z + c - '0';
|
1299
|
+
nd0 = nd;
|
1300
|
+
if (c == '.') {
|
1301
|
+
c = *++s;
|
1302
|
+
if (!nd) {
|
1303
|
+
for(; c == '0'; c = *++s)
|
1304
|
+
nz++;
|
1305
|
+
if (c > '0' && c <= '9') {
|
1306
|
+
s0 = s;
|
1307
|
+
nf += nz;
|
1308
|
+
nz = 0;
|
1309
|
+
goto have_dig;
|
1310
|
+
}
|
1311
|
+
goto dig_done;
|
1312
|
+
}
|
1313
|
+
for(; c >= '0' && c <= '9'; c = *++s) {
|
1314
|
+
have_dig:
|
1315
|
+
nz++;
|
1316
|
+
if (c -= '0') {
|
1317
|
+
nf += nz;
|
1318
|
+
for(i = 1; i < nz; i++)
|
1319
|
+
if (nd++ < 9)
|
1320
|
+
y *= 10;
|
1321
|
+
else if (nd <= DBL_DIG + 1)
|
1322
|
+
z *= 10;
|
1323
|
+
if (nd++ < 9)
|
1324
|
+
y = 10*y + c;
|
1325
|
+
else if (nd <= DBL_DIG + 1)
|
1326
|
+
z = 10*z + c;
|
1327
|
+
nz = 0;
|
1328
|
+
}
|
1329
|
+
}
|
1330
|
+
}
|
1331
|
+
dig_done:
|
1332
|
+
e = 0;
|
1333
|
+
if (c == 'e' || c == 'E') {
|
1334
|
+
if (!nd && !nz && !nz0) {
|
1335
|
+
s = s00;
|
1336
|
+
goto ret;
|
1337
|
+
}
|
1338
|
+
s00 = s;
|
1339
|
+
esign = 0;
|
1340
|
+
switch(c = *++s) {
|
1341
|
+
case '-':
|
1342
|
+
esign = 1;
|
1343
|
+
case '+':
|
1344
|
+
c = *++s;
|
1345
|
+
}
|
1346
|
+
if (c >= '0' && c <= '9') {
|
1347
|
+
while(c == '0')
|
1348
|
+
c = *++s;
|
1349
|
+
if (c > '0' && c <= '9') {
|
1350
|
+
L = c - '0';
|
1351
|
+
s1 = s;
|
1352
|
+
while((c = *++s) >= '0' && c <= '9')
|
1353
|
+
L = 10*L + c - '0';
|
1354
|
+
if (s - s1 > 8 || L > 19999)
|
1355
|
+
/* Avoid confusion from exponents
|
1356
|
+
* so large that e might overflow.
|
1357
|
+
*/
|
1358
|
+
e = 19999; /* safe for 16 bit ints */
|
1359
|
+
else
|
1360
|
+
e = (int32)L;
|
1361
|
+
if (esign)
|
1362
|
+
e = -e;
|
1363
|
+
}
|
1364
|
+
else
|
1365
|
+
e = 0;
|
1366
|
+
}
|
1367
|
+
else
|
1368
|
+
s = s00;
|
1369
|
+
}
|
1370
|
+
if (!nd) {
|
1371
|
+
if (!nz && !nz0) {
|
1372
|
+
#ifdef INFNAN_CHECK
|
1373
|
+
/* Check for Nan and Infinity */
|
1374
|
+
switch(c) {
|
1375
|
+
case 'i':
|
1376
|
+
case 'I':
|
1377
|
+
if (match(&s,"nfinity")) {
|
1378
|
+
set_word0(rv, 0x7ff00000);
|
1379
|
+
set_word1(rv, 0);
|
1380
|
+
goto ret;
|
1381
|
+
}
|
1382
|
+
break;
|
1383
|
+
case 'n':
|
1384
|
+
case 'N':
|
1385
|
+
if (match(&s, "an")) {
|
1386
|
+
set_word0(rv, NAN_WORD0);
|
1387
|
+
set_word1(rv, NAN_WORD1);
|
1388
|
+
goto ret;
|
1389
|
+
}
|
1390
|
+
}
|
1391
|
+
#endif /* INFNAN_CHECK */
|
1392
|
+
s = s00;
|
1393
|
+
}
|
1394
|
+
goto ret;
|
1395
|
+
}
|
1396
|
+
e1 = e -= nf;
|
1397
|
+
|
1398
|
+
/* Now we have nd0 digits, starting at s0, followed by a
|
1399
|
+
* decimal point, followed by nd-nd0 digits. The number we're
|
1400
|
+
* after is the integer represented by those digits times
|
1401
|
+
* 10**e */
|
1402
|
+
|
1403
|
+
if (!nd0)
|
1404
|
+
nd0 = nd;
|
1405
|
+
k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
|
1406
|
+
rv = y;
|
1407
|
+
if (k > 9)
|
1408
|
+
rv = tens[k - 9] * rv + z;
|
1409
|
+
bd0 = 0;
|
1410
|
+
if (nd <= DBL_DIG
|
1411
|
+
#ifndef RND_PRODQUOT
|
1412
|
+
&& FLT_ROUNDS == 1
|
1413
|
+
#endif
|
1414
|
+
) {
|
1415
|
+
if (!e)
|
1416
|
+
goto ret;
|
1417
|
+
if (e > 0) {
|
1418
|
+
if (e <= Ten_pmax) {
|
1419
|
+
/* rv = */ rounded_product(rv, tens[e]);
|
1420
|
+
goto ret;
|
1421
|
+
}
|
1422
|
+
i = DBL_DIG - nd;
|
1423
|
+
if (e <= Ten_pmax + i) {
|
1424
|
+
/* A fancier test would sometimes let us do
|
1425
|
+
* this for larger i values.
|
1426
|
+
*/
|
1427
|
+
e -= i;
|
1428
|
+
rv *= tens[i];
|
1429
|
+
/* rv = */ rounded_product(rv, tens[e]);
|
1430
|
+
goto ret;
|
1431
|
+
}
|
1432
|
+
}
|
1433
|
+
#ifndef Inaccurate_Divide
|
1434
|
+
else if (e >= -Ten_pmax) {
|
1435
|
+
/* rv = */ rounded_quotient(rv, tens[-e]);
|
1436
|
+
goto ret;
|
1437
|
+
}
|
1438
|
+
#endif
|
1439
|
+
}
|
1440
|
+
e1 += nd - k;
|
1441
|
+
|
1442
|
+
scale = 0;
|
1443
|
+
|
1444
|
+
/* Get starting approximation = rv * 10**e1 */
|
1445
|
+
|
1446
|
+
if (e1 > 0) {
|
1447
|
+
if ((i = e1 & 15) != 0)
|
1448
|
+
rv *= tens[i];
|
1449
|
+
if (e1 &= ~15) {
|
1450
|
+
if (e1 > DBL_MAX_10_EXP) {
|
1451
|
+
ovfl:
|
1452
|
+
*err = JS_DTOA_ERANGE;
|
1453
|
+
#ifdef __STDC__
|
1454
|
+
rv = HUGE_VAL;
|
1455
|
+
#else
|
1456
|
+
/* Can't trust HUGE_VAL */
|
1457
|
+
set_word0(rv, Exp_mask);
|
1458
|
+
set_word1(rv, 0);
|
1459
|
+
#endif
|
1460
|
+
if (bd0)
|
1461
|
+
goto retfree;
|
1462
|
+
goto ret;
|
1463
|
+
}
|
1464
|
+
e1 >>= 4;
|
1465
|
+
for(j = 0; e1 > 1; j++, e1 >>= 1)
|
1466
|
+
if (e1 & 1)
|
1467
|
+
rv *= bigtens[j];
|
1468
|
+
/* The last multiplication could overflow. */
|
1469
|
+
set_word0(rv, word0(rv) - P*Exp_msk1);
|
1470
|
+
rv *= bigtens[j];
|
1471
|
+
if ((z = word0(rv) & Exp_mask) > Exp_msk1*(DBL_MAX_EXP+Bias-P))
|
1472
|
+
goto ovfl;
|
1473
|
+
if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
|
1474
|
+
/* set to largest number */
|
1475
|
+
/* (Can't trust DBL_MAX) */
|
1476
|
+
set_word0(rv, Big0);
|
1477
|
+
set_word1(rv, Big1);
|
1478
|
+
}
|
1479
|
+
else
|
1480
|
+
set_word0(rv, word0(rv) + P*Exp_msk1);
|
1481
|
+
}
|
1482
|
+
}
|
1483
|
+
else if (e1 < 0) {
|
1484
|
+
e1 = -e1;
|
1485
|
+
if ((i = e1 & 15) != 0)
|
1486
|
+
rv /= tens[i];
|
1487
|
+
if (e1 &= ~15) {
|
1488
|
+
e1 >>= 4;
|
1489
|
+
if (e1 >= 1 << n_bigtens)
|
1490
|
+
goto undfl;
|
1491
|
+
#ifdef Avoid_Underflow
|
1492
|
+
if (e1 & Scale_Bit)
|
1493
|
+
scale = P;
|
1494
|
+
for(j = 0; e1 > 0; j++, e1 >>= 1)
|
1495
|
+
if (e1 & 1)
|
1496
|
+
rv *= tinytens[j];
|
1497
|
+
if (scale && (j = P + 1 - ((word0(rv) & Exp_mask)
|
1498
|
+
>> Exp_shift)) > 0) {
|
1499
|
+
/* scaled rv is denormal; zap j low bits */
|
1500
|
+
if (j >= 32) {
|
1501
|
+
set_word1(rv, 0);
|
1502
|
+
set_word0(rv, word0(rv) & (0xffffffff << (j-32)));
|
1503
|
+
if (!word0(rv))
|
1504
|
+
set_word0(rv, 1);
|
1505
|
+
}
|
1506
|
+
else
|
1507
|
+
set_word1(rv, word1(rv) & (0xffffffff << j));
|
1508
|
+
}
|
1509
|
+
#else
|
1510
|
+
for(j = 0; e1 > 1; j++, e1 >>= 1)
|
1511
|
+
if (e1 & 1)
|
1512
|
+
rv *= tinytens[j];
|
1513
|
+
/* The last multiplication could underflow. */
|
1514
|
+
rv0 = rv;
|
1515
|
+
rv *= tinytens[j];
|
1516
|
+
if (!rv) {
|
1517
|
+
rv = 2.*rv0;
|
1518
|
+
rv *= tinytens[j];
|
1519
|
+
#endif
|
1520
|
+
if (!rv) {
|
1521
|
+
undfl:
|
1522
|
+
rv = 0.;
|
1523
|
+
*err = JS_DTOA_ERANGE;
|
1524
|
+
if (bd0)
|
1525
|
+
goto retfree;
|
1526
|
+
goto ret;
|
1527
|
+
}
|
1528
|
+
#ifndef Avoid_Underflow
|
1529
|
+
set_word0(rv, Tiny0);
|
1530
|
+
set_word1(rv, Tiny1);
|
1531
|
+
/* The refinement below will clean
|
1532
|
+
* this approximation up.
