jbarnette-johnson 1.0.0.200806240111 → 1.0.0.200807291507
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/MANIFEST +1 -0
- data/Rakefile +3 -10
- data/bin/johnson +2 -1
- data/ext/spidermonkey/context.c +3 -4
- data/ext/spidermonkey/context.h +1 -1
- data/ext/spidermonkey/conversions.c +39 -33
- data/ext/spidermonkey/debugger.c +5 -5
- data/ext/spidermonkey/immutable_node.c.erb +11 -11
- data/ext/spidermonkey/jroot.h +4 -4
- data/ext/spidermonkey/js_land_proxy.c +9 -8
- data/ext/spidermonkey/ruby_land_proxy.c +5 -4
- data/ext/spidermonkey/runtime.c +1 -1
- data/johnson.gemspec +36 -0
- data/lib/hoe.rb +0 -7
- data/lib/johnson/cli/options.rb +10 -4
- data/lib/johnson/spidermonkey/runtime.rb +2 -2
- data/lib/johnson/version.rb +4 -2
- data/lib/johnson.rb +1 -0
- data/test/johnson/runtime_test.rb +11 -0
- data/test/johnson/spidermonkey/ruby_land_proxy_test.rb +6 -0
- data/vendor/spidermonkey/.cvsignore +9 -0
- data/vendor/spidermonkey/Makefile.in +462 -0
- data/vendor/spidermonkey/Makefile.ref +364 -0
- data/vendor/spidermonkey/README.html +820 -0
- data/vendor/spidermonkey/SpiderMonkey.rsp +12 -0
- data/vendor/spidermonkey/Y.js +19 -0
- data/vendor/spidermonkey/build.mk +43 -0
- data/vendor/spidermonkey/config/AIX4.1.mk +65 -0
- data/vendor/spidermonkey/config/AIX4.2.mk +64 -0
- data/vendor/spidermonkey/config/AIX4.3.mk +65 -0
- data/vendor/spidermonkey/config/Darwin.mk +83 -0
- data/vendor/spidermonkey/config/Darwin1.3.mk +81 -0
- data/vendor/spidermonkey/config/Darwin1.4.mk +41 -0
- data/vendor/spidermonkey/config/Darwin5.2.mk +81 -0
- data/vendor/spidermonkey/config/Darwin5.3.mk +81 -0
- data/vendor/spidermonkey/config/HP-UXB.10.10.mk +77 -0
- data/vendor/spidermonkey/config/HP-UXB.10.20.mk +77 -0
- data/vendor/spidermonkey/config/HP-UXB.11.00.mk +80 -0
- data/vendor/spidermonkey/config/IRIX.mk +87 -0
- data/vendor/spidermonkey/config/IRIX5.3.mk +44 -0
- data/vendor/spidermonkey/config/IRIX6.1.mk +44 -0
- data/vendor/spidermonkey/config/IRIX6.2.mk +44 -0
- data/vendor/spidermonkey/config/IRIX6.3.mk +44 -0
- data/vendor/spidermonkey/config/IRIX6.5.mk +44 -0
- data/vendor/spidermonkey/config/Linux_All.mk +103 -0
- data/vendor/spidermonkey/config/Mac_OS10.0.mk +82 -0
- data/vendor/spidermonkey/config/OSF1V4.0.mk +72 -0
- data/vendor/spidermonkey/config/OSF1V5.0.mk +69 -0
- data/vendor/spidermonkey/config/SunOS4.1.4.mk +101 -0
- data/vendor/spidermonkey/config/SunOS5.10.mk +50 -0
- data/vendor/spidermonkey/config/SunOS5.3.mk +91 -0
- data/vendor/spidermonkey/config/SunOS5.4.mk +92 -0
- data/vendor/spidermonkey/config/SunOS5.5.1.mk +44 -0
- data/vendor/spidermonkey/config/SunOS5.5.mk +87 -0
- data/vendor/spidermonkey/config/SunOS5.6.mk +89 -0
- data/vendor/spidermonkey/config/SunOS5.7.mk +44 -0
- data/vendor/spidermonkey/config/SunOS5.8.mk +44 -0
- data/vendor/spidermonkey/config/SunOS5.9.mk +44 -0
- data/vendor/spidermonkey/config/WINNT4.0.mk +117 -0
- data/vendor/spidermonkey/config/WINNT5.0.mk +117 -0
- data/vendor/spidermonkey/config/WINNT5.1.mk +117 -0
- data/vendor/spidermonkey/config/WINNT5.2.mk +117 -0
- data/vendor/spidermonkey/config/WINNT6.0.mk +117 -0
- data/vendor/spidermonkey/config/dgux.mk +64 -0
- data/vendor/spidermonkey/config.mk +192 -0
- data/vendor/spidermonkey/editline/Makefile.ref +144 -0
- data/vendor/spidermonkey/editline/README +83 -0
- data/vendor/spidermonkey/editline/editline.3 +175 -0
- data/vendor/spidermonkey/editline/editline.c +1369 -0
- data/vendor/spidermonkey/editline/editline.h +135 -0
