jbarnette-johnson 1.0.0.200806240111 → 1.0.0.200807291507
Sign up to get free protection for your applications and to get access to all the features.
- data/MANIFEST +1 -0
- data/Rakefile +3 -10
- data/bin/johnson +2 -1
- data/ext/spidermonkey/context.c +3 -4
- data/ext/spidermonkey/context.h +1 -1
- data/ext/spidermonkey/conversions.c +39 -33
- data/ext/spidermonkey/debugger.c +5 -5
- data/ext/spidermonkey/immutable_node.c.erb +11 -11
- data/ext/spidermonkey/jroot.h +4 -4
- data/ext/spidermonkey/js_land_proxy.c +9 -8
- data/ext/spidermonkey/ruby_land_proxy.c +5 -4
- data/ext/spidermonkey/runtime.c +1 -1
- data/johnson.gemspec +36 -0
- data/lib/hoe.rb +0 -7
- data/lib/johnson/cli/options.rb +10 -4
- data/lib/johnson/spidermonkey/runtime.rb +2 -2
- data/lib/johnson/version.rb +4 -2
- data/lib/johnson.rb +1 -0
- data/test/johnson/runtime_test.rb +11 -0
- data/test/johnson/spidermonkey/ruby_land_proxy_test.rb +6 -0
- data/vendor/spidermonkey/.cvsignore +9 -0
- data/vendor/spidermonkey/Makefile.in +462 -0
- data/vendor/spidermonkey/Makefile.ref +364 -0
- data/vendor/spidermonkey/README.html +820 -0
- data/vendor/spidermonkey/SpiderMonkey.rsp +12 -0
- data/vendor/spidermonkey/Y.js +19 -0
- data/vendor/spidermonkey/build.mk +43 -0
- data/vendor/spidermonkey/config/AIX4.1.mk +65 -0
- data/vendor/spidermonkey/config/AIX4.2.mk +64 -0
- data/vendor/spidermonkey/config/AIX4.3.mk +65 -0
- data/vendor/spidermonkey/config/Darwin.mk +83 -0
- data/vendor/spidermonkey/config/Darwin1.3.mk +81 -0
- data/vendor/spidermonkey/config/Darwin1.4.mk +41 -0
- data/vendor/spidermonkey/config/Darwin5.2.mk +81 -0
- data/vendor/spidermonkey/config/Darwin5.3.mk +81 -0
- data/vendor/spidermonkey/config/HP-UXB.10.10.mk +77 -0
- data/vendor/spidermonkey/config/HP-UXB.10.20.mk +77 -0
- data/vendor/spidermonkey/config/HP-UXB.11.00.mk +80 -0
- data/vendor/spidermonkey/config/IRIX.mk +87 -0
- data/vendor/spidermonkey/config/IRIX5.3.mk +44 -0
- data/vendor/spidermonkey/config/IRIX6.1.mk +44 -0
- data/vendor/spidermonkey/config/IRIX6.2.mk +44 -0
- data/vendor/spidermonkey/config/IRIX6.3.mk +44 -0
- data/vendor/spidermonkey/config/IRIX6.5.mk +44 -0
- data/vendor/spidermonkey/config/Linux_All.mk +103 -0
- data/vendor/spidermonkey/config/Mac_OS10.0.mk +82 -0
- data/vendor/spidermonkey/config/OSF1V4.0.mk +72 -0
- data/vendor/spidermonkey/config/OSF1V5.0.mk +69 -0
- data/vendor/spidermonkey/config/SunOS4.1.4.mk +101 -0
- data/vendor/spidermonkey/config/SunOS5.10.mk +50 -0
- data/vendor/spidermonkey/config/SunOS5.3.mk +91 -0
- data/vendor/spidermonkey/config/SunOS5.4.mk +92 -0
- data/vendor/spidermonkey/config/SunOS5.5.1.mk +44 -0
- data/vendor/spidermonkey/config/SunOS5.5.mk +87 -0
- data/vendor/spidermonkey/config/SunOS5.6.mk +89 -0
- data/vendor/spidermonkey/config/SunOS5.7.mk +44 -0
- data/vendor/spidermonkey/config/SunOS5.8.mk +44 -0
- data/vendor/spidermonkey/config/SunOS5.9.mk +44 -0
- data/vendor/spidermonkey/config/WINNT4.0.mk +117 -0
- data/vendor/spidermonkey/config/WINNT5.0.mk +117 -0
- data/vendor/spidermonkey/config/WINNT5.1.mk +117 -0
- data/vendor/spidermonkey/config/WINNT5.2.mk +117 -0