|
1533
|
+
*/
|
1534
|
+
}
|
1535
|
+
#endif
|
1536
|
+
}
|
1537
|
+
}
|
1538
|
+
|
1539
|
+
/* Now the hard part -- adjusting rv to the correct value.*/
|
1540
|
+
|
1541
|
+
/* Put digits into bd: true value = bd * 10^e */
|
1542
|
+
|
1543
|
+
bd0 = s2b(s0, nd0, nd, y);
|
1544
|
+
if (!bd0)
|
1545
|
+
goto nomem;
|
1546
|
+
|
1547
|
+
for(;;) {
|
1548
|
+
bd = Balloc(bd0->k);
|
1549
|
+
if (!bd)
|
1550
|
+
goto nomem;
|
1551
|
+
Bcopy(bd, bd0);
|
1552
|
+
bb = d2b(rv, &bbe, &bbbits); /* rv = bb * 2^bbe */
|
1553
|
+
if (!bb)
|
1554
|
+
goto nomem;
|
1555
|
+
bs = i2b(1);
|
1556
|
+
if (!bs)
|
1557
|
+
goto nomem;
|
1558
|
+
|
1559
|
+
if (e >= 0) {
|
1560
|
+
bb2 = bb5 = 0;
|
1561
|
+
bd2 = bd5 = e;
|
1562
|
+
}
|
1563
|
+
else {
|
1564
|
+
bb2 = bb5 = -e;
|
1565
|
+
bd2 = bd5 = 0;
|
1566
|
+
}
|
1567
|
+
if (bbe >= 0)
|
1568
|
+
bb2 += bbe;
|
1569
|
+
else
|
1570
|
+
bd2 -= bbe;
|
1571
|
+
bs2 = bb2;
|
1572
|
+
#ifdef Sudden_Underflow
|
1573
|
+
j = P + 1 - bbbits;
|
1574
|
+
#else
|
1575
|
+
#ifdef Avoid_Underflow
|
1576
|
+
j = bbe - scale;
|
1577
|
+
#else
|
1578
|
+
j = bbe;
|
1579
|
+
#endif
|
1580
|
+
i = j + bbbits - 1; /* logb(rv) */
|
1581
|
+
if (i < Emin) /* denormal */
|
1582
|
+
j += P - Emin;
|
1583
|
+
else
|
1584
|
+
j = P + 1 - bbbits;
|
1585
|
+
#endif
|
1586
|
+
bb2 += j;
|
1587
|
+
bd2 += j;
|
1588
|
+
#ifdef Avoid_Underflow
|
1589
|
+
bd2 += scale;
|
1590
|
+
#endif
|
1591
|
+
i = bb2 < bd2 ? bb2 : bd2;
|
1592
|
+
if (i > bs2)
|
1593
|
+
i = bs2;
|
1594
|
+
if (i > 0) {
|
1595
|
+
bb2 -= i;
|
1596
|
+
bd2 -= i;
|
1597
|
+
bs2 -= i;
|
1598
|
+
}
|
1599
|
+
if (bb5 > 0) {
|
1600
|
+
bs = pow5mult(bs, bb5);
|
1601
|
+
if (!bs)
|
1602
|
+
goto nomem;
|
1603
|
+
bb1 = mult(bs, bb);
|
1604
|
+
if (!bb1)
|
1605
|
+
goto nomem;
|
1606
|
+
Bfree(bb);
|
1607
|
+
bb = bb1;
|
1608
|
+
}
|
1609
|
+
if (bb2 > 0) {
|
1610
|
+
bb = lshift(bb, bb2);
|
1611
|
+
if (!bb)
|
1612
|
+
goto nomem;
|
1613
|
+
}
|
1614
|
+
if (bd5 > 0) {
|
1615
|
+
bd = pow5mult(bd, bd5);
|
1616
|
+
if (!bd)
|
1617
|
+
goto nomem;
|
1618
|
+
}
|
1619
|
+
if (bd2 > 0) {
|
1620
|
+
bd = lshift(bd, bd2);
|
1621
|
+
if (!bd)
|
1622
|
+
goto nomem;
|
1623
|
+
}
|
1624
|
+
if (bs2 > 0) {
|
1625
|
+
bs = lshift(bs, bs2);
|
1626
|
+
if (!bs)
|
1627
|
+
goto nomem;
|
1628
|
+
}
|
1629
|
+
delta = diff(bb, bd);
|
1630
|
+
if (!delta)
|
1631
|
+
goto nomem;
|
1632
|
+
dsign = delta->sign;
|
1633
|
+
delta->sign = 0;
|
1634
|
+
i = cmp(delta, bs);
|
1635
|
+
if (i < 0) {
|
1636
|
+
/* Error is less than half an ulp -- check for
|
1637
|
+
* special case of mantissa a power of two.
|
1638
|
+
*/
|
1639
|
+
if (dsign || word1(rv) || word0(rv) & Bndry_mask
|
1640
|
+
#ifdef Avoid_Underflow
|
1641
|
+
|| (word0(rv) & Exp_mask) <= Exp_msk1 + P*Exp_msk1
|
1642
|
+
#else
|
1643
|
+
|| (word0(rv) & Exp_mask) <= Exp_msk1
|
1644
|
+
#endif
|
1645
|
+
) {
|
1646
|
+
#ifdef Avoid_Underflow
|
1647
|
+
if (!delta->x[0] && delta->wds == 1)
|
1648
|
+
dsign = 2;
|
1649
|
+
#endif
|
1650
|
+
break;
|
1651
|
+
}
|
1652
|
+
delta = lshift(delta,Log2P);
|
1653
|
+
if (!delta)
|
1654
|
+
goto nomem;
|
1655
|
+
if (cmp(delta, bs) > 0)
|
1656
|
+
goto drop_down;
|
1657
|
+
break;
|
1658
|
+
}
|
1659
|
+
if (i == 0) {
|
1660
|
+
/* exactly half-way between */
|
1661
|
+
if (dsign) {
|
1662
|
+
if ((word0(rv) & Bndry_mask1) == Bndry_mask1
|
1663
|
+
&& word1(rv) == 0xffffffff) {
|
1664
|
+
/*boundary case -- increment exponent*/
|
1665
|
+
set_word0(rv, (word0(rv) & Exp_mask) + Exp_msk1);
|
1666
|
+
set_word1(rv, 0);
|
1667
|
+
#ifdef Avoid_Underflow
|
1668
|
+
dsign = 0;
|
1669
|
+
#endif
|
1670
|
+
break;
|
1671
|
+
}
|
1672
|
+
}
|
1673
|
+
else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
|
1674
|
+
#ifdef Avoid_Underflow
|
1675
|
+
dsign = 2;
|
1676
|
+
#endif
|
1677
|
+
drop_down:
|
1678
|
+
/* boundary case -- decrement exponent */
|
1679
|
+
#ifdef Sudden_Underflow
|
1680
|
+
L = word0(rv) & Exp_mask;
|
1681
|
+
if (L <= Exp_msk1)
|
1682
|
+
goto undfl;
|
1683
|
+
L -= Exp_msk1;
|
1684
|
+
#else
|
1685
|
+
L = (word0(rv) & Exp_mask) - Exp_msk1;
|
1686
|
+
#endif
|
1687
|
+
set_word0(rv, L | Bndry_mask1);
|
1688
|
+
set_word1(rv, 0xffffffff);
|
1689
|
+
break;
|
1690
|
+
}
|
1691
|
+
#ifndef ROUND_BIASED
|
1692
|
+
if (!(word1(rv) & LSB))
|
1693
|
+
break;
|
1694
|
+
#endif
|
1695
|
+
if (dsign)
|
1696
|
+
rv += ulp(rv);
|
1697
|
+
#ifndef ROUND_BIASED
|
1698
|
+
else {
|
1699
|
+
rv -= ulp(rv);
|
1700
|
+
#ifndef Sudden_Underflow
|
1701
|
+
if (!rv)
|
1702
|
+
goto undfl;
|
1703
|
+
#endif
|
1704
|
+
}
|
1705
|
+
#ifdef Avoid_Underflow
|
1706
|
+
dsign = 1 - dsign;
|
1707
|
+
#endif
|
1708
|
+
#endif
|
1709
|
+
break;
|
1710
|
+
}
|
1711
|
+
if ((aadj = ratio(delta, bs)) <= 2.) {
|
1712
|
+
if (dsign)
|
1713
|
+
aadj = aadj1 = 1.;
|
1714
|
+
else if (word1(rv) || word0(rv) & Bndry_mask) {
|
1715
|
+
#ifndef Sudden_Underflow
|
1716
|
+
if (word1(rv) == Tiny1 && !word0(rv))
|
1717
|
+
goto undfl;
|
1718
|
+
#endif
|
1719
|
+
aadj = 1.;
|
1720
|
+
aadj1 = -1.;
|
1721
|
+
}
|
1722
|
+
else {
|
1723
|
+
/* special case -- power of FLT_RADIX to be */
|
1724
|
+
/* rounded down... */
|
1725
|
+
|
1726
|
+
if (aadj < 2./FLT_RADIX)
|
1727
|
+
aadj = 1./FLT_RADIX;
|
1728
|
+
else
|
1729
|
+
aadj *= 0.5;
|
1730
|
+
aadj1 = -aadj;
|
1731
|
+
}
|
1732
|
+
}
|
1733
|
+
else {
|
1734
|
+
aadj *= 0.5;
|
1735
|
+
aadj1 = dsign ? aadj : -aadj;
|
1736
|
+
#ifdef Check_FLT_ROUNDS
|
1737
|
+
switch(FLT_ROUNDS) {
|
1738
|
+
case 2: /* towards +infinity */
|
1739
|
+
aadj1 -= 0.5;
|
1740
|
+
break;
|
1741
|
+
case 0: /* towards 0 */
|
1742
|
+
case 3: /* towards -infinity */
|
1743
|
+
aadj1 += 0.5;
|
1744
|
+
}
|
1745
|
+
#else
|
1746
|
+
if (FLT_ROUNDS == 0)
|
1747
|
+
aadj1 += 0.5;
|
1748
|
+
#endif
|
1749
|
+
}
|
1750
|
+
y = word0(rv) & Exp_mask;
|
1751
|
+
|
1752
|
+
/* Check for overflow */
|
1753
|
+
|
1754
|
+
if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
|
1755
|
+
rv0 = rv;
|
1756
|
+
set_word0(rv, word0(rv) - P*Exp_msk1);
|
1757
|
+
adj = aadj1 * ulp(rv);
|
1758
|
+
rv += adj;
|
1759
|
+
if ((word0(rv) & Exp_mask) >=
|
1760
|
+
Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
|
1761
|
+
if (word0(rv0) == Big0 && word1(rv0) == Big1)
|
1762
|
+
goto ovfl;
|
1763
|
+
set_word0(rv, Big0);
|
1764
|
+
set_word1(rv, Big1);
|
1765
|
+
goto cont;
|
1766
|
+
}
|
1767
|
+
else
|
1768
|
+
set_word0(rv, word0(rv) + P*Exp_msk1);
|
1769
|
+
}
|
1770
|
+
else {
|
1771
|
+
#ifdef Sudden_Underflow
|
1772
|
+
if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
|
1773
|
+
rv0 = rv;
|
1774
|
+
set_word0(rv, word0(rv) + P*Exp_msk1);
|
1775
|
+
adj = aadj1 * ulp(rv);
|
1776
|
+
rv += adj;
|
1777
|
+
if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
|
1778
|
+
{
|
1779
|
+
if (word0(rv0) == Tiny0
|
1780
|
+
&& word1(rv0) == Tiny1)
|
1781
|
+
goto undfl;
|
1782
|
+
set_word0(rv, Tiny0);
|
1783
|
+
set_word1(rv, Tiny1);
|
1784
|
+
goto cont;
|
1785
|
+
}
|
1786
|
+
else
|
1787
|
+
set_word0(rv, word0(rv) - P*Exp_msk1);
|
1788
|
+
}
|
1789
|
+
else {
|
1790
|
+
adj = aadj1 * ulp(rv);
|
1791
|
+
rv += adj;
|
1792
|
+
}
|
1793
|
+
#else
|
1794
|
+
/* Compute adj so that the IEEE rounding rules will
|
1795
|
+
* correctly round rv + adj in some half-way cases.