- data/vendor/spidermonkey/editline/sysunix.c +182 -0
- data/vendor/spidermonkey/editline/unix.h +82 -0
- data/vendor/spidermonkey/fdlibm/.cvsignore +7 -0
- data/vendor/spidermonkey/fdlibm/Makefile.in +127 -0
- data/vendor/spidermonkey/fdlibm/Makefile.ref +192 -0
- data/vendor/spidermonkey/fdlibm/e_acos.c +147 -0
- data/vendor/spidermonkey/fdlibm/e_acosh.c +105 -0
- data/vendor/spidermonkey/fdlibm/e_asin.c +156 -0
- data/vendor/spidermonkey/fdlibm/e_atan2.c +165 -0
- data/vendor/spidermonkey/fdlibm/e_atanh.c +110 -0
- data/vendor/spidermonkey/fdlibm/e_cosh.c +133 -0
- data/vendor/spidermonkey/fdlibm/e_exp.c +202 -0
- data/vendor/spidermonkey/fdlibm/e_fmod.c +184 -0
- data/vendor/spidermonkey/fdlibm/e_gamma.c +71 -0
- data/vendor/spidermonkey/fdlibm/e_gamma_r.c +70 -0
- data/vendor/spidermonkey/fdlibm/e_hypot.c +173 -0
- data/vendor/spidermonkey/fdlibm/e_j0.c +524 -0
- data/vendor/spidermonkey/fdlibm/e_j1.c +523 -0
- data/vendor/spidermonkey/fdlibm/e_jn.c +315 -0
- data/vendor/spidermonkey/fdlibm/e_lgamma.c +71 -0
- data/vendor/spidermonkey/fdlibm/e_lgamma_r.c +347 -0
- data/vendor/spidermonkey/fdlibm/e_log.c +184 -0
- data/vendor/spidermonkey/fdlibm/e_log10.c +134 -0
- data/vendor/spidermonkey/fdlibm/e_pow.c +386 -0
- data/vendor/spidermonkey/fdlibm/e_rem_pio2.c +222 -0
- data/vendor/spidermonkey/fdlibm/e_remainder.c +120 -0
- data/vendor/spidermonkey/fdlibm/e_scalb.c +89 -0
- data/vendor/spidermonkey/fdlibm/e_sinh.c +122 -0
- data/vendor/spidermonkey/fdlibm/e_sqrt.c +497 -0
- data/vendor/spidermonkey/fdlibm/fdlibm.h +273 -0
- data/vendor/spidermonkey/fdlibm/fdlibm.mak +1453 -0
- data/vendor/spidermonkey/fdlibm/fdlibm.mdp +0 -0
- data/vendor/spidermonkey/fdlibm/k_cos.c +135 -0
- data/vendor/spidermonkey/fdlibm/k_rem_pio2.c +354 -0
- data/vendor/spidermonkey/fdlibm/k_sin.c +114 -0
- data/vendor/spidermonkey/fdlibm/k_standard.c +785 -0
- data/vendor/spidermonkey/fdlibm/k_tan.c +170 -0
- data/vendor/spidermonkey/fdlibm/s_asinh.c +101 -0
- data/vendor/spidermonkey/fdlibm/s_atan.c +175 -0
- data/vendor/spidermonkey/fdlibm/s_cbrt.c +133 -0
- data/vendor/spidermonkey/fdlibm/s_ceil.c +120 -0
- data/vendor/spidermonkey/fdlibm/s_copysign.c +72 -0
- data/vendor/spidermonkey/fdlibm/s_cos.c +118 -0
- data/vendor/spidermonkey/fdlibm/s_erf.c +356 -0
- data/vendor/spidermonkey/fdlibm/s_expm1.c +267 -0
- data/vendor/spidermonkey/fdlibm/s_fabs.c +70 -0
- data/vendor/spidermonkey/fdlibm/s_finite.c +71 -0
- data/vendor/spidermonkey/fdlibm/s_floor.c +121 -0
- data/vendor/spidermonkey/fdlibm/s_frexp.c +99 -0
- data/vendor/spidermonkey/fdlibm/s_ilogb.c +85 -0
- data/vendor/spidermonkey/fdlibm/s_isnan.c +74 -0
- data/vendor/spidermonkey/fdlibm/s_ldexp.c +66 -0
- data/vendor/spidermonkey/fdlibm/s_lib_version.c +73 -0
- data/vendor/spidermonkey/fdlibm/s_log1p.c +211 -0
- data/vendor/spidermonkey/fdlibm/s_logb.c +79 -0
- data/vendor/spidermonkey/fdlibm/s_matherr.c +64 -0
- data/vendor/spidermonkey/fdlibm/s_modf.c +132 -0
- data/vendor/spidermonkey/fdlibm/s_nextafter.c +124 -0
- data/vendor/spidermonkey/fdlibm/s_rint.c +131 -0
- data/vendor/spidermonkey/fdlibm/s_scalbn.c +107 -0
- data/vendor/spidermonkey/fdlibm/s_signgam.c +40 -0
- data/vendor/spidermonkey/fdlibm/s_significand.c +68 -0
- data/vendor/spidermonkey/fdlibm/s_sin.c +118 -0
- data/vendor/spidermonkey/fdlibm/s_tan.c +112 -0
- data/vendor/spidermonkey/fdlibm/s_tanh.c +122 -0
- data/vendor/spidermonkey/fdlibm/w_acos.c +78 -0
- data/vendor/spidermonkey/fdlibm/w_acosh.c +78 -0
