jbarnette-johnson 1.0.0.200806240111 → 1.0.0.200807291507
Sign up to get free protection for your applications and to get access to all the features.
- data/MANIFEST +1 -0
- data/Rakefile +3 -10
- data/bin/johnson +2 -1
- data/ext/spidermonkey/context.c +3 -4
- data/ext/spidermonkey/context.h +1 -1
- data/ext/spidermonkey/conversions.c +39 -33
- data/ext/spidermonkey/debugger.c +5 -5
- data/ext/spidermonkey/immutable_node.c.erb +11 -11
- data/ext/spidermonkey/jroot.h +4 -4
- data/ext/spidermonkey/js_land_proxy.c +9 -8
- data/ext/spidermonkey/ruby_land_proxy.c +5 -4
- data/ext/spidermonkey/runtime.c +1 -1
- data/johnson.gemspec +36 -0
- data/lib/hoe.rb +0 -7
- data/lib/johnson/cli/options.rb +10 -4
- data/lib/johnson/spidermonkey/runtime.rb +2 -2
- data/lib/johnson/version.rb +4 -2
- data/lib/johnson.rb +1 -0
- data/test/johnson/runtime_test.rb +11 -0
- data/test/johnson/spidermonkey/ruby_land_proxy_test.rb +6 -0
- data/vendor/spidermonkey/.cvsignore +9 -0
- data/vendor/spidermonkey/Makefile.in +462 -0
- data/vendor/spidermonkey/Makefile.ref +364 -0
- data/vendor/spidermonkey/README.html +820 -0
- data/vendor/spidermonkey/SpiderMonkey.rsp +12 -0
- data/vendor/spidermonkey/Y.js +19 -0
- data/vendor/spidermonkey/build.mk +43 -0
- data/vendor/spidermonkey/config/AIX4.1.mk +65 -0
- data/vendor/spidermonkey/config/AIX4.2.mk +64 -0
- data/vendor/spidermonkey/config/AIX4.3.mk +65 -0
- data/vendor/spidermonkey/config/Darwin.mk +83 -0
- data/vendor/spidermonkey/config/Darwin1.3.mk +81 -0
- data/vendor/spidermonkey/config/Darwin1.4.mk +41 -0
- data/vendor/spidermonkey/config/Darwin5.2.mk +81 -0
- data/vendor/spidermonkey/config/Darwin5.3.mk +81 -0
- data/vendor/spidermonkey/config/HP-UXB.10.10.mk +77 -0
- data/vendor/spidermonkey/config/HP-UXB.10.20.mk +77 -0
- data/vendor/spidermonkey/config/HP-UXB.11.00.mk +80 -0
- data/vendor/spidermonkey/config/IRIX.mk +87 -0
- data/vendor/spidermonkey/config/IRIX5.3.mk +44 -0
- data/vendor/spidermonkey/config/IRIX6.1.mk +44 -0
- data/vendor/spidermonkey/config/IRIX6.2.mk +44 -0
- data/vendor/spidermonkey/config/IRIX6.3.mk +44 -0
- data/vendor/spidermonkey/config/IRIX6.5.mk +44 -0
- data/vendor/spidermonkey/config/Linux_All.mk +103 -0
- data/vendor/spidermonkey/config/Mac_OS10.0.mk +82 -0
- data/vendor/spidermonkey/config/OSF1V4.0.mk +72 -0
- data/vendor/spidermonkey/config/OSF1V5.0.mk +69 -0
- data/vendor/spidermonkey/config/SunOS4.1.4.mk +101 -0
- data/vendor/spidermonkey/config/SunOS5.10.mk +50 -0
- data/vendor/spidermonkey/config/SunOS5.3.mk +91 -0
- data/vendor/spidermonkey/config/SunOS5.4.mk +92 -0
- data/vendor/spidermonkey/config/SunOS5.5.1.mk +44 -0
- data/vendor/spidermonkey/config/SunOS5.5.mk +87 -0
- data/vendor/spidermonkey/config/SunOS5.6.mk +89 -0
- data/vendor/spidermonkey/config/SunOS5.7.mk +44 -0
- data/vendor/spidermonkey/config/SunOS5.8.mk +44 -0
- data/vendor/spidermonkey/config/SunOS5.9.mk +44 -0
- data/vendor/spidermonkey/config/WINNT4.0.mk +117 -0
- data/vendor/spidermonkey/config/WINNT5.0.mk +117 -0
- data/vendor/spidermonkey/config/WINNT5.1.mk +117 -0
- data/vendor/spidermonkey/config/WINNT5.2.mk +117 -0
- data/vendor/spidermonkey/config/WINNT6.0.mk +117 -0
- data/vendor/spidermonkey/config/dgux.mk +64 -0
- data/vendor/spidermonkey/config.mk +192 -0
- data/vendor/spidermonkey/editline/Makefile.ref +144 -0
- data/vendor/spidermonkey/editline/README +83 -0
- data/vendor/spidermonkey/editline/editline.3 +175 -0
- data/vendor/spidermonkey/editline/editline.c +1369 -0
- data/vendor/spidermonkey/editline/editline.h +135 -0
- data/vendor/spidermonkey/editline/sysunix.c +182 -0
- data/vendor/spidermonkey/editline/unix.h +82 -0
- data/vendor/spidermonkey/fdlibm/.cvsignore +7 -0
- data/vendor/spidermonkey/fdlibm/Makefile.in +127 -0
- data/vendor/spidermonkey/fdlibm/Makefile.ref +192 -0
- data/vendor/spidermonkey/fdlibm/e_acos.c +147 -0
- data/vendor/spidermonkey/fdlibm/e_acosh.c +105 -0
- data/vendor/spidermonkey/fdlibm/e_asin.c +156 -0
- data/vendor/spidermonkey/fdlibm/e_atan2.c +165 -0
- data/vendor/spidermonkey/fdlibm/e_atanh.c +110 -0
- data/vendor/spidermonkey/fdlibm/e_cosh.c +133 -0
- data/vendor/spidermonkey/fdlibm/e_exp.c +202 -0
- data/vendor/spidermonkey/fdlibm/e_fmod.c +184 -0
- data/vendor/spidermonkey/fdlibm/e_gamma.c +71 -0
- data/vendor/spidermonkey/fdlibm/e_gamma_r.c +70 -0
- data/vendor/spidermonkey/fdlibm/e_hypot.c +173 -0
- data/vendor/spidermonkey/fdlibm/e_j0.c +524 -0
- data/vendor/spidermonkey/fdlibm/e_j1.c +523 -0
- data/vendor/spidermonkey/fdlibm/e_jn.c +315 -0
- data/vendor/spidermonkey/fdlibm/e_lgamma.c +71 -0
- data/vendor/spidermonkey/fdlibm/e_lgamma_r.c +347 -0
- data/vendor/spidermonkey/fdlibm/e_log.c +184 -0
- data/vendor/spidermonkey/fdlibm/e_log10.c +134 -0
- data/vendor/spidermonkey/fdlibm/e_pow.c +386 -0
- data/vendor/spidermonkey/fdlibm/e_rem_pio2.c +222 -0
- data/vendor/spidermonkey/fdlibm/e_remainder.c +120 -0
- data/vendor/spidermonkey/fdlibm/e_scalb.c +89 -0
- data/vendor/spidermonkey/fdlibm/e_sinh.c +122 -0
- data/vendor/spidermonkey/fdlibm/e_sqrt.c +497 -0
- data/vendor/spidermonkey/fdlibm/fdlibm.h +273 -0
- data/vendor/spidermonkey/fdlibm/fdlibm.mak +1453 -0
- data/vendor/spidermonkey/fdlibm/fdlibm.mdp +0 -0
- data/vendor/spidermonkey/fdlibm/k_cos.c +135 -0
- data/vendor/spidermonkey/fdlibm/k_rem_pio2.c +354 -0
- data/vendor/spidermonkey/fdlibm/k_sin.c +114 -0
- data/vendor/spidermonkey/fdlibm/k_standard.c +785 -0
- data/vendor/spidermonkey/fdlibm/k_tan.c +170 -0
- data/vendor/spidermonkey/fdlibm/s_asinh.c +101 -0
- data/vendor/spidermonkey/fdlibm/s_atan.c +175 -0
- data/vendor/spidermonkey/fdlibm/s_cbrt.c +133 -0
- data/vendor/spidermonkey/fdlibm/s_ceil.c +120 -0
- data/vendor/spidermonkey/fdlibm/s_copysign.c +72 -0
- data/vendor/spidermonkey/fdlibm/s_cos.c +118 -0
- data/vendor/spidermonkey/fdlibm/s_erf.c +356 -0
- data/vendor/spidermonkey/fdlibm/s_expm1.c +267 -0
- data/vendor/spidermonkey/fdlibm/s_fabs.c +70 -0
- data/vendor/spidermonkey/fdlibm/s_finite.c +71 -0
- data/vendor/spidermonkey/fdlibm/s_floor.c +121 -0
- data/vendor/spidermonkey/fdlibm/s_frexp.c +99 -0
- data/vendor/spidermonkey/fdlibm/s_ilogb.c +85 -0
- data/vendor/spidermonkey/fdlibm/s_isnan.c +74 -0
- data/vendor/spidermonkey/fdlibm/s_ldexp.c +66 -0
- data/vendor/spidermonkey/fdlibm/s_lib_version.c +73 -0
- data/vendor/spidermonkey/fdlibm/s_log1p.c +211 -0
- data/vendor/spidermonkey/fdlibm/s_logb.c +79 -0
- data/vendor/spidermonkey/fdlibm/s_matherr.c +64 -0
- data/vendor/spidermonkey/fdlibm/s_modf.c +132 -0
- data/vendor/spidermonkey/fdlibm/s_nextafter.c +124 -0
- data/vendor/spidermonkey/fdlibm/s_rint.c +131 -0
- data/vendor/spidermonkey/fdlibm/s_scalbn.c +107 -0
- data/vendor/spidermonkey/fdlibm/s_signgam.c +40 -0
- data/vendor/spidermonkey/fdlibm/s_significand.c +68 -0
- data/vendor/spidermonkey/fdlibm/s_sin.c +118 -0
- data/vendor/spidermonkey/fdlibm/s_tan.c +112 -0
- data/vendor/spidermonkey/fdlibm/s_tanh.c +122 -0
- data/vendor/spidermonkey/fdlibm/w_acos.c +78 -0
- data/vendor/spidermonkey/fdlibm/w_acosh.c +78 -0
- data/vendor/spidermonkey/fdlibm/w_asin.c +80 -0
- data/vendor/spidermonkey/fdlibm/w_atan2.c +79 -0
- data/vendor/spidermonkey/fdlibm/w_atanh.c +81 -0
- data/vendor/spidermonkey/fdlibm/w_cosh.c +77 -0
- data/vendor/spidermonkey/fdlibm/w_exp.c +88 -0
- data/vendor/spidermonkey/fdlibm/w_fmod.c +78 -0
- data/vendor/spidermonkey/fdlibm/w_gamma.c +85 -0
- data/vendor/spidermonkey/fdlibm/w_gamma_r.c +81 -0
- data/vendor/spidermonkey/fdlibm/w_hypot.c +78 -0
- data/vendor/spidermonkey/fdlibm/w_j0.c +105 -0
- data/vendor/spidermonkey/fdlibm/w_j1.c +106 -0
- data/vendor/spidermonkey/fdlibm/w_jn.c +128 -0
- data/vendor/spidermonkey/fdlibm/w_lgamma.c +85 -0
- data/vendor/spidermonkey/fdlibm/w_lgamma_r.c +81 -0
- data/vendor/spidermonkey/fdlibm/w_log.c +78 -0
- data/vendor/spidermonkey/fdlibm/w_log10.c +81 -0
- data/vendor/spidermonkey/fdlibm/w_pow.c +99 -0
- data/vendor/spidermonkey/fdlibm/w_remainder.c +77 -0
- data/vendor/spidermonkey/fdlibm/w_scalb.c +95 -0
- data/vendor/spidermonkey/fdlibm/w_sinh.c +77 -0
- data/vendor/spidermonkey/fdlibm/w_sqrt.c +77 -0
- data/vendor/spidermonkey/javascript-trace.d +73 -0
- data/vendor/spidermonkey/js.c +3951 -0
- data/vendor/spidermonkey/js.mak +4438 -0
- data/vendor/spidermonkey/js.mdp +0 -0
- data/vendor/spidermonkey/js.msg +307 -0
- data/vendor/spidermonkey/js.pkg +2 -0
- data/vendor/spidermonkey/js3240.rc +79 -0
- data/vendor/spidermonkey/jsOS240.def +654 -0
- data/vendor/spidermonkey/jsapi.c +5836 -0
- data/vendor/spidermonkey/jsapi.h +2624 -0
- data/vendor/spidermonkey/jsarena.c +450 -0
- data/vendor/spidermonkey/jsarena.h +318 -0
- data/vendor/spidermonkey/jsarray.c +2988 -0
- data/vendor/spidermonkey/jsarray.h +124 -0
- data/vendor/spidermonkey/jsatom.c +1045 -0
- data/vendor/spidermonkey/jsatom.h +442 -0
- data/vendor/spidermonkey/jsbit.h +253 -0
- data/vendor/spidermonkey/jsbool.c +176 -0
- data/vendor/spidermonkey/jsbool.h +73 -0
- data/vendor/spidermonkey/jsclist.h +139 -0
- data/vendor/spidermonkey/jscntxt.c +1348 -0
- data/vendor/spidermonkey/jscntxt.h +1120 -0
- data/vendor/spidermonkey/jscompat.h +57 -0
- data/vendor/spidermonkey/jsconfig.h +248 -0
- data/vendor/spidermonkey/jsconfig.mk +181 -0
- data/vendor/spidermonkey/jscpucfg.c +383 -0
- data/vendor/spidermonkey/jscpucfg.h +212 -0
- data/vendor/spidermonkey/jsdate.c +2398 -0
- data/vendor/spidermonkey/jsdate.h +124 -0
- data/vendor/spidermonkey/jsdbgapi.c +1799 -0
- data/vendor/spidermonkey/jsdbgapi.h +464 -0
- data/vendor/spidermonkey/jsdhash.c +868 -0
- data/vendor/spidermonkey/jsdhash.h +592 -0
- data/vendor/spidermonkey/jsdtoa.c +3167 -0
- data/vendor/spidermonkey/jsdtoa.h +130 -0
- data/vendor/spidermonkey/jsdtracef.c +317 -0
- data/vendor/spidermonkey/jsdtracef.h +77 -0
- data/vendor/spidermonkey/jsemit.c +6909 -0
- data/vendor/spidermonkey/jsemit.h +741 -0
- data/vendor/spidermonkey/jsexn.c +1371 -0
- data/vendor/spidermonkey/jsexn.h +96 -0
- data/vendor/spidermonkey/jsfile.c +2736 -0
- data/vendor/spidermonkey/jsfile.h +56 -0
- data/vendor/spidermonkey/jsfile.msg +90 -0
- data/vendor/spidermonkey/jsfun.c +2634 -0
- data/vendor/spidermonkey/jsfun.h +254 -0
- data/vendor/spidermonkey/jsgc.c +3554 -0
- data/vendor/spidermonkey/jsgc.h +403 -0
- data/vendor/spidermonkey/jshash.c +476 -0
- data/vendor/spidermonkey/jshash.h +151 -0
- data/vendor/spidermonkey/jsify.pl +485 -0
- data/vendor/spidermonkey/jsinterp.c +6981 -0
- data/vendor/spidermonkey/jsinterp.h +521 -0
- data/vendor/spidermonkey/jsinvoke.c +43 -0
- data/vendor/spidermonkey/jsiter.c +1067 -0
- data/vendor/spidermonkey/jsiter.h +122 -0
- data/vendor/spidermonkey/jskeyword.tbl +124 -0
- data/vendor/spidermonkey/jskwgen.c +460 -0
- data/vendor/spidermonkey/jslibmath.h +266 -0
- data/vendor/spidermonkey/jslock.c +1309 -0
- data/vendor/spidermonkey/jslock.h +313 -0
- data/vendor/spidermonkey/jslocko.asm +60 -0
- data/vendor/spidermonkey/jslog2.c +94 -0
- data/vendor/spidermonkey/jslong.c +264 -0
- data/vendor/spidermonkey/jslong.h +412 -0
- data/vendor/spidermonkey/jsmath.c +568 -0
- data/vendor/spidermonkey/jsmath.h +57 -0
- data/vendor/spidermonkey/jsnum.c +1228 -0
- data/vendor/spidermonkey/jsnum.h +283 -0
- data/vendor/spidermonkey/jsobj.c +5266 -0
- data/vendor/spidermonkey/jsobj.h +709 -0
- data/vendor/spidermonkey/jsopcode.c +5245 -0
- data/vendor/spidermonkey/jsopcode.h +394 -0
- data/vendor/spidermonkey/jsopcode.tbl +523 -0
- data/vendor/spidermonkey/jsotypes.h +202 -0
- data/vendor/spidermonkey/jsparse.c +6680 -0
- data/vendor/spidermonkey/jsparse.h +511 -0
- data/vendor/spidermonkey/jsprf.c +1262 -0
- data/vendor/spidermonkey/jsprf.h +150 -0
- data/vendor/spidermonkey/jsproto.tbl +128 -0
- data/vendor/spidermonkey/jsprvtd.h +267 -0
- data/vendor/spidermonkey/jspubtd.h +744 -0
- data/vendor/spidermonkey/jsregexp.c +4352 -0
- data/vendor/spidermonkey/jsregexp.h +183 -0
- data/vendor/spidermonkey/jsreops.tbl +145 -0
- data/vendor/spidermonkey/jsscan.c +2003 -0
- data/vendor/spidermonkey/jsscan.h +387 -0
- data/vendor/spidermonkey/jsscope.c +1948 -0
- data/vendor/spidermonkey/jsscope.h +418 -0
- data/vendor/spidermonkey/jsscript.c +1832 -0
- data/vendor/spidermonkey/jsscript.h +287 -0
- data/vendor/spidermonkey/jsshell.msg +50 -0
- data/vendor/spidermonkey/jsstddef.h +83 -0
- data/vendor/spidermonkey/jsstr.c +5004 -0
- data/vendor/spidermonkey/jsstr.h +641 -0
- data/vendor/spidermonkey/jstypes.h +475 -0
- data/vendor/spidermonkey/jsutil.c +345 -0
- data/vendor/spidermonkey/jsutil.h +157 -0
- data/vendor/spidermonkey/jsxdrapi.c +800 -0
- data/vendor/spidermonkey/jsxdrapi.h +218 -0
- data/vendor/spidermonkey/jsxml.c +8471 -0
- data/vendor/spidermonkey/jsxml.h +349 -0
- data/vendor/spidermonkey/lock_SunOS.s +119 -0
- data/vendor/spidermonkey/perfect.js +39 -0
- data/vendor/spidermonkey/plify_jsdhash.sed +36 -0
- data/vendor/spidermonkey/prmjtime.c +846 -0
- data/vendor/spidermonkey/prmjtime.h +103 -0
- data/vendor/spidermonkey/resource.h +15 -0
- data/vendor/spidermonkey/rules.mk +197 -0
- data/vendor/spidermonkey/win32.order +384 -0
- metadata +4 -3
@@ -0,0 +1,3167 @@
|
|
1
|
+
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
2
|
+
*
|
3
|
+
* ***** BEGIN LICENSE BLOCK *****
|
4
|
+
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
5
|
+
*
|
6
|
+
* The contents of this file are subject to the Mozilla Public License Version
|
7
|
+
* 1.1 (the "License"); you may not use this file except in compliance with
|
8
|
+
* the License. You may obtain a copy of the License at
|
9
|
+
* http://www.mozilla.org/MPL/
|
10
|
+
*
|
11
|
+
* Software distributed under the License is distributed on an "AS IS" basis,
|
12
|
+
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
13
|
+
* for the specific language governing rights and limitations under the
|
14
|
+
* License.
|
15
|
+
*
|
16
|
+
* The Original Code is Mozilla Communicator client code, released
|
17
|
+
* March 31, 1998.
|
18
|
+
*
|
19
|
+
* The Initial Developer of the Original Code is
|
20
|
+
* Netscape Communications Corporation.
|
21
|
+
* Portions created by the Initial Developer are Copyright (C) 1998
|
22
|
+
* the Initial Developer. All Rights Reserved.
|
23
|
+
*
|
24
|
+
* Contributor(s):
|
25
|
+
*
|
26
|
+
* Alternatively, the contents of this file may be used under the terms of
|
27
|
+
* either of the GNU General Public License Version 2 or later (the "GPL"),
|
28
|
+
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
29
|
+
* in which case the provisions of the GPL or the LGPL are applicable instead
|
30
|
+
* of those above. If you wish to allow use of your version of this file only
|
31
|
+
* under the terms of either the GPL or the LGPL, and not to allow others to
|
32
|
+
* use your version of this file under the terms of the MPL, indicate your
|
33
|
+
* decision by deleting the provisions above and replace them with the notice
|
34
|
+
* and other provisions required by the GPL or the LGPL. If you do not delete
|
35
|
+
* the provisions above, a recipient may use your version of this file under
|
36
|
+
* the terms of any one of the MPL, the GPL or the LGPL.