|
1796
|
+
* If rv * ulp(rv) is denormalized (i.e.,
|
1797
|
+
* y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
|
1798
|
+
* trouble from bits lost to denormalization;
|
1799
|
+
* example: 1.2e-307 .
|
1800
|
+
*/
|
1801
|
+
#ifdef Avoid_Underflow
|
1802
|
+
if (y <= P*Exp_msk1 && aadj > 1.)
|
1803
|
+
#else
|
1804
|
+
if (y <= (P-1)*Exp_msk1 && aadj > 1.)
|
1805
|
+
#endif
|
1806
|
+
{
|
1807
|
+
aadj1 = (double)(int32)(aadj + 0.5);
|
1808
|
+
if (!dsign)
|
1809
|
+
aadj1 = -aadj1;
|
1810
|
+
}
|
1811
|
+
#ifdef Avoid_Underflow
|
1812
|
+
if (scale && y <= P*Exp_msk1)
|
1813
|
+
set_word0(aadj1, word0(aadj1) + (P+1)*Exp_msk1 - y);
|
1814
|
+
#endif
|
1815
|
+
adj = aadj1 * ulp(rv);
|
1816
|
+
rv += adj;
|
1817
|
+
#endif
|
1818
|
+
}
|
1819
|
+
z = word0(rv) & Exp_mask;
|
1820
|
+
#ifdef Avoid_Underflow
|
1821
|
+
if (!scale)
|
1822
|
+
#endif
|
1823
|
+
if (y == z) {
|
1824
|
+
/* Can we stop now? */
|
1825
|
+
L = (Long)aadj;
|
1826
|
+
aadj -= L;
|
1827
|
+
/* The tolerances below are conservative. */
|
1828
|
+
if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
|
1829
|
+
if (aadj < .4999999 || aadj > .5000001)
|
1830
|
+
break;
|
1831
|
+
}
|
1832
|
+
else if (aadj < .4999999/FLT_RADIX)
|
1833
|
+
break;
|
1834
|
+
}
|
1835
|
+
cont:
|
1836
|
+
Bfree(bb);
|
1837
|
+
Bfree(bd);
|
1838
|
+
Bfree(bs);
|
1839
|
+
Bfree(delta);
|
1840
|
+
bb = bd = bs = delta = NULL;
|
1841
|
+
}
|
1842
|
+
#ifdef Avoid_Underflow
|
1843
|
+
if (scale) {
|
1844
|
+
rv0 = 0.;
|
1845
|
+
set_word0(rv0, Exp_1 - P*Exp_msk1);
|
1846
|
+
set_word1(rv0, 0);
|
1847
|
+
if ((word0(rv) & Exp_mask) <= P*Exp_msk1
|
1848
|
+
&& word1(rv) & 1
|
1849
|
+
&& dsign != 2) {
|
1850
|
+
if (dsign) {
|
1851
|
+
#ifdef Sudden_Underflow
|
1852
|
+
/* rv will be 0, but this would give the */
|
1853
|
+
/* right result if only rv *= rv0 worked. */
|
1854
|
+
set_word0(rv, word0(rv) + P*Exp_msk1);
|
1855
|
+
set_word0(rv0, Exp_1 - 2*P*Exp_msk1);
|
1856
|
+
#endif
|
1857
|
+
rv += ulp(rv);
|
1858
|
+
}
|
1859
|
+
else
|
1860
|
+
set_word1(rv, word1(rv) & ~1);
|
1861
|
+
}
|
1862
|
+
rv *= rv0;
|
1863
|
+
}
|
1864
|
+
#endif /* Avoid_Underflow */
|
1865
|
+
retfree:
|
1866
|
+
Bfree(bb);
|
1867
|
+
Bfree(bd);
|
1868
|
+
Bfree(bs);
|
1869
|
+
Bfree(bd0);
|
1870
|
+
Bfree(delta);
|
1871
|
+
ret:
|
1872
|
+
RELEASE_DTOA_LOCK();
|
1873
|
+
if (se)
|
1874
|
+
*se = (char *)s;
|
1875
|
+
return sign ? -rv : rv;
|
1876
|
+
|
1877
|
+
nomem:
|
1878
|
+
Bfree(bb);
|
1879
|
+
Bfree(bd);
|
1880
|
+
Bfree(bs);
|
1881
|
+
Bfree(bd0);
|
1882
|
+
Bfree(delta);
|
1883
|
+
RELEASE_DTOA_LOCK();
|
1884
|
+
*err = JS_DTOA_ENOMEM;
|
1885
|
+
return 0;
|
1886
|
+
}
|
1887
|
+
|
1888
|
+
|
1889
|
+
/* Return floor(b/2^k) and set b to be the remainder. The returned quotient must be less than 2^32. */
|
1890
|
+
static uint32 quorem2(Bigint *b, int32 k)
|
1891
|
+
{
|
1892
|
+
ULong mask;
|
1893
|
+
ULong result;
|
1894
|
+
ULong *bx, *bxe;
|
1895
|
+
int32 w;
|
1896
|
+
int32 n = k >> 5;
|
1897
|
+
k &= 0x1F;
|
1898
|
+
mask = (1<<k) - 1;
|
1899
|
+
|
1900
|
+
w = b->wds - n;
|
1901
|
+
if (w <= 0)
|
1902
|
+
return 0;
|
1903
|
+
JS_ASSERT(w <= 2);
|
1904
|
+
bx = b->x;
|
1905
|
+
bxe = bx + n;
|
1906
|
+
result = *bxe >> k;
|
1907
|
+
*bxe &= mask;
|
1908
|
+
if (w == 2) {
|
1909
|
+
JS_ASSERT(!(bxe[1] & ~mask));
|
1910
|
+
if (k)
|
1911
|
+
result |= bxe[1] << (32 - k);
|
1912
|
+
}
|
1913
|
+
n++;
|
1914
|
+
while (!*bxe && bxe != bx) {
|
1915
|
+
n--;
|
1916
|
+
bxe--;
|
1917
|
+
}
|
1918
|
+
b->wds = n;
|
1919
|
+
return result;
|
1920
|
+
}
|
1921
|
+
|
1922
|
+
/* Return floor(b/S) and set b to be the remainder. As added restrictions, b must not have
|
1923
|
+
* more words than S, the most significant word of S must not start with a 1 bit, and the
|
1924
|
+
* returned quotient must be less than 36. */
|
1925
|
+
static int32 quorem(Bigint *b, Bigint *S)
|
1926
|
+
{
|
1927
|
+
int32 n;
|
1928
|
+
ULong *bx, *bxe, q, *sx, *sxe;
|
1929
|
+
#ifdef ULLong
|
1930
|
+
ULLong borrow, carry, y, ys;
|
1931
|
+
#else
|
1932
|
+
ULong borrow, carry, y, ys;
|
1933
|
+
ULong si, z, zs;
|
1934
|
+
#endif
|
1935
|
+
|
1936
|
+
n = S->wds;
|
1937
|
+
JS_ASSERT(b->wds <= n);
|
1938
|
+
if (b->wds < n)
|
1939
|
+
return 0;
|
1940
|
+
sx = S->x;
|
1941
|
+
sxe = sx + --n;
|
1942
|
+
bx = b->x;
|
1943
|
+
bxe = bx + n;
|
1944
|
+
JS_ASSERT(*sxe <= 0x7FFFFFFF);
|
1945
|
+
q = *bxe / (*sxe + 1); /* ensure q <= true quotient */
|
1946
|
+
JS_ASSERT(q < 36);
|
1947
|
+
if (q) {
|
1948
|
+
borrow = 0;
|
1949
|
+
carry = 0;
|
1950
|
+
do {
|
1951
|
+
#ifdef ULLong
|
1952
|
+
ys = *sx++ * (ULLong)q + carry;
|
1953
|
+
carry = ys >> 32;
|
1954
|
+
y = *bx - (ys & 0xffffffffUL) - borrow;
|
1955
|
+
borrow = y >> 32 & 1UL;
|
1956
|
+
*bx++ = (ULong)(y & 0xffffffffUL);
|
1957
|
+
#else
|
1958
|
+
si = *sx++;
|
1959
|
+
ys = (si & 0xffff) * q + carry;
|
1960
|
+
zs = (si >> 16) * q + (ys >> 16);
|
1961
|
+
carry = zs >> 16;
|
1962
|
+
y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
|
1963
|
+
borrow = (y & 0x10000) >> 16;
|
1964
|
+
z = (*bx >> 16) - (zs & 0xffff) - borrow;
|
1965
|
+
borrow = (z & 0x10000) >> 16;
|
1966
|
+
Storeinc(bx, z, y);
|
1967
|
+
#endif
|
1968
|
+
}
|
1969
|
+
while(sx <= sxe);
|
1970
|
+
if (!*bxe) {
|
1971
|
+
bx = b->x;
|
1972
|
+
while(--bxe > bx && !*bxe)
|
1973
|
+
--n;
|
1974
|
+
b->wds = n;
|
1975
|
+
}
|
1976
|
+
}
|
1977
|
+
if (cmp(b, S) >= 0) {
|
1978
|
+
q++;
|
1979
|
+
borrow = 0;
|
1980
|
+
carry = 0;
|
1981
|
+
bx = b->x;
|
1982
|
+
sx = S->x;
|
1983
|
+
do {
|
1984
|
+
#ifdef ULLong
|
1985
|
+
ys = *sx++ + carry;
|
1986
|
+
carry = ys >> 32;
|
1987
|
+
y = *bx - (ys & 0xffffffffUL) - borrow;
|
1988
|
+
borrow = y >> 32 & 1UL;
|
1989
|
+
*bx++ = (ULong)(y & 0xffffffffUL);
|
1990
|
+
#else
|
1991
|
+
si = *sx++;
|
1992
|
+
ys = (si & 0xffff) + carry;
|
1993
|
+
zs = (si >> 16) + (ys >> 16);
|
1994
|
+
carry = zs >> 16;
|
1995
|
+
y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
|
1996
|
+
borrow = (y & 0x10000) >> 16;
|
1997
|
+
z = (*bx >> 16) - (zs & 0xffff) - borrow;
|
1998
|
+
borrow = (z & 0x10000) >> 16;
|
1999
|
+
Storeinc(bx, z, y);
|
2000
|
+
#endif
|
2001
|
+
} while(sx <= sxe);
|
2002
|
+
bx = b->x;
|
2003
|
+
bxe = bx + n;
|
2004
|
+
if (!*bxe) {
|
2005
|
+
while(--bxe > bx && !*bxe)
|
2006
|
+
--n;
|
2007
|
+
b->wds = n;
|
2008
|
+
}
|
2009
|
+
}
|
2010
|
+
return (int32)q;
|
2011
|
+
}
|
2012
|
+
|
2013
|
+
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
|
2014
|
+
*
|
2015
|
+
* Inspired by "How to Print Floating-Point Numbers Accurately" by
|
2016
|
+
* Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
|
2017
|
+
*
|
2018
|
+
* Modifications:
|
2019
|
+
* 1. Rather than iterating, we use a simple numeric overestimate
|
2020
|
+
* to determine k = floor(log10(d)). We scale relevant
|
2021
|
+
* quantities using O(log2(k)) rather than O(k) multiplications.
|
2022
|
+
* 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
|
2023
|
+
* try to generate digits strictly left to right. Instead, we
|
2024
|
+
* compute with fewer bits and propagate the carry if necessary
|
2025
|
+
* when rounding the final digit up. This is often faster.