- data/vendor/spidermonkey/fdlibm/w_asin.c +80 -0
- data/vendor/spidermonkey/fdlibm/w_atan2.c +79 -0
- data/vendor/spidermonkey/fdlibm/w_atanh.c +81 -0
- data/vendor/spidermonkey/fdlibm/w_cosh.c +77 -0
- data/vendor/spidermonkey/fdlibm/w_exp.c +88 -0
- data/vendor/spidermonkey/fdlibm/w_fmod.c +78 -0
- data/vendor/spidermonkey/fdlibm/w_gamma.c +85 -0
- data/vendor/spidermonkey/fdlibm/w_gamma_r.c +81 -0
- data/vendor/spidermonkey/fdlibm/w_hypot.c +78 -0
- data/vendor/spidermonkey/fdlibm/w_j0.c +105 -0
- data/vendor/spidermonkey/fdlibm/w_j1.c +106 -0
- data/vendor/spidermonkey/fdlibm/w_jn.c +128 -0
- data/vendor/spidermonkey/fdlibm/w_lgamma.c +85 -0
- data/vendor/spidermonkey/fdlibm/w_lgamma_r.c +81 -0
- data/vendor/spidermonkey/fdlibm/w_log.c +78 -0
- data/vendor/spidermonkey/fdlibm/w_log10.c +81 -0
- data/vendor/spidermonkey/fdlibm/w_pow.c +99 -0
- data/vendor/spidermonkey/fdlibm/w_remainder.c +77 -0
- data/vendor/spidermonkey/fdlibm/w_scalb.c +95 -0
- data/vendor/spidermonkey/fdlibm/w_sinh.c +77 -0
- data/vendor/spidermonkey/fdlibm/w_sqrt.c +77 -0
- data/vendor/spidermonkey/javascript-trace.d +73 -0
- data/vendor/spidermonkey/js.c +3951 -0
- data/vendor/spidermonkey/js.mak +4438 -0
- data/vendor/spidermonkey/js.mdp +0 -0
- data/vendor/spidermonkey/js.msg +307 -0
- data/vendor/spidermonkey/js.pkg +2 -0
- data/vendor/spidermonkey/js3240.rc +79 -0
- data/vendor/spidermonkey/jsOS240.def +654 -0
- data/vendor/spidermonkey/jsapi.c +5836 -0
- data/vendor/spidermonkey/jsapi.h +2624 -0
- data/vendor/spidermonkey/jsarena.c +450 -0
- data/vendor/spidermonkey/jsarena.h +318 -0
- data/vendor/spidermonkey/jsarray.c +2988 -0
- data/vendor/spidermonkey/jsarray.h +124 -0
- data/vendor/spidermonkey/jsatom.c +1045 -0
- data/vendor/spidermonkey/jsatom.h +442 -0
- data/vendor/spidermonkey/jsbit.h +253 -0
- data/vendor/spidermonkey/jsbool.c +176 -0
- data/vendor/spidermonkey/jsbool.h +73 -0
- data/vendor/spidermonkey/jsclist.h +139 -0
- data/vendor/spidermonkey/jscntxt.c +1348 -0
- data/vendor/spidermonkey/jscntxt.h +1120 -0
- data/vendor/spidermonkey/jscompat.h +57 -0
- data/vendor/spidermonkey/jsconfig.h +248 -0
- data/vendor/spidermonkey/jsconfig.mk +181 -0
- data/vendor/spidermonkey/jscpucfg.c +383 -0
- data/vendor/spidermonkey/jscpucfg.h +212 -0
- data/vendor/spidermonkey/jsdate.c +2398 -0
- data/vendor/spidermonkey/jsdate.h +124 -0
- data/vendor/spidermonkey/jsdbgapi.c +1799 -0
- data/vendor/spidermonkey/jsdbgapi.h +464 -0
- data/vendor/spidermonkey/jsdhash.c +868 -0
- data/vendor/spidermonkey/jsdhash.h +592 -0
- data/vendor/spidermonkey/jsdtoa.c +3167 -0
- data/vendor/spidermonkey/jsdtoa.h +130 -0
- data/vendor/spidermonkey/jsdtracef.c +317 -0
- data/vendor/spidermonkey/jsdtracef.h +77 -0
- data/vendor/spidermonkey/jsemit.c +6909 -0
- data/vendor/spidermonkey/jsemit.h +741 -0
- data/vendor/spidermonkey/jsexn.c +1371 -0
- data/vendor/spidermonkey/jsexn.h +96 -0
- data/vendor/spidermonkey/jsfile.c +2736 -0
- data/vendor/spidermonkey/jsfile.h +56 -0
- data/vendor/spidermonkey/jsfile.msg +90 -0
- data/vendor/spidermonkey/jsfun.c +2634 -0
- data/vendor/spidermonkey/jsfun.h +254 -0
- data/vendor/spidermonkey/jsgc.c +3554 -0
- data/vendor/spidermonkey/jsgc.h +403 -0
- data/vendor/spidermonkey/jshash.c +476 -0
- data/vendor/spidermonkey/jshash.h +151 -0
- data/vendor/spidermonkey/jsify.pl +485 -0
- data/vendor/spidermonkey/jsinterp.c +6981 -0
- data/vendor/spidermonkey/jsinterp.h +521 -0
- data/vendor/spidermonkey/jsinvoke.c +43 -0