- data/vendor/spidermonkey/config/WINNT6.0.mk +117 -0
- data/vendor/spidermonkey/config/dgux.mk +64 -0
- data/vendor/spidermonkey/config.mk +192 -0
- data/vendor/spidermonkey/editline/Makefile.ref +144 -0
- data/vendor/spidermonkey/editline/README +83 -0
- data/vendor/spidermonkey/editline/editline.3 +175 -0
- data/vendor/spidermonkey/editline/editline.c +1369 -0
- data/vendor/spidermonkey/editline/editline.h +135 -0
- data/vendor/spidermonkey/editline/sysunix.c +182 -0
- data/vendor/spidermonkey/editline/unix.h +82 -0
- data/vendor/spidermonkey/fdlibm/.cvsignore +7 -0
- data/vendor/spidermonkey/fdlibm/Makefile.in +127 -0
- data/vendor/spidermonkey/fdlibm/Makefile.ref +192 -0
- data/vendor/spidermonkey/fdlibm/e_acos.c +147 -0
- data/vendor/spidermonkey/fdlibm/e_acosh.c +105 -0
- data/vendor/spidermonkey/fdlibm/e_asin.c +156 -0
- data/vendor/spidermonkey/fdlibm/e_atan2.c +165 -0
- data/vendor/spidermonkey/fdlibm/e_atanh.c +110 -0
- data/vendor/spidermonkey/fdlibm/e_cosh.c +133 -0
- data/vendor/spidermonkey/fdlibm/e_exp.c +202 -0
- data/vendor/spidermonkey/fdlibm/e_fmod.c +184 -0
- data/vendor/spidermonkey/fdlibm/e_gamma.c +71 -0
- data/vendor/spidermonkey/fdlibm/e_gamma_r.c +70 -0
- data/vendor/spidermonkey/fdlibm/e_hypot.c +173 -0
- data/vendor/spidermonkey/fdlibm/e_j0.c +524 -0
- data/vendor/spidermonkey/fdlibm/e_j1.c +523 -0
- data/vendor/spidermonkey/fdlibm/e_jn.c +315 -0
- data/vendor/spidermonkey/fdlibm/e_lgamma.c +71 -0
- data/vendor/spidermonkey/fdlibm/e_lgamma_r.c +347 -0
- data/vendor/spidermonkey/fdlibm/e_log.c +184 -0
- data/vendor/spidermonkey/fdlibm/e_log10.c +134 -0
- data/vendor/spidermonkey/fdlibm/e_pow.c +386 -0
- data/vendor/spidermonkey/fdlibm/e_rem_pio2.c +222 -0
- data/vendor/spidermonkey/fdlibm/e_remainder.c +120 -0
- data/vendor/spidermonkey/fdlibm/e_scalb.c +89 -0
- data/vendor/spidermonkey/fdlibm/e_sinh.c +122 -0
- data/vendor/spidermonkey/fdlibm/e_sqrt.c +497 -0
- data/vendor/spidermonkey/fdlibm/fdlibm.h +273 -0
- data/vendor/spidermonkey/fdlibm/fdlibm.mak +1453 -0
- data/vendor/spidermonkey/fdlibm/fdlibm.mdp +0 -0
- data/vendor/spidermonkey/fdlibm/k_cos.c +135 -0
- data/vendor/spidermonkey/fdlibm/k_rem_pio2.c +354 -0
- data/vendor/spidermonkey/fdlibm/k_sin.c +114 -0
- data/vendor/spidermonkey/fdlibm/k_standard.c +785 -0
- data/vendor/spidermonkey/fdlibm/k_tan.c +170 -0
- data/vendor/spidermonkey/fdlibm/s_asinh.c +101 -0
- data/vendor/spidermonkey/fdlibm/s_atan.c +175 -0
- data/vendor/spidermonkey/fdlibm/s_cbrt.c +133 -0
- data/vendor/spidermonkey/fdlibm/s_ceil.c +120 -0
- data/vendor/spidermonkey/fdlibm/s_copysign.c +72 -0
- data/vendor/spidermonkey/fdlibm/s_cos.c +118 -0
- data/vendor/spidermonkey/fdlibm/s_erf.c +356 -0
- data/vendor/spidermonkey/fdlibm/s_expm1.c +267 -0
- data/vendor/spidermonkey/fdlibm/s_fabs.c +70 -0
- data/vendor/spidermonkey/fdlibm/s_finite.c +71 -0
- data/vendor/spidermonkey/fdlibm/s_floor.c +121 -0
- data/vendor/spidermonkey/fdlibm/s_frexp.c +99 -0
- data/vendor/spidermonkey/fdlibm/s_ilogb.c +85 -0
- data/vendor/spidermonkey/fdlibm/s_isnan.c +74 -0
- data/vendor/spidermonkey/fdlibm/s_ldexp.c +66 -0