|
2026
|
+
* 3. Under the assumption that input will be rounded nearest,
|
2027
|
+
* mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
|
2028
|
+
* That is, we allow equality in stopping tests when the
|
2029
|
+
* round-nearest rule will give the same floating-point value
|
2030
|
+
* as would satisfaction of the stopping test with strict
|
2031
|
+
* inequality.
|
2032
|
+
* 4. We remove common factors of powers of 2 from relevant
|
2033
|
+
* quantities.
|
2034
|
+
* 5. When converting floating-point integers less than 1e16,
|
2035
|
+
* we use floating-point arithmetic rather than resorting
|
2036
|
+
* to multiple-precision integers.
|
2037
|
+
* 6. When asked to produce fewer than 15 digits, we first try
|
2038
|
+
* to get by with floating-point arithmetic; we resort to
|
2039
|
+
* multiple-precision integer arithmetic only if we cannot
|
2040
|
+
* guarantee that the floating-point calculation has given
|
2041
|
+
* the correctly rounded result. For k requested digits and
|
2042
|
+
* "uniformly" distributed input, the probability is
|
2043
|
+
* something like 10^(k-15) that we must resort to the Long
|
2044
|
+
* calculation.
|
2045
|
+
*/
|
2046
|
+
|
2047
|
+
/* Always emits at least one digit. */
|
2048
|
+
/* If biasUp is set, then rounding in modes 2 and 3 will round away from zero
|
2049
|
+
* when the number is exactly halfway between two representable values. For example,
|
2050
|
+
* rounding 2.5 to zero digits after the decimal point will return 3 and not 2.
|
2051
|
+
* 2.49 will still round to 2, and 2.51 will still round to 3. */
|
2052
|
+
/* bufsize should be at least 20 for modes 0 and 1. For the other modes,
|
2053
|
+
* bufsize should be two greater than the maximum number of output characters expected. */
|
2054
|
+
static JSBool
|
2055
|
+
js_dtoa(double d, int mode, JSBool biasUp, int ndigits,
|
2056
|
+
int *decpt, int *sign, char **rve, char *buf, size_t bufsize)
|
2057
|
+
{
|
2058
|
+
/* Arguments ndigits, decpt, sign are similar to those
|
2059
|
+
of ecvt and fcvt; trailing zeros are suppressed from
|
2060
|
+
the returned string. If not null, *rve is set to point
|
2061
|
+
to the end of the return value. If d is +-Infinity or NaN,
|
2062
|
+
then *decpt is set to 9999.
|
2063
|
+
|
2064
|
+
mode:
|
2065
|
+
0 ==> shortest string that yields d when read in
|
2066
|
+
and rounded to nearest.
|
2067
|
+
1 ==> like 0, but with Steele & White stopping rule;
|
2068
|
+
e.g. with IEEE P754 arithmetic , mode 0 gives
|
2069
|
+
1e23 whereas mode 1 gives 9.999999999999999e22.
|
2070
|
+
2 ==> max(1,ndigits) significant digits. This gives a
|
2071
|
+
return value similar to that of ecvt, except
|
2072
|
+
that trailing zeros are suppressed.
|
2073
|
+
3 ==> through ndigits past the decimal point. This
|
2074
|
+
gives a return value similar to that from fcvt,
|
2075
|
+
except that trailing zeros are suppressed, and
|
2076
|
+
ndigits can be negative.
|
2077
|
+
4-9 should give the same return values as 2-3, i.e.,
|
2078
|
+
4 <= mode <= 9 ==> same return as mode
|
2079
|
+
2 + (mode & 1). These modes are mainly for
|
2080
|
+
debugging; often they run slower but sometimes
|
2081
|
+
faster than modes 2-3.
|
2082
|
+
4,5,8,9 ==> left-to-right digit generation.
|
2083
|
+
6-9 ==> don't try fast floating-point estimate
|
2084
|
+
(if applicable).
|
2085
|
+
|
2086
|
+
Values of mode other than 0-9 are treated as mode 0.
|
2087
|
+
|
2088
|
+
Sufficient space is allocated to the return value
|
2089
|
+
to hold the suppressed trailing zeros.
|
2090
|
+
*/
|
2091
|
+
|
2092
|
+
int32 bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
|
2093
|
+
j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
|
2094
|
+
spec_case, try_quick;
|
2095
|
+
Long L;
|
2096
|
+
#ifndef Sudden_Underflow
|
2097
|
+
int32 denorm;
|
2098
|
+
ULong x;
|
2099
|
+
#endif
|
2100
|
+
Bigint *b, *b1, *delta, *mlo, *mhi, *S;
|
2101
|
+
double d2, ds, eps;
|
2102
|
+
char *s;
|
2103
|
+
const char *cs;
|
2104
|
+
|
2105
|
+
if (word0(d) & Sign_bit) {
|
2106
|
+
/* set sign for everything, including 0's and NaNs */
|
2107
|
+
*sign = 1;
|
2108
|
+
set_word0(d, word0(d) & ~Sign_bit); /* clear sign bit */
|
2109
|
+
}
|
2110
|
+
else
|
2111
|
+
*sign = 0;
|
2112
|
+
|
2113
|
+
if ((word0(d) & Exp_mask) == Exp_mask) {
|
2114
|
+
/* Infinity or NaN */
|
2115
|
+
*decpt = 9999;
|
2116
|
+
cs = !word1(d) && !(word0(d) & Frac_mask) ? "Infinity" : "NaN";
|
2117
|
+
if ((cs[0] == 'I' && bufsize < 9) || (cs[0] == 'N' && bufsize < 4)) {
|
2118
|
+
JS_ASSERT(JS_FALSE);
|
2119
|
+
/* JS_SetError(JS_BUFFER_OVERFLOW_ERROR, 0); */
|
2120
|
+
return JS_FALSE;
|
2121
|
+
}
|
2122
|
+
strcpy(buf, cs);
|
2123
|
+
if (rve) {
|
2124
|
+
*rve = buf[3] ? buf + 8 : buf + 3;
|
2125
|
+
JS_ASSERT(**rve == '\0');
|
2126
|
+
}
|
2127
|
+
return JS_TRUE;
|
2128
|
+
}
|
2129
|
+
|
2130
|
+
b = NULL; /* initialize for abort protection */
|
2131
|
+
S = NULL;
|
2132
|
+
mlo = mhi = NULL;
|
2133
|
+
|
2134
|
+
if (!d) {
|
2135
|
+
no_digits:
|
2136
|
+
*decpt = 1;
|
2137
|
+
if (bufsize < 2) {
|
2138
|
+
JS_ASSERT(JS_FALSE);
|
2139
|
+
/* JS_SetError(JS_BUFFER_OVERFLOW_ERROR, 0); */
|
2140
|
+
return JS_FALSE;
|
2141
|
+
}
|
2142
|
+
buf[0] = '0'; buf[1] = '\0'; /* copy "0" to buffer */
|
2143
|
+
if (rve)
|
2144
|
+
*rve = buf + 1;
|
2145
|
+
/* We might have jumped to "no_digits" from below, so we need
|
2146
|
+
* to be sure to free the potentially allocated Bigints to avoid
|
2147
|
+
* memory leaks. */
|
2148
|
+
Bfree(b);
|
2149
|
+
Bfree(S);
|
2150
|
+
if (mlo != mhi)
|
2151
|
+
Bfree(mlo);
|
2152
|
+
Bfree(mhi);
|
2153
|
+
return JS_TRUE;
|
2154
|
+
}
|
2155
|
+
|
2156
|
+
b = d2b(d, &be, &bbits);
|
2157
|
+
if (!b)
|
2158
|
+
goto nomem;
|
2159
|
+
#ifdef Sudden_Underflow
|
2160
|
+
i = (int32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
|
2161
|
+
#else
|
2162
|
+
if ((i = (int32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) != 0) {
|
2163
|
+
#endif
|
2164
|
+
d2 = d;
|
2165
|
+
set_word0(d2, word0(d2) & Frac_mask1);
|
2166
|
+
set_word0(d2, word0(d2) | Exp_11);
|
2167
|
+
|
2168
|
+
/* log(x) ~=~ log(1.5) + (x-1.5)/1.5
|
2169
|
+
* log10(x) = log(x) / log(10)
|
2170
|
+
* ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
|
2171
|
+
* log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
|
2172
|
+
*
|
2173
|
+
* This suggests computing an approximation k to log10(d) by
|
2174
|
+
*
|
2175
|
+
* k = (i - Bias)*0.301029995663981
|
2176
|
+
* + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
|
2177
|
+
*
|
2178
|
+
* We want k to be too large rather than too small.
|
2179
|
+
* The error in the first-order Taylor series approximation
|
2180
|
+
* is in our favor, so we just round up the constant enough
|
2181
|
+
* to compensate for any error in the multiplication of
|
2182
|
+
* (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
|
2183
|
+
* and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
|
2184
|
+
* adding 1e-13 to the constant term more than suffices.
|
2185
|
+
* Hence we adjust the constant term to 0.1760912590558.
|
2186
|
+
* (We could get a more accurate k by invoking log10,
|
2187
|
+
* but this is probably not worthwhile.)
|
2188
|
+
*/
|
2189
|
+
|
2190
|
+
i -= Bias;
|
2191
|
+
#ifndef Sudden_Underflow
|
2192
|
+
denorm = 0;
|
2193
|
+
}
|
2194
|
+
else {
|
2195
|
+
/* d is denormalized */
|
2196
|
+
|
2197
|
+
i = bbits + be + (Bias + (P-1) - 1);
|
2198
|
+
x = i > 32 ? word0(d) << (64 - i) | word1(d) >> (i - 32) : word1(d) << (32 - i);
|
2199
|
+
d2 = x;
|
2200
|
+
set_word0(d2, word0(d2) - 31*Exp_msk1); /* adjust exponent */
|
2201
|
+
i -= (Bias + (P-1) - 1) + 1;
|
2202
|
+
denorm = 1;
|
2203
|
+
}
|
2204
|
+
#endif
|
2205
|
+
/* At this point d = f*2^i, where 1 <= f < 2. d2 is an approximation of f. */
|
2206
|
+
ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
|
2207
|
+
k = (int32)ds;
|
2208
|
+
if (ds < 0. && ds != k)
|
2209
|
+
k--; /* want k = floor(ds) */
|
2210
|
+
k_check = 1;
|
2211
|
+
if (k >= 0 && k <= Ten_pmax) {
|
2212
|
+
if (d < tens[k])
|
2213
|
+
k--;
|
2214
|
+
k_check = 0;
|
2215
|
+
}
|
2216
|
+
/* At this point floor(log10(d)) <= k <= floor(log10(d))+1.