- data/vendor/spidermonkey/jsiter.c +1067 -0
- data/vendor/spidermonkey/jsiter.h +122 -0
- data/vendor/spidermonkey/jskeyword.tbl +124 -0
- data/vendor/spidermonkey/jskwgen.c +460 -0
- data/vendor/spidermonkey/jslibmath.h +266 -0
- data/vendor/spidermonkey/jslock.c +1309 -0
- data/vendor/spidermonkey/jslock.h +313 -0
- data/vendor/spidermonkey/jslocko.asm +60 -0
- data/vendor/spidermonkey/jslog2.c +94 -0
- data/vendor/spidermonkey/jslong.c +264 -0
- data/vendor/spidermonkey/jslong.h +412 -0
- data/vendor/spidermonkey/jsmath.c +568 -0
- data/vendor/spidermonkey/jsmath.h +57 -0
- data/vendor/spidermonkey/jsnum.c +1228 -0
- data/vendor/spidermonkey/jsnum.h +283 -0
- data/vendor/spidermonkey/jsobj.c +5266 -0
- data/vendor/spidermonkey/jsobj.h +709 -0
- data/vendor/spidermonkey/jsopcode.c +5245 -0
- data/vendor/spidermonkey/jsopcode.h +394 -0
- data/vendor/spidermonkey/jsopcode.tbl +523 -0
- data/vendor/spidermonkey/jsotypes.h +202 -0
- data/vendor/spidermonkey/jsparse.c +6680 -0
- data/vendor/spidermonkey/jsparse.h +511 -0
- data/vendor/spidermonkey/jsprf.c +1262 -0
- data/vendor/spidermonkey/jsprf.h +150 -0
- data/vendor/spidermonkey/jsproto.tbl +128 -0
- data/vendor/spidermonkey/jsprvtd.h +267 -0
- data/vendor/spidermonkey/jspubtd.h +744 -0
- data/vendor/spidermonkey/jsregexp.c +4352 -0
- data/vendor/spidermonkey/jsregexp.h +183 -0
- data/vendor/spidermonkey/jsreops.tbl +145 -0
- data/vendor/spidermonkey/jsscan.c +2003 -0
- data/vendor/spidermonkey/jsscan.h +387 -0
- data/vendor/spidermonkey/jsscope.c +1948 -0
- data/vendor/spidermonkey/jsscope.h +418 -0
- data/vendor/spidermonkey/jsscript.c +1832 -0
- data/vendor/spidermonkey/jsscript.h +287 -0
- data/vendor/spidermonkey/jsshell.msg +50 -0
- data/vendor/spidermonkey/jsstddef.h +83 -0
- data/vendor/spidermonkey/jsstr.c +5004 -0
- data/vendor/spidermonkey/jsstr.h +641 -0
- data/vendor/spidermonkey/jstypes.h +475 -0
- data/vendor/spidermonkey/jsutil.c +345 -0
- data/vendor/spidermonkey/jsutil.h +157 -0
- data/vendor/spidermonkey/jsxdrapi.c +800 -0
- data/vendor/spidermonkey/jsxdrapi.h +218 -0
- data/vendor/spidermonkey/jsxml.c +8471 -0
- data/vendor/spidermonkey/jsxml.h +349 -0
- data/vendor/spidermonkey/lock_SunOS.s +119 -0
- data/vendor/spidermonkey/perfect.js +39 -0
- data/vendor/spidermonkey/plify_jsdhash.sed +36 -0
- data/vendor/spidermonkey/prmjtime.c +846 -0
- data/vendor/spidermonkey/prmjtime.h +103 -0
- data/vendor/spidermonkey/resource.h +15 -0
- data/vendor/spidermonkey/rules.mk +197 -0
- data/vendor/spidermonkey/win32.order +384 -0
- metadata +4 -3
@@ -0,0 +1,523 @@
|
|
1
|
+
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
2
|
+
*
|
3
|
+
* ***** BEGIN LICENSE BLOCK *****
|
4
|
+
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
5
|
+
*
|
6
|
+
* The contents of this file are subject to the Mozilla Public License Version
|
7
|
+
* 1.1 (the "License"); you may not use this file except in compliance with
|
8
|
+
* the License. You may obtain a copy of the License at
|
9
|
+
* http://www.mozilla.org/MPL/
|
10
|
+
*
|
11
|
+
* Software distributed under the License is distributed on an "AS IS" basis,
|
12
|
+
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
13
|
+
* for the specific language governing rights and limitations under the
|
14
|
+
* License.
|
15
|
+
*
|
16
|
+
* The Original Code is Mozilla Communicator client code, released
|
17
|
+
* March 31, 1998.
|
18
|
+
*
|
19
|
+
* The Initial Developer of the Original Code is
|
20
|
+
* Sun Microsystems, Inc.