- data/vendor/spidermonkey/fdlibm/s_lib_version.c +73 -0
- data/vendor/spidermonkey/fdlibm/s_log1p.c +211 -0
- data/vendor/spidermonkey/fdlibm/s_logb.c +79 -0
- data/vendor/spidermonkey/fdlibm/s_matherr.c +64 -0
- data/vendor/spidermonkey/fdlibm/s_modf.c +132 -0
- data/vendor/spidermonkey/fdlibm/s_nextafter.c +124 -0
- data/vendor/spidermonkey/fdlibm/s_rint.c +131 -0
- data/vendor/spidermonkey/fdlibm/s_scalbn.c +107 -0
- data/vendor/spidermonkey/fdlibm/s_signgam.c +40 -0
- data/vendor/spidermonkey/fdlibm/s_significand.c +68 -0
- data/vendor/spidermonkey/fdlibm/s_sin.c +118 -0
- data/vendor/spidermonkey/fdlibm/s_tan.c +112 -0
- data/vendor/spidermonkey/fdlibm/s_tanh.c +122 -0
- data/vendor/spidermonkey/fdlibm/w_acos.c +78 -0
- data/vendor/spidermonkey/fdlibm/w_acosh.c +78 -0
- data/vendor/spidermonkey/fdlibm/w_asin.c +80 -0
- data/vendor/spidermonkey/fdlibm/w_atan2.c +79 -0
- data/vendor/spidermonkey/fdlibm/w_atanh.c +81 -0
- data/vendor/spidermonkey/fdlibm/w_cosh.c +77 -0
- data/vendor/spidermonkey/fdlibm/w_exp.c +88 -0
- data/vendor/spidermonkey/fdlibm/w_fmod.c +78 -0
- data/vendor/spidermonkey/fdlibm/w_gamma.c +85 -0
- data/vendor/spidermonkey/fdlibm/w_gamma_r.c +81 -0
- data/vendor/spidermonkey/fdlibm/w_hypot.c +78 -0
- data/vendor/spidermonkey/fdlibm/w_j0.c +105 -0
- data/vendor/spidermonkey/fdlibm/w_j1.c +106 -0
- data/vendor/spidermonkey/fdlibm/w_jn.c +128 -0
- data/vendor/spidermonkey/fdlibm/w_lgamma.c +85 -0
- data/vendor/spidermonkey/fdlibm/w_lgamma_r.c +81 -0
- data/vendor/spidermonkey/fdlibm/w_log.c +78 -0
- data/vendor/spidermonkey/fdlibm/w_log10.c +81 -0
- data/vendor/spidermonkey/fdlibm/w_pow.c +99 -0
- data/vendor/spidermonkey/fdlibm/w_remainder.c +77 -0
- data/vendor/spidermonkey/fdlibm/w_scalb.c +95 -0
- data/vendor/spidermonkey/fdlibm/w_sinh.c +77 -0
- data/vendor/spidermonkey/fdlibm/w_sqrt.c +77 -0
- data/vendor/spidermonkey/javascript-trace.d +73 -0
- data/vendor/spidermonkey/js.c +3951 -0
- data/vendor/spidermonkey/js.mak +4438 -0
- data/vendor/spidermonkey/js.mdp +0 -0
- data/vendor/spidermonkey/js.msg +307 -0
- data/vendor/spidermonkey/js.pkg +2 -0
- data/vendor/spidermonkey/js3240.rc +79 -0
- data/vendor/spidermonkey/jsOS240.def +654 -0
- data/vendor/spidermonkey/jsapi.c +5836 -0
- data/vendor/spidermonkey/jsapi.h +2624 -0
- data/vendor/spidermonkey/jsarena.c +450 -0
- data/vendor/spidermonkey/jsarena.h +318 -0
- data/vendor/spidermonkey/jsarray.c +2988 -0
- data/vendor/spidermonkey/jsarray.h +124 -0
- data/vendor/spidermonkey/jsatom.c +1045 -0
- data/vendor/spidermonkey/jsatom.h +442 -0
- data/vendor/spidermonkey/jsbit.h +253 -0
- data/vendor/spidermonkey/jsbool.c +176 -0
- data/vendor/spidermonkey/jsbool.h +73 -0
- data/vendor/spidermonkey/jsclist.h +139 -0
- data/vendor/spidermonkey/jscntxt.c +1348 -0
- data/vendor/spidermonkey/jscntxt.h +1120 -0
- data/vendor/spidermonkey/jscompat.h +57 -0
- data/vendor/spidermonkey/jsconfig.h +248 -0
- data/vendor/spidermonkey/jsconfig.mk +181 -0
- data/vendor/spidermonkey/jscpucfg.c +383 -0
- data/vendor/spidermonkey/jscpucfg.h +212 -0
- data/vendor/spidermonkey/jsdate.c +2398 -0