|
37
|
+
*
|
38
|
+
* ***** END LICENSE BLOCK ***** */
|
39
|
+
|
40
|
+
/*
|
41
|
+
* Portable double to alphanumeric string and back converters.
|
42
|
+
*/
|
43
|
+
#include "jsstddef.h"
|
44
|
+
#include "jslibmath.h"
|
45
|
+
#include "jstypes.h"
|
46
|
+
#include "jsdtoa.h"
|
47
|
+
#include "jsprf.h"
|
48
|
+
#include "jsutil.h" /* Added by JSIFY */
|
49
|
+
#include "jspubtd.h"
|
50
|
+
#include "jsnum.h"
|
51
|
+
#include "jsbit.h"
|
52
|
+
|
53
|
+
#ifdef JS_THREADSAFE
|
54
|
+
#include "prlock.h"
|
55
|
+
#endif
|
56
|
+
|
57
|
+
/****************************************************************
|
58
|
+
*
|
59
|
+
* The author of this software is David M. Gay.
|
60
|
+
*
|
61
|
+
* Copyright (c) 1991 by Lucent Technologies.
|
62
|
+
*
|
63
|
+
* Permission to use, copy, modify, and distribute this software for any
|
64
|
+
* purpose without fee is hereby granted, provided that this entire notice
|
65
|
+
* is included in all copies of any software which is or includes a copy
|
66
|
+
* or modification of this software and in all copies of the supporting
|
67
|
+
* documentation for such software.
|
68
|
+
*
|
69
|
+
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
|
70
|
+
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
|
71
|
+
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
|
72
|
+
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
|
73
|
+
*
|
74
|
+
***************************************************************/
|
75
|
+
|
76
|
+
/* Please send bug reports to
|
77
|
+
David M. Gay
|
78
|
+
Bell Laboratories, Room 2C-463
|
79
|
+
600 Mountain Avenue
|
80
|
+
Murray Hill, NJ 07974-0636
|
81
|
+
U.S.A.
|
82
|
+
dmg@bell-labs.com
|
83
|
+
*/
|
84
|
+
|
85
|
+
/* On a machine with IEEE extended-precision registers, it is
|
86
|
+
* necessary to specify double-precision (53-bit) rounding precision
|
87
|
+
* before invoking strtod or dtoa. If the machine uses (the equivalent
|
88
|
+
* of) Intel 80x87 arithmetic, the call
|
89
|
+
* _control87(PC_53, MCW_PC);
|
90
|
+
* does this with many compilers. Whether this or another call is
|
91
|
+
* appropriate depends on the compiler; for this to work, it may be
|
92
|
+
* necessary to #include "float.h" or another system-dependent header
|
93
|
+
* file.
|
94
|
+
*/
|
95
|
+
|
96
|
+
/* strtod for IEEE-arithmetic machines.
|
97
|
+
*
|
98
|
+
* This strtod returns a nearest machine number to the input decimal
|
99
|
+
* string (or sets err to JS_DTOA_ERANGE or JS_DTOA_ENOMEM). With IEEE
|
100
|
+
* arithmetic, ties are broken by the IEEE round-even rule. Otherwise
|
101
|
+
* ties are broken by biased rounding (add half and chop).
|
102
|
+
*
|
103
|
+
* Inspired loosely by William D. Clinger's paper "How to Read Floating
|
104
|
+
* Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
|
105
|
+
*
|
106
|
+
* Modifications:
|
107
|
+
*
|
108
|
+
* 1. We only require IEEE double-precision
|
109
|
+
* arithmetic (not IEEE double-extended).
|
110
|
+
* 2. We get by with floating-point arithmetic in a case that
|
111
|
+
* Clinger missed -- when we're computing d * 10^n
|
112
|
+
* for a small integer d and the integer n is not too
|
113
|
+
* much larger than 22 (the maximum integer k for which
|
114
|
+
* we can represent 10^k exactly), we may be able to
|
115
|
+
* compute (d*10^k) * 10^(e-k) with just one roundoff.
|
116
|
+
* 3. Rather than a bit-at-a-time adjustment of the binary
|
117
|
+
* result in the hard case, we use floating-point
|
118
|
+
* arithmetic to determine the adjustment to within
|
119
|
+
* one bit; only in really hard cases do we need to
|
120
|
+
* compute a second residual.
|
121
|
+
* 4. Because of 3., we don't need a large table of powers of 10
|
122
|
+
* for ten-to-e (just some small tables, e.g. of 10^k
|
123
|
+
* for 0 <= k <= 22).
|
124
|
+
*/
|
125
|
+
|
126
|
+
/*
|
127
|
+
* #define IEEE_8087 for IEEE-arithmetic machines where the least
|
128
|
+
* significant byte has the lowest address.
|
129
|
+
* #define IEEE_MC68k for IEEE-arithmetic machines where the most
|
130
|
+
* significant byte has the lowest address.
|
131
|
+
* #define Long int on machines with 32-bit ints and 64-bit longs.
|
132
|
+
* #define Sudden_Underflow for IEEE-format machines without gradual
|
133
|
+
* underflow (i.e., that flush to zero on underflow).
|
134
|
+
* #define No_leftright to omit left-right logic in fast floating-point
|
135
|
+
* computation of js_dtoa.
|
136
|
+
* #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
|
137
|
+
* #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
|
138
|
+
* that use extended-precision instructions to compute rounded
|
139
|
+
* products and quotients) with IBM.
|
140
|
+
* #define ROUND_BIASED for IEEE-format with biased rounding.
|
141
|
+
* #define Inaccurate_Divide for IEEE-format with correctly rounded
|
142
|
+
* products but inaccurate quotients, e.g., for Intel i860.
|
143
|
+
* #define JS_HAVE_LONG_LONG on machines that have a "long long"
|
144
|
+
* integer type (of >= 64 bits). If long long is available and the name is
|
145
|
+
* something other than "long long", #define Llong to be the name,
|
146
|
+
* and if "unsigned Llong" does not work as an unsigned version of
|
147
|
+
* Llong, #define #ULLong to be the corresponding unsigned type.
|
148
|
+
* #define Bad_float_h if your system lacks a float.h or if it does not
|
149
|
+
* define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
|
150
|
+
* FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
|
151
|
+
* #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
|
152
|
+
* if memory is available and otherwise does something you deem
|
153
|
+
* appropriate. If MALLOC is undefined, malloc will be invoked
|
154
|
+
* directly -- and assumed always to succeed.
|
155
|
+
* #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
|
156
|
+
* memory allocations from a private pool of memory when possible.
|
157
|
+
* When used, the private pool is PRIVATE_MEM bytes long: 2000 bytes,
|
158
|
+
* unless #defined to be a different length. This default length
|
159
|
+
* suffices to get rid of MALLOC calls except for unusual cases,
|
160
|
+
* such as decimal-to-binary conversion of a very long string of
|
161
|
+
* digits.
|
162
|
+
* #define INFNAN_CHECK on IEEE systems to cause strtod to check for
|
163
|
+
* Infinity and NaN (case insensitively). On some systems (e.g.,
|
164
|
+
* some HP systems), it may be necessary to #define NAN_WORD0
|
165
|
+
* appropriately -- to the most significant word of a quiet NaN.
|
166
|
+
* (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
|
167
|
+
* #define MULTIPLE_THREADS if the system offers preemptively scheduled
|
168
|
+
* multiple threads. In this case, you must provide (or suitably
|
169
|
+
* #define) two locks, acquired by ACQUIRE_DTOA_LOCK() and released
|
170
|
+
* by RELEASE_DTOA_LOCK(). (The second lock, accessed
|
171
|
+
* in pow5mult, ensures lazy evaluation of only one copy of high
|
172
|
+
* powers of 5; omitting this lock would introduce a small
|
173
|
+
* probability of wasting memory, but would otherwise be harmless.)
|
174
|
+
* You must also invoke freedtoa(s) to free the value s returned by
|
175
|
+
* dtoa. You may do so whether or not MULTIPLE_THREADS is #defined.
|
176
|
+
* #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
|
177
|
+
* avoids underflows on inputs whose result does not underflow.
|
178
|
+
*/
|
179
|
+
#ifdef IS_LITTLE_ENDIAN
|
180
|
+
#define IEEE_8087
|
181
|
+
#else
|
182
|
+
#define IEEE_MC68k
|
183
|
+
#endif
|
184
|
+
|
185
|
+
#ifndef Long
|
186
|
+
#define Long int32
|
187
|
+
#endif
|
188
|
+
|
189
|
+
#ifndef ULong
|
190
|
+
#define ULong uint32
|
191
|
+
#endif
|
192
|
+
|
193
|
+
#define Bug(errorMessageString) JS_ASSERT(!errorMessageString)
|
194
|
+
|
195
|
+
#include "stdlib.h"
|
196
|
+
#include "string.h"
|
197
|
+
|
198
|
+
#ifdef MALLOC
|
199
|
+
extern void *MALLOC(size_t);
|
200
|
+
#else
|
201
|
+
#define MALLOC malloc
|
202
|
+
#endif
|
203
|
+
|
204
|
+
#define Omit_Private_Memory
|
205
|
+
/* Private memory currently doesn't work with JS_THREADSAFE */
|
206
|
+
#ifndef Omit_Private_Memory
|
207
|
+
#ifndef PRIVATE_MEM
|
208
|
+
#define PRIVATE_MEM 2000
|
209
|
+
#endif
|
210
|
+
#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
|
211
|
+
static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
|
212
|
+
#endif
|
213
|
+
|
214
|
+
#ifdef Bad_float_h
|
215
|
+
#undef __STDC__
|
216
|
+
|
217
|
+
#define DBL_DIG 15
|
218
|
+
#define DBL_MAX_10_EXP 308
|
219
|
+
#define DBL_MAX_EXP 1024
|
220
|
+
#define FLT_RADIX 2
|
221
|
+
#define FLT_ROUNDS 1
|
222
|
+
#define DBL_MAX 1.7976931348623157e+308
|
223
|
+
|
224
|
+
|
225
|
+
|
226
|
+
#ifndef LONG_MAX
|
227
|
+
#define LONG_MAX 2147483647
|
228
|
+
#endif
|
229
|
+
|
230
|
+
#else /* ifndef Bad_float_h */
|
231
|
+
#include "float.h"
|
232
|
+
#endif /* Bad_float_h */
|
233
|
+
|
234
|
+
#ifndef __MATH_H__
|
235
|
+
#include "math.h"
|
236
|
+
#endif
|
237
|
+
|
238
|
+
#ifndef CONST
|
239
|
+
#define CONST const
|
240
|
+
#endif
|
241
|
+
|
242
|
+
#if defined(IEEE_8087) + defined(IEEE_MC68k) != 1
|
243
|
+
Exactly one of IEEE_8087 or IEEE_MC68k should be defined.
|
244
|
+
#endif
|
245
|
+
|
246
|
+
#define word0(x) JSDOUBLE_HI32(x)
|
247
|
+
#define set_word0(x, y) JSDOUBLE_SET_HI32(x, y)
|
248
|
+
#define word1(x) JSDOUBLE_LO32(x)
|
249
|
+
#define set_word1(x, y) JSDOUBLE_SET_LO32(x, y)
|
250
|
+
|
251
|
+
#define Storeinc(a,b,c) (*(a)++ = (b) << 16 | (c) & 0xffff)
|
252
|
+
|
253
|
+
/* #define P DBL_MANT_DIG */
|
254
|
+
/* Ten_pmax = floor(P*log(2)/log(5)) */
|
255
|
+
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
|
256
|
+
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
|
257
|
+
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
|
258
|
+
|
259
|
+
#define Exp_shift 20
|
260
|
+
#define Exp_shift1 20
|
261
|
+
#define Exp_msk1 0x100000
|
262
|
+
#define Exp_msk11 0x100000
|
263
|
+
#define Exp_mask 0x7ff00000
|
264
|
+
#define P 53
|
265
|
+
#define Bias 1023
|
266
|
+
#define Emin (-1022)
|
267
|
+
#define Exp_1 0x3ff00000
|
268
|
+
#define Exp_11 0x3ff00000
|
269
|
+
#define Ebits 11
|
270
|
+
#define Frac_mask 0xfffff
|
271
|
+
#define Frac_mask1 0xfffff
|
272
|
+
#define Ten_pmax 22
|
273
|
+
#define Bletch 0x10
|
274
|
+
#define Bndry_mask 0xfffff
|
275
|
+
#define Bndry_mask1 0xfffff
|
276
|
+
#define LSB 1
|
277
|
+
#define Sign_bit 0x80000000
|
278
|
+
#define Log2P 1
|
279
|
+
#define Tiny0 0
|
280
|
+
#define Tiny1 1
|
281
|
+
#define Quick_max 14
|
282
|
+
#define Int_max 14
|
283
|
+
#define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */
|
284
|
+
#ifndef NO_IEEE_Scale
|
285
|
+
#define Avoid_Underflow
|
286
|
+
#endif
|
287
|
+
|
288
|
+
|
289
|
+
|
290
|
+
#ifdef RND_PRODQUOT
|
291
|
+
#define rounded_product(a,b) a = rnd_prod(a, b)
|
292
|
+
#define rounded_quotient(a,b) a = rnd_quot(a, b)
|
293
|
+
extern double rnd_prod(double, double), rnd_quot(double, double);
|
294
|
+
#else
|
295
|
+
#define rounded_product(a,b) a *= b
|
296
|
+
#define rounded_quotient(a,b) a /= b
|
297
|
+
#endif
|
298
|
+
|
299
|
+
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
|
300
|
+
#define Big1 0xffffffff
|
301
|
+
|
302
|
+
#ifndef JS_HAVE_LONG_LONG
|
303
|
+
#undef ULLong
|
304
|
+
#else /* long long available */
|
305
|
+
#ifndef Llong
|
306
|
+
#define Llong JSInt64
|
307
|
+
#endif
|
308
|
+
#ifndef ULLong
|
309
|
+
#define ULLong JSUint64
|
310
|
+
#endif
|
311
|
+
#endif /* JS_HAVE_LONG_LONG */
|
312
|
+
|
313
|
+
#ifdef JS_THREADSAFE
|
314
|
+
#define MULTIPLE_THREADS
|
315
|
+
static PRLock *freelist_lock;
|
316
|
+
#define ACQUIRE_DTOA_LOCK() \
|
317
|
+
JS_BEGIN_MACRO \
|
318
|
+
if (!initialized) \
|
319
|
+
InitDtoa(); \
|
320
|
+
PR_Lock(freelist_lock); \
|
321
|
+
JS_END_MACRO
|
322
|
+
#define RELEASE_DTOA_LOCK() PR_Unlock(freelist_lock)
|
323
|
+
#else
|
324
|
+
#undef MULTIPLE_THREADS
|
325
|
+
#define ACQUIRE_DTOA_LOCK() /*nothing*/
|
326
|
+
#define RELEASE_DTOA_LOCK() /*nothing*/
|
327
|
+
#endif
|
328
|
+
|
329
|
+
#define Kmax 15
|
330
|
+
|
331
|
+
struct Bigint {
|
332
|
+
struct Bigint *next; /* Free list link */
|
333
|
+
int32 k; /* lg2(maxwds) */
|
334
|
+
int32 maxwds; /* Number of words allocated for x */
|
335
|
+
int32 sign; /* Zero if positive, 1 if negative. Ignored by most Bigint routines! */
|
336
|
+
int32 wds; /* Actual number of words. If value is nonzero, the most significant word must be nonzero. */
|
337
|
+
ULong x[1]; /* wds words of number in little endian order */
|
338
|
+
};
|
339
|
+
|
340
|
+
#ifdef ENABLE_OOM_TESTING
|
341
|
+
/* Out-of-memory testing. Use a good testcase (over and over) and then use
|
342
|
+
* these routines to cause a memory failure on every possible Balloc allocation,
|
343
|
+
* to make sure that all out-of-memory paths can be followed. See bug 14044.
|
344
|
+
*/
|
345
|
+
|
346
|
+
static int allocationNum; /* which allocation is next? */
|
347
|
+
static int desiredFailure; /* which allocation should fail? */
|
348
|
+
|
349
|
+
/**
|
350
|
+
* js_BigintTestingReset
|
351
|
+
*
|
352
|
+
* Call at the beginning of a test run to set the allocation failure position.
|
353
|
+
* (Set to 0 to just have the engine count allocations without failing.)
|
354
|
+
*/
|
355
|
+
JS_PUBLIC_API(void)
|
356
|
+
js_BigintTestingReset(int newFailure)
|
357
|
+
{
|
358
|
+
allocationNum = 0;
|
359
|
+
desiredFailure = newFailure;
|
360
|
+
}
|
361
|
+
|
362
|
+
/**
|
363
|
+
* js_BigintTestingWhere
|
364
|
+
*
|
365
|
+
* Report the current allocation position. This is really only useful when you
|
366
|
+
* want to learn how many allocations a test run has.
|
367
|
+
*/
|
368
|
+
JS_PUBLIC_API(int)
|
369
|
+
js_BigintTestingWhere()
|
370
|
+
{
|
371
|
+
return allocationNum;
|
372
|
+
}
|
373
|
+
|
374
|
+
|
375
|
+
/*
|
376
|
+
* So here's what you do: Set up a fantastic test case that exercises the
|
377
|
+
* elements of the code you wish. Set the failure point at 0 and run the test,
|
378
|
+
* then get the allocation position. This number is the number of allocations
|
379
|
+
* your test makes. Now loop from 1 to that number, setting the failure point
|
380
|
+
* at each loop count, and run the test over and over, causing failures at each
|
381
|
+
* step. Any memory failure *should* cause a Out-Of-Memory exception; if it
|
382
|
+
* doesn't, then there's still an error here.
|
383
|
+
*/
|
384
|
+
#endif
|
385
|
+
|
386
|
+
typedef struct Bigint Bigint;
|
387
|
+
|
388
|
+
static Bigint *freelist[Kmax+1];
|
389
|
+
|
390
|
+
/*
|
391
|
+
* Allocate a Bigint with 2^k words.
|
392
|
+
* This is not threadsafe. The caller must use thread locks
|
393
|
+
*/
|
394
|
+
static Bigint *Balloc(int32 k)
|
395
|
+
{
|
396
|
+
int32 x;
|
397
|
+
Bigint *rv;
|
398
|
+
#ifndef Omit_Private_Memory
|
399
|
+
uint32 len;
|
400
|
+
#endif
|
401
|
+
|
402
|
+
#ifdef ENABLE_OOM_TESTING
|
403
|
+
if (++allocationNum == desiredFailure) {
|
404
|
+
printf("Forced Failing Allocation number %d\n", allocationNum);
|
405
|
+
return NULL;
|
406
|
+
}
|
407
|
+
#endif
|
408
|
+
|
409
|
+
if ((rv = freelist[k]) != NULL)
|
410
|
+
freelist[k] = rv->next;
|
411
|
+
if (rv == NULL) {
|
412
|
+
x = 1 << k;
|
413
|
+
#ifdef Omit_Private_Memory
|
414
|
+
rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
|
415
|
+
#else
|
416
|
+
len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
|
417
|
+
/sizeof(double);
|
418
|
+
if (pmem_next - private_mem + len <= PRIVATE_mem) {
|
419
|
+
rv = (Bigint*)pmem_next;
|
420
|
+
pmem_next += len;
|
421
|
+
}
|
422
|
+
else
|
423
|
+
rv = (Bigint*)MALLOC(len*sizeof(double));
|
424
|
+
#endif
|
425
|
+
if (!rv)
|
426
|
+
return NULL;
|
427
|
+
rv->k = k;
|
428
|
+
rv->maxwds = x;
|
429
|
+
}
|
430
|
+
rv->sign = rv->wds = 0;
|
431
|
+
return rv;
|
432
|
+
}
|
433
|
+
|
434
|
+
static void Bfree(Bigint *v)
|
435
|
+
{
|
436
|
+
if (v) {
|
437
|
+
v->next = freelist[v->k];
|
438
|
+
freelist[v->k] = v;
|
439
|
+
}
|
440
|
+
}
|
441
|
+
|
442
|
+
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
|
443
|
+
y->wds*sizeof(Long) + 2*sizeof(int32))
|
444
|
+
|
445
|
+
/* Return b*m + a. Deallocate the old b. Both a and m must be between 0 and
|
446
|
+
* 65535 inclusive. NOTE: old b is deallocated on memory failure.
|
447
|
+
*/
|
448
|
+
static Bigint *multadd(Bigint *b, int32 m, int32 a)
|
449
|
+
{
|
450
|
+
int32 i, wds;
|
451
|
+
#ifdef ULLong
|
452
|
+
ULong *x;
|
453
|
+
ULLong carry, y;
|
454
|
+
#else
|
455
|
+
ULong carry, *x, y;
|
456
|
+
ULong xi, z;
|
457
|
+
#endif
|
458
|
+
Bigint *b1;
|
459
|
+
|
460
|
+
#ifdef ENABLE_OOM_TESTING
|
461
|
+
if (++allocationNum == desiredFailure) {
|
462
|
+
/* Faux allocation, because I'm not getting all of the failure paths
|
463
|
+
* without it.