|
21
|
+
* Portions created by the Initial Developer are Copyright (C) 1998
|
22
|
+
* the Initial Developer. All Rights Reserved.
|
23
|
+
*
|
24
|
+
* Contributor(s):
|
25
|
+
*
|
26
|
+
* Alternatively, the contents of this file may be used under the terms of
|
27
|
+
* either of the GNU General Public License Version 2 or later (the "GPL"),
|
28
|
+
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
29
|
+
* in which case the provisions of the GPL or the LGPL are applicable instead
|
30
|
+
* of those above. If you wish to allow use of your version of this file only
|
31
|
+
* under the terms of either the GPL or the LGPL, and not to allow others to
|
32
|
+
* use your version of this file under the terms of the MPL, indicate your
|
33
|
+
* decision by deleting the provisions above and replace them with the notice
|
34
|
+
* and other provisions required by the GPL or the LGPL. If you do not delete
|
35
|
+
* the provisions above, a recipient may use your version of this file under
|
36
|
+
* the terms of any one of the MPL, the GPL or the LGPL.
|
37
|
+
*
|
38
|
+
* ***** END LICENSE BLOCK ***** */
|
39
|
+
|
40
|
+
/* @(#)e_j1.c 1.3 95/01/18 */
|
41
|
+
/*
|
42
|
+
* ====================================================
|
43
|
+
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
44
|
+
*
|
45
|
+
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
46
|
+
* Permission to use, copy, modify, and distribute this
|
47
|
+
* software is freely granted, provided that this notice
|
48
|
+
* is preserved.
|
49
|
+
* ====================================================
|
50
|
+
*/
|
51
|
+
|
52
|
+
/* __ieee754_j1(x), __ieee754_y1(x)
|
53
|
+
* Bessel function of the first and second kinds of order zero.
|
54
|
+
* Method -- j1(x):
|
55
|
+
* 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
|
56
|
+
* 2. Reduce x to |x| since j1(x)=-j1(-x), and
|
57
|
+
* for x in (0,2)
|
58
|
+
* j1(x) = x/2 + x*z*R0/S0, where z = x*x;
|
59
|
+
* (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 )
|
60
|
+
* for x in (2,inf)
|
61
|
+
* j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
|
62
|
+
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
|
63
|
+
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
|
64
|
+
* as follow:
|
65
|
+
* cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
|
66
|
+
* = 1/sqrt(2) * (sin(x) - cos(x))
|
67
|
+
* sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
68
|
+
* = -1/sqrt(2) * (sin(x) + cos(x))
|
69
|
+
* (To avoid cancellation, use
|
70
|
+
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
71
|
+
* to compute the worse one.)
|
72
|
+
*
|
73
|
+
* 3 Special cases
|
74
|
+
* j1(nan)= nan
|
75
|
+
* j1(0) = 0
|
76
|
+
* j1(inf) = 0
|
77
|
+
*
|
78
|
+
* Method -- y1(x):
|
79
|
+
* 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
|
80
|
+
* 2. For x<2.
|
81
|
+
* Since
|
82
|
+
* y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
|
83
|
+
* therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
|
84
|
+
* We use the following function to approximate y1,
|
85
|
+
* y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
|
86
|
+
* where for x in [0,2] (abs err less than 2**-65.89)
|
87
|
+
* U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4
|
88
|
+
* V(z) = 1 + v0[0]*z + ... + v0[4]*z^5
|
89
|
+
* Note: For tiny x, 1/x dominate y1 and hence
|
90
|
+
* y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
|
91
|
+
* 3. For x>=2.
|
92
|
+
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
|
93
|
+
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
|
94
|
+
* by method mentioned above.