|
2217
|
+
If k_check is zero, we're guaranteed that k = floor(log10(d)). */
|
2218
|
+
j = bbits - i - 1;
|
2219
|
+
/* At this point d = b/2^j, where b is an odd integer. */
|
2220
|
+
if (j >= 0) {
|
2221
|
+
b2 = 0;
|
2222
|
+
s2 = j;
|
2223
|
+
}
|
2224
|
+
else {
|
2225
|
+
b2 = -j;
|
2226
|
+
s2 = 0;
|
2227
|
+
}
|
2228
|
+
if (k >= 0) {
|
2229
|
+
b5 = 0;
|
2230
|
+
s5 = k;
|
2231
|
+
s2 += k;
|
2232
|
+
}
|
2233
|
+
else {
|
2234
|
+
b2 -= k;
|
2235
|
+
b5 = -k;
|
2236
|
+
s5 = 0;
|
2237
|
+
}
|
2238
|
+
/* At this point d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5), where b is an odd integer,
|
2239
|
+
b2 >= 0, b5 >= 0, s2 >= 0, and s5 >= 0. */
|
2240
|
+
if (mode < 0 || mode > 9)
|
2241
|
+
mode = 0;
|
2242
|
+
try_quick = 1;
|
2243
|
+
if (mode > 5) {
|
2244
|
+
mode -= 4;
|
2245
|
+
try_quick = 0;
|
2246
|
+
}
|
2247
|
+
leftright = 1;
|
2248
|
+
ilim = ilim1 = 0;
|
2249
|
+
switch(mode) {
|
2250
|
+
case 0:
|
2251
|
+
case 1:
|
2252
|
+
ilim = ilim1 = -1;
|
2253
|
+
i = 18;
|
2254
|
+
ndigits = 0;
|
2255
|
+
break;
|
2256
|
+
case 2:
|
2257
|
+
leftright = 0;
|
2258
|
+
/* no break */
|
2259
|
+
case 4:
|
2260
|
+
if (ndigits <= 0)
|
2261
|
+
ndigits = 1;
|
2262
|
+
ilim = ilim1 = i = ndigits;
|
2263
|
+
break;
|
2264
|
+
case 3:
|
2265
|
+
leftright = 0;
|
2266
|
+
/* no break */
|
2267
|
+
case 5:
|
2268
|
+
i = ndigits + k + 1;
|
2269
|
+
ilim = i;
|
2270
|
+
ilim1 = i - 1;
|
2271
|
+
if (i <= 0)
|
2272
|
+
i = 1;
|
2273
|
+
}
|
2274
|
+
/* ilim is the maximum number of significant digits we want, based on k and ndigits. */
|
2275
|
+
/* ilim1 is the maximum number of significant digits we want, based on k and ndigits,
|
2276
|
+
when it turns out that k was computed too high by one. */
|
2277
|
+
|
2278
|
+
/* Ensure space for at least i+1 characters, including trailing null. */
|
2279
|
+
if (bufsize <= (size_t)i) {
|
2280
|
+
Bfree(b);
|
2281
|
+
JS_ASSERT(JS_FALSE);
|
2282
|
+
return JS_FALSE;
|
2283
|
+
}
|
2284
|
+
s = buf;
|
2285
|
+
|
2286
|
+
if (ilim >= 0 && ilim <= Quick_max && try_quick) {
|
2287
|
+
|
2288
|
+
/* Try to get by with floating-point arithmetic. */
|
2289
|
+
|
2290
|
+
i = 0;
|
2291
|
+
d2 = d;
|
2292
|
+
k0 = k;
|
2293
|
+
ilim0 = ilim;
|
2294
|
+
ieps = 2; /* conservative */
|
2295
|
+
/* Divide d by 10^k, keeping track of the roundoff error and avoiding overflows. */
|
2296
|
+
if (k > 0) {
|
2297
|
+
ds = tens[k&0xf];
|
2298
|
+
j = k >> 4;
|
2299
|
+
if (j & Bletch) {
|
2300
|
+
/* prevent overflows */
|
2301
|
+
j &= Bletch - 1;
|
2302
|
+
d /= bigtens[n_bigtens-1];
|
2303
|
+
ieps++;
|
2304
|
+
}
|
2305
|
+
for(; j; j >>= 1, i++)
|
2306
|
+
if (j & 1) {
|
2307
|
+
ieps++;
|
2308
|
+
ds *= bigtens[i];
|
2309
|
+
}
|
2310
|
+
d /= ds;
|
2311
|
+
}
|
2312
|
+
else if ((j1 = -k) != 0) {
|
2313
|
+
d *= tens[j1 & 0xf];
|
2314
|
+
for(j = j1 >> 4; j; j >>= 1, i++)
|
2315
|
+
if (j & 1) {
|
2316
|
+
ieps++;
|
2317
|
+
d *= bigtens[i];
|
2318
|
+
}
|
2319
|
+
}
|
2320
|
+
/* Check that k was computed correctly. */
|
2321
|
+
if (k_check && d < 1. && ilim > 0) {
|
2322
|
+
if (ilim1 <= 0)
|
2323
|
+
goto fast_failed;
|
2324
|
+
ilim = ilim1;
|
2325
|
+
k--;
|
2326
|
+
d *= 10.;
|
2327
|
+
ieps++;
|
2328
|
+
}
|
2329
|
+
/* eps bounds the cumulative error. */
|
2330
|
+
eps = ieps*d + 7.;
|
2331
|
+
set_word0(eps, word0(eps) - (P-1)*Exp_msk1);
|
2332
|
+
if (ilim == 0) {
|
2333
|
+
S = mhi = 0;
|
2334
|
+
d -= 5.;
|
2335
|
+
if (d > eps)
|
2336
|
+
goto one_digit;
|
2337
|
+
if (d < -eps)
|
2338
|
+
goto no_digits;
|
2339
|
+
goto fast_failed;
|
2340
|
+
}
|
2341
|
+
#ifndef No_leftright
|
2342
|
+
if (leftright) {
|
2343
|
+
/* Use Steele & White method of only
|
2344
|
+
* generating digits needed.
|
2345
|
+
*/
|
2346
|
+
eps = 0.5/tens[ilim-1] - eps;
|
2347
|
+
for(i = 0;;) {
|
2348
|
+
L = (Long)d;
|
2349
|
+
d -= L;
|
2350
|
+
*s++ = '0' + (char)L;
|
2351
|
+
if (d < eps)
|
2352
|
+
goto ret1;
|
2353
|
+
if (1. - d < eps) {
|
2354
|
+
#ifdef DEBUG
|
2355
|
+
/* Clear d to avoid precision warning. */
|
2356
|
+
d = 0;
|
2357
|
+
#endif
|
2358
|
+
goto bump_up;
|
2359
|
+
}
|
2360
|
+
if (++i >= ilim)
|
2361
|
+
break;
|
2362
|
+
eps *= 10.;
|
2363
|
+
d *= 10.;
|
2364
|
+
}
|
2365
|
+
}
|
2366
|
+
else {
|
2367
|
+
#endif
|
2368
|
+
/* Generate ilim digits, then fix them up. */
|
2369
|
+
eps *= tens[ilim-1];
|
2370
|
+
for(i = 1;; i++, d *= 10.) {
|
2371
|
+
L = (Long)d;
|
2372
|
+
d -= L;
|
2373
|
+
*s++ = '0' + (char)L;
|
2374
|
+
if (i == ilim) {
|
2375
|
+
if (d > 0.5 + eps) {
|
2376
|
+
#ifdef DEBUG
|
2377
|
+
/* Clear d to avoid precision warning. */
|
2378
|
+
d = 0;
|
2379
|
+
#endif
|
2380
|
+
goto bump_up;
|
2381
|
+
}
|
2382
|
+
else if (d < 0.5 - eps) {
|
2383
|
+
while(*--s == '0') ;
|
2384
|
+
s++;
|
2385
|
+
goto ret1;
|
2386
|
+
}
|
2387
|
+
break;
|
2388
|
+
}
|
2389
|
+
}
|
2390
|
+
#ifndef No_leftright
|
2391
|
+
}
|
2392
|
+
#endif
|
2393
|
+
fast_failed:
|
2394
|
+
s = buf;
|
2395
|
+
d = d2;
|
2396
|
+
k = k0;
|
2397
|
+
ilim = ilim0;
|
2398
|
+
}
|
2399
|
+
|
2400
|
+
/* Do we have a "small" integer? */
|
2401
|
+
|
2402
|
+
if (be >= 0 && k <= Int_max) {
|
2403
|
+
/* Yes. */
|
2404
|
+
ds = tens[k];
|
2405
|
+
if (ndigits < 0 && ilim <= 0) {
|
2406
|
+
S = mhi = 0;
|
2407
|
+
if (ilim < 0 || d < 5*ds || (!biasUp && d == 5*ds))
|
2408
|
+
goto no_digits;
|
2409
|
+
goto one_digit;
|
2410
|
+
}
|
2411
|
+
|
2412
|
+
/* Use true number of digits to limit looping. */
|
2413
|
+
for(i = 1; i<=k+1; i++) {
|
2414
|
+
L = (Long) (d / ds);
|
2415
|
+
d -= L*ds;
|
2416
|
+
#ifdef Check_FLT_ROUNDS
|
2417
|
+
/* If FLT_ROUNDS == 2, L will usually be high by 1 */
|
2418
|
+
if (d < 0) {
|
2419
|
+
L--;
|
2420
|
+
d += ds;
|
2421
|
+
}
|
2422
|
+
#endif
|
2423
|
+
*s++ = '0' + (char)L;
|
2424
|
+
if (i == ilim) {
|
2425
|
+
d += d;
|
2426
|
+
if ((d > ds) || (d == ds && (L & 1 || biasUp))) {
|
2427
|
+
bump_up:
|
2428
|
+
while(*--s == '9')
|
2429
|
+
if (s == buf) {
|
2430
|
+
k++;
|
2431
|
+
*s = '0';
|
2432
|
+
break;
|
2433
|
+
}
|
2434
|
+
++*s++;
|
2435
|
+
}
|
2436
|
+
break;
|
2437
|
+
}
|
2438
|
+
d *= 10.;
|
2439
|
+
}
|
2440
|
+
#ifdef DEBUG
|
2441
|
+
if (d != 0.0) {
|
2442
|
+
fprintf(stderr,
|
2443
|
+
"WARNING: A loss of precision for double floating point is detected.\n"
|
2444
|
+
" The result of any operation on doubles can be meaningless.\n"
|
2445
|
+
" A possible cause is missing code to restore FPU state, see\n"
|
2446
|
+
" bug 360282 for details.\n");
|
2447
|
+
}
|
2448
|
+
#endif
|
2449
|
+
goto ret1;
|
2450
|
+
}
|
2451
|
+
|
2452
|
+
m2 = b2;
|
2453
|
+
m5 = b5;
|
2454
|
+
if (leftright) {
|
2455
|
+
if (mode < 2) {
|
2456
|
+
i =
|
2457
|
+
#ifndef Sudden_Underflow
|
2458
|
+
denorm ? be + (Bias + (P-1) - 1 + 1) :
|
2459
|
+
#endif
|
2460
|
+
1 + P - bbits;
|
2461
|
+
/* i is 1 plus the number of trailing zero bits in d's significand. Thus,
|
2462
|
+
(2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 lsb of d)/10^k. */
|
2463
|
+
}
|
2464
|
+
else {
|
2465
|
+
j = ilim - 1;
|
2466
|
+
if (m5 >= j)
|
2467
|
+
m5 -= j;
|
2468
|
+
else {
|
2469
|
+
s5 += j -= m5;
|
2470
|
+
b5 += j;
|
2471
|
+
m5 = 0;
|
2472
|
+
}
|
2473
|
+
if ((i = ilim) < 0) {
|
2474
|
+
m2 -= i;
|
2475
|
+
i = 0;
|
2476
|
+
}
|
2477
|
+
/* (2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 * 10^(1-ilim))/10^k. */
|
2478
|
+
}
|
2479
|
+
b2 += i;
|
2480
|
+
s2 += i;
|
2481
|
+
mhi = i2b(1);
|
2482
|
+
if (!mhi)
|
2483
|
+
goto nomem;
|
2484
|
+
/* (mhi * 2^m2 * 5^m5) / (2^s2 * 5^s5) = one-half of last printed (when mode >= 2) or
|
2485
|
+
input (when mode < 2) significant digit, divided by 10^k. */
|
2486
|
+
}
|
2487
|
+
/* We still have d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5). Reduce common factors in
|
2488
|
+
b2, m2, and s2 without changing the equalities. */
|
2489
|
+
if (m2 > 0 && s2 > 0) {
|
2490
|
+
i = m2 < s2 ? m2 : s2;
|
2491
|
+
b2 -= i;
|
2492
|
+
m2 -= i;
|
2493
|
+
s2 -= i;
|
2494
|
+
}
|
2495
|
+
|
2496
|
+
/* Fold b5 into b and m5 into mhi. */
|
2497
|
+
if (b5 > 0) {
|
2498
|
+
if (leftright) {
|
2499
|
+
if (m5 > 0) {
|
2500
|
+
mhi = pow5mult(mhi, m5);
|
2501
|
+
if (!mhi)
|
2502
|
+
goto nomem;
|
2503
|
+
b1 = mult(mhi, b);
|
2504
|
+
if (!b1)
|
2505
|
+
goto nomem;
|
2506
|
+
Bfree(b);
|
2507
|
+
b = b1;
|
2508
|
+
}
|
2509
|
+
if ((j = b5 - m5) != 0) {
|
2510
|
+
b = pow5mult(b, j);
|
2511
|
+
if (!b)
|
2512
|
+
goto nomem;
|
2513
|
+
}
|
2514
|
+
}
|
2515
|
+
else {
|
2516
|
+
b = pow5mult(b, b5);
|
2517
|
+
if (!b)
|
2518
|
+
goto nomem;
|
2519
|
+
}
|
2520
|
+
}
|
2521
|
+
/* Now we have d/10^k = (b * 2^b2) / (2^s2 * 5^s5) and
|
2522
|
+
(mhi * 2^m2) / (2^s2 * 5^s5) = one-half of last printed or input significant digit, divided by 10^k. */
|
2523
|
+
|
2524
|
+
S = i2b(1);
|
2525
|
+
if (!S)
|
2526
|
+
goto nomem;
|
2527
|
+
if (s5 > 0) {
|
2528
|
+
S = pow5mult(S, s5);
|
2529
|
+
if (!S)
|
2530
|
+
goto nomem;
|
2531
|
+
}
|
2532
|
+
/* Now we have d/10^k = (b * 2^b2) / (S * 2^s2) and
|
2533
|
+
(mhi * 2^m2) / (S * 2^s2) = one-half of last printed or input significant digit, divided by 10^k. */
|
2534
|
+
|
2535
|
+
/* Check for special case that d is a normalized power of 2. */
|
2536
|
+
spec_case = 0;
|
2537
|
+
if (mode < 2) {
|
2538
|
+
if (!word1(d) && !(word0(d) & Bndry_mask)
|
2539
|
+
#ifndef Sudden_Underflow
|
2540
|
+
&& word0(d) & (Exp_mask & Exp_mask << 1)
|
2541
|
+
#endif
|
2542
|
+
) {
|
2543
|
+
/* The special case. Here we want to be within a quarter of the last input
|
2544
|
+
significant digit instead of one half of it when the decimal output string's value is less than d. */
|
2545
|
+
b2 += Log2P;
|
2546
|
+
s2 += Log2P;
|
2547
|
+
spec_case = 1;
|
2548
|
+
}
|
2549
|
+
}
|
2550
|
+
|
2551
|
+
/* Arrange for convenient computation of quotients:
|
2552
|
+
* shift left if necessary so divisor has 4 leading 0 bits.