|
464
|
+
*/
|
465
|
+
printf("Forced Failing Allocation number %d\n", allocationNum);
|
466
|
+
Bfree(b);
|
467
|
+
return NULL;
|
468
|
+
}
|
469
|
+
#endif
|
470
|
+
|
471
|
+
wds = b->wds;
|
472
|
+
x = b->x;
|
473
|
+
i = 0;
|
474
|
+
carry = a;
|
475
|
+
do {
|
476
|
+
#ifdef ULLong
|
477
|
+
y = *x * (ULLong)m + carry;
|
478
|
+
carry = y >> 32;
|
479
|
+
*x++ = (ULong)(y & 0xffffffffUL);
|
480
|
+
#else
|
481
|
+
xi = *x;
|
482
|
+
y = (xi & 0xffff) * m + carry;
|
483
|
+
z = (xi >> 16) * m + (y >> 16);
|
484
|
+
carry = z >> 16;
|
485
|
+
*x++ = (z << 16) + (y & 0xffff);
|
486
|
+
#endif
|
487
|
+
}
|
488
|
+
while(++i < wds);
|
489
|
+
if (carry) {
|
490
|
+
if (wds >= b->maxwds) {
|
491
|
+
b1 = Balloc(b->k+1);
|
492
|
+
if (!b1) {
|
493
|
+
Bfree(b);
|
494
|
+
return NULL;
|
495
|
+
}
|
496
|
+
Bcopy(b1, b);
|
497
|
+
Bfree(b);
|
498
|
+
b = b1;
|
499
|
+
}
|
500
|
+
b->x[wds++] = (ULong)carry;
|
501
|
+
b->wds = wds;
|
502
|
+
}
|
503
|
+
return b;
|
504
|
+
}
|
505
|
+
|
506
|
+
static Bigint *s2b(CONST char *s, int32 nd0, int32 nd, ULong y9)
|
507
|
+
{
|
508
|
+
Bigint *b;
|
509
|
+
int32 i, k;
|
510
|
+
Long x, y;
|
511
|
+
|
512
|
+
x = (nd + 8) / 9;
|
513
|
+
for(k = 0, y = 1; x > y; y <<= 1, k++) ;
|
514
|
+
b = Balloc(k);
|
515
|
+
if (!b)
|
516
|
+
return NULL;
|
517
|
+
b->x[0] = y9;
|
518
|
+
b->wds = 1;
|
519
|
+
|
520
|
+
i = 9;
|
521
|
+
if (9 < nd0) {
|
522
|
+
s += 9;
|
523
|
+
do {
|
524
|
+
b = multadd(b, 10, *s++ - '0');
|
525
|
+
if (!b)
|
526
|
+
return NULL;
|
527
|
+
} while(++i < nd0);
|
528
|
+
s++;
|
529
|
+
}
|
530
|
+
else
|
531
|
+
s += 10;
|
532
|
+
for(; i < nd; i++) {
|
533
|
+
b = multadd(b, 10, *s++ - '0');
|
534
|
+
if (!b)
|
535
|
+
return NULL;
|
536
|
+
}
|
537
|
+
return b;
|
538
|
+
}
|
539
|
+
|
540
|
+
|
541
|
+
/* Return the number (0 through 32) of most significant zero bits in x. */
|
542
|
+
static int32 hi0bits(register ULong x)
|
543
|
+
{
|
544
|
+
#ifdef JS_HAS_BUILTIN_BITSCAN32
|
545
|
+
return( (!x) ? 32 : js_bitscan_clz32(x) );
|
546
|
+
#else
|
547
|
+
register int32 k = 0;
|
548
|
+
|
549
|
+
if (!(x & 0xffff0000)) {
|
550
|
+
k = 16;
|
551
|
+
x <<= 16;
|
552
|
+
}
|
553
|
+
if (!(x & 0xff000000)) {
|
554
|
+
k += 8;
|
555
|
+
x <<= 8;
|
556
|
+
}
|
557
|
+
if (!(x & 0xf0000000)) {
|
558
|
+
k += 4;
|
559
|
+
x <<= 4;
|
560
|
+
}
|
561
|
+
if (!(x & 0xc0000000)) {
|
562
|
+
k += 2;
|
563
|
+
x <<= 2;
|
564
|
+
}
|
565
|
+
if (!(x & 0x80000000)) {
|
566
|
+
k++;
|
567
|
+
if (!(x & 0x40000000))
|
568
|
+
return 32;
|
569
|
+
}
|
570
|
+
return k;
|
571
|
+
#endif /* JS_HAS_BUILTIN_BITSCAN32 */
|
572
|
+
}
|
573
|
+
|
574
|
+
|
575
|
+
/* Return the number (0 through 32) of least significant zero bits in y.
|
576
|
+
* Also shift y to the right past these 0 through 32 zeros so that y's
|
577
|
+
* least significant bit will be set unless y was originally zero. */
|
578
|
+
static int32 lo0bits(ULong *y)
|
579
|
+
{
|
580
|
+
#ifdef JS_HAS_BUILTIN_BITSCAN32
|
581
|
+
int32 k;
|
582
|
+
ULong x = *y;
|
583
|
+
|
584
|
+
if (x>1)
|
585
|
+
*y = ( x >> (k = js_bitscan_ctz32(x)) );
|
586
|
+
else
|
587
|
+
k = ((x ^ 1) << 5);
|
588
|
+
#else
|
589
|
+
register int32 k;
|
590
|
+
register ULong x = *y;
|
591
|
+
|
592
|
+
if (x & 7) {
|
593
|
+
if (x & 1)
|
594
|
+
return 0;
|
595
|
+
if (x & 2) {
|
596
|
+
*y = x >> 1;
|
597
|
+
return 1;
|
598
|
+
}
|
599
|
+
*y = x >> 2;
|
600
|
+
return 2;
|
601
|
+
}
|
602
|
+
k = 0;
|
603
|
+
if (!(x & 0xffff)) {
|
604
|
+
k = 16;
|
605
|
+
x >>= 16;
|
606
|
+
}
|
607
|
+
if (!(x & 0xff)) {
|
608
|
+
k += 8;
|
609
|
+
x >>= 8;
|
610
|
+
}
|
611
|
+
if (!(x & 0xf)) {
|
612
|
+
k += 4;
|
613
|
+
x >>= 4;
|
614
|
+
}
|
615
|
+
if (!(x & 0x3)) {
|
616
|
+
k += 2;
|
617
|
+
x >>= 2;
|
618
|
+
}
|
619
|
+
if (!(x & 1)) {
|
620
|
+
k++;
|
621
|
+
x >>= 1;
|
622
|
+
if (!x & 1)
|
623
|
+
return 32;
|
624
|
+
}
|
625
|
+
*y = x;
|
626
|
+
#endif /* JS_HAS_BUILTIN_BITSCAN32 */
|
627
|
+
return k;
|
628
|
+
}
|
629
|
+
|
630
|
+
/* Return a new Bigint with the given integer value, which must be nonnegative. */
|
631
|
+
static Bigint *i2b(int32 i)
|
632
|
+
{
|
633
|
+
Bigint *b;
|
634
|
+
|
635
|
+
b = Balloc(1);
|
636
|
+
if (!b)
|
637
|
+
return NULL;
|
638
|
+
b->x[0] = i;
|
639
|
+
b->wds = 1;
|
640
|
+
return b;
|
641
|
+
}
|
642
|
+
|
643
|
+
/* Return a newly allocated product of a and b. */
|
644
|
+
static Bigint *mult(CONST Bigint *a, CONST Bigint *b)
|
645
|
+
{
|
646
|
+
CONST Bigint *t;
|
647
|
+
Bigint *c;
|
648
|
+
int32 k, wa, wb, wc;
|
649
|
+
ULong y;
|
650
|
+
ULong *xc, *xc0, *xce;
|
651
|
+
CONST ULong *x, *xa, *xae, *xb, *xbe;
|
652
|
+
#ifdef ULLong
|
653
|
+
ULLong carry, z;
|
654
|
+
#else
|
655
|
+
ULong carry, z;
|
656
|
+
ULong z2;
|
657
|
+
#endif
|
658
|
+
|
659
|
+
if (a->wds < b->wds) {
|
660
|
+
t = a;
|
661
|
+
a = b;
|
662
|
+
b = t;
|
663
|
+
}
|
664
|
+
k = a->k;
|
665
|
+
wa = a->wds;
|
666
|
+
wb = b->wds;
|
667
|
+
wc = wa + wb;
|
668
|
+
if (wc > a->maxwds)
|
669
|
+
k++;
|
670
|
+
c = Balloc(k);
|
671
|
+
if (!c)
|
672
|
+
return NULL;
|
673
|
+
for(xc = c->x, xce = xc + wc; xc < xce; xc++)
|
674
|
+
*xc = 0;
|
675
|
+
xa = a->x;
|
676
|
+
xae = xa + wa;
|
677
|
+
xb = b->x;
|
678
|
+
xbe = xb + wb;
|
679
|
+
xc0 = c->x;
|
680
|
+
#ifdef ULLong
|
681
|
+
for(; xb < xbe; xc0++) {
|
682
|
+
if ((y = *xb++) != 0) {
|
683
|
+
x = xa;
|
684
|
+
xc = xc0;
|
685
|
+
carry = 0;
|
686
|
+
do {
|
687
|
+
z = *x++ * (ULLong)y + *xc + carry;
|
688
|
+
carry = z >> 32;
|
689
|
+
*xc++ = (ULong)(z & 0xffffffffUL);
|
690
|
+
}
|
691
|
+
while(x < xae);
|
692
|
+
*xc = (ULong)carry;
|
693
|
+
}
|
694
|
+
}
|
695
|
+
#else
|
696
|
+
for(; xb < xbe; xb++, xc0++) {
|
697
|
+
if ((y = *xb & 0xffff) != 0) {
|
698
|
+
x = xa;
|
699
|
+
xc = xc0;
|
700
|
+
carry = 0;
|
701
|
+
do {
|
702
|
+
z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
|
703
|
+
carry = z >> 16;
|
704
|
+
z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
|
705
|
+
carry = z2 >> 16;
|
706
|
+
Storeinc(xc, z2, z);
|
707
|
+
}
|
708
|
+
while(x < xae);
|
709
|
+
*xc = carry;
|
710
|
+
}
|
711
|
+
if ((y = *xb >> 16) != 0) {
|
712
|
+
x = xa;
|
713
|
+
xc = xc0;
|
714
|
+
carry = 0;
|
715
|
+
z2 = *xc;
|
716
|
+
do {
|
717
|
+
z = (*x & 0xffff) * y + (*xc >> 16) + carry;
|
718
|
+
carry = z >> 16;
|
719
|
+
Storeinc(xc, z, z2);
|
720
|
+
z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
|
721
|
+
carry = z2 >> 16;
|
722
|
+
}
|
723
|
+
while(x < xae);
|
724
|
+
*xc = z2;
|
725
|
+
}
|
726
|
+
}
|
727
|
+
#endif
|
728
|
+
for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
|
729
|
+
c->wds = wc;
|
730
|
+
return c;
|
731
|
+
}
|
732
|
+
|
733
|
+
/*
|
734
|
+
* 'p5s' points to a linked list of Bigints that are powers of 5.
|
735
|
+
* This list grows on demand, and it can only grow: it won't change
|
736
|
+
* in any other way. So if we read 'p5s' or the 'next' field of
|
737
|
+
* some Bigint on the list, and it is not NULL, we know it won't
|
738
|
+
* change to NULL or some other value. Only when the value of
|
739
|
+
* 'p5s' or 'next' is NULL do we need to acquire the lock and add
|
740
|
+
* a new Bigint to the list.
|
741
|
+
*/
|
742
|
+
|
743
|
+
static Bigint *p5s;
|
744
|
+
|
745
|
+
#ifdef JS_THREADSAFE
|
746
|
+
static PRLock *p5s_lock;
|
747
|
+
#endif
|
748
|
+
|
749
|
+
/* Return b * 5^k. Deallocate the old b. k must be nonnegative. */
|
750
|
+
/* NOTE: old b is deallocated on memory failure. */
|
751
|
+
static Bigint *pow5mult(Bigint *b, int32 k)
|
752
|
+
{
|
753
|
+
Bigint *b1, *p5, *p51;
|
754
|
+
int32 i;
|
755
|
+
static CONST int32 p05[3] = { 5, 25, 125 };
|
756
|
+
|
757
|
+
if ((i = k & 3) != 0) {
|
758
|
+
b = multadd(b, p05[i-1], 0);
|
759
|
+
if (!b)
|
760
|
+
return NULL;
|
761
|
+
}
|
762
|
+
|
763
|
+
if (!(k >>= 2))
|
764
|
+
return b;
|
765
|
+
if (!(p5 = p5s)) {
|
766
|
+
#ifdef JS_THREADSAFE
|
767
|
+
/*
|
768
|
+
* We take great care to not call i2b() and Bfree()
|
769
|
+
* while holding the lock.
|
770
|
+
*/
|
771
|
+
Bigint *wasted_effort = NULL;
|
772
|
+
p5 = i2b(625);
|
773
|
+
if (!p5) {
|
774
|
+
Bfree(b);
|
775
|
+
return NULL;
|
776
|
+
}
|
777
|
+
/* lock and check again */
|
778
|
+
PR_Lock(p5s_lock);
|
779
|
+
if (!p5s) {
|
780
|
+
/* first time */
|
781
|
+
p5s = p5;
|
782
|
+
p5->next = 0;
|
783
|
+
} else {
|
784
|
+
/* some other thread just beat us */
|
785
|
+
wasted_effort = p5;
|
786
|
+
p5 = p5s;
|
787
|
+
}
|
788
|
+
PR_Unlock(p5s_lock);
|
789
|
+
if (wasted_effort) {
|
790
|
+
Bfree(wasted_effort);
|
791
|
+
}
|
792
|
+
#else
|
793
|
+
/* first time */
|
794
|
+
p5 = p5s = i2b(625);
|
795
|
+
if (!p5) {
|
796
|
+
Bfree(b);
|
797
|
+
return NULL;
|
798
|
+
}
|
799
|
+
p5->next = 0;
|
800
|
+
#endif
|
801
|
+
}
|
802
|
+
for(;;) {
|
803
|
+
if (k & 1) {
|
804
|
+
b1 = mult(b, p5);
|
805
|
+
Bfree(b);
|
806
|
+
if (!b1)
|
807
|
+
return NULL;
|
808
|
+
b = b1;
|
809
|
+
}
|
810
|
+
if (!(k >>= 1))
|
811
|
+
break;
|
812
|
+
if (!(p51 = p5->next)) {
|
813
|
+
#ifdef JS_THREADSAFE
|
814
|
+
Bigint *wasted_effort = NULL;
|
815
|
+
p51 = mult(p5, p5);
|
816
|
+
if (!p51) {
|
817
|
+
Bfree(b);
|
818
|
+
return NULL;
|
819
|
+
}
|
820
|
+
PR_Lock(p5s_lock);
|
821
|
+
if (!p5->next) {
|
822
|
+
p5->next = p51;
|
823
|
+
p51->next = 0;
|
824
|
+
} else {
|
825
|
+
wasted_effort = p51;
|
826
|
+
p51 = p5->next;
|
827
|
+
}
|
828
|
+
PR_Unlock(p5s_lock);
|
829
|
+
if (wasted_effort) {
|
830
|
+
Bfree(wasted_effort);
|
831
|
+
}
|
832
|
+
#else
|
833
|
+
p51 = mult(p5,p5);
|
834
|
+
if (!p51) {
|
835
|
+
Bfree(b);
|
836
|
+
return NULL;
|
837
|
+
}
|
838
|
+
p51->next = 0;
|
839
|
+
p5->next = p51;
|
840
|
+
#endif
|
841
|
+
}
|
842
|
+
p5 = p51;
|
843
|
+
}
|
844
|
+
return b;
|
845
|
+
}
|
846
|
+
|
847
|
+
/* Return b * 2^k. Deallocate the old b. k must be nonnegative.