|
95
|
+
*/
|
96
|
+
|
97
|
+
#include "fdlibm.h"
|
98
|
+
|
99
|
+
#ifdef __STDC__
|
100
|
+
static double pone(double), qone(double);
|
101
|
+
#else
|
102
|
+
static double pone(), qone();
|
103
|
+
#endif
|
104
|
+
|
105
|
+
#ifdef __STDC__
|
106
|
+
static const double
|
107
|
+
#else
|
108
|
+
static double
|
109
|
+
#endif
|
110
|
+
really_big = 1e300,
|
111
|
+
one = 1.0,
|
112
|
+
invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
|
113
|
+
tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
|
114
|
+
/* R0/S0 on [0,2] */
|
115
|
+
r00 = -6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */
|
116
|
+
r01 = 1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */
|
117
|
+
r02 = -1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */
|
118
|
+
r03 = 4.96727999609584448412e-08, /* 0x3E6AAAFA, 0x46CA0BD9 */
|
119
|
+
s01 = 1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */
|
120
|
+
s02 = 1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */
|
121
|
+
s03 = 1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */
|
122
|
+
s04 = 5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */
|
123
|
+
s05 = 1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */
|
124
|
+
|
125
|
+
static double zero = 0.0;
|
126
|
+
|
127
|
+
#ifdef __STDC__
|
128
|
+
double __ieee754_j1(double x)
|
129
|
+
#else
|
130
|
+
double __ieee754_j1(x)
|
131
|
+
double x;
|
132
|
+
#endif
|
133
|
+
{
|
134
|
+
fd_twoints un;
|
135
|
+
double z, s,c,ss,cc,r,u,v,y;
|
136
|
+
int hx,ix;
|
137
|
+
|
138
|
+
un.d = x;
|
139
|
+
hx = __HI(un);
|
140
|
+
ix = hx&0x7fffffff;
|
141
|
+
if(ix>=0x7ff00000) return one/x;
|
142
|
+
y = fd_fabs(x);
|
143
|
+
if(ix >= 0x40000000) { /* |x| >= 2.0 */
|
144
|
+
s = fd_sin(y);
|
145
|
+
c = fd_cos(y);
|
146
|
+
ss = -s-c;
|
147
|
+
cc = s-c;
|
148
|
+
if(ix<0x7fe00000) { /* make sure y+y not overflow */
|
149
|
+
z = fd_cos(y+y);
|
150
|
+
if ((s*c)>zero) cc = z/ss;
|
151
|
+
else ss = z/cc;
|
152
|
+
}
|
153
|
+
/*
|
154
|
+
* j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
|
155
|
+
* y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
|
156
|
+
*/
|
157
|
+
if(ix>0x48000000) z = (invsqrtpi*cc)/fd_sqrt(y);
|
158
|
+
else {
|
159
|
+
u = pone(y); v = qone(y);
|
160
|
+
z = invsqrtpi*(u*cc-v*ss)/fd_sqrt(y);
|
161
|
+
}
|
162
|
+
if(hx<0) return -z;
|
163
|
+
else return z;
|
164
|
+
}
|
165
|
+
if(ix<0x3e400000) { /* |x|<2**-27 */
|
166
|
+
if(really_big+x>one) return 0.5*x;/* inexact if x!=0 necessary */
|
167
|
+
}
|
168
|
+
z = x*x;
|
169
|
+
r = z*(r00+z*(r01+z*(r02+z*r03)));
|
170
|
+
s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
|
171
|
+
r *= x;
|
172
|
+
return(x*0.5+r/s);
|
173
|
+
}
|
174
|
+
|
175
|
+
#ifdef __STDC__
|
176
|
+
static const double U0[5] = {
|
177
|
+
#else
|
178
|
+
static double U0[5] = {
|
179
|
+
#endif
|
180
|
+
-1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */
|
181
|
+
5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */
|
182
|
+
-1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */
|
183
|
+
2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */
|
184
|
+
-9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */
|
185
|
+
};
|
186
|
+
#ifdef __STDC__
|
187
|
+
static const double V0[5] = {
|
188
|
+
#else
|
189
|
+
static double V0[5] = {
|
190
|
+
#endif
|
191
|
+
1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */
|
192
|
+
2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */
|
193
|
+
1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */
|
194
|
+
6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */
|
195
|
+
1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */
|
196
|
+
};
|
197
|
+
|
198
|
+
#ifdef __STDC__
|
199
|
+
double __ieee754_y1(double x)
|
200
|
+
#else
|
201
|
+
double __ieee754_y1(x)
|
202
|
+
double x;
|
203
|
+
#endif
|
204
|
+
{
|
205
|
+
fd_twoints un;
|
206
|
+
double z, s,c,ss,cc,u,v;
|
207
|
+
int hx,ix,lx;
|
208
|
+
|
209
|
+
un.d = x;
|
210
|
+
hx = __HI(un);
|
211
|
+
ix = 0x7fffffff&hx;
|
212
|
+
lx = __LO(un);
|
213
|
+
/* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
|
214
|
+
if(ix>=0x7ff00000) return one/(x+x*x);
|
215
|
+
if((ix|lx)==0) return -one/zero;
|
216
|
+
if(hx<0) return zero/zero;
|
217
|
+
if(ix >= 0x40000000) { /* |x| >= 2.0 */
|
218
|
+
s = fd_sin(x);
|
219
|
+
c = fd_cos(x);
|
220
|
+
ss = -s-c;
|
221
|
+
cc = s-c;
|
222
|
+
if(ix<0x7fe00000) { /* make sure x+x not overflow */
|
223
|
+
z = fd_cos(x+x);
|
224
|
+
if ((s*c)>zero) cc = z/ss;
|
225
|
+
else ss = z/cc;
|
226
|
+
}
|
227
|
+
/* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
|
228
|
+
* where x0 = x-3pi/4
|
229
|
+
* Better formula:
|
230
|
+
* cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
|
231
|
+
* = 1/sqrt(2) * (sin(x) - cos(x))
|
232
|
+
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
|
233
|
+
* = -1/sqrt(2) * (cos(x) + sin(x))
|
234
|
+
* To avoid cancellation, use
|
235
|
+
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
236
|
+
* to compute the worse one.