|
2553
|
+
*
|
2554
|
+
* Perhaps we should just compute leading 28 bits of S once
|
2555
|
+
* and for all and pass them and a shift to quorem, so it
|
2556
|
+
* can do shifts and ors to compute the numerator for q.
|
2557
|
+
*/
|
2558
|
+
if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) != 0)
|
2559
|
+
i = 32 - i;
|
2560
|
+
/* i is the number of leading zero bits in the most significant word of S*2^s2. */
|
2561
|
+
if (i > 4) {
|
2562
|
+
i -= 4;
|
2563
|
+
b2 += i;
|
2564
|
+
m2 += i;
|
2565
|
+
s2 += i;
|
2566
|
+
}
|
2567
|
+
else if (i < 4) {
|
2568
|
+
i += 28;
|
2569
|
+
b2 += i;
|
2570
|
+
m2 += i;
|
2571
|
+
s2 += i;
|
2572
|
+
}
|
2573
|
+
/* Now S*2^s2 has exactly four leading zero bits in its most significant word. */
|
2574
|
+
if (b2 > 0) {
|
2575
|
+
b = lshift(b, b2);
|
2576
|
+
if (!b)
|
2577
|
+
goto nomem;
|
2578
|
+
}
|
2579
|
+
if (s2 > 0) {
|
2580
|
+
S = lshift(S, s2);
|
2581
|
+
if (!S)
|
2582
|
+
goto nomem;
|
2583
|
+
}
|
2584
|
+
/* Now we have d/10^k = b/S and
|
2585
|
+
(mhi * 2^m2) / S = maximum acceptable error, divided by 10^k. */
|
2586
|
+
if (k_check) {
|
2587
|
+
if (cmp(b,S) < 0) {
|
2588
|
+
k--;
|
2589
|
+
b = multadd(b, 10, 0); /* we botched the k estimate */
|
2590
|
+
if (!b)
|
2591
|
+
goto nomem;
|
2592
|
+
if (leftright) {
|
2593
|
+
mhi = multadd(mhi, 10, 0);
|
2594
|
+
if (!mhi)
|
2595
|
+
goto nomem;
|
2596
|
+
}
|
2597
|
+
ilim = ilim1;
|
2598
|
+
}
|
2599
|
+
}
|
2600
|
+
/* At this point 1 <= d/10^k = b/S < 10. */
|
2601
|
+
|
2602
|
+
if (ilim <= 0 && mode > 2) {
|
2603
|
+
/* We're doing fixed-mode output and d is less than the minimum nonzero output in this mode.
|
2604
|
+
Output either zero or the minimum nonzero output depending on which is closer to d. */
|
2605
|
+
if (ilim < 0)
|
2606
|
+
goto no_digits;
|
2607
|
+
S = multadd(S,5,0);
|
2608
|
+
if (!S)
|
2609
|
+
goto nomem;
|
2610
|
+
i = cmp(b,S);
|
2611
|
+
if (i < 0 || (i == 0 && !biasUp)) {
|
2612
|
+
/* Always emit at least one digit. If the number appears to be zero
|
2613
|
+
using the current mode, then emit one '0' digit and set decpt to 1. */
|
2614
|
+
/*no_digits:
|
2615
|
+
k = -1 - ndigits;
|
2616
|
+
goto ret; */
|
2617
|
+
goto no_digits;
|
2618
|
+
}
|
2619
|
+
one_digit:
|
2620
|
+
*s++ = '1';
|
2621
|
+
k++;
|
2622
|
+
goto ret;
|
2623
|
+
}
|
2624
|
+
if (leftright) {
|
2625
|
+
if (m2 > 0) {
|
2626
|
+
mhi = lshift(mhi, m2);
|
2627
|
+
if (!mhi)
|
2628
|
+
goto nomem;
|
2629
|
+
}
|
2630
|
+
|
2631
|
+
/* Compute mlo -- check for special case
|
2632
|
+
* that d is a normalized power of 2.
|
2633
|
+
*/
|
2634
|
+
|
2635
|
+
mlo = mhi;
|
2636
|
+
if (spec_case) {
|
2637
|
+
mhi = Balloc(mhi->k);
|
2638
|
+
if (!mhi)
|
2639
|
+
goto nomem;
|
2640
|
+
Bcopy(mhi, mlo);
|
2641
|
+
mhi = lshift(mhi, Log2P);
|
2642
|
+
if (!mhi)
|
2643
|
+
goto nomem;
|
2644
|
+
}
|
2645
|
+
/* mlo/S = maximum acceptable error, divided by 10^k, if the output is less than d. */
|
2646
|
+
/* mhi/S = maximum acceptable error, divided by 10^k, if the output is greater than d. */
|
2647
|
+
|
2648
|
+
for(i = 1;;i++) {
|
2649
|
+
dig = quorem(b,S) + '0';
|
2650
|
+
/* Do we yet have the shortest decimal string
|
2651
|
+
* that will round to d?
|
2652
|
+
*/
|
2653
|
+
j = cmp(b, mlo);
|
2654
|
+
/* j is b/S compared with mlo/S. */
|
2655
|
+
delta = diff(S, mhi);
|
2656
|
+
if (!delta)
|
2657
|
+
goto nomem;
|
2658
|
+
j1 = delta->sign ? 1 : cmp(b, delta);
|
2659
|
+
Bfree(delta);
|
2660
|
+
/* j1 is b/S compared with 1 - mhi/S. */
|
2661
|
+
#ifndef ROUND_BIASED
|
2662
|
+
if (j1 == 0 && !mode && !(word1(d) & 1)) {
|
2663
|
+
if (dig == '9')
|
2664
|
+
goto round_9_up;
|
2665
|
+
if (j > 0)
|
2666
|
+
dig++;
|
2667
|
+
*s++ = (char)dig;
|
2668
|
+
goto ret;
|
2669
|
+
}
|
2670
|
+
#endif
|
2671
|
+
if ((j < 0) || (j == 0 && !mode
|
2672
|
+
#ifndef ROUND_BIASED
|
2673
|
+
&& !(word1(d) & 1)
|
2674
|
+
#endif
|
2675
|
+
)) {
|
2676
|
+
if (j1 > 0) {
|
2677
|
+
/* Either dig or dig+1 would work here as the least significant decimal digit.