|
848
|
+
* NOTE: on memory failure, old b is deallocated. */
|
849
|
+
static Bigint *lshift(Bigint *b, int32 k)
|
850
|
+
{
|
851
|
+
int32 i, k1, n, n1;
|
852
|
+
Bigint *b1;
|
853
|
+
ULong *x, *x1, *xe, z;
|
854
|
+
|
855
|
+
n = k >> 5;
|
856
|
+
k1 = b->k;
|
857
|
+
n1 = n + b->wds + 1;
|
858
|
+
for(i = b->maxwds; n1 > i; i <<= 1)
|
859
|
+
k1++;
|
860
|
+
b1 = Balloc(k1);
|
861
|
+
if (!b1)
|
862
|
+
goto done;
|
863
|
+
x1 = b1->x;
|
864
|
+
for(i = 0; i < n; i++)
|
865
|
+
*x1++ = 0;
|
866
|
+
x = b->x;
|
867
|
+
xe = x + b->wds;
|
868
|
+
if (k &= 0x1f) {
|
869
|
+
k1 = 32 - k;
|
870
|
+
z = 0;
|
871
|
+
do {
|
872
|
+
*x1++ = *x << k | z;
|
873
|
+
z = *x++ >> k1;
|
874
|
+
}
|
875
|
+
while(x < xe);
|
876
|
+
if ((*x1 = z) != 0)
|
877
|
+
++n1;
|
878
|
+
}
|
879
|
+
else do
|
880
|
+
*x1++ = *x++;
|
881
|
+
while(x < xe);
|
882
|
+
b1->wds = n1 - 1;
|
883
|
+
done:
|
884
|
+
Bfree(b);
|
885
|
+
return b1;
|
886
|
+
}
|
887
|
+
|
888
|
+
/* Return -1, 0, or 1 depending on whether a<b, a==b, or a>b, respectively. */
|
889
|
+
static int32 cmp(Bigint *a, Bigint *b)
|
890
|
+
{
|
891
|
+
ULong *xa, *xa0, *xb, *xb0;
|
892
|
+
int32 i, j;
|
893
|
+
|
894
|
+
i = a->wds;
|
895
|
+
j = b->wds;
|
896
|
+
#ifdef DEBUG
|
897
|
+
if (i > 1 && !a->x[i-1])
|
898
|
+
Bug("cmp called with a->x[a->wds-1] == 0");
|
899
|
+
if (j > 1 && !b->x[j-1])
|
900
|
+
Bug("cmp called with b->x[b->wds-1] == 0");
|
901
|
+
#endif
|
902
|
+
if (i -= j)
|
903
|
+
return i;
|
904
|
+
xa0 = a->x;
|
905
|
+
xa = xa0 + j;
|
906
|
+
xb0 = b->x;
|
907
|
+
xb = xb0 + j;
|
908
|
+
for(;;) {
|
909
|
+
if (*--xa != *--xb)
|
910
|
+
return *xa < *xb ? -1 : 1;
|
911
|
+
if (xa <= xa0)
|
912
|
+
break;
|
913
|
+
}
|
914
|
+
return 0;
|
915
|
+
}
|
916
|
+
|
917
|
+
static Bigint *diff(Bigint *a, Bigint *b)
|
918
|
+
{
|
919
|
+
Bigint *c;
|
920
|
+
int32 i, wa, wb;
|
921
|
+
ULong *xa, *xae, *xb, *xbe, *xc;
|
922
|
+
#ifdef ULLong
|
923
|
+
ULLong borrow, y;
|
924
|
+
#else
|
925
|
+
ULong borrow, y;
|
926
|
+
ULong z;
|
927
|
+
#endif
|
928
|
+
|
929
|
+
i = cmp(a,b);
|
930
|
+
if (!i) {
|
931
|
+
c = Balloc(0);
|
932
|
+
if (!c)
|
933
|
+
return NULL;
|
934
|
+
c->wds = 1;
|
935
|
+
c->x[0] = 0;
|
936
|
+
return c;
|
937
|
+
}
|
938
|
+
if (i < 0) {
|
939
|
+
c = a;
|
940
|
+
a = b;
|
941
|
+
b = c;
|
942
|
+
i = 1;
|
943
|
+
}
|
944
|
+
else
|
945
|
+
i = 0;
|
946
|
+
c = Balloc(a->k);
|
947
|
+
if (!c)
|
948
|
+
return NULL;
|
949
|
+
c->sign = i;
|
950
|
+
wa = a->wds;
|
951
|
+
xa = a->x;
|
952
|
+
xae = xa + wa;
|
953
|
+
wb = b->wds;
|
954
|
+
xb = b->x;
|
955
|
+
xbe = xb + wb;
|
956
|
+
xc = c->x;
|
957
|
+
borrow = 0;
|
958
|
+
#ifdef ULLong
|
959
|
+
do {
|
960
|
+
y = (ULLong)*xa++ - *xb++ - borrow;
|
961
|
+
borrow = y >> 32 & 1UL;
|
962
|
+
*xc++ = (ULong)(y & 0xffffffffUL);
|
963
|
+
}
|
964
|
+
while(xb < xbe);
|
965
|
+
while(xa < xae) {
|
966
|
+
y = *xa++ - borrow;
|
967
|
+
borrow = y >> 32 & 1UL;
|
968
|
+
*xc++ = (ULong)(y & 0xffffffffUL);
|
969
|
+
}
|
970
|
+
#else
|
971
|
+
do {
|
972
|
+
y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
|
973
|
+
borrow = (y & 0x10000) >> 16;
|
974
|
+
z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
|
975
|
+
borrow = (z & 0x10000) >> 16;
|
976
|
+
Storeinc(xc, z, y);
|
977
|
+
}
|
978
|
+
while(xb < xbe);
|
979
|
+
while(xa < xae) {
|
980
|
+
y = (*xa & 0xffff) - borrow;
|
981
|
+
borrow = (y & 0x10000) >> 16;
|
982
|
+
z = (*xa++ >> 16) - borrow;
|
983
|
+
borrow = (z & 0x10000) >> 16;
|
984
|
+
Storeinc(xc, z, y);
|
985
|
+
}
|
986
|
+
#endif
|
987
|
+
while(!*--xc)
|
988
|
+
wa--;
|
989
|
+
c->wds = wa;
|
990
|
+
return c;
|
991
|
+
}
|
992
|
+
|
993
|
+
/* Return the absolute difference between x and the adjacent greater-magnitude double number (ignoring exponent overflows). */
|
994
|
+
static double ulp(double x)
|
995
|
+
{
|
996
|
+
register Long L;
|
997
|
+
double a = 0;
|
998
|
+
|
999
|
+
L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
|
1000
|
+
#ifndef Sudden_Underflow
|
1001
|
+
if (L > 0) {
|
1002
|
+
#endif
|
1003
|
+
set_word0(a, L);
|
1004
|
+
set_word1(a, 0);
|
1005
|
+
#ifndef Sudden_Underflow
|
1006
|
+
}
|
1007
|
+
else {
|
1008
|
+
L = -L >> Exp_shift;
|
1009
|
+
if (L < Exp_shift) {
|
1010
|
+
set_word0(a, 0x80000 >> L);
|
1011
|
+
set_word1(a, 0);
|
1012
|
+
}
|
1013
|
+
else {
|
1014
|
+
set_word0(a, 0);
|
1015
|
+
L -= Exp_shift;
|
1016
|
+
set_word1(a, L >= 31 ? 1 : 1 << (31 - L));
|
1017
|
+
}
|
1018
|
+
}
|
1019
|
+
#endif
|
1020
|
+
return a;
|
1021
|
+
}
|
1022
|
+
|
1023
|
+
|
1024
|
+
static double b2d(Bigint *a, int32 *e)
|
1025
|
+
{
|
1026
|
+
ULong *xa, *xa0, w, y, z;
|
1027
|
+
int32 k;
|
1028
|
+
double d = 0;
|
1029
|
+
#define d0 word0(d)
|
1030
|
+
#define d1 word1(d)
|
1031
|
+
#define set_d0(x) set_word0(d, x)
|
1032
|
+
#define set_d1(x) set_word1(d, x)
|
1033
|
+
|
1034
|
+
xa0 = a->x;
|
1035
|
+
xa = xa0 + a->wds;
|
1036
|
+
y = *--xa;
|
1037
|
+
#ifdef DEBUG
|
1038
|
+
if (!y) Bug("zero y in b2d");
|
1039
|
+
#endif
|
1040
|
+
k = hi0bits(y);
|
1041
|
+
*e = 32 - k;
|
1042
|
+
if (k < Ebits) {
|
1043
|
+
set_d0(Exp_1 | y >> (Ebits - k));
|
1044
|
+
w = xa > xa0 ? *--xa : 0;
|
1045
|
+
set_d1(y << (32-Ebits + k) | w >> (Ebits - k));
|
1046
|
+
goto ret_d;
|
1047
|
+
}
|
1048
|
+
z = xa > xa0 ? *--xa : 0;
|
1049
|
+
if (k -= Ebits) {
|
1050
|
+
set_d0(Exp_1 | y << k | z >> (32 - k));
|
1051
|
+
y = xa > xa0 ? *--xa : 0;
|
1052
|
+
set_d1(z << k | y >> (32 - k));
|
1053
|
+
}
|
1054
|
+
else {
|
1055
|
+
set_d0(Exp_1 | y);
|
1056
|
+
set_d1(z);
|
1057
|
+
}
|
1058
|
+
ret_d:
|
1059
|
+
#undef d0
|
1060
|
+
#undef d1
|
1061
|
+
#undef set_d0
|
1062
|
+
#undef set_d1
|
1063
|
+
return d;
|
1064
|
+
}
|
1065
|
+
|
1066
|
+
|
1067
|
+
/* Convert d into the form b*2^e, where b is an odd integer. b is the returned
|
1068
|
+
* Bigint and e is the returned binary exponent. Return the number of significant
|
1069
|
+
* bits in b in bits. d must be finite and nonzero. */
|
1070
|
+
static Bigint *d2b(double d, int32 *e, int32 *bits)
|
1071
|
+
{
|
1072
|
+
Bigint *b;
|
1073
|
+
int32 de, i, k;
|
1074
|
+
ULong *x, y, z;
|
1075
|
+
#define d0 word0(d)
|
1076
|
+
#define d1 word1(d)
|
1077
|
+
#define set_d0(x) set_word0(d, x)
|
1078
|
+
#define set_d1(x) set_word1(d, x)
|
1079
|
+
|
1080
|
+
b = Balloc(1);
|
1081
|
+
if (!b)
|
1082
|
+
return NULL;
|
1083
|
+
x = b->x;
|
1084
|
+
|
1085
|
+
z = d0 & Frac_mask;
|
1086
|
+
set_d0(d0 & 0x7fffffff); /* clear sign bit, which we ignore */
|
1087
|
+
#ifdef Sudden_Underflow
|
1088
|
+
de = (int32)(d0 >> Exp_shift);
|
1089
|
+
z |= Exp_msk11;
|
1090
|
+
#else
|
1091
|
+
if ((de = (int32)(d0 >> Exp_shift)) != 0)
|
1092
|
+
z |= Exp_msk1;
|
1093
|
+
#endif
|
1094
|
+
if ((y = d1) != 0) {
|
1095
|
+
if ((k = lo0bits(&y)) != 0) {
|
1096
|
+
x[0] = y | z << (32 - k);
|
1097
|
+
z >>= k;
|
1098
|
+
}
|
1099
|
+
else
|
1100
|
+
x[0] = y;
|
1101
|
+
i = b->wds = (x[1] = z) ? 2 : 1;
|
1102
|
+
}
|
1103
|
+
else {
|
1104
|
+
JS_ASSERT(z);
|
1105
|
+
k = lo0bits(&z);
|
1106
|
+
x[0] = z;
|
1107
|
+
i = b->wds = 1;
|
1108
|
+
k += 32;
|
1109
|
+
}
|
1110
|
+
#ifndef Sudden_Underflow
|
1111
|
+
if (de) {
|
1112
|
+
#endif
|
1113
|
+
*e = de - Bias - (P-1) + k;
|
1114
|
+
*bits = P - k;
|
1115
|
+
#ifndef Sudden_Underflow
|
1116
|
+
}
|
1117
|
+
else {
|
1118
|
+
*e = de - Bias - (P-1) + 1 + k;
|
1119
|
+
*bits = 32*i - hi0bits(x[i-1]);
|
1120
|
+
}
|
1121
|
+
#endif
|
1122
|
+
return b;
|
1123
|
+
}
|
1124
|
+
#undef d0
|
1125
|
+
#undef d1
|
1126
|
+
#undef set_d0
|
1127
|
+
#undef set_d1
|
1128
|
+
|
1129
|
+
|
1130
|
+
static double ratio(Bigint *a, Bigint *b)
|
1131
|
+
{
|
1132
|
+
double da, db;
|
1133
|
+
int32 k, ka, kb;
|
1134
|
+
|
1135
|
+
da = b2d(a, &ka);
|
1136
|
+
db = b2d(b, &kb);
|
1137
|
+
k = ka - kb + 32*(a->wds - b->wds);
|
1138
|
+
if (k > 0)
|
1139
|
+
set_word0(da, word0(da) + k*Exp_msk1);
|
1140
|
+
else {
|
1141
|
+
k = -k;
|
1142
|
+
set_word0(db, word0(db) + k*Exp_msk1);
|
1143
|
+
}
|
1144
|
+
return da / db;
|
1145
|
+
}
|
1146
|
+
|
1147
|
+
static CONST double
|
1148
|
+
tens[] = {
|
1149
|
+
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
|
1150
|
+
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
|
1151
|
+
1e20, 1e21, 1e22
|
1152
|
+
};
|
1153
|
+
|
1154
|
+
static CONST double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
|
1155
|
+
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
|
1156
|
+
#ifdef Avoid_Underflow
|
1157
|
+
9007199254740992.e-256
|
1158
|
+
#else
|
1159
|
+
1e-256
|
1160
|
+
#endif
|
1161
|
+
};
|
1162
|
+
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
|
1163
|
+
/* flag unnecessarily. It leads to a song and dance at the end of strtod. */
|
1164
|
+
#define Scale_Bit 0x10
|
1165
|
+
#define n_bigtens 5
|
1166
|
+
|
1167
|
+
|
1168
|
+
#ifdef INFNAN_CHECK
|
1169
|
+
|
1170
|
+
#ifndef NAN_WORD0
|
1171
|
+
#define NAN_WORD0 0x7ff80000
|
1172
|
+
#endif
|
1173
|
+
|
1174
|
+
#ifndef NAN_WORD1
|
1175
|
+
#define NAN_WORD1 0
|
1176
|
+
#endif
|
1177
|
+
|
1178
|
+
static int match(CONST char **sp, char *t)
|
1179
|
+
{
|
1180
|
+
int c, d;
|
1181
|
+
CONST char *s = *sp;
|
1182
|
+
|
1183
|
+
while(d = *t++) {
|
1184
|
+
if ((c = *++s) >= 'A' && c <= 'Z')
|
1185
|
+
c += 'a' - 'A';
|
1186
|
+
if (c != d)
|
1187
|
+
return 0;
|
1188
|
+
}
|
1189
|
+
*sp = s + 1;
|
1190
|
+
return 1;
|
1191
|
+
}
|
1192
|
+
#endif /* INFNAN_CHECK */
|
1193
|
+
|
1194
|
+
|
1195
|
+
#ifdef JS_THREADSAFE
|
1196
|
+
static JSBool initialized = JS_FALSE;
|
1197
|
+
|
1198
|
+
/* hacked replica of nspr _PR_InitDtoa */
|
1199
|
+
static void InitDtoa(void)
|
1200
|
+
{
|
1201
|
+
freelist_lock = PR_NewLock();
|
1202
|
+
p5s_lock = PR_NewLock();
|
1203
|
+
initialized = JS_TRUE;
|
1204
|
+
}
|
1205
|
+
#endif
|
1206
|
+
|
1207
|
+
void js_FinishDtoa(void)
|
1208
|
+
{
|
1209
|
+
int count;
|
1210
|
+
Bigint *temp;
|
1211
|
+
|
1212
|
+
#ifdef JS_THREADSAFE
|
1213
|
+
if (initialized == JS_TRUE) {
|
1214
|
+
PR_DestroyLock(freelist_lock);
|
1215
|
+
PR_DestroyLock(p5s_lock);
|
1216
|
+
initialized = JS_FALSE;
|
1217
|
+
}
|
1218
|
+
#endif
|
1219
|
+
|
1220
|
+
/* clear down the freelist array and p5s */
|
1221
|
+
|
1222
|
+
/* static Bigint *freelist[Kmax+1]; */
|
1223
|
+
for (count = 0; count <= Kmax; count++) {
|
1224
|
+
Bigint **listp = &freelist[count];
|
1225
|
+
while ((temp = *listp) != NULL) {
|
1226
|
+
*listp = temp->next;
|
1227
|
+
free(temp);
|
1228
|
+
}
|
1229
|
+
freelist[count] = NULL;
|
1230
|
+
}
|
1231
|
+
|
1232
|
+
/* static Bigint *p5s; */
|
1233
|
+
while (p5s) {
|
1234
|
+
temp = p5s;
|
1235
|
+
p5s = p5s->next;
|
1236
|
+
free(temp);
|
1237
|
+
}
|
1238
|
+
}
|
1239
|
+
|
1240
|
+
/* nspr2 watcom bug ifdef omitted */
|
1241
|
+
|
1242
|
+
JS_FRIEND_API(double)
|
1243
|
+
JS_strtod(CONST char *s00, char **se, int *err)
|
1244
|
+
{
|
1245
|
+
int32 scale;
|
1246
|
+
int32 bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
|
1247
|
+
e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
|
1248
|
+
CONST char *s, *s0, *s1;
|
1249
|
+
double aadj, aadj1, adj, rv, rv0;
|
1250
|
+
Long L;
|
1251
|
+
ULong y, z;
|
1252
|
+
Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
|
1253
|
+
|
1254
|
+
*err = 0;
|
1255
|
+
|
1256
|
+
bb = bd = bs = delta = NULL;
|
1257
|
+
sign = nz0 = nz = 0;
|
1258
|
+
rv = 0.;
|
1259
|
+
|
1260
|
+
/* Locking for Balloc's shared buffers that will be used in this block */
|
1261
|
+
ACQUIRE_DTOA_LOCK();
|
1262
|
+
|
1263
|
+
for(s = s00;;s++) switch(*s) {
|
1264
|
+
case '-':
|
1265
|
+
sign = 1;
|
1266
|
+
/* no break */
|
1267
|
+
case '+':
|
1268
|
+
if (*++s)
|
1269
|
+
goto break2;
|
1270
|
+
/* no break */
|
1271
|
+
case 0:
|
1272
|
+
s = s00;
|
1273
|
+
goto ret;
|
1274
|
+
case '\t':
|
1275
|
+
case '\n':
|
1276
|
+
case '\v':
|
1277
|
+
case '\f':
|
1278
|
+
case '\r':
|
1279
|
+
case ' ':
|
1280
|
+
continue;
|
1281
|
+
default:
|
1282
|
+
goto break2;
|
1283
|
+
}
|
1284
|
+
break2:
|
1285
|
+
|
1286
|
+
if (*s == '0') {
|
1287
|
+
nz0 = 1;
|
1288
|
+
while(*++s == '0') ;
|
1289
|
+
if (!*s)
|
1290
|
+
goto ret;
|
1291
|
+
}
|
1292
|
+
s0 = s;
|
1293
|
+
y = z = 0;
|
1294
|
+
for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
|
1295
|
+
if (nd < 9)
|
1296
|
+
y = 10*y + c - '0';
|
1297
|
+
else if (nd < 16)
|
1298
|
+
z = 10*z + c - '0';
|
1299
|
+
nd0 = nd;
|
1300
|
+
if (c == '.') {
|
1301
|
+
c = *++s;
|
1302
|
+
if (!nd) {
|
1303
|
+
for(; c == '0'; c = *++s)
|
1304
|
+
nz++;
|
1305
|
+
if (c > '0' && c <= '9') {
|
1306
|
+
s0 = s;
|
1307
|
+
nf += nz;
|
1308
|
+
nz = 0;
|
1309
|
+
goto have_dig;
|
1310
|
+
}
|
1311
|
+
goto dig_done;
|
1312
|
+
}
|
1313
|
+
for(; c >= '0' && c <= '9'; c = *++s) {
|
1314
|
+
have_dig:
|
1315
|
+
nz++;
|
1316
|
+
if (c -= '0') {
|
1317
|
+
nf += nz;
|
1318
|
+
for(i = 1; i < nz; i++)
|
1319
|
+
if (nd++ < 9)
|
1320
|
+
y *= 10;
|
1321
|
+
else if (nd <= DBL_DIG + 1)
|
1322
|
+
z *= 10;
|
1323
|
+
if (nd++ < 9)
|
1324
|
+
y = 10*y + c;
|
1325
|
+
else if (nd <= DBL_DIG + 1)
|
1326
|
+
z = 10*z + c;
|
1327
|
+
nz = 0;
|
1328
|
+
}
|
1329
|
+
}
|
1330
|
+
}
|
1331
|
+
dig_done:
|
1332
|
+
e = 0;
|
1333
|
+
if (c == 'e' || c == 'E') {
|
1334
|
+
if (!nd && !nz && !nz0) {
|
1335
|
+
s = s00;
|
1336
|
+
goto ret;
|
1337
|
+
}
|
1338
|
+
s00 = s;
|
1339
|
+
esign = 0;
|
1340
|
+
switch(c = *++s) {
|
1341
|
+
case '-':
|
1342
|
+
esign = 1;
|
1343
|
+
case '+':
|
1344
|
+
c = *++s;
|
1345
|
+
}
|
1346
|
+
if (c >= '0' && c <= '9') {
|
1347
|
+
while(c == '0')
|
1348
|
+
c = *++s;
|
1349
|
+
if (c > '0' && c <= '9') {
|
1350
|
+
L = c - '0';
|
1351
|
+
s1 = s;
|
1352
|
+
while((c = *++s) >= '0' && c <= '9')
|
1353
|
+
L = 10*L + c - '0';
|
1354
|
+
if (s - s1 > 8 || L > 19999)
|
1355
|
+
/* Avoid confusion from exponents
|
1356
|
+
* so large that e might overflow.
|
1357
|
+
*/
|
1358
|
+
e = 19999; /* safe for 16 bit ints */
|
1359
|
+
else
|
1360
|
+
e = (int32)L;
|
1361
|
+
if (esign)
|
1362
|
+
e = -e;
|
1363
|
+
}
|
1364
|
+
else
|
1365
|
+
e = 0;
|
1366
|
+
}
|
1367
|
+
else
|
1368
|
+
s = s00;
|
1369
|
+
}
|
1370
|
+
if (!nd) {
|
1371
|
+
if (!nz && !nz0) {
|
1372
|
+
#ifdef INFNAN_CHECK
|
1373
|
+
/* Check for Nan and Infinity */
|
1374
|
+
switch(c) {
|
1375
|
+
case 'i':
|
1376
|
+
case 'I':
|
1377
|
+
if (match(&s,"nfinity")) {
|
1378
|
+
set_word0(rv, 0x7ff00000);
|
1379
|
+
set_word1(rv, 0);
|
1380
|
+
goto ret;
|
1381
|
+
}
|
1382
|
+
break;
|
1383
|
+
case 'n':
|
1384
|
+
case 'N':
|
1385
|
+
if (match(&s, "an")) {
|
1386
|
+
set_word0(rv, NAN_WORD0);
|
1387
|
+
set_word1(rv, NAN_WORD1);
|
1388
|
+
goto ret;
|
1389
|
+
}
|
1390
|
+
}
|
1391
|
+
#endif /* INFNAN_CHECK */
|
1392
|
+
s = s00;
|
1393
|
+
}
|
1394
|
+
goto ret;
|
1395
|
+
}
|
1396
|
+
e1 = e -= nf;
|
1397
|
+
|
1398
|
+
/* Now we have nd0 digits, starting at s0, followed by a
|
1399
|
+
* decimal point, followed by nd-nd0 digits. The number we're
|
1400
|
+
* after is the integer represented by those digits times
|
1401
|
+
* 10**e */
|
1402
|
+
|
1403
|
+
if (!nd0)
|
1404
|
+
nd0 = nd;
|
1405
|
+
k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
|
1406
|
+
rv = y;
|
1407
|
+
if (k > 9)
|
1408
|
+
rv = tens[k - 9] * rv + z;
|
1409
|
+
bd0 = 0;
|
1410
|
+
if (nd <= DBL_DIG
|
1411
|
+
#ifndef RND_PRODQUOT
|
1412
|
+
&& FLT_ROUNDS == 1
|
1413
|
+
#endif
|
1414
|
+
) {
|
1415
|
+
if (!e)
|
1416
|
+
goto ret;
|
1417
|
+
if (e > 0) {
|
1418
|
+
if (e <= Ten_pmax) {
|
1419
|
+
/* rv = */ rounded_product(rv, tens[e]);
|
1420
|
+
goto ret;
|
1421
|
+
}
|
1422
|
+
i = DBL_DIG - nd;
|
1423
|
+
if (e <= Ten_pmax + i) {
|
1424
|
+
/* A fancier test would sometimes let us do
|
1425
|
+
* this for larger i values.