- data/vendor/spidermonkey/jsdate.h +124 -0
- data/vendor/spidermonkey/jsdbgapi.c +1799 -0
- data/vendor/spidermonkey/jsdbgapi.h +464 -0
- data/vendor/spidermonkey/jsdhash.c +868 -0
- data/vendor/spidermonkey/jsdhash.h +592 -0
- data/vendor/spidermonkey/jsdtoa.c +3167 -0
- data/vendor/spidermonkey/jsdtoa.h +130 -0
- data/vendor/spidermonkey/jsdtracef.c +317 -0
- data/vendor/spidermonkey/jsdtracef.h +77 -0
- data/vendor/spidermonkey/jsemit.c +6909 -0
- data/vendor/spidermonkey/jsemit.h +741 -0
- data/vendor/spidermonkey/jsexn.c +1371 -0
- data/vendor/spidermonkey/jsexn.h +96 -0
- data/vendor/spidermonkey/jsfile.c +2736 -0
- data/vendor/spidermonkey/jsfile.h +56 -0
- data/vendor/spidermonkey/jsfile.msg +90 -0
- data/vendor/spidermonkey/jsfun.c +2634 -0
- data/vendor/spidermonkey/jsfun.h +254 -0
- data/vendor/spidermonkey/jsgc.c +3554 -0
- data/vendor/spidermonkey/jsgc.h +403 -0
- data/vendor/spidermonkey/jshash.c +476 -0
- data/vendor/spidermonkey/jshash.h +151 -0
- data/vendor/spidermonkey/jsify.pl +485 -0
- data/vendor/spidermonkey/jsinterp.c +6981 -0
- data/vendor/spidermonkey/jsinterp.h +521 -0
- data/vendor/spidermonkey/jsinvoke.c +43 -0
- data/vendor/spidermonkey/jsiter.c +1067 -0
- data/vendor/spidermonkey/jsiter.h +122 -0
- data/vendor/spidermonkey/jskeyword.tbl +124 -0
- data/vendor/spidermonkey/jskwgen.c +460 -0
- data/vendor/spidermonkey/jslibmath.h +266 -0
- data/vendor/spidermonkey/jslock.c +1309 -0
- data/vendor/spidermonkey/jslock.h +313 -0
- data/vendor/spidermonkey/jslocko.asm +60 -0
- data/vendor/spidermonkey/jslog2.c +94 -0
- data/vendor/spidermonkey/jslong.c +264 -0
- data/vendor/spidermonkey/jslong.h +412 -0
- data/vendor/spidermonkey/jsmath.c +568 -0
- data/vendor/spidermonkey/jsmath.h +57 -0
- data/vendor/spidermonkey/jsnum.c +1228 -0
- data/vendor/spidermonkey/jsnum.h +283 -0
- data/vendor/spidermonkey/jsobj.c +5266 -0
- data/vendor/spidermonkey/jsobj.h +709 -0
- data/vendor/spidermonkey/jsopcode.c +5245 -0
- data/vendor/spidermonkey/jsopcode.h +394 -0
- data/vendor/spidermonkey/jsopcode.tbl +523 -0
- data/vendor/spidermonkey/jsotypes.h +202 -0
- data/vendor/spidermonkey/jsparse.c +6680 -0
- data/vendor/spidermonkey/jsparse.h +511 -0
- data/vendor/spidermonkey/jsprf.c +1262 -0
- data/vendor/spidermonkey/jsprf.h +150 -0
- data/vendor/spidermonkey/jsproto.tbl +128 -0
- data/vendor/spidermonkey/jsprvtd.h +267 -0
- data/vendor/spidermonkey/jspubtd.h +744 -0
- data/vendor/spidermonkey/jsregexp.c +4352 -0
- data/vendor/spidermonkey/jsregexp.h +183 -0
- data/vendor/spidermonkey/jsreops.tbl +145 -0
- data/vendor/spidermonkey/jsscan.c +2003 -0
- data/vendor/spidermonkey/jsscan.h +387 -0
- data/vendor/spidermonkey/jsscope.c +1948 -0
- data/vendor/spidermonkey/jsscope.h +418 -0
- data/vendor/spidermonkey/jsscript.c +1832 -0
- data/vendor/spidermonkey/jsscript.h +287 -0
- data/vendor/spidermonkey/jsshell.msg +50 -0
- data/vendor/spidermonkey/jsstddef.h +83 -0
- data/vendor/spidermonkey/jsstr.c +5004 -0
- data/vendor/spidermonkey/jsstr.h +641 -0
- data/vendor/spidermonkey/jstypes.h +475 -0
- data/vendor/spidermonkey/jsutil.c +345 -0
- data/vendor/spidermonkey/jsutil.