|
237
|
+
*/
|
238
|
+
if(ix>0x48000000) z = (invsqrtpi*ss)/fd_sqrt(x);
|
239
|
+
else {
|
240
|
+
u = pone(x); v = qone(x);
|
241
|
+
z = invsqrtpi*(u*ss+v*cc)/fd_sqrt(x);
|
242
|
+
}
|
243
|
+
return z;
|
244
|
+
}
|
245
|
+
if(ix<=0x3c900000) { /* x < 2**-54 */
|
246
|
+
return(-tpi/x);
|
247
|
+
}
|
248
|
+
z = x*x;
|
249
|
+
u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
|
250
|
+
v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
|
251
|
+
return(x*(u/v) + tpi*(__ieee754_j1(x)*__ieee754_log(x)-one/x));
|
252
|
+
}
|
253
|
+
|
254
|
+
/* For x >= 8, the asymptotic expansions of pone is
|
255
|
+
* 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
|
256
|
+
* We approximate pone by
|
257
|
+
* pone(x) = 1 + (R/S)
|
258
|
+
* where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
|
259
|
+
* S = 1 + ps0*s^2 + ... + ps4*s^10
|
260
|
+
* and
|
261
|
+
* | pone(x)-1-R/S | <= 2 ** ( -60.06)
|
262
|
+
*/
|
263
|
+
|
264
|
+
#ifdef __STDC__
|
265
|
+
static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
266
|
+
#else
|
267
|
+
static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
268
|
+
#endif
|
269
|
+
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
270
|
+
1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */
|
271
|
+
1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */
|
272
|
+
4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */
|
273
|
+
3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */
|
274
|
+
7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */
|
275
|
+
};
|
276
|
+
#ifdef __STDC__
|
277
|
+
static const double ps8[5] = {
|
278
|
+
#else
|
279
|
+
static double ps8[5] = {
|
280
|
+
#endif
|
281
|
+
1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */
|
282
|
+
3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */
|
283
|
+
3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */
|
284
|
+
9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */
|
285
|
+
3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */
|
286
|
+
};
|
287
|
+
|
288
|
+
#ifdef __STDC__
|
289
|
+
static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
290
|
+
#else
|
291
|
+
static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
292
|
+
#endif
|
293
|
+
1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */
|
294
|
+
1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */
|
295
|
+
6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */
|
296
|
+
1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */
|
297
|
+
5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */
|
298
|
+
5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */
|
299
|
+
};
|
300
|
+
#ifdef __STDC__
|
301
|
+
static const double ps5[5] = {
|
302
|
+
#else
|
303
|
+
static double ps5[5] = {
|
304
|
+
#endif
|
305
|
+
5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */
|
306
|
+
9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */
|
307
|
+
5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */
|
308
|
+
7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */
|
309
|
+
1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */
|
310
|
+
};
|
311
|
+
|
312
|
+
#ifdef __STDC__
|
313
|
+
static const double pr3[6] = {
|
314
|
+
#else
|
315
|
+
static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
316
|
+
#endif
|
317
|
+
3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */
|
318
|
+
1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */
|
319
|
+
3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */
|
320
|
+
3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */
|
321
|
+
9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */
|
322
|
+
4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */
|
323
|
+
};
|
324
|
+
#ifdef __STDC__
|
325
|
+
static const double ps3[5] = {
|
326
|
+
#else
|
327
|
+
static double ps3[5] = {
|
328
|
+
#endif
|
329
|
+
3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */
|
330
|
+
3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */
|
331
|
+
1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */
|
332
|
+
8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */
|
333
|
+
1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */
|
334
|
+
};
|
335
|
+
|
336
|
+
#ifdef __STDC__
|
337
|
+
static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
338
|
+
#else
|
339
|
+
static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
340
|
+
#endif
|
341
|
+
1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */
|
342
|
+
1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */
|
343
|
+
2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */
|
344
|
+
1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */
|
345
|
+
1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */
|
346
|
+
5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */
|
347
|
+
};
|
348
|
+
#ifdef __STDC__
|
349
|
+
static const double ps2[5] = {
|
350
|
+
#else
|
351
|
+
static double ps2[5] = {
|
352
|
+
#endif
|
353
|
+
2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */
|
354
|
+
1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */
|
355
|
+
2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */
|
356
|
+
1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */
|
357
|
+
8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */
|
358
|
+
};
|
359
|
+
|
360
|
+
#ifdef __STDC__
|
361
|
+
static double pone(double x)
|
362
|
+
#else
|
363
|
+
static double pone(x)
|
364
|
+
double x;
|
365
|
+
#endif
|
366
|
+
{
|
367
|
+
#ifdef __STDC__
|
368
|
+
const double *p,*q;
|
369
|
+
#else
|
370
|
+
double *p,*q;
|
371
|
+
#endif
|
372
|
+
fd_twoints un;
|
373
|
+
double z,r,s;
|
374
|
+
int ix;
|
375
|
+
un.d = x;
|
376
|
+
ix = 0x7fffffff&__HI(un);
|
377
|
+
if(ix>=0x40200000) {p = pr8; q= ps8;}
|
378
|
+
else if(ix>=0x40122E8B){p = pr5; q= ps5;}
|
379
|
+
else if(ix>=0x4006DB6D){p = pr3; q= ps3;}
|
380
|
+
else if(ix>=0x40000000){p = pr2; q= ps2;}
|
381
|
+
z = one/(x*x);
|
382
|
+
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
|
383
|
+