|
1426
|
+
*/
|
1427
|
+
e -= i;
|
1428
|
+
rv *= tens[i];
|
1429
|
+
/* rv = */ rounded_product(rv, tens[e]);
|
1430
|
+
goto ret;
|
1431
|
+
}
|
1432
|
+
}
|
1433
|
+
#ifndef Inaccurate_Divide
|
1434
|
+
else if (e >= -Ten_pmax) {
|
1435
|
+
/* rv = */ rounded_quotient(rv, tens[-e]);
|
1436
|
+
goto ret;
|
1437
|
+
}
|
1438
|
+
#endif
|
1439
|
+
}
|
1440
|
+
e1 += nd - k;
|
1441
|
+
|
1442
|
+
scale = 0;
|
1443
|
+
|
1444
|
+
/* Get starting approximation = rv * 10**e1 */
|
1445
|
+
|
1446
|
+
if (e1 > 0) {
|
1447
|
+
if ((i = e1 & 15) != 0)
|
1448
|
+
rv *= tens[i];
|
1449
|
+
if (e1 &= ~15) {
|
1450
|
+
if (e1 > DBL_MAX_10_EXP) {
|
1451
|
+
ovfl:
|
1452
|
+
*err = JS_DTOA_ERANGE;
|
1453
|
+
#ifdef __STDC__
|
1454
|
+
rv = HUGE_VAL;
|
1455
|
+
#else
|
1456
|
+
/* Can't trust HUGE_VAL */
|
1457
|
+
set_word0(rv, Exp_mask);
|
1458
|
+
set_word1(rv, 0);
|
1459
|
+
#endif
|
1460
|
+
if (bd0)
|
1461
|
+
goto retfree;
|
1462
|
+
goto ret;
|
1463
|
+
}
|
1464
|
+
e1 >>= 4;
|
1465
|
+
for(j = 0; e1 > 1; j++, e1 >>= 1)
|
1466
|
+
if (e1 & 1)
|
1467
|
+
rv *= bigtens[j];
|
1468
|
+
/* The last multiplication could overflow. */
|
1469
|
+
set_word0(rv, word0(rv) - P*Exp_msk1);
|
1470
|
+
rv *= bigtens[j];
|
1471
|
+
if ((z = word0(rv) & Exp_mask) > Exp_msk1*(DBL_MAX_EXP+Bias-P))
|
1472
|
+
goto ovfl;
|
1473
|
+
if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
|
1474
|
+
/* set to largest number */
|
1475
|
+
/* (Can't trust DBL_MAX) */
|
1476
|
+
set_word0(rv, Big0);
|
1477
|
+
set_word1(rv, Big1);
|
1478
|
+
}
|
1479
|
+
else
|
1480
|
+
set_word0(rv, word0(rv) + P*Exp_msk1);
|
1481
|
+
}
|
1482
|
+
}
|
1483
|
+
else if (e1 < 0) {
|
1484
|
+
e1 = -e1;
|
1485
|
+
if ((i = e1 & 15) != 0)
|
1486
|
+
rv /= tens[i];
|
1487
|
+
if (e1 &= ~15) {
|
1488
|
+
e1 >>= 4;
|
1489
|
+
if (e1 >= 1 << n_bigtens)
|
1490
|
+
goto undfl;
|
1491
|
+
#ifdef Avoid_Underflow
|
1492
|
+
if (e1 & Scale_Bit)
|
1493
|
+
scale = P;
|
1494
|
+
for(j = 0; e1 > 0; j++, e1 >>= 1)
|
1495
|
+
if (e1 & 1)
|
1496
|
+
rv *= tinytens[j];
|
1497
|
+
if (scale && (j = P + 1 - ((word0(rv) & Exp_mask)
|
1498
|
+
>> Exp_shift)) > 0) {
|
1499
|
+
/* scaled rv is denormal; zap j low bits */
|
1500
|
+
if (j >= 32) {
|
1501
|
+
set_word1(rv, 0);
|
1502
|
+
set_word0(rv, word0(rv) & (0xffffffff << (j-32)));
|
1503
|
+
if (!word0(rv))
|
1504
|
+
set_word0(rv, 1);
|
1505
|
+
}
|
1506
|
+
else
|
1507
|
+
set_word1(rv, word1(rv) & (0xffffffff << j));
|
1508
|
+
}
|
1509
|
+
#else
|
1510
|
+
for(j = 0; e1 > 1; j++, e1 >>= 1)
|
1511
|
+
if (e1 & 1)
|
1512
|
+
rv *= tinytens[j];
|
1513
|
+
/* The last multiplication could underflow. */
|
1514
|
+
rv0 = rv;
|
1515
|
+
rv *= tinytens[j];
|
1516
|
+
if (!rv) {
|
1517
|
+
rv = 2.*rv0;
|
1518
|
+
rv *= tinytens[j];
|
1519
|
+
#endif
|
1520
|
+
if (!rv) {
|
1521
|
+
undfl:
|
1522
|
+
rv = 0.;
|
1523
|
+
*err = JS_DTOA_ERANGE;
|
1524
|
+
if (bd0)
|
1525
|
+
goto retfree;
|
1526
|
+
goto ret;
|
1527
|
+
}
|
1528
|
+
#ifndef Avoid_Underflow
|
1529
|
+
set_word0(rv, Tiny0);
|
1530
|
+
set_word1(rv, Tiny1);
|
1531
|
+
/* The refinement below will clean
|
1532
|
+
* this approximation up.
|
1533
|
+
*/
|
1534
|
+
}
|
1535
|
+
#endif
|
1536
|
+
}
|
1537
|
+
}
|
1538
|
+
|
1539
|
+
/* Now the hard part -- adjusting rv to the correct value.*/
|
1540
|
+
|
1541
|
+
/* Put digits into bd: true value = bd * 10^e */
|
1542
|
+
|
1543
|
+
bd0 = s2b(s0, nd0, nd, y);
|
1544
|
+
if (!bd0)
|
1545
|
+
goto nomem;
|
1546
|
+
|
1547
|
+
for(;;) {
|
1548
|
+
bd = Balloc(bd0->k);
|
1549
|
+
if (!bd)
|
1550
|
+
goto nomem;
|
1551
|
+
Bcopy(bd, bd0);
|
1552
|
+
bb = d2b(rv, &bbe, &bbbits); /* rv = bb * 2^bbe */
|
1553
|
+
if (!bb)
|
1554
|
+
goto nomem;
|
1555
|
+
bs = i2b(1);
|
1556
|
+
if (!bs)
|
1557
|
+
goto nomem;
|
1558
|
+
|
1559
|
+
if (e >= 0) {
|
1560
|
+
bb2 = bb5 = 0;
|
1561
|
+
bd2 = bd5 = e;
|
1562
|
+
}
|
1563
|
+
else {
|
1564
|
+
bb2 = bb5 = -e;
|
1565
|
+
bd2 = bd5 = 0;
|
1566
|
+
}
|
1567
|
+
if (bbe >= 0)
|
1568
|
+
bb2 += bbe;
|
1569
|
+
else
|
1570
|
+
bd2 -= bbe;
|
1571
|
+
bs2 = bb2;
|
1572
|
+
#ifdef Sudden_Underflow
|
1573
|
+
j = P + 1 - bbbits;
|
1574
|
+
#else
|
1575
|
+
#ifdef Avoid_Underflow
|
1576
|
+
j = bbe - scale;
|
1577
|
+
#else
|
1578
|
+
j = bbe;
|
1579
|
+
#endif
|
1580
|
+
i = j + bbbits - 1; /* logb(rv) */
|
1581
|
+
if (i < Emin) /* denormal */
|
1582
|
+
j += P - Emin;
|
1583
|
+
else
|
1584
|
+
j = P + 1 - bbbits;
|
1585
|
+
#endif
|
1586
|
+
bb2 += j;
|
1587
|
+
bd2 += j;
|
1588
|
+
#ifdef Avoid_Underflow
|
1589
|
+
bd2 += scale;
|
1590
|
+
#endif
|
1591
|
+
i = bb2 < bd2 ? bb2 : bd2;
|
1592
|
+
if (i > bs2)
|
1593
|
+
i = bs2;
|
1594
|
+
if (i > 0) {
|
1595
|
+
bb2 -= i;
|
1596
|
+
bd2 -= i;
|
1597
|
+
bs2 -= i;
|
1598
|
+
}
|
1599
|
+
if (bb5 > 0) {
|
1600
|
+
bs = pow5mult(bs, bb5);
|
1601
|
+
if (!bs)
|
1602
|
+
goto nomem;
|
1603
|
+
bb1 = mult(bs, bb);
|
1604
|
+
if (!bb1)
|
1605
|
+
goto nomem;
|
1606
|
+
Bfree(bb);
|
1607
|
+
bb = bb1;
|
1608
|
+
}
|
1609
|
+
if (bb2 > 0) {
|
1610
|
+
bb = lshift(bb, bb2);
|
1611
|
+
if (!bb)
|
1612
|
+
goto nomem;
|
1613
|
+
}
|
1614
|
+
if (bd5 > 0) {
|
1615
|
+
bd = pow5mult(bd, bd5);
|
1616
|
+
if (!bd)
|
1617
|
+
goto nomem;
|
1618
|
+
}
|
1619
|
+
if (bd2 > 0) {
|
1620
|
+
bd = lshift(bd, bd2);
|
1621
|
+
if (!bd)
|
1622
|
+
goto nomem;
|
1623
|
+
}
|
1624
|
+
if (bs2 > 0) {
|
1625
|
+
bs = lshift(bs, bs2);
|
1626
|
+
if (!bs)
|
1627
|
+
goto nomem;
|
1628
|
+
}
|
1629
|
+
delta = diff(bb, bd);
|
1630
|
+
if (!delta)
|
1631
|
+
goto nomem;
|
1632
|
+
dsign = delta->sign;
|
1633
|
+
delta->sign = 0;
|
1634
|
+
i = cmp(delta, bs);
|
1635
|
+
if (i < 0) {
|
1636
|
+
/* Error is less than half an ulp -- check for
|
1637
|
+
* special case of mantissa a power of two.
|
1638
|
+
*/
|
1639
|
+
if (dsign || word1(rv) || word0(rv) & Bndry_mask
|
1640
|
+
#ifdef Avoid_Underflow
|
1641
|
+
|| (word0(rv) & Exp_mask) <= Exp_msk1 + P*Exp_msk1
|
1642
|
+
#else
|
1643
|
+
|| (word0(rv) & Exp_mask) <= Exp_msk1
|
1644
|
+
#endif
|
1645
|
+
) {
|
1646
|
+
#ifdef Avoid_Underflow
|
1647
|
+
if (!delta->x[0] && delta->wds == 1)
|
1648
|
+
dsign = 2;
|
1649
|
+
#endif
|
1650
|
+
break;
|
1651
|
+
}
|
1652
|
+
delta = lshift(delta,Log2P);
|
1653
|
+
if (!delta)
|
1654
|
+
goto nomem;
|
1655
|
+
if (cmp(delta, bs) > 0)
|
1656
|
+
goto drop_down;
|
1657
|
+
break;
|
1658
|
+
}
|
1659
|
+
if (i == 0) {
|
1660
|
+
/* exactly half-way between */
|
1661
|
+
if (dsign) {
|
1662
|
+
if ((word0(rv) & Bndry_mask1) == Bndry_mask1
|
1663
|
+
&& word1(rv) == 0xffffffff) {
|
1664
|
+
/*boundary case -- increment exponent*/
|
1665
|
+
set_word0(rv, (word0(rv) & Exp_mask) + Exp_msk1);
|
1666
|
+
set_word1(rv, 0);
|
1667
|
+
#ifdef Avoid_Underflow
|
1668
|
+
dsign = 0;
|
1669
|
+
#endif
|
1670
|
+
break;
|
1671
|
+
}
|
1672
|
+
}
|
1673
|
+
else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
|
1674
|
+
#ifdef Avoid_Underflow
|
1675
|
+
dsign = 2;
|
1676
|
+
#endif
|
1677
|
+
drop_down:
|
1678
|
+
/* boundary case -- decrement exponent */
|
1679
|
+
#ifdef Sudden_Underflow
|
1680
|
+
L = word0(rv) & Exp_mask;
|
1681
|
+
if (L <= Exp_msk1)
|
1682
|
+
goto undfl;
|
1683
|
+
L -= Exp_msk1;
|
1684
|
+
#else
|
1685
|
+
L = (word0(rv) & Exp_mask) - Exp_msk1;
|
1686
|
+
#endif
|
1687
|
+
set_word0(rv, L | Bndry_mask1);
|
1688
|
+
set_word1(rv, 0xffffffff);
|
1689
|
+
break;
|
1690
|
+
}
|
1691
|
+
#ifndef ROUND_BIASED
|
1692
|
+
if (!(word1(rv) & LSB))
|
1693
|
+
break;
|
1694
|
+
#endif
|
1695
|
+
if (dsign)
|
1696
|
+
rv += ulp(rv);
|
1697
|
+
#ifndef ROUND_BIASED
|
1698
|
+
else {
|
1699
|
+
rv -= ulp(rv);
|
1700
|
+
#ifndef Sudden_Underflow
|
1701
|
+
if (!rv)
|
1702
|
+
goto undfl;
|
1703
|
+
#endif
|
1704
|
+
}
|
1705
|
+
#ifdef Avoid_Underflow
|
1706
|
+
dsign = 1 - dsign;
|
1707
|
+
#endif
|
1708
|
+
#endif
|
1709
|
+
break;
|
1710
|
+
}
|
1711
|
+
if ((aadj = ratio(delta, bs)) <= 2.) {
|
1712
|
+
if (dsign)
|
1713
|
+
aadj = aadj1 = 1.;
|
1714
|
+
else if (word1(rv) || word0(rv) & Bndry_mask) {
|
1715
|
+
#ifndef Sudden_Underflow
|
1716
|
+
if (word1(rv) == Tiny1 && !word0(rv))
|
1717
|
+
goto undfl;
|
1718
|
+
#endif
|
1719
|
+
aadj = 1.;
|
1720
|
+
aadj1 = -1.;
|
1721
|
+
}
|
1722
|
+
else {
|
1723
|
+
/* special case -- power of FLT_RADIX to be */
|
1724
|
+
/* rounded down... */
|
1725
|
+
|
1726
|
+
if (aadj < 2./FLT_RADIX)
|
1727
|
+
aadj = 1./FLT_RADIX;
|
1728
|
+
else
|
1729
|
+
aadj *= 0.5;
|
1730
|
+
aadj1 = -aadj;
|
1731
|
+
}
|
1732
|
+
}
|
1733
|
+
else {
|
1734
|
+
aadj *= 0.5;
|
1735
|
+
aadj1 = dsign ? aadj : -aadj;
|
1736
|
+
#ifdef Check_FLT_ROUNDS
|
1737
|
+
switch(FLT_ROUNDS) {
|
1738
|
+
case 2: /* towards +infinity */
|
1739
|
+
aadj1 -= 0.5;
|
1740
|
+
break;
|
1741
|
+
case 0: /* towards 0 */
|
1742
|
+
case 3: /* towards -infinity */
|
1743
|
+
aadj1 += 0.5;
|
1744
|
+
}
|
1745
|
+
#else
|
1746
|
+
if (FLT_ROUNDS == 0)
|
1747
|
+
aadj1 += 0.5;
|
1748
|
+
#endif
|
1749
|
+
}
|
1750
|
+
y = word0(rv) & Exp_mask;
|
1751
|
+
|
1752
|
+
/* Check for overflow */
|
1753
|
+
|
1754
|
+
if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
|
1755
|
+
rv0 = rv;
|
1756
|
+
set_word0(rv, word0(rv) - P*Exp_msk1);
|
1757
|
+
adj = aadj1 * ulp(rv);
|
1758
|
+
rv += adj;
|
1759
|
+
if ((word0(rv) & Exp_mask) >=
|
1760
|
+
Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
|
1761
|
+
if (word0(rv0) == Big0 && word1(rv0) == Big1)
|
1762
|
+
goto ovfl;
|
1763
|
+
set_word0(rv, Big0);
|
1764
|
+
set_word1(rv, Big1);
|
1765
|
+
goto cont;
|
1766
|
+
}
|
1767
|
+
else
|
1768
|
+
set_word0(rv, word0(rv) + P*Exp_msk1);
|
1769
|
+
}
|
1770
|
+
else {
|
1771
|
+
#ifdef Sudden_Underflow
|
1772
|
+
if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
|
1773
|
+
rv0 = rv;
|
1774
|
+
set_word0(rv, word0(rv) + P*Exp_msk1);
|
1775
|
+
adj = aadj1 * ulp(rv);
|
1776
|
+
rv += adj;
|
1777
|
+
if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
|
1778
|
+
{
|
1779
|
+
if (word0(rv0) == Tiny0
|
1780
|
+
&& word1(rv0) == Tiny1)
|
1781
|
+
goto undfl;
|
1782
|
+
set_word0(rv, Tiny0);
|
1783
|
+
set_word1(rv, Tiny1);
|
1784
|
+
goto cont;
|
1785
|
+
}
|
1786
|
+
else
|
1787
|
+
set_word0(rv, word0(rv) - P*Exp_msk1);
|
1788
|
+
}
|
1789
|
+
else {
|
1790
|
+
adj = aadj1 * ulp(rv);
|
1791
|
+
rv += adj;
|
1792
|
+
}
|
1793
|
+
#else
|
1794
|
+
/* Compute adj so that the IEEE rounding rules will
|
1795
|
+
* correctly round rv + adj in some half-way cases.
|
1796
|
+
* If rv * ulp(rv) is denormalized (i.e.,
|
1797
|
+
* y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
|
1798
|
+
* trouble from bits lost to denormalization;
|
1799
|
+
* example: 1.2e-307 .
|
1800
|
+
*/
|
1801
|
+
#ifdef Avoid_Underflow
|
1802
|
+
if (y <= P*Exp_msk1 && aadj > 1.)
|
1803
|
+
#else
|
1804
|
+
if (y <= (P-1)*Exp_msk1 && aadj > 1.)