|
2678
|
+
Use whichever would produce a decimal value closer to d. */
|
2679
|
+
b = lshift(b, 1);
|
2680
|
+
if (!b)
|
2681
|
+
goto nomem;
|
2682
|
+
j1 = cmp(b, S);
|
2683
|
+
if (((j1 > 0) || (j1 == 0 && (dig & 1 || biasUp)))
|
2684
|
+
&& (dig++ == '9'))
|
2685
|
+
goto round_9_up;
|
2686
|
+
}
|
2687
|
+
*s++ = (char)dig;
|
2688
|
+
goto ret;
|
2689
|
+
}
|
2690
|
+
if (j1 > 0) {
|
2691
|
+
if (dig == '9') { /* possible if i == 1 */
|
2692
|
+
round_9_up:
|
2693
|
+
*s++ = '9';
|
2694
|
+
goto roundoff;
|
2695
|
+
}
|
2696
|
+
*s++ = (char)dig + 1;
|
2697
|
+
goto ret;
|
2698
|
+
}
|
2699
|
+
*s++ = (char)dig;
|
2700
|
+
if (i == ilim)
|
2701
|
+
break;
|
2702
|
+
b = multadd(b, 10, 0);
|
2703
|
+
if (!b)
|
2704
|
+
goto nomem;
|
2705
|
+
if (mlo == mhi) {
|
2706
|
+
mlo = mhi = multadd(mhi, 10, 0);
|
2707
|
+
if (!mhi)
|
2708
|
+
goto nomem;
|
2709
|
+
}
|
2710
|
+
else {
|
2711
|
+
mlo = multadd(mlo, 10, 0);
|
2712
|
+
if (!mlo)
|
2713
|
+
goto nomem;
|
2714
|
+
mhi = multadd(mhi, 10, 0);
|
2715
|
+
if (!mhi)
|
2716
|
+
goto nomem;
|
2717
|
+
}
|
2718
|
+
}
|
2719
|
+
}
|
2720
|
+
else
|
2721
|
+
for(i = 1;; i++) {
|
2722
|
+
*s++ = (char)(dig = quorem(b,S) + '0');
|
2723
|
+
if (i >= ilim)
|
2724
|
+
break;
|
2725
|
+
b = multadd(b, 10, 0);
|
2726
|
+
if (!b)
|
2727
|
+
goto nomem;
|
2728
|
+
}
|
2729
|
+
|
2730
|
+
/* Round off last digit */
|
2731
|
+
|
2732
|
+
b = lshift(b, 1);
|
2733
|
+
if (!b)
|
2734
|
+
goto nomem;
|
2735
|
+
j = cmp(b, S);
|
2736
|
+
if ((j > 0) || (j == 0 && (dig & 1 || biasUp))) {
|
2737
|
+
roundoff:
|
2738
|
+
while(*--s == '9')
|
2739
|
+
if (s == buf) {
|
2740
|
+
k++;
|
2741
|
+
*s++ = '1';
|
2742
|
+
goto ret;
|
2743
|
+
}
|
2744
|
+
++*s++;
|
2745
|
+
}
|
2746
|
+
else {
|
2747
|
+
/* Strip trailing zeros */
|
2748
|
+
while(*--s == '0') ;
|
2749
|
+
s++;
|
2750
|
+
}
|
2751
|
+
ret:
|
2752
|
+
Bfree(S);
|
2753
|
+
if (mhi) {
|
2754
|
+
if (mlo && mlo != mhi)
|
2755
|
+
Bfree(mlo);
|
2756
|
+
Bfree(mhi);
|
2757
|
+
}
|
2758
|
+
ret1:
|
2759
|
+
Bfree(b);
|
2760
|
+
JS_ASSERT(s < buf + bufsize);
|
2761
|
+
*s = '\0';
|
2762
|
+
if (rve)
|
2763
|
+
*rve = s;
|
2764
|
+
*decpt = k + 1;
|
2765
|
+
return JS_TRUE;
|
2766
|
+
|
2767
|
+
nomem:
|
2768
|
+
Bfree(S);
|
2769
|
+
if (mhi) {
|
2770
|
+
if (mlo && mlo != mhi)
|
2771
|
+
Bfree(mlo);
|
2772
|
+
Bfree(mhi);
|
2773
|
+
}
|
2774
|
+
Bfree(b);
|
2775
|
+
return JS_FALSE;
|
2776
|
+
}
|
2777
|
+
|
2778
|
+
|
2779
|
+
/* Mapping of JSDToStrMode -> js_dtoa mode */
|
2780
|
+
static const int dtoaModes[] = {
|
2781
|
+
0, /* DTOSTR_STANDARD */
|
2782
|
+
0, /* DTOSTR_STANDARD_EXPONENTIAL, */
|
2783
|
+
3, /* DTOSTR_FIXED, */
|
2784
|
+
2, /* DTOSTR_EXPONENTIAL, */
|
2785
|
+
2}; /* DTOSTR_PRECISION */
|
2786
|
+
|
2787
|
+
JS_FRIEND_API(char *)
|
2788
|
+
JS_dtostr(char *buffer, size_t bufferSize, JSDToStrMode mode, int precision, double d)
|
2789
|
+
{
|
2790
|
+
int decPt; /* Position of decimal point relative to first digit returned by js_dtoa */
|
2791
|
+
int sign; /* Nonzero if the sign bit was set in d */
|
2792
|
+
int nDigits; /* Number of significand digits returned by js_dtoa */
|
2793
|
+
char *numBegin = buffer+2; /* Pointer to the digits returned by js_dtoa; the +2 leaves space for */
|
2794
|
+
/* the sign and/or decimal point */
|
2795
|
+
char *numEnd; /* Pointer past the digits returned by js_dtoa */
|
2796
|
+
JSBool dtoaRet;
|
2797
|
+
|
2798
|
+
JS_ASSERT(bufferSize >= (size_t)(mode <= DTOSTR_STANDARD_EXPONENTIAL ? DTOSTR_STANDARD_BUFFER_SIZE :
|
2799
|
+
DTOSTR_VARIABLE_BUFFER_SIZE(precision)));
|
2800
|
+
|
2801
|
+
if (mode == DTOSTR_FIXED && (d >= 1e21 || d <= -1e21))
|
2802
|
+
mode = DTOSTR_STANDARD; /* Change mode here rather than below because the buffer may not be large enough to hold a large integer. */
|
2803
|
+
|
2804
|
+
/* Locking for Balloc's shared buffers */
|
2805
|
+
ACQUIRE_DTOA_LOCK();
|
2806
|
+
dtoaRet = js_dtoa(d, dtoaModes[mode], mode >= DTOSTR_FIXED, precision, &decPt, &sign, &numEnd, numBegin, bufferSize-2);
|
2807
|
+
RELEASE_DTOA_LOCK();
|
2808
|
+
if (!dtoaRet)
|
2809
|
+
return 0;
|
2810
|
+
|
2811
|
+
nDigits = numEnd - numBegin;
|
2812
|
+
|
2813
|
+
/* If Infinity, -Infinity, or NaN, return the string regardless of the mode. */
|
2814
|
+
if (decPt != 9999) {
|
2815
|
+
JSBool exponentialNotation = JS_FALSE;
|
2816
|
+
int minNDigits = 0; /* Minimum number of significand digits required by mode and precision */
|
2817
|
+
char *p;
|
2818
|
+
char *q;
|
2819
|
+
|
2820
|
+
switch (mode) {
|
2821
|
+
case DTOSTR_STANDARD:
|
2822
|
+
if (decPt < -5 || decPt > 21)
|
2823
|
+
exponentialNotation = JS_TRUE;
|
2824
|
+
else
|
2825
|
+
minNDigits = decPt;
|
2826
|
+
break;
|
2827
|
+
|
2828
|
+
case DTOSTR_FIXED:
|
2829
|
+
if (precision >= 0)
|
2830
|
+
minNDigits = decPt + precision;
|
2831
|
+
else
|
2832
|
+
minNDigits = decPt;
|
2833
|
+
break;
|
2834
|
+
|
2835
|
+
case DTOSTR_EXPONENTIAL:
|
2836
|
+
JS_ASSERT(precision > 0);
|
2837
|
+
minNDigits = precision;
|
2838
|
+
/* Fall through */
|
2839
|
+
case DTOSTR_STANDARD_EXPONENTIAL:
|
2840
|
+
exponentialNotation = JS_TRUE;
|
2841
|
+
break;
|
2842
|
+
|
2843
|
+
case DTOSTR_PRECISION:
|
2844
|
+
JS_ASSERT(precision > 0);
|
2845
|
+
minNDigits = precision;
|
2846
|
+
if (decPt < -5 || decPt > precision)
|
2847
|
+
exponentialNotation = JS_TRUE;
|
2848
|
+
break;
|
2849
|
+
}
|
2850
|
+
|
2851
|
+
/* If the number has fewer than minNDigits, pad it with zeros at the end */
|
2852
|
+
if (nDigits < minNDigits) {
|
2853
|
+
p = numBegin + minNDigits;
|
2854
|
+
nDigits = minNDigits;
|
2855
|
+
do {
|
2856
|
+
*numEnd++ = '0';
|
2857
|
+
} while (numEnd != p);
|
2858
|
+
*numEnd = '\0';
|
2859
|
+
}
|
2860
|
+
|
2861
|
+
if (exponentialNotation) {
|
2862
|
+
/* Insert a decimal point if more than one significand digit */
|
2863
|
+
if (nDigits != 1) {
|
2864
|
+
numBegin--;
|
2865
|
+
numBegin[0] = numBegin[1];
|
2866
|
+
numBegin[1] = '.';
|
2867
|
+
}
|
2868
|
+
JS_snprintf(numEnd, bufferSize - (numEnd - buffer), "e%+d", decPt-1);
|
2869
|
+
} else if (decPt != nDigits) {
|
2870
|
+
/* Some kind of a fraction in fixed notation */
|
2871
|
+
JS_ASSERT(decPt <= nDigits);
|
2872
|
+
if (decPt > 0) {
|
2873
|
+
/* dd...dd . dd...dd */
|
2874
|
+
p = --numBegin;
|
2875
|
+
do {
|
2876
|
+
*p = p[1];
|
2877
|
+
p++;
|
2878
|
+
} while (--decPt);
|
2879
|
+
*p = '.';
|
2880
|
+
} else {
|
2881
|
+
/* 0 . 00...00dd...dd */
|
2882
|
+
p = numEnd;
|
2883
|
+
numEnd += 1 - decPt;
|
2884
|
+
q = numEnd;
|
2885
|
+
JS_ASSERT(numEnd < buffer + bufferSize);
|
2886
|
+
*numEnd = '\0';
|
2887
|
+
while (p != numBegin)
|
2888
|
+
*--q = *--p;
|
2889
|
+
for (p = numBegin + 1; p != q; p++)
|
2890
|
+
*p = '0';
|
2891
|
+
*numBegin = '.';
|
2892
|
+
*--numBegin = '0';
|
2893
|
+
}
|
2894
|
+
}
|
2895
|
+
}
|
2896
|
+
|
2897
|
+
/* If negative and neither -0.0 nor NaN, output a leading '-'. */
|
2898
|
+
if (sign &&
|
2899
|
+
!(word0(d) == Sign_bit && word1(d) == 0) &&
|
2900
|
+
!((word0(d) & Exp_mask) == Exp_mask &&
|
2901
|
+
(word1(d) || (word0(d) & Frac_mask)))) {
|
2902
|
+
*--numBegin = '-';
|
2903
|
+
}
|
2904
|
+
return numBegin;
|
2905
|
+
}
|
2906
|
+
|
2907
|
+
|
2908
|
+
/* Let b = floor(b / divisor), and return the remainder. b must be nonnegative.
|
2909
|
+
* divisor must be between 1 and 65536.