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
|
384
|
+
return one+ r/s;
|
385
|
+
}
|
386
|
+
|
387
|
+
|
388
|
+
/* For x >= 8, the asymptotic expansions of qone is
|
389
|
+
* 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
|
390
|
+
* We approximate pone by
|
391
|
+
* qone(x) = s*(0.375 + (R/S))
|
392
|
+
* where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
|
393
|
+
* S = 1 + qs1*s^2 + ... + qs6*s^12
|
394
|
+
* and
|
395
|
+
* | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
|
396
|
+
*/
|
397
|
+
|
398
|
+
#ifdef __STDC__
|
399
|
+
static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
400
|
+
#else
|
401
|
+
static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
|
402
|
+
#endif
|
403
|
+
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
|
404
|
+
-1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */
|
405
|
+
-1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */
|
406
|
+
-7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */
|
407
|
+
-1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */
|
408
|
+
-4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */
|
409
|
+
};
|
410
|
+
#ifdef __STDC__
|
411
|
+
static const double qs8[6] = {
|
412
|
+
#else
|
413
|
+
static double qs8[6] = {
|
414
|
+
#endif
|
415
|
+
1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */
|
416
|
+
7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */
|
417
|
+
1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */
|
418
|
+
7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */
|
419
|
+
6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */
|
420
|
+
-2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */
|
421
|
+
};
|
422
|
+
|
423
|
+
#ifdef __STDC__
|
424
|
+
static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
425
|
+
#else
|
426
|
+
static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
|
427
|
+
#endif
|
428
|
+
-2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */
|
429
|
+
-1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */
|
430
|
+
-8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */
|
431
|
+
-1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */
|
432
|
+
-1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */
|
433
|
+
-2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */
|
434
|
+
};
|
435
|
+
#ifdef __STDC__
|
436
|
+
static const double qs5[6] = {
|
437
|
+
#else
|
438
|
+
static double qs5[6] = {
|
439
|
+
#endif
|
440
|
+
8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */
|
441
|
+
1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */
|
442
|
+
1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */
|
443
|
+
4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */
|
444
|
+
2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */
|
445
|
+
-4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */
|
446
|
+
};
|
447
|
+
|
448
|
+
#ifdef __STDC__
|
449
|
+
static const double qr3[6] = {
|
450
|
+
#else
|
451
|
+
static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
|
452
|
+
#endif
|
453
|
+
-5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */
|
454
|
+
-1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */
|
455
|
+
-4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */
|
456
|
+
-5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */
|
457
|
+
-2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */
|
458
|
+
-2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */
|
459
|
+
};
|
460
|
+
#ifdef __STDC__
|
461
|
+
static const double qs3[6] = {
|
462
|
+
#else
|
463
|
+
static double qs3[6] = {
|
464
|
+
#endif
|
465
|
+
4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */
|
466
|
+
6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */
|
467
|
+
3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */
|
468
|
+
5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */
|
469
|
+
1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */
|
470
|
+
-1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */
|
471
|
+
};
|
472
|
+
|
473
|
+
#ifdef __STDC__
|
474
|
+
static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
475
|
+
#else
|
476
|
+
static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
|
477
|
+
#endif
|
478
|
+
-1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */
|
479
|
+
-1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */
|
480
|
+
-2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */
|
481
|
+
-1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */
|
482
|
+
-4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */
|
483
|
+
-2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */
|
484
|
+
};
|
485
|
+
#ifdef __STDC__
|
486
|
+
static const double qs2[6] = {
|
487
|
+
#else
|
488
|
+
static double qs2[6] = {
|
489
|
+
#endif
|
490
|
+
2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */
|
491
|
+
2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */
|
492
|
+
7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */
|
493
|
+
7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */
|
494
|
+
1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */
|
495
|
+
-4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */
|
496
|
+
};
|
497
|
+
|
498
|
+
#ifdef __STDC__
|
499
|
+
static double qone(double x)
|
500
|
+
#else
|
501
|
+
static double qone(x)
|
502
|
+
double x;
|
503
|
+
#endif
|
504
|
+
{
|
505
|
+
#ifdef __STDC__
|
506
|
+
const double *p,*q;
|
507
|
+
#else
|
508
|
+
double *p,*q;
|
509
|
+
#endif
|
510
|
+
fd_twoints un;
|
511
|
+
double s,r,z;
|
512
|
+
int ix;
|
513
|
+
un.d = x;
|
514
|
+
ix = 0x7fffffff&__HI(un);
|
515
|
+
if(ix>=0x40200000) {p = qr8; q= qs8;}
|
516
|
+
else if(ix>=0x40122E8B){p = qr5; q= qs5;}
|
517
|
+
else if(ix>=0x4006DB6D){p = qr3; q= qs3;}
|
518
|
+
else if(ix>=0x40000000){p = qr2; q= qs2;}
|
519
|
+
z = one/(x*x);
|
520
|
+
r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
|
521
|
+
s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
|
522
|
+
return (.375 + r/s)/x;
|
523
|
+
}
|