|
1805
|
+
#endif
|
1806
|
+
{
|
1807
|
+
aadj1 = (double)(int32)(aadj + 0.5);
|
1808
|
+
if (!dsign)
|
1809
|
+
aadj1 = -aadj1;
|
1810
|
+
}
|
1811
|
+
#ifdef Avoid_Underflow
|
1812
|
+
if (scale && y <= P*Exp_msk1)
|
1813
|
+
set_word0(aadj1, word0(aadj1) + (P+1)*Exp_msk1 - y);
|
1814
|
+
#endif
|
1815
|
+
adj = aadj1 * ulp(rv);
|
1816
|
+
rv += adj;
|
1817
|
+
#endif
|
1818
|
+
}
|
1819
|
+
z = word0(rv) & Exp_mask;
|
1820
|
+
#ifdef Avoid_Underflow
|
1821
|
+
if (!scale)
|
1822
|
+
#endif
|
1823
|
+
if (y == z) {
|
1824
|
+
/* Can we stop now? */
|
1825
|
+
L = (Long)aadj;
|
1826
|
+
aadj -= L;
|
1827
|
+
/* The tolerances below are conservative. */
|
1828
|
+
if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
|
1829
|
+
if (aadj < .4999999 || aadj > .5000001)
|
1830
|
+
break;
|
1831
|
+
}
|
1832
|
+
else if (aadj < .4999999/FLT_RADIX)
|
1833
|
+
break;
|
1834
|
+
}
|
1835
|
+
cont:
|
1836
|
+
Bfree(bb);
|
1837
|
+
Bfree(bd);
|
1838
|
+
Bfree(bs);
|
1839
|
+
Bfree(delta);
|
1840
|
+
bb = bd = bs = delta = NULL;
|
1841
|
+
}
|
1842
|
+
#ifdef Avoid_Underflow
|
1843
|
+
if (scale) {
|
1844
|
+
rv0 = 0.;
|
1845
|
+
set_word0(rv0, Exp_1 - P*Exp_msk1);
|
1846
|
+
set_word1(rv0, 0);
|
1847
|
+
if ((word0(rv) & Exp_mask) <= P*Exp_msk1
|
1848
|
+
&& word1(rv) & 1
|
1849
|
+
&& dsign != 2) {
|
1850
|
+
if (dsign) {
|
1851
|
+
#ifdef Sudden_Underflow
|
1852
|
+
/* rv will be 0, but this would give the */
|
1853
|
+
/* right result if only rv *= rv0 worked. */
|
1854
|
+
set_word0(rv, word0(rv) + P*Exp_msk1);
|
1855
|
+
set_word0(rv0, Exp_1 - 2*P*Exp_msk1);
|
1856
|
+
#endif
|
1857
|
+
rv += ulp(rv);
|
1858
|
+
}
|
1859
|
+
else
|
1860
|
+
set_word1(rv, word1(rv) & ~1);
|
1861
|
+
}
|
1862
|
+
rv *= rv0;
|
1863
|
+
}
|
1864
|
+
#endif /* Avoid_Underflow */
|
1865
|
+
retfree:
|
1866
|
+
Bfree(bb);
|
1867
|
+
Bfree(bd);
|
1868
|
+
Bfree(bs);
|
1869
|
+
Bfree(bd0);
|
1870
|
+
Bfree(delta);
|
1871
|
+
ret:
|
1872
|
+
RELEASE_DTOA_LOCK();
|
1873
|
+
if (se)
|
1874
|
+
*se = (char *)s;
|
1875
|
+
return sign ? -rv : rv;
|
1876
|
+
|
1877
|
+
nomem:
|
1878
|
+
Bfree(bb);
|
1879
|
+
Bfree(bd);
|
1880
|
+
Bfree(bs);
|
1881
|
+
Bfree(bd0);
|
1882
|
+
Bfree(delta);
|
1883
|
+
RELEASE_DTOA_LOCK();
|
1884
|
+
*err = JS_DTOA_ENOMEM;
|
1885
|
+
return 0;
|
1886
|
+
}
|
1887
|
+
|
1888
|
+
|
1889
|
+
/* Return floor(b/2^k) and set b to be the remainder. The returned quotient must be less than 2^32. */
|
1890
|
+
static uint32 quorem2(Bigint *b, int32 k)
|
1891
|
+
{
|
1892
|
+
ULong mask;
|
1893
|
+
ULong result;
|
1894
|
+
ULong *bx, *bxe;
|
1895
|
+
int32 w;
|
1896
|
+
int32 n = k >> 5;
|
1897
|
+
k &= 0x1F;
|
1898
|
+
mask = (1<<k) - 1;
|
1899
|
+
|
1900
|
+
w = b->wds - n;
|
1901
|
+
if (w <= 0)
|
1902
|
+
return 0;
|
1903
|
+
JS_ASSERT(w <= 2);
|
1904
|
+
bx = b->x;
|
1905
|
+
bxe = bx + n;
|
1906
|
+
result = *bxe >> k;
|
1907
|
+
*bxe &= mask;
|
1908
|
+
if (w == 2) {
|
1909
|
+
JS_ASSERT(!(bxe[1] & ~mask));
|
1910
|
+
if (k)
|
1911
|
+
result |= bxe[1] << (32 - k);
|
1912
|
+
}
|
1913
|
+
n++;
|
1914
|
+
while (!*bxe && bxe != bx) {
|
1915
|
+
n--;
|
1916
|
+
bxe--;
|
1917
|
+
}
|
1918
|
+
b->wds = n;
|
1919
|
+
return result;
|
1920
|
+
}
|
1921
|
+
|
1922
|
+
/* Return floor(b/S) and set b to be the remainder. As added restrictions, b must not have
|
1923
|
+
* more words than S, the most significant word of S must not start with a 1 bit, and the
|
1924
|
+
* returned quotient must be less than 36. */
|
1925
|
+
static int32 quorem(Bigint *b, Bigint *S)
|
1926
|
+
{
|
1927
|
+
int32 n;
|
1928
|
+
ULong *bx, *bxe, q, *sx, *sxe;
|
1929
|
+
#ifdef ULLong
|
1930
|
+
ULLong borrow, carry, y, ys;
|
1931
|
+
#else
|
1932
|
+
ULong borrow, carry, y, ys;
|
1933
|
+
ULong si, z, zs;
|
1934
|
+
#endif
|
1935
|
+
|
1936
|
+
n = S->wds;
|
1937
|
+
JS_ASSERT(b->wds <= n);
|
1938
|
+
if (b->wds < n)
|
1939
|
+
return 0;
|
1940
|
+
sx = S->x;
|
1941
|
+
sxe = sx + --n;
|
1942
|
+
bx = b->x;
|
1943
|
+
bxe = bx + n;
|
1944
|
+
JS_ASSERT(*sxe <= 0x7FFFFFFF);
|
1945
|
+
q = *bxe / (*sxe + 1); /* ensure q <= true quotient */
|
1946
|
+
JS_ASSERT(q < 36);
|
1947
|
+
if (q) {
|
1948
|
+
borrow = 0;
|
1949
|
+
carry = 0;
|
1950
|
+
do {
|
1951
|
+
#ifdef ULLong
|
1952
|
+
ys = *sx++ * (ULLong)q + carry;
|
1953
|
+
carry = ys >> 32;
|
1954
|
+
y = *bx - (ys & 0xffffffffUL) - borrow;
|
1955
|
+
borrow = y >> 32 & 1UL;
|
1956
|
+
*bx++ = (ULong)(y & 0xffffffffUL);
|
1957
|
+
#else
|
1958
|
+
si = *sx++;
|
1959
|
+
ys = (si & 0xffff) * q + carry;
|
1960
|
+
zs = (si >> 16) * q + (ys >> 16);
|
1961
|
+
carry = zs >> 16;
|
1962
|
+
y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
|
1963
|
+
borrow = (y & 0x10000) >> 16;
|
1964
|
+
z = (*bx >> 16) - (zs & 0xffff) - borrow;
|
1965
|
+
borrow = (z & 0x10000) >> 16;
|
1966
|
+
Storeinc(bx, z, y);
|
1967
|
+
#endif
|
1968
|
+
}
|
1969
|
+
while(sx <= sxe);
|
1970
|
+
if (!*bxe) {
|
1971
|
+
bx = b->x;
|
1972
|
+
while(--bxe > bx && !*bxe)
|
1973
|
+
--n;
|
1974
|
+
b->wds = n;
|
1975
|
+
}
|
1976
|
+
}
|
1977
|
+
if (cmp(b, S) >= 0) {
|
1978
|
+
q++;
|
1979
|
+
borrow = 0;
|
1980
|
+
carry = 0;
|
1981
|
+
bx = b->x;
|
1982
|
+
sx = S->x;
|
1983
|
+
do {
|
1984
|
+
#ifdef ULLong
|
1985
|
+
ys = *sx++ + carry;
|
1986
|
+
carry = ys >> 32;
|
1987
|
+
y = *bx - (ys & 0xffffffffUL) - borrow;
|
1988
|
+
borrow = y >> 32 & 1UL;
|
1989
|
+
*bx++ = (ULong)(y & 0xffffffffUL);
|
1990
|
+
#else
|
1991
|
+
si = *sx++;
|
1992
|
+
ys = (si & 0xffff) + carry;
|
1993
|
+
zs = (si >> 16) + (ys >> 16);
|
1994
|
+
carry = zs >> 16;
|
1995
|
+
y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
|
1996
|
+
borrow = (y & 0x10000) >> 16;
|
1997
|
+
z = (*bx >> 16) - (zs & 0xffff) - borrow;
|
1998
|
+
borrow = (z & 0x10000) >> 16;
|
1999
|
+
Storeinc(bx, z, y);
|
2000
|
+
#endif
|
2001
|
+
} while(sx <= sxe);
|
2002
|
+
bx = b->x;
|
2003
|
+
bxe = bx + n;
|
2004
|
+
if (!*bxe) {
|
2005
|
+
while(--bxe > bx && !*bxe)
|
2006
|
+
--n;
|
2007
|
+
b->wds = n;
|
2008
|
+
}
|
2009
|
+
}
|
2010
|
+
return (int32)q;
|
2011
|
+
}
|
2012
|
+
|
2013
|
+
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
|
2014
|
+
*
|
2015
|
+
* Inspired by "How to Print Floating-Point Numbers Accurately" by
|
2016
|
+
* Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
|
2017
|
+
*
|
2018
|
+
* Modifications:
|
2019
|
+
* 1. Rather than iterating, we use a simple numeric overestimate
|
2020
|
+
* to determine k = floor(log10(d)). We scale relevant
|
2021
|
+
* quantities using O(log2(k)) rather than O(k) multiplications.
|
2022
|
+
* 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
|
2023
|
+
* try to generate digits strictly left to right. Instead, we
|
2024
|
+
* compute with fewer bits and propagate the carry if necessary
|
2025
|
+
* when rounding the final digit up. This is often faster.
|
2026
|
+
* 3. Under the assumption that input will be rounded nearest,
|
2027
|
+
* mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
|
2028
|
+
* That is, we allow equality in stopping tests when the
|
2029
|
+
* round-nearest rule will give the same floating-point value
|
2030
|
+
* as would satisfaction of the stopping test with strict
|
2031
|
+
* inequality.
|
2032
|
+
* 4. We remove common factors of powers of 2 from relevant
|
2033
|
+
* quantities.
|
2034
|
+
* 5. When converting floating-point integers less than 1e16,
|
2035
|
+
* we use floating-point arithmetic rather than resorting
|
2036
|
+
* to multiple-precision integers.
|
2037
|
+
* 6. When asked to produce fewer than 15 digits, we first try
|
2038
|
+
* to get by with floating-point arithmetic; we resort to
|
2039
|
+
* multiple-precision integer arithmetic only if we cannot
|
2040
|
+
* guarantee that the floating-point calculation has given
|
2041
|
+
* the correctly rounded result. For k requested digits and
|
2042
|
+
* "uniformly" distributed input, the probability is
|
2043
|
+
* something like 10^(k-15) that we must resort to the Long
|
2044
|
+
* calculation.
|
2045
|
+
*/
|
2046
|
+
|
2047
|
+
/* Always emits at least one digit. */
|
2048
|
+
/* If biasUp is set, then rounding in modes 2 and 3 will round away from zero
|
2049
|
+
* when the number is exactly halfway between two representable values. For example,
|
2050
|
+
* rounding 2.5 to zero digits after the decimal point will return 3 and not 2.
|
2051
|
+
* 2.49 will still round to 2, and 2.51 will still round to 3. */
|
2052
|
+
/* bufsize should be at least 20 for modes 0 and 1. For the other modes,
|
2053
|
+
* bufsize should be two greater than the maximum number of output characters expected. */
|
2054
|
+
static JSBool
|
2055
|
+
js_dtoa(double d, int mode, JSBool biasUp, int ndigits,
|
2056
|
+
int *decpt, int *sign, char **rve, char *buf, size_t bufsize)
|
2057
|
+
{
|
2058
|
+
/* Arguments ndigits, decpt, sign are similar to those
|
2059
|
+
of ecvt and fcvt; trailing zeros are suppressed from
|
2060
|
+
the returned string. If not null, *rve is set to point
|
2061
|
+
to the end of the return value. If d is +-Infinity or NaN,
|
2062
|
+
then *decpt is set to 9999.
|
2063
|
+
|
2064
|
+
mode:
|
2065
|
+
0 ==> shortest string that yields d when read in
|
2066
|
+
and rounded to nearest.
|
2067
|
+
1 ==> like 0, but with Steele & White stopping rule;
|
2068
|
+
e.g. with IEEE P754 arithmetic , mode 0 gives
|
2069
|
+
1e23 whereas mode 1 gives 9.999999999999999e22.
|
2070
|
+
2 ==> max(1,ndigits) significant digits. This gives a
|
2071
|
+
return value similar to that of ecvt, except
|
2072
|
+
that trailing zeros are suppressed.
|
2073
|
+
3 ==> through ndigits past the decimal point. This
|
2074
|
+
gives a return value similar to that from fcvt,
|
2075
|
+
except that trailing zeros are suppressed, and
|
2076
|
+
ndigits can be negative.
|
2077
|
+
4-9 should give the same return values as 2-3, i.e.,
|
2078
|
+
4 <= mode <= 9 ==> same return as mode
|
2079
|
+
2 + (mode & 1). These modes are mainly for
|
2080
|
+
debugging; often they run slower but sometimes
|
2081
|
+
faster than modes 2-3.
|
2082
|
+
4,5,8,9 ==> left-to-right digit generation.
|
2083
|
+
6-9 ==> don't try fast floating-point estimate
|
2084
|
+
(if applicable).
|
2085
|
+
|
2086
|
+
Values of mode other than 0-9 are treated as mode 0.
|
2087
|
+
|
2088
|
+
Sufficient space is allocated to the return value
|
2089
|
+
to hold the suppressed trailing zeros.
|
2090
|
+
*/
|
2091
|
+
|
2092
|
+
int32 bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
|
2093
|
+
j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
|
2094
|
+
spec_case, try_quick;
|
2095
|
+
Long L;
|
2096
|
+
#ifndef Sudden_Underflow
|
2097
|
+
int32 denorm;
|
2098
|
+
ULong x;
|
2099
|
+
#endif
|
2100
|
+
Bigint *b, *b1, *delta, *mlo, *mhi, *S;
|
2101
|
+
double d2, ds, eps;
|
2102
|
+
char *s;
|
2103
|
+
const char *cs;
|
2104
|
+
|
2105
|
+
if (word0(d) & Sign_bit) {
|
2106
|
+
/* set sign for everything, including 0's and NaNs */
|
2107
|
+
*sign = 1;
|
2108
|
+
set_word0(d, word0(d) & ~Sign_bit); /* clear sign bit */
|
2109
|
+
}
|
2110
|
+
else
|
2111
|
+
*sign = 0;
|
2112
|
+
|
2113
|
+
if ((word0(d) & Exp_mask) == Exp_mask) {
|
2114
|
+
/* Infinity or NaN */
|
2115
|
+
*decpt = 9999;
|
2116
|
+
cs = !word1(d) && !(word0(d) & Frac_mask) ? "Infinity" : "NaN";
|
2117
|
+
if ((cs[0] == 'I' && bufsize < 9) || (cs[0] == 'N' && bufsize < 4)) {
|
2118
|
+
JS_ASSERT(JS_FALSE);
|
2119
|
+
/* JS_SetError(JS_BUFFER_OVERFLOW_ERROR, 0); */
|
2120
|
+
return JS_FALSE;
|
2121
|
+
}
|
2122
|
+
strcpy(buf, cs);
|
2123
|
+
if (rve) {
|
2124
|
+
*rve = buf[3] ? buf + 8 : buf + 3;
|
2125
|
+
JS_ASSERT(**rve == '\0');
|
2126
|
+
}
|
2127
|
+
return JS_TRUE;
|
2128
|
+
}
|
2129
|
+
|
2130
|
+
b = NULL; /* initialize for abort protection */
|
2131
|
+
S = NULL;
|
2132
|
+
mlo = mhi = NULL;
|
2133
|
+
|
2134
|
+
if (!d) {
|
2135
|
+
no_digits:
|
2136
|
+
*decpt = 1;
|
2137
|
+
if (bufsize < 2) {
|
2138
|
+
JS_ASSERT(JS_FALSE);
|
2139
|
+
/* JS_SetError(JS_BUFFER_OVERFLOW_ERROR, 0); */
|
2140
|
+
return JS_FALSE;
|
2141
|
+
}
|
2142
|
+
buf[0] = '0'; buf[1] = '\0'; /* copy "0" to buffer */
|
2143
|
+
if (rve)
|
2144
|
+
*rve = buf + 1;
|
2145
|
+
/* We might have jumped to "no_digits" from below, so we need
|
2146
|
+
* to be sure to free the potentially allocated Bigints to avoid
|
2147
|
+
* memory leaks. */
|
2148
|
+
Bfree(b);
|
2149
|
+
Bfree(S);
|
2150
|
+
if (mlo != mhi)
|
2151
|
+
Bfree(mlo);
|
2152
|
+
Bfree(mhi);
|
2153
|
+
return JS_TRUE;
|
2154
|
+
}
|
2155
|
+
|
2156
|
+
b = d2b(d, &be, &bbits);
|
2157
|
+
if (!b)
|
2158
|
+
goto nomem;
|
2159
|
+
#ifdef Sudden_Underflow
|
2160
|
+
i = (int32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
|
2161
|
+
#else
|
2162
|
+
if ((i = (int32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) != 0) {
|
2163
|
+
#endif
|
2164
|
+
d2 = d;
|
2165
|
+
set_word0(d2, word0(d2) & Frac_mask1);
|
2166
|
+
set_word0(d2, word0(d2) | Exp_11);
|
2167
|
+
|
2168
|
+
/* log(x) ~=~ log(1.5) + (x-1.5)/1.5
|
2169
|
+
* log10(x) = log(x) / log(10)
|
2170
|
+
* ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
|
2171
|
+
* log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
|
2172
|
+
*
|
2173
|
+
* This suggests computing an approximation k to log10(d) by
|
2174
|
+
*
|
2175
|
+
* k = (i - Bias)*0.301029995663981
|
2176
|
+
* + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
|
2177
|
+
*
|
2178
|
+
* We want k to be too large rather than too small.
|
2179
|
+
* The error in the first-order Taylor series approximation
|
2180
|
+
* is in our favor, so we just round up the constant enough
|
2181
|
+
* to compensate for any error in the multiplication of
|
2182
|
+
* (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
|
2183
|
+
* and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
|
2184
|
+
* adding 1e-13 to the constant term more than suffices.
|
2185
|
+
* Hence we adjust the constant term to 0.1760912590558.
|
2186
|
+
* (We could get a more accurate k by invoking log10,
|
2187
|
+
* but this is probably not worthwhile.)
|
2188
|
+
*/
|
2189
|
+
|
2190
|
+
i -= Bias;
|
2191
|
+
#ifndef Sudden_Underflow
|
2192
|
+
denorm = 0;
|
2193
|
+
}
|
2194
|
+
else {
|
2195
|
+
/* d is denormalized */
|
2196
|
+
|
2197
|
+
i = bbits + be + (Bias + (P-1) - 1);
|
2198
|
+
x = i > 32 ? word0(d) << (64 - i) | word1(d) >> (i - 32) : word1(d) << (32 - i);
|
2199
|
+
d2 = x;
|
2200
|
+
set_word0(d2, word0(d2) - 31*Exp_msk1); /* adjust exponent */
|
2201
|
+
i -= (Bias + (P-1) - 1) + 1;
|
2202
|
+
denorm = 1;
|
2203
|
+
}
|
2204
|
+
#endif
|
2205
|
+
/* At this point d = f*2^i, where 1 <= f < 2. d2 is an approximation of f. */
|
2206
|
+
ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
|
2207
|
+
k = (int32)ds;
|
2208
|
+
if (ds < 0. && ds != k)
|
2209
|
+
k--; /* want k = floor(ds) */
|
2210
|
+
k_check = 1;
|
2211
|
+
if (k >= 0 && k <= Ten_pmax) {
|
2212
|
+
if (d < tens[k])
|
2213
|
+
k--;
|
2214
|
+
k_check = 0;
|
2215
|
+
}
|
2216
|
+
/* At this point floor(log10(d)) <= k <= floor(log10(d))+1.
|
2217
|
+
If k_check is zero, we're guaranteed that k = floor(log10(d)). */
|
2218
|
+
j = bbits - i - 1;
|
2219
|
+
/* At this point d = b/2^j, where b is an odd integer. */
|
2220
|
+
if (j >= 0) {
|
2221
|
+
b2 = 0;
|
2222
|
+
s2 = j;
|
2223
|
+
}
|
2224
|
+
else {
|
2225
|
+
b2 = -j;
|
2226
|
+
s2 = 0;
|
2227
|
+
}
|
2228
|
+
if (k >= 0) {
|
2229
|
+
b5 = 0;
|
2230
|
+
s5 = k;
|
2231
|
+
s2 += k;
|
2232
|
+
}
|
2233
|
+
else {
|
2234
|
+
b2 -= k;
|
2235
|
+
b5 = -k;
|
2236
|
+
s5 = 0;
|
2237
|
+
}
|
2238
|
+
/* At this point d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5), where b is an odd integer,
|
2239
|
+
b2 >= 0, b5 >= 0, s2 >= 0, and s5 >= 0. */
|
2240
|
+
if (mode < 0 || mode > 9)
|
2241
|
+
mode = 0;
|
2242
|
+
try_quick = 1;
|
2243
|
+
if (mode > 5) {
|
2244
|
+
mode -= 4;
|
2245
|
+
try_quick = 0;
|
2246
|
+
}
|
2247
|
+
leftright = 1;
|
2248
|
+
ilim = ilim1 = 0;
|
2249
|
+
switch(mode) {
|
2250
|
+
case 0:
|
2251
|
+
case 1:
|
2252
|
+
ilim = ilim1 = -1;
|
2253
|
+
i = 18;
|
2254
|
+
ndigits = 0;
|
2255
|
+
break;
|
2256
|
+
case 2:
|
2257
|
+
leftright = 0;
|
2258
|
+
/* no break */
|
2259
|
+
case 4:
|
2260
|
+
if (ndigits <= 0)
|
2261
|
+
ndigits = 1;
|
2262
|
+
ilim = ilim1 = i = ndigits;
|
2263
|
+
break;
|
2264
|
+
case 3:
|
2265
|
+
leftright = 0;
|
2266
|
+
/* no break */
|
2267
|
+
case 5:
|
2268
|
+
i = ndigits + k + 1;
|
2269
|
+
ilim = i;
|
2270
|
+
ilim1 = i - 1;
|
2271
|
+
if (i <= 0)
|
2272
|
+
i = 1;
|
2273
|
+
}
|
2274
|
+
/* ilim is the maximum number of significant digits we want, based on k and ndigits. */
|
2275
|
+
/* ilim1 is the maximum number of significant digits we want, based on k and ndigits,
|
2276
|
+
when it turns out that k was computed too high by one. */
|
2277
|
+
|
2278
|
+
/* Ensure space for at least i+1 characters, including trailing null. */
|
2279
|
+
if (bufsize <= (size_t)i) {
|
2280
|
+
Bfree(b);
|
2281
|
+
JS_ASSERT(JS_FALSE);
|
2282
|
+
return JS_FALSE;
|
2283
|
+
}
|
2284
|
+
s = buf;
|
2285
|
+
|
2286
|
+
if (ilim >= 0 && ilim <= Quick_max && try_quick) {
|
2287
|
+
|
2288
|
+
/* Try to get by with floating-point arithmetic. */
|
2289
|
+
|
2290
|
+
i = 0;
|
2291
|
+
d2 = d;
|
2292
|
+
k0 = k;
|
2293
|
+
ilim0 = ilim;
|
2294
|
+
ieps = 2; /* conservative */
|
2295
|
+
/* Divide d by 10^k, keeping track of the roundoff error and avoiding overflows. */
|
2296
|
+
if (k > 0) {
|
2297
|
+
ds = tens[k&0xf];
|
2298
|
+
j = k >> 4;
|
2299
|
+
if (j & Bletch) {
|
2300
|
+
/* prevent overflows */
|
2301
|
+
j &= Bletch - 1;
|
2302
|
+
d /= bigtens[n_bigtens-1];
|
2303
|
+
ieps++;
|
2304
|
+
}
|
2305
|
+
for(; j; j >>= 1, i++)
|
2306
|
+
if (j & 1) {
|
2307
|
+
ieps++;
|
2308
|
+
ds *= bigtens[i];
|
2309
|
+
}
|
2310
|
+
d /= ds;
|
2311
|
+
}
|
2312
|
+
else if ((j1 = -k) != 0) {
|
2313
|
+
d *= tens[j1 & 0xf];
|
2314
|
+
for(j = j1 >> 4; j; j >>= 1, i++)
|
2315
|
+
if (j & 1) {
|
2316
|
+
ieps++;
|
2317
|
+
d *= bigtens[i];
|
2318
|
+
}
|
2319
|
+
}
|
2320
|
+
/* Check that k was computed correctly. */
|
2321
|
+
if (k_check && d < 1. && ilim > 0) {
|
2322
|
+
if (ilim1 <= 0)
|
2323
|
+
goto fast_failed;
|
2324
|
+
ilim = ilim1;
|
2325
|
+
k--;
|
2326
|
+
d *= 10.;
|
2327
|
+
ieps++;
|
2328
|
+
}
|
2329
|
+
/* eps bounds the cumulative error. */
|
2330
|
+
eps = ieps*d + 7.;
|
2331
|
+
set_word0(eps, word0(eps) - (P-1)*Exp_msk1);
|
2332
|
+
if (ilim == 0) {
|
2333
|
+
S = mhi = 0;
|
2334
|
+
d -= 5.;
|
2335
|
+
if (d > eps)
|
2336
|
+
goto one_digit;
|
2337
|
+
if (d < -eps)
|
2338
|
+
goto no_digits;
|
2339
|
+
goto fast_failed;
|
2340
|
+
}
|
2341
|
+
#ifndef No_leftright
|
2342
|
+
if (leftright) {
|
2343
|
+
/* Use Steele & White method of only
|
2344
|
+
* generating digits needed.