|
2910
|
+
* This function cannot run out of memory. */
|
2911
|
+
static uint32
|
2912
|
+
divrem(Bigint *b, uint32 divisor)
|
2913
|
+
{
|
2914
|
+
int32 n = b->wds;
|
2915
|
+
uint32 remainder = 0;
|
2916
|
+
ULong *bx;
|
2917
|
+
ULong *bp;
|
2918
|
+
|
2919
|
+
JS_ASSERT(divisor > 0 && divisor <= 65536);
|
2920
|
+
|
2921
|
+
if (!n)
|
2922
|
+
return 0; /* b is zero */
|
2923
|
+
bx = b->x;
|
2924
|
+
bp = bx + n;
|
2925
|
+
do {
|
2926
|
+
ULong a = *--bp;
|
2927
|
+
ULong dividend = remainder << 16 | a >> 16;
|
2928
|
+
ULong quotientHi = dividend / divisor;
|
2929
|
+
ULong quotientLo;
|
2930
|
+
|
2931
|
+
remainder = dividend - quotientHi*divisor;
|
2932
|
+
JS_ASSERT(quotientHi <= 0xFFFF && remainder < divisor);
|
2933
|
+
dividend = remainder << 16 | (a & 0xFFFF);
|
2934
|
+
quotientLo = dividend / divisor;
|
2935
|
+
remainder = dividend - quotientLo*divisor;
|
2936
|
+
JS_ASSERT(quotientLo <= 0xFFFF && remainder < divisor);
|
2937
|
+
*bp = quotientHi << 16 | quotientLo;
|
2938
|
+
} while (bp != bx);
|
2939
|
+
/* Decrease the size of the number if its most significant word is now zero. */
|
2940
|
+
if (bx[n-1] == 0)
|
2941
|
+
b->wds--;
|
2942
|
+
return remainder;
|
2943
|
+
}
|
2944
|
+
|
2945
|
+
|
2946
|
+
/* "-0.0000...(1073 zeros after decimal point)...0001\0" is the longest string that we could produce,
|
2947
|
+
* which occurs when printing -5e-324 in binary. We could compute a better estimate of the size of
|
2948
|
+
* the output string and malloc fewer bytes depending on d and base, but why bother? */
|
2949
|
+
#define DTOBASESTR_BUFFER_SIZE 1078
|
2950
|
+
#define BASEDIGIT(digit) ((char)(((digit) >= 10) ? 'a' - 10 + (digit) : '0' + (digit)))
|
2951
|
+
|
2952
|
+
JS_FRIEND_API(char *)
|
2953
|
+
JS_dtobasestr(int base, double d)
|
2954
|
+
{
|
2955
|
+
char *buffer; /* The output string */
|
2956
|
+
char *p; /* Pointer to current position in the buffer */
|
2957
|
+
char *pInt; /* Pointer to the beginning of the integer part of the string */
|
2958
|
+
char *q;
|
2959
|
+
uint32 digit;
|
2960
|
+
double di; /* d truncated to an integer */
|
2961
|
+
double df; /* The fractional part of d */
|
2962
|
+
|
2963
|
+
JS_ASSERT(base >= 2 && base <= 36);
|
2964
|
+
|
2965
|
+
buffer = (char*) malloc(DTOBASESTR_BUFFER_SIZE);
|
2966
|
+
if (buffer) {
|
2967
|
+
p = buffer;
|
2968
|
+
if (d < 0.0
|
2969
|
+
#if defined(XP_WIN) || defined(XP_OS2)
|
2970
|
+
&& !((word0(d) & Exp_mask) == Exp_mask && ((word0(d) & Frac_mask) || word1(d))) /* Visual C++ doesn't know how to compare against NaN */
|
2971
|
+
#endif
|
2972
|
+
) {
|
2973
|
+
*p++ = '-';
|
2974
|
+
d = -d;
|
2975
|
+
}
|
2976
|
+
|
2977
|
+
/* Check for Infinity and NaN */
|
2978
|
+
if ((word0(d) & Exp_mask) == Exp_mask) {
|
2979
|
+
strcpy(p, !word1(d) && !(word0(d) & Frac_mask) ? "Infinity" : "NaN");
|
2980
|
+
return buffer;
|
2981
|
+
}
|
2982
|
+
|
2983
|
+
/* Locking for Balloc's shared buffers */
|
2984
|
+
ACQUIRE_DTOA_LOCK();
|
2985
|
+
|
2986
|
+
/* Output the integer part of d with the digits in reverse order. */
|
2987
|
+
pInt = p;
|
2988
|
+
di = fd_floor(d);
|
2989
|
+
if (di <= 4294967295.0) {
|
2990
|
+
uint32 n = (uint32)di;
|
2991
|
+
if (n)
|
2992
|
+
do {
|
2993
|
+
uint32 m = n / base;
|
2994
|
+
digit = n - m*base;
|
2995
|
+
n = m;
|
2996
|
+
JS_ASSERT(digit < (uint32)base);
|
2997
|
+
*p++ = BASEDIGIT(digit);
|
2998
|
+
} while (n);
|
2999
|
+
else *p++ = '0';
|
3000
|
+
} else {
|
3001
|
+
int32 e;
|
3002
|
+
int32 bits; /* Number of significant bits in di; not used. */
|
3003
|
+
Bigint *b = d2b(di, &e, &bits);
|
3004
|
+
if (!b)
|
3005
|
+
goto nomem1;
|
3006
|
+
b = lshift(b, e);
|
3007
|
+
if (!b) {
|
3008
|
+
nomem1:
|
3009
|
+
Bfree(b);
|
3010
|
+
RELEASE_DTOA_LOCK();
|
3011
|
+
free(buffer);
|
3012
|
+
return NULL;
|
3013
|
+
}
|
3014
|
+
do {
|
3015
|
+
digit = divrem(b, base);
|
3016
|
+
JS_ASSERT(digit < (uint32)base);
|
3017
|
+
*p++ = BASEDIGIT(digit);
|
3018
|
+
} while (b->wds);
|
3019
|
+
Bfree(b);
|
3020
|
+
}
|
3021
|
+
/* Reverse the digits of the integer part of d. */
|
3022
|
+
q = p-1;
|
3023
|
+
while (q > pInt) {
|
3024
|
+
char ch = *pInt;
|
3025
|
+
*pInt++ = *q;
|
3026
|
+
*q-- = ch;
|
3027
|
+
}
|
3028
|
+
|
3029
|
+
df = d - di;
|
3030
|
+
if (df != 0.0) {
|
3031
|
+
/* We have a fraction. */
|
3032
|
+
int32 e, bbits, s2, done;
|
3033
|
+
Bigint *b, *s, *mlo, *mhi;
|
3034
|
+
|
3035
|
+
b = s = mlo = mhi = NULL;
|
3036
|
+
|
3037
|
+
*p++ = '.';
|
3038
|
+
b = d2b(df, &e, &bbits);
|
3039
|
+
if (!b) {
|
3040
|
+
nomem2:
|
3041
|
+
Bfree(b);
|
3042
|
+
Bfree(s);
|
3043
|
+
if (mlo != mhi)
|
3044
|
+
Bfree(mlo);
|
3045
|
+
Bfree(mhi);
|
3046
|
+
RELEASE_DTOA_LOCK();
|
3047
|
+
free(buffer);
|
3048
|
+
return NULL;
|
3049
|
+
}
|
3050
|
+
JS_ASSERT(e < 0);
|
3051
|
+
/* At this point df = b * 2^e. e must be less than zero because 0 < df < 1. */
|
3052
|
+
|
3053
|
+
s2 = -(int32)(word0(d) >> Exp_shift1 & Exp_mask>>Exp_shift1);
|
3054
|
+
#ifndef Sudden_Underflow
|
3055
|
+
if (!s2)
|
3056
|
+
s2 = -1;
|
3057
|
+
#endif
|
3058
|
+
s2 += Bias + P;
|
3059
|
+
/* 1/2^s2 = (nextDouble(d) - d)/2 */
|
3060
|
+
JS_ASSERT(-s2 < e);
|
3061
|
+
mlo = i2b(1);
|
3062
|
+
if (!mlo)
|
3063
|
+
goto nomem2;
|
3064
|
+
mhi = mlo;
|
3065
|
+
if (!word1(d) && !(word0(d) & Bndry_mask)
|
3066
|
+
#ifndef Sudden_Underflow
|
3067
|
+
&& word0(d) & (Exp_mask & Exp_mask << 1)
|
3068
|
+
#endif
|
3069
|
+
) {
|
3070
|
+
/* The special case. Here we want to be within a quarter of the last input
|
3071
|
+
significant digit instead of one half of it when the output string's value is less than d. */
|
3072
|
+
s2 += Log2P;
|
3073
|
+
mhi = i2b(1<<Log2P);
|
3074
|
+
if (!mhi)
|
3075
|
+
goto nomem2;
|
3076
|
+
}
|
3077
|
+
b = lshift(b, e + s2);
|
3078
|
+
if (!b)
|
3079
|
+
goto nomem2;
|
3080
|
+
s = i2b(1);
|
3081
|
+
if (!s)
|
3082
|
+
goto nomem2;
|
3083
|
+
s = lshift(s, s2);
|
3084
|
+
if (!s)
|
3085
|
+
goto nomem2;
|
3086
|
+
/* At this point we have the following:
|
3087
|
+
* s = 2^s2;
|
3088
|
+
* 1 > df = b/2^s2 > 0;
|
3089
|
+
* (d - prevDouble(d))/2 = mlo/2^s2;
|
3090
|
+
* (nextDouble(d) - d)/2 = mhi/2^s2. */
|
3091
|
+
|
3092
|
+
done = JS_FALSE;
|
3093
|
+
do {
|
3094
|
+
int32 j, j1;
|
3095
|
+
Bigint *delta;
|
3096
|
+
|
3097
|
+
b = multadd(b, base, 0);
|
3098
|
+
if (!b)
|
3099
|
+
goto nomem2;
|
3100
|
+
digit = quorem2(b, s2);
|
3101
|
+
if (mlo == mhi) {
|
3102
|
+
mlo = mhi = multadd(mlo, base, 0);
|
3103
|
+
if (!mhi)
|
3104
|
+
goto nomem2;
|
3105
|
+
}
|
3106
|
+
else {
|
3107
|
+
mlo = multadd(mlo, base, 0);
|
3108
|
+
if (!mlo)
|
3109
|
+
goto nomem2;
|
3110
|
+
mhi = multadd(mhi, base, 0);
|
3111
|
+
if (!mhi)
|
3112
|
+
goto nomem2;
|
3113
|
+
}
|
3114
|
+
|
3115
|
+
/* Do we yet have the shortest string that will round to d? */
|
3116
|
+
j = cmp(b, mlo);
|
3117
|
+
/* j is b/2^s2 compared with mlo/2^s2. */
|
3118
|
+
delta = diff(s, mhi);
|
3119
|
+
if (!delta)
|
3120
|
+
goto nomem2;
|
3121
|
+
j1 = delta->sign ? 1 : cmp(b, delta);
|
3122
|
+
Bfree(delta);
|
3123
|
+
/* j1 is b/2^s2 compared with 1 - mhi/2^s2. */
|
3124
|
+
|
3125
|
+
#ifndef ROUND_BIASED
|
3126
|
+
if (j1 == 0 && !(word1(d) & 1)) {
|
3127
|
+
if (j > 0)
|
3128
|
+
digit++;
|
3129
|
+
done = JS_TRUE;
|
3130
|
+
} else
|
3131
|
+
#endif
|
3132
|
+
if (j < 0 || (j == 0
|
3133
|
+
#ifndef ROUND_BIASED
|
3134
|
+
&& !(word1(d) & 1)
|
3135
|
+
#endif
|
3136
|
+
)) {
|
3137
|
+
if (j1 > 0) {
|
3138
|
+
/* Either dig or dig+1 would work here as the least significant digit.
|
3139
|
+
Use whichever would produce an output value closer to d. */
|
3140
|
+
b = lshift(b, 1);
|
3141
|
+
if (!b)
|
3142
|
+
goto nomem2;
|
3143
|
+
j1 = cmp(b, s);
|
3144
|
+
if (j1 > 0) /* The even test (|| (j1 == 0 && (digit & 1))) is not here because it messes up odd base output
|
3145
|
+
* such as 3.5 in base 3. */
|
3146
|
+
digit++;
|
3147
|
+
}
|
3148
|
+
done = JS_TRUE;
|
3149
|
+
} else if (j1 > 0) {
|
3150
|
+
digit++;
|
3151
|
+
done = JS_TRUE;
|
3152
|
+
}
|
3153
|
+
JS_ASSERT(digit < (uint32)base);
|
3154
|
+
*p++ = BASEDIGIT(digit);
|
3155
|
+
} while (!done);
|
3156
|
+
Bfree(b);
|
3157
|
+
Bfree(s);
|
3158
|
+
if (mlo != mhi)
|
3159
|
+
Bfree(mlo);
|
3160
|
+
Bfree(mhi);
|
3161
|
+
}
|
3162
|
+
JS_ASSERT(p < buffer + DTOBASESTR_BUFFER_SIZE);
|
3163
|
+
*p = '\0';
|
3164
|
+
RELEASE_DTOA_LOCK();
|
3165
|
+
}
|
3166
|
+
return buffer;
|
3167
|
+
}
|