|
2345
|
+
*/
|
2346
|
+
eps = 0.5/tens[ilim-1] - eps;
|
2347
|
+
for(i = 0;;) {
|
2348
|
+
L = (Long)d;
|
2349
|
+
d -= L;
|
2350
|
+
*s++ = '0' + (char)L;
|
2351
|
+
if (d < eps)
|
2352
|
+
goto ret1;
|
2353
|
+
if (1. - d < eps) {
|
2354
|
+
#ifdef DEBUG
|
2355
|
+
/* Clear d to avoid precision warning. */
|
2356
|
+
d = 0;
|
2357
|
+
#endif
|
2358
|
+
goto bump_up;
|
2359
|
+
}
|
2360
|
+
if (++i >= ilim)
|
2361
|
+
break;
|
2362
|
+
eps *= 10.;
|
2363
|
+
d *= 10.;
|
2364
|
+
}
|
2365
|
+
}
|
2366
|
+
else {
|
2367
|
+
#endif
|
2368
|
+
/* Generate ilim digits, then fix them up. */
|
2369
|
+
eps *= tens[ilim-1];
|
2370
|
+
for(i = 1;; i++, d *= 10.) {
|
2371
|
+
L = (Long)d;
|
2372
|
+
d -= L;
|
2373
|
+
*s++ = '0' + (char)L;
|
2374
|
+
if (i == ilim) {
|
2375
|
+
if (d > 0.5 + eps) {
|
2376
|
+
#ifdef DEBUG
|
2377
|
+
/* Clear d to avoid precision warning. */
|
2378
|
+
d = 0;
|
2379
|
+
#endif
|
2380
|
+
goto bump_up;
|
2381
|
+
}
|
2382
|
+
else if (d < 0.5 - eps) {
|
2383
|
+
while(*--s == '0') ;
|
2384
|
+
s++;
|
2385
|
+
goto ret1;
|
2386
|
+
}
|
2387
|
+
break;
|
2388
|
+
}
|
2389
|
+
}
|
2390
|
+
#ifndef No_leftright
|
2391
|
+
}
|
2392
|
+
#endif
|
2393
|
+
fast_failed:
|
2394
|
+
s = buf;
|
2395
|
+
d = d2;
|
2396
|
+
k = k0;
|
2397
|
+
ilim = ilim0;
|
2398
|
+
}
|
2399
|
+
|
2400
|
+
/* Do we have a "small" integer? */
|
2401
|
+
|
2402
|
+
if (be >= 0 && k <= Int_max) {
|
2403
|
+
/* Yes. */
|
2404
|
+
ds = tens[k];
|
2405
|
+
if (ndigits < 0 && ilim <= 0) {
|
2406
|
+
S = mhi = 0;
|
2407
|
+
if (ilim < 0 || d < 5*ds || (!biasUp && d == 5*ds))
|
2408
|
+
goto no_digits;
|
2409
|
+
goto one_digit;
|
2410
|
+
}
|
2411
|
+
|
2412
|
+
/* Use true number of digits to limit looping. */
|
2413
|
+
for(i = 1; i<=k+1; i++) {
|
2414
|
+
L = (Long) (d / ds);
|
2415
|
+
d -= L*ds;
|
2416
|
+
#ifdef Check_FLT_ROUNDS
|
2417
|
+
/* If FLT_ROUNDS == 2, L will usually be high by 1 */
|
2418
|
+
if (d < 0) {
|
2419
|
+
L--;
|
2420
|
+
d += ds;
|
2421
|
+
}
|
2422
|
+
#endif
|
2423
|
+
*s++ = '0' + (char)L;
|
2424
|
+
if (i == ilim) {
|
2425
|
+
d += d;
|
2426
|
+
if ((d > ds) || (d == ds && (L & 1 || biasUp))) {
|
2427
|
+
bump_up:
|
2428
|
+
while(*--s == '9')
|
2429
|
+
if (s == buf) {
|
2430
|
+
k++;
|
2431
|
+
*s = '0';
|
2432
|
+
break;
|
2433
|
+
}
|
2434
|
+
++*s++;
|
2435
|
+
}
|
2436
|
+
break;
|
2437
|
+
}
|
2438
|
+
d *= 10.;
|
2439
|
+
}
|
2440
|
+
#ifdef DEBUG
|
2441
|
+
if (d != 0.0) {
|
2442
|
+
fprintf(stderr,
|
2443
|
+
"WARNING: A loss of precision for double floating point is detected.\n"
|
2444
|
+
" The result of any operation on doubles can be meaningless.\n"
|
2445
|
+
" A possible cause is missing code to restore FPU state, see\n"
|
2446
|
+
" bug 360282 for details.\n");
|
2447
|
+
}
|
2448
|
+
#endif
|
2449
|
+
goto ret1;
|
2450
|
+
}
|
2451
|
+
|
2452
|
+
m2 = b2;
|
2453
|
+
m5 = b5;
|
2454
|
+
if (leftright) {
|
2455
|
+
if (mode < 2) {
|
2456
|
+
i =
|
2457
|
+
#ifndef Sudden_Underflow
|
2458
|
+
denorm ? be + (Bias + (P-1) - 1 + 1) :
|
2459
|
+
#endif
|
2460
|
+
1 + P - bbits;
|
2461
|
+
/* i is 1 plus the number of trailing zero bits in d's significand. Thus,
|
2462
|
+
(2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 lsb of d)/10^k. */
|
2463
|
+
}
|
2464
|
+
else {
|
2465
|
+
j = ilim - 1;
|
2466
|
+
if (m5 >= j)
|
2467
|
+
m5 -= j;
|
2468
|
+
else {
|
2469
|
+
s5 += j -= m5;
|
2470
|
+
b5 += j;
|
2471
|
+
m5 = 0;
|
2472
|
+
}
|
2473
|
+
if ((i = ilim) < 0) {
|
2474
|
+
m2 -= i;
|
2475
|
+
i = 0;
|
2476
|
+
}
|
2477
|
+
/* (2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 * 10^(1-ilim))/10^k. */
|
2478
|
+
}
|
2479
|
+
b2 += i;
|
2480
|
+
s2 += i;
|
2481
|
+
mhi = i2b(1);
|
2482
|
+
if (!mhi)
|
2483
|
+
goto nomem;
|
2484
|
+
/* (mhi * 2^m2 * 5^m5) / (2^s2 * 5^s5) = one-half of last printed (when mode >= 2) or
|
2485
|
+
input (when mode < 2) significant digit, divided by 10^k. */
|
2486
|
+
}
|
2487
|
+
/* We still have d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5). Reduce common factors in
|
2488
|
+
b2, m2, and s2 without changing the equalities. */
|
2489
|
+
if (m2 > 0 && s2 > 0) {
|
2490
|
+
i = m2 < s2 ? m2 : s2;
|
2491
|
+
b2 -= i;
|
2492
|
+
m2 -= i;
|
2493
|
+
s2 -= i;
|
2494
|
+
}
|
2495
|
+
|
2496
|
+
/* Fold b5 into b and m5 into mhi. */
|
2497
|
+
if (b5 > 0) {
|
2498
|
+
if (leftright) {
|
2499
|
+
if (m5 > 0) {
|
2500
|
+
mhi = pow5mult(mhi, m5);
|
2501
|
+
if (!mhi)
|
2502
|
+
goto nomem;
|
2503
|
+
b1 = mult(mhi, b);
|
2504
|
+
if (!b1)
|
2505
|
+
goto nomem;
|
2506
|
+
Bfree(b);
|
2507
|
+
b = b1;
|
2508
|
+
}
|
2509
|
+
if ((j = b5 - m5) != 0) {
|
2510
|
+
b = pow5mult(b, j);
|
2511
|
+
if (!b)
|
2512
|
+
goto nomem;
|
2513
|
+
}
|
2514
|
+
}
|
2515
|
+
else {
|
2516
|
+
b = pow5mult(b, b5);
|
2517
|
+
if (!b)
|
2518
|
+
goto nomem;
|
2519
|
+
}
|
2520
|
+
}
|
2521
|
+
/* Now we have d/10^k = (b * 2^b2) / (2^s2 * 5^s5) and
|
2522
|
+
(mhi * 2^m2) / (2^s2 * 5^s5) = one-half of last printed or input significant digit, divided by 10^k. */
|
2523
|
+
|
2524
|
+
S = i2b(1);
|
2525
|
+
if (!S)
|
2526
|
+
goto nomem;
|
2527
|
+
if (s5 > 0) {
|
2528
|
+
S = pow5mult(S, s5);
|
2529
|
+
if (!S)
|
2530
|
+
goto nomem;
|
2531
|
+
}
|
2532
|
+
/* Now we have d/10^k = (b * 2^b2) / (S * 2^s2) and
|
2533
|
+
(mhi * 2^m2) / (S * 2^s2) = one-half of last printed or input significant digit, divided by 10^k. */
|
2534
|
+
|
2535
|
+
/* Check for special case that d is a normalized power of 2. */
|
2536
|
+
spec_case = 0;
|
2537
|
+
if (mode < 2) {
|
2538
|
+
if (!word1(d) && !(word0(d) & Bndry_mask)
|
2539
|
+
#ifndef Sudden_Underflow
|
2540
|
+
&& word0(d) & (Exp_mask & Exp_mask << 1)
|
2541
|
+
#endif
|
2542
|
+
) {
|
2543
|
+
/* The special case. Here we want to be within a quarter of the last input
|
2544
|
+
significant digit instead of one half of it when the decimal output string's value is less than d. */
|
2545
|
+
b2 += Log2P;
|
2546
|
+
s2 += Log2P;
|
2547
|
+
spec_case = 1;
|
2548
|
+
}
|
2549
|
+
}
|
2550
|
+
|
2551
|
+
/* Arrange for convenient computation of quotients:
|
2552
|
+
* shift left if necessary so divisor has 4 leading 0 bits.
|
2553
|
+
*
|
2554
|
+
* Perhaps we should just compute leading 28 bits of S once
|
2555
|
+
* and for all and pass them and a shift to quorem, so it
|
2556
|
+
* can do shifts and ors to compute the numerator for q.
|
2557
|
+
*/
|
2558
|
+
if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) != 0)
|
2559
|
+
i = 32 - i;
|
2560
|
+
/* i is the number of leading zero bits in the most significant word of S*2^s2. */
|
2561
|
+
if (i > 4) {
|
2562
|
+
i -= 4;
|
2563
|
+
b2 += i;
|
2564
|
+
m2 += i;
|
2565
|
+
s2 += i;
|
2566
|
+
}
|
2567
|
+
else if (i < 4) {
|
2568
|
+
i += 28;
|
2569
|
+
b2 += i;
|
2570
|
+
m2 += i;
|
2571
|
+
s2 += i;
|
2572
|
+
}
|
2573
|
+
/* Now S*2^s2 has exactly four leading zero bits in its most significant word. */
|
2574
|
+
if (b2 > 0) {
|
2575
|
+
b = lshift(b, b2);
|
2576
|
+
if (!b)
|
2577
|
+
goto nomem;
|
2578
|
+
}
|
2579
|
+
if (s2 > 0) {
|
2580
|
+
S = lshift(S, s2);
|
2581
|
+
if (!S)
|
2582
|
+
goto nomem;
|
2583
|
+
}
|
2584
|
+
/* Now we have d/10^k = b/S and
|
2585
|
+
(mhi * 2^m2) / S = maximum acceptable error, divided by 10^k. */
|
2586
|
+
if (k_check) {
|
2587
|
+
if (cmp(b,S) < 0) {
|
2588
|
+
k--;
|
2589
|
+
b = multadd(b, 10, 0); /* we botched the k estimate */
|
2590
|
+
if (!b)
|
2591
|
+
goto nomem;
|
2592
|
+
if (leftright) {
|
2593
|
+
mhi = multadd(mhi, 10, 0);
|
2594
|
+
if (!mhi)
|
2595
|
+
goto nomem;
|
2596
|
+
}
|
2597
|
+
ilim = ilim1;
|
2598
|
+
}
|
2599
|
+
}
|
2600
|
+
/* At this point 1 <= d/10^k = b/S < 10. */
|
2601
|
+
|
2602
|
+
if (ilim <= 0 && mode > 2) {
|
2603
|
+
/* We're doing fixed-mode output and d is less than the minimum nonzero output in this mode.
|
2604
|
+
Output either zero or the minimum nonzero output depending on which is closer to d. */
|
2605
|
+
if (ilim < 0)
|
2606
|
+
goto no_digits;
|
2607
|
+
S = multadd(S,5,0);
|
2608
|
+
if (!S)
|
2609
|
+
goto nomem;
|
2610
|
+
i = cmp(b,S);
|
2611
|
+
if (i < 0 || (i == 0 && !biasUp)) {
|
2612
|
+
/* Always emit at least one digit. If the number appears to be zero
|
2613
|
+
using the current mode, then emit one '0' digit and set decpt to 1. */
|
2614
|
+
/*no_digits:
|
2615
|
+
k = -1 - ndigits;
|
2616
|
+
goto ret; */
|
2617
|
+
goto no_digits;
|
2618
|
+
}
|
2619
|
+
one_digit:
|
2620
|
+
*s++ = '1';
|
2621
|
+
k++;
|
2622
|
+
goto ret;
|
2623
|
+
}
|
2624
|
+
if (leftright) {
|
2625
|
+
if (m2 > 0) {
|
2626
|
+
mhi = lshift(mhi, m2);
|
2627
|
+
if (!mhi)
|
2628
|
+
goto nomem;
|
2629
|
+
}
|
2630
|
+
|
2631
|
+
/* Compute mlo -- check for special case
|
2632
|
+
* that d is a normalized power of 2.
|
2633
|
+
*/
|
2634
|
+
|
2635
|
+
mlo = mhi;
|
2636
|
+
if (spec_case) {
|
2637
|
+
mhi = Balloc(mhi->k);
|
2638
|
+
if (!mhi)
|
2639
|
+
goto nomem;
|
2640
|
+
Bcopy(mhi, mlo);
|
2641
|
+
mhi = lshift(mhi, Log2P);
|
2642
|
+
if (!mhi)
|
2643
|
+
goto nomem;
|
2644
|
+
}
|
2645
|
+
/* mlo/S = maximum acceptable error, divided by 10^k, if the output is less than d. */
|
2646
|
+
/* mhi/S = maximum acceptable error, divided by 10^k, if the output is greater than d. */
|
2647
|
+
|
2648
|
+
for(i = 1;;i++) {
|
2649
|
+
dig = quorem(b,S) + '0';
|
2650
|
+
/* Do we yet have the shortest decimal string
|
2651
|
+
* that will round to d?
|
2652
|
+
*/
|
2653
|
+
j = cmp(b, mlo);
|
2654
|
+
/* j is b/S compared with mlo/S. */
|
2655
|
+
delta = diff(S, mhi);
|
2656
|
+
if (!delta)
|
2657
|
+
goto nomem;
|
2658
|
+
j1 = delta->sign ? 1 : cmp(b, delta);
|
2659
|
+
Bfree(delta);
|
2660
|
+
/* j1 is b/S compared with 1 - mhi/S. */
|
2661
|
+
#ifndef ROUND_BIASED
|
2662
|
+
if (j1 == 0 && !mode && !(word1(d) & 1)) {
|
2663
|
+
if (dig == '9')
|
2664
|
+
goto round_9_up;
|
2665
|
+
if (j > 0)
|
2666
|
+
dig++;
|
2667
|
+
*s++ = (char)dig;
|
2668
|
+
goto ret;
|
2669
|
+
}
|
2670
|
+
#endif
|
2671
|
+
if ((j < 0) || (j == 0 && !mode
|
2672
|
+
#ifndef ROUND_BIASED
|
2673
|
+
&& !(word1(d) & 1)
|
2674
|
+
#endif
|
2675
|
+
)) {
|
2676
|
+
if (j1 > 0) {
|
2677
|
+
/* Either dig or dig+1 would work here as the least significant decimal digit.
|
2678
|
+
Use whichever would produce a decimal value closer to d. */
|
2679
|
+
b = lshift(b, 1);
|
2680
|
+
if (!b)
|
2681
|
+
goto nomem;
|
2682
|
+
j1 = cmp(b, S);
|
2683
|
+
if (((j1 > 0) || (j1 == 0 && (dig & 1 || biasUp)))
|
2684
|
+
&& (dig++ == '9'))
|
2685
|
+
goto round_9_up;
|
2686
|
+
}
|
2687
|
+
*s++ = (char)dig;
|
2688
|
+
goto ret;
|
2689
|
+
}
|
2690
|
+
if (j1 > 0) {
|
2691
|
+
if (dig == '9') { /* possible if i == 1 */
|
2692
|
+
round_9_up:
|
2693
|
+
*s++ = '9';
|
2694
|
+
goto roundoff;
|
2695
|
+
}
|
2696
|
+
*s++ = (char)dig + 1;
|
2697
|
+
goto ret;
|
2698
|
+
}
|
2699
|
+
*s++ = (char)dig;
|
2700
|
+
if (i == ilim)
|
2701
|
+
break;
|
2702
|
+
b = multadd(b, 10, 0);
|
2703
|
+
if (!b)
|
2704
|
+
goto nomem;
|
2705
|
+
if (mlo == mhi) {
|
2706
|
+
mlo = mhi = multadd(mhi, 10, 0);
|
2707
|
+
if (!mhi)
|
2708
|
+
goto nomem;
|
2709
|
+
}
|
2710
|
+
else {
|
2711
|
+
mlo = multadd(mlo, 10, 0);
|
2712
|
+
if (!mlo)
|
2713
|
+
goto nomem;
|
2714
|
+
mhi = multadd(mhi, 10, 0);
|
2715
|
+
if (!mhi)
|
2716
|
+
goto nomem;
|
2717
|
+
}
|
2718
|
+
}
|
2719
|
+
}
|
2720
|
+
else
|
2721
|
+
for(i = 1;; i++) {
|
2722
|
+
*s++ = (char)(dig = quorem(b,S) + '0');
|
2723
|
+
if (i >= ilim)
|
2724
|
+
break;
|
2725
|
+
b = multadd(b, 10, 0);
|
2726
|
+
if (!b)
|
2727
|
+
goto nomem;
|
2728
|
+
}
|
2729
|
+
|
2730
|
+
/* Round off last digit */
|
2731
|
+
|
2732
|
+
b = lshift(b, 1);
|
2733
|
+
if (!b)
|
2734
|
+
goto nomem;
|
2735
|
+
j = cmp(b, S);
|
2736
|
+
if ((j > 0) || (j == 0 && (dig & 1 || biasUp))) {
|
2737
|
+
roundoff:
|
2738
|
+
while(*--s == '9')
|
2739
|
+
if (s == buf) {
|
2740
|
+
k++;
|
2741
|
+
*s++ = '1';
|
2742
|
+
goto ret;
|
2743
|
+
}
|
2744
|
+
++*s++;
|
2745
|
+
}
|
2746
|
+
else {
|
2747
|
+
/* Strip trailing zeros */
|
2748
|
+
while(*--s == '0') ;
|
2749
|
+
s++;
|
2750
|
+
}
|
2751
|
+
ret:
|
2752
|
+
Bfree(S);
|
2753
|
+
if (mhi) {
|
2754
|
+
if (mlo && mlo != mhi)
|
2755
|
+
Bfree(mlo);
|
2756
|
+
Bfree(mhi);
|
2757
|
+
}
|
2758
|
+
ret1:
|
2759
|
+
Bfree(b);
|
2760
|
+
JS_ASSERT(s < buf + bufsize);
|
2761
|
+
*s = '\0';
|
2762
|
+
if (rve)
|
2763
|
+
*rve = s;
|
2764
|
+
*decpt = k + 1;
|
2765
|
+
return JS_TRUE;
|
2766
|
+
|
2767
|
+
nomem:
|
2768
|
+
Bfree(S);
|
2769
|
+
if (mhi) {
|
2770
|
+
if (mlo && mlo != mhi)
|
2771
|
+
Bfree(mlo);
|
2772
|
+
Bfree(mhi);
|
2773
|
+
}
|
2774
|
+
Bfree(b);
|
2775
|
+
return JS_FALSE;
|
2776
|
+
}
|
2777
|
+
|
2778
|
+
|
2779
|
+
/* Mapping of JSDToStrMode -> js_dtoa mode */
|
2780
|
+
static const int dtoaModes[] = {
|
2781
|
+
0, /* DTOSTR_STANDARD */
|
2782
|
+
0, /* DTOSTR_STANDARD_EXPONENTIAL, */
|
2783
|
+
3, /* DTOSTR_FIXED, */
|
2784
|
+
2, /* DTOSTR_EXPONENTIAL, */
|
2785
|
+
2}; /* DTOSTR_PRECISION */
|
2786
|
+
|
2787
|
+
JS_FRIEND_API(char *)
|
2788
|
+
JS_dtostr(char *buffer, size_t bufferSize, JSDToStrMode mode, int precision, double d)
|
2789
|
+
{
|
2790
|
+
int decPt; /* Position of decimal point relative to first digit returned by js_dtoa */
|
2791
|
+
int sign; /* Nonzero if the sign bit was set in d */
|
2792
|
+
int nDigits; /* Number of significand digits returned by js_dtoa */
|
2793
|
+
char *numBegin = buffer+2; /* Pointer to the digits returned by js_dtoa; the +2 leaves space for */
|
2794
|
+
/* the sign and/or decimal point */
|
2795
|
+
char *numEnd; /* Pointer past the digits returned by js_dtoa */
|
2796
|
+
JSBool dtoaRet;
|
2797
|
+
|
2798
|
+
JS_ASSERT(bufferSize >= (size_t)(mode <= DTOSTR_STANDARD_EXPONENTIAL ? DTOSTR_STANDARD_BUFFER_SIZE :
|
2799
|
+
DTOSTR_VARIABLE_BUFFER_SIZE(precision)));
|
2800
|
+
|
2801
|
+
if (mode == DTOSTR_FIXED && (d >= 1e21 || d <= -1e21))
|
2802
|
+
mode = DTOSTR_STANDARD; /* Change mode here rather than below because the buffer may not be large enough to hold a large integer. */
|
2803
|
+
|
2804
|
+
/* Locking for Balloc's shared buffers */
|
2805
|
+
ACQUIRE_DTOA_LOCK();
|
2806
|
+
dtoaRet = js_dtoa(d, dtoaModes[mode], mode >= DTOSTR_FIXED, precision, &decPt, &sign, &numEnd, numBegin, bufferSize-2);
|
2807
|
+
RELEASE_DTOA_LOCK();
|
2808
|
+
if (!dtoaRet)
|
2809
|
+
return 0;
|
2810
|
+
|
2811
|
+
nDigits = numEnd - numBegin;
|
2812
|
+
|
2813
|
+
/* If Infinity, -Infinity, or NaN, return the string regardless of the mode. */
|
2814
|
+
if (decPt != 9999) {
|
2815
|
+
JSBool exponentialNotation = JS_FALSE;
|
2816
|
+
int minNDigits = 0; /* Minimum number of significand digits required by mode and precision */
|
2817
|
+
char *p;
|
2818
|
+
char *q;
|
2819
|
+
|
2820
|
+
switch (mode) {
|
2821
|
+
case DTOSTR_STANDARD:
|
2822
|
+
if (decPt < -5 || decPt > 21)
|
2823
|
+
exponentialNotation = JS_TRUE;
|
2824
|
+
else
|
2825
|
+
minNDigits = decPt;
|
2826
|
+
break;
|
2827
|
+
|
2828
|
+
case DTOSTR_FIXED:
|
2829
|
+
if (precision >= 0)
|
2830
|
+
minNDigits = decPt + precision;
|
2831
|
+
else
|
2832
|
+
minNDigits = decPt;
|
2833
|
+
break;
|
2834
|
+
|
2835
|
+
case DTOSTR_EXPONENTIAL:
|
2836
|
+
JS_ASSERT(precision > 0);
|
2837
|
+
minNDigits = precision;
|
2838
|
+
/* Fall through */
|
2839
|
+
case DTOSTR_STANDARD_EXPONENTIAL:
|
2840
|
+
exponentialNotation = JS_TRUE;
|
2841
|
+
break;
|
2842
|
+
|
2843
|
+
case DTOSTR_PRECISION:
|
2844
|
+
JS_ASSERT(precision > 0);
|
2845
|
+
minNDigits = precision;
|
2846
|
+
if (decPt < -5 || decPt > precision)
|
2847
|
+
exponentialNotation = JS_TRUE;
|
2848
|
+
break;
|
2849
|
+
}
|
2850
|
+
|
2851
|
+
/* If the number has fewer than minNDigits, pad it with zeros at the end */
|
2852
|
+
if (nDigits < minNDigits) {
|
2853
|
+
p = numBegin + minNDigits;
|
2854
|
+
nDigits = minNDigits;
|
2855
|
+
do {
|
2856
|
+
*numEnd++ = '0';
|
2857
|
+
} while (numEnd != p);
|
2858
|
+
*numEnd = '\0';
|
2859
|
+
}
|
2860
|
+
|
2861
|
+
if (exponentialNotation) {
|
2862
|
+
/* Insert a decimal point if more than one significand digit */
|
2863
|
+
if (nDigits != 1) {
|
2864
|
+
numBegin--;
|
2865
|
+
numBegin[0] = numBegin[1];
|
2866
|
+
numBegin[1] = '.';
|
2867
|
+
}
|
2868
|
+
JS_snprintf(numEnd, bufferSize - (numEnd - buffer), "e%+d", decPt-1);
|
2869
|
+
} else if (decPt != nDigits) {
|
2870
|
+
/* Some kind of a fraction in fixed notation */
|
2871
|
+
JS_ASSERT(decPt <= nDigits);
|
2872
|
+
if (decPt > 0) {
|
2873
|
+
/* dd...dd . dd...dd */
|
2874
|
+
p = --numBegin;
|
2875
|
+
do {
|
2876
|
+
*p = p[1];
|
2877
|
+
p++;
|
2878
|
+
} while (--decPt);
|
2879
|
+
*p = '.';
|
2880
|
+
} else {
|
2881
|
+
/* 0 . 00...00dd...dd */
|
2882
|
+
p = numEnd;
|
2883
|
+
numEnd += 1 - decPt;
|
2884
|
+
q = numEnd;
|
2885
|
+
JS_ASSERT(numEnd < buffer + bufferSize);
|
2886
|
+
*numEnd = '\0';
|
2887
|
+
while (p != numBegin)
|
2888
|
+
*--q = *--p;
|
2889
|
+
for (p = numBegin + 1; p != q; p++)
|
2890
|
+
*p = '0';
|
2891
|
+
*numBegin = '.';
|
2892
|
+
*--numBegin = '0';
|
2893
|
+
}
|
2894
|
+
}
|
2895
|
+
}
|
2896
|
+
|
2897
|
+
/* If negative and neither -0.0 nor NaN, output a leading '-'. */
|
2898
|
+
if (sign &&
|
2899
|
+
!(word0(d) == Sign_bit && word1(d) == 0) &&
|
2900
|
+
!((word0(d) & Exp_mask) == Exp_mask &&
|
2901
|
+
(word1(d) || (word0(d) & Frac_mask)))) {
|
2902
|
+
*--numBegin = '-';
|
2903
|
+
}
|
2904
|
+
return numBegin;
|
2905
|
+
}
|
2906
|
+
|
2907
|
+
|
2908
|
+
/* Let b = floor(b / divisor), and return the remainder. b must be nonnegative.
|
2909
|
+
* divisor must be between 1 and 65536.
|
2910
|
+
* This function cannot run out of memory. */
|
2911
|
+
static uint32
|
2912
|
+
divrem(Bigint *b, uint32 divisor)
|
2913
|
+
{
|
2914
|
+
int32 n = b->wds;
|
2915
|
+
uint32 remainder = 0;
|
2916
|
+
ULong *bx;
|
2917
|
+
ULong *bp;
|
2918
|
+
|
2919
|
+
JS_ASSERT(divisor > 0 && divisor <= 65536);
|
2920
|
+
|
2921
|
+
if (!n)
|
2922
|
+
return 0; /* b is zero */
|
2923
|
+
bx = b->x;
|
2924
|
+
bp = bx + n;
|
2925
|
+
do {
|
2926
|
+
ULong a = *--bp;
|
2927
|
+
ULong dividend = remainder << 16 | a >> 16;
|
2928
|
+
ULong quotientHi = dividend / divisor;
|
2929
|
+
ULong quotientLo;
|
2930
|
+
|
2931
|
+
remainder = dividend - quotientHi*divisor;
|
2932
|
+
JS_ASSERT(quotientHi <= 0xFFFF && remainder < divisor);
|
2933
|
+
dividend = remainder << 16 | (a & 0xFFFF);
|
2934
|
+
quotientLo = dividend / divisor;
|
2935
|
+
remainder = dividend - quotientLo*divisor;
|
2936
|
+
JS_ASSERT(quotientLo <= 0xFFFF && remainder < divisor);
|
2937
|
+
*bp = quotientHi << 16 | quotientLo;
|
2938
|
+
} while (bp != bx);
|
2939
|
+
/* Decrease the size of the number if its most significant word is now zero. */
|
2940
|
+
if (bx[n-1] == 0)
|
2941
|
+
b->wds--;
|
2942
|
+
return remainder;
|
2943
|
+
}
|
2944
|
+
|
2945
|
+
|
2946
|
+
/* "-0.0000...(1073 zeros after decimal point)...0001\0" is the longest string that we could produce,
|
2947
|
+
* which occurs when printing -5e-324 in binary. We could compute a better estimate of the size of
|
2948
|
+
* the output string and malloc fewer bytes depending on d and base, but why bother? */
|
2949
|
+
#define DTOBASESTR_BUFFER_SIZE 1078
|
2950
|
+
#define BASEDIGIT(digit) ((char)(((digit) >= 10) ? 'a' - 10 + (digit) : '0' + (digit)))
|
2951
|
+
|
2952
|
+
JS_FRIEND_API(char *)
|
2953
|
+
JS_dtobasestr(int base, double d)
|
2954
|
+
{
|
2955
|
+
char *buffer; /* The output string */
|
2956
|
+
char *p; /* Pointer to current position in the buffer */
|
2957
|
+
char *pInt; /* Pointer to the beginning of the integer part of the string */
|
2958
|
+
char *q;
|
2959
|
+
uint32 digit;
|
2960
|
+
double di; /* d truncated to an integer */
|
2961
|
+
double df; /* The fractional part of d */
|
2962
|
+
|
2963
|
+
JS_ASSERT(base >= 2 && base <= 36);
|
2964
|
+
|
2965
|
+
buffer = (char*) malloc(DTOBASESTR_BUFFER_SIZE);
|
2966
|
+
if (buffer) {
|
2967
|
+
p = buffer;
|
2968
|
+
if (d < 0.0
|
2969
|
+
#if defined(XP_WIN) || defined(XP_OS2)
|
2970
|
+
&& !((word0(d) & Exp_mask) == Exp_mask && ((word0(d) & Frac_mask) || word1(d))) /* Visual C++ doesn't know how to compare against NaN */
|
2971
|
+
#endif
|
2972
|
+
) {
|
2973
|
+
*p++ = '-';
|
2974
|
+
d = -d;
|
2975
|
+
}
|
2976
|
+
|
2977
|
+
/* Check for Infinity and NaN */
|
2978
|
+
if ((word0(d) & Exp_mask) == Exp_mask) {
|
2979
|
+
strcpy(p, !word1(d) && !(word0(d) & Frac_mask) ? "Infinity" : "NaN");
|
2980
|
+
return buffer;
|
2981
|
+
}
|
2982
|
+
|
2983
|
+
/* Locking for Balloc's shared buffers */
|
2984
|
+
ACQUIRE_DTOA_LOCK();
|
2985
|
+
|
2986
|
+
/* Output the integer part of d with the digits in reverse order. */
|
2987
|
+
pInt = p;
|
2988
|
+
di = fd_floor(d);
|
2989
|
+
if (di <= 4294967295.0) {
|
2990
|
+
uint32 n = (uint32)di;
|
2991
|
+
if (n)
|
2992
|
+
do {
|
2993
|
+
uint32 m = n / base;
|
2994
|
+
digit = n - m*base;
|
2995
|
+
n = m;
|
2996
|
+
JS_ASSERT(digit < (uint32)base);
|
2997
|
+
*p++ = BASEDIGIT(digit);
|
2998
|
+
} while (n);
|
2999
|
+
else *p++ = '0';
|
3000
|
+
} else {
|
3001
|
+
int32 e;
|
3002
|
+
int32 bits; /* Number of significant bits in di; not used. */
|
3003
|
+
Bigint *b = d2b(di, &e, &bits);
|
3004
|
+
if (!b)
|
3005
|
+
goto nomem1;
|
3006
|
+
b = lshift(b, e);
|
3007
|
+
if (!b) {
|
3008
|
+
nomem1:
|
3009
|
+
Bfree(b);
|
3010
|
+
RELEASE_DTOA_LOCK();
|
3011
|
+
free(buffer);
|
3012
|
+
return NULL;
|
3013
|
+
}
|
3014
|
+
do {
|
3015
|
+
digit = divrem(b, base);
|
3016
|
+
JS_ASSERT(digit < (uint32)base);
|
3017
|
+
*p++ = BASEDIGIT(digit);
|
3018
|
+
} while (b->wds);
|
3019
|
+
Bfree(b);
|
3020
|
+
}
|
3021
|
+
/* Reverse the digits of the integer part of d. */
|
3022
|
+
q = p-1;
|
3023
|
+
while (q > pInt) {
|
3024
|
+
char ch = *pInt;
|
3025
|
+
*pInt++ = *q;
|
3026
|
+
*q-- = ch;
|
3027
|
+
}
|
3028
|
+
|
3029
|
+
df = d - di;
|
3030
|
+
if (df != 0.0) {
|
3031
|
+
/* We have a fraction. */
|
3032
|
+
int32 e, bbits, s2, done;
|
3033
|
+
Bigint *b, *s, *mlo, *mhi;
|
3034
|
+
|
3035
|
+
b = s = mlo = mhi = NULL;
|
3036
|
+
|
3037
|
+
*p++ = '.';
|
3038
|
+
b = d2b(df, &e, &bbits);
|
3039
|
+
if (!b) {
|
3040
|
+
nomem2:
|
3041
|
+
Bfree(b);
|
3042
|
+
Bfree(s);
|
3043
|
+
if (mlo != mhi)
|
3044
|
+
Bfree(mlo);
|
3045
|
+
Bfree(mhi);
|
3046
|
+
RELEASE_DTOA_LOCK();
|
3047
|
+
free(buffer);
|
3048
|
+
return NULL;
|
3049
|
+
}
|
3050
|
+
JS_ASSERT(e < 0);
|
3051
|
+
/* At this point df = b * 2^e. e must be less than zero because 0 < df < 1. */
|
3052
|
+
|
3053
|
+
s2 = -(int32)(word0(d) >> Exp_shift1 & Exp_mask>>Exp_shift1);
|
3054
|
+
#ifndef Sudden_Underflow
|
3055
|
+
if (!s2)
|
3056
|
+
s2 = -1;
|
3057
|
+
#endif
|
3058
|
+
s2 += Bias + P;
|
3059
|
+
/* 1/2^s2 = (nextDouble(d) - d)/2 */
|
3060
|
+
JS_ASSERT(-s2 < e);
|
3061
|
+
mlo = i2b(1);
|
3062
|
+
if (!mlo)
|
3063
|
+
goto nomem2;
|
3064
|
+
mhi = mlo;
|
3065
|
+
if (!word1(d) && !(word0(d) & Bndry_mask)
|
3066
|
+
#ifndef Sudden_Underflow
|
3067
|
+
&& word0(d) & (Exp_mask & Exp_mask << 1)
|
3068
|
+
#endif
|
3069
|
+
) {
|
3070
|
+
/* The special case. Here we want to be within a quarter of the last input
|
3071
|
+
significant digit instead of one half of it when the output string's value is less than d. */
|
3072
|
+
s2 += Log2P;
|
3073
|
+
mhi = i2b(1<<Log2P);
|
3074
|
+
if (!mhi)
|
3075
|
+
goto nomem2;
|
3076
|
+
}
|
3077
|
+
b = lshift(b, e + s2);
|
3078
|
+
if (!b)
|
3079
|
+
goto nomem2;
|
3080
|
+
s = i2b(1);
|
3081
|
+
if (!s)
|
3082
|
+
goto nomem2;
|
3083
|
+
s = lshift(s, s2);
|
3084
|
+
if (!s)
|
3085
|
+
goto nomem2;
|
3086
|
+
/* At this point we have the following:
|
3087
|
+
* s = 2^s2;
|
3088
|
+
* 1 > df = b/2^s2 > 0;
|
3089
|
+
* (d - prevDouble(d))/2 = mlo/2^s2;
|
3090
|
+
* (nextDouble(d) - d)/2 = mhi/2^s2. */
|
3091
|
+
|
3092
|
+
done = JS_FALSE;
|
3093
|
+
do {
|
3094
|
+
int32 j, j1;
|
3095
|
+
Bigint *delta;
|
3096
|
+
|
3097
|
+
b = multadd(b, base, 0);
|
3098
|
+
if (!b)
|
3099
|
+
goto nomem2;
|
3100
|
+
digit = quorem2(b, s2);
|
3101
|
+
if (mlo == mhi) {
|
3102
|
+
mlo = mhi = multadd(mlo, base, 0);
|
3103
|
+
if (!mhi)
|
3104
|
+
goto nomem2;
|
3105
|
+
}
|
3106
|
+
else {
|
3107
|
+
mlo = multadd(mlo, base, 0);
|
3108
|
+
if (!mlo)
|
3109
|
+
goto nomem2;
|
3110
|
+
mhi = multadd(mhi, base, 0);
|
3111
|
+
if (!mhi)
|
3112
|
+
goto nomem2;
|
3113
|
+
}
|
3114
|
+
|
3115
|
+
/* Do we yet have the shortest string that will round to d? */
|
3116
|
+
j = cmp(b, mlo);
|
3117
|
+
/* j is b/2^s2 compared with mlo/2^s2. */
|
3118
|
+
delta = diff(s, mhi);
|
3119
|
+
if (!delta)
|
3120
|
+
goto nomem2;
|
3121
|
+
j1 = delta->sign ? 1 : cmp(b, delta);
|
3122
|
+
Bfree(delta);
|
3123
|
+
/* j1 is b/2^s2 compared with 1 - mhi/2^s2. */
|
3124
|
+
|
3125
|
+
#ifndef ROUND_BIASED
|
3126
|
+
if (j1 == 0 && !(word1(d) & 1)) {
|
3127
|
+
if (j > 0)
|
3128
|
+
digit++;
|
3129
|
+
done = JS_TRUE;
|
3130
|
+
} else
|
3131
|
+
#endif
|
3132
|
+
if (j < 0 || (j == 0
|
3133
|
+
#ifndef ROUND_BIASED
|
3134
|
+
&& !(word1(d) & 1)
|
3135
|
+
#endif
|
3136
|
+
)) {
|
3137
|
+
if (j1 > 0) {
|
3138
|
+
/* Either dig or dig+1 would work here as the least significant digit.
|
3139
|
+
Use whichever would produce an output value closer to d. */
|
3140
|
+
b = lshift(b, 1);
|
3141
|
+
if (!b)
|
3142
|
+
goto nomem2;
|
3143
|
+
j1 = cmp(b, s);
|
3144
|
+
if (j1 > 0) /* The even test (|| (j1 == 0 && (digit & 1))) is not here because it messes up odd base output
|
3145
|
+
* such as 3.5 in base 3. */
|
3146
|
+
digit++;
|
3147
|
+
}
|
3148
|
+
done = JS_TRUE;
|
3149
|
+
} else if (j1 > 0) {
|
3150
|
+
digit++;
|
3151
|
+
done = JS_TRUE;
|
3152
|
+
}
|
3153
|
+
JS_ASSERT(digit < (uint32)base);
|
3154
|
+
*p++ = BASEDIGIT(digit);
|
3155
|
+
} while (!done);
|
3156
|
+
Bfree(b);
|
3157
|
+
Bfree(s);
|
3158
|
+
if (mlo != mhi)
|
3159
|
+
Bfree(mlo);
|
3160
|
+
Bfree(mhi);
|
3161
|
+
}
|
3162
|
+
JS_ASSERT(p < buffer + DTOBASESTR_BUFFER_SIZE);
|
3163
|
+
*p = '\0';
|
3164
|
+
RELEASE_DTOA_LOCK();
|
3165
|
+
}
|
3166
|
+
return buffer;
|
3167
|
+
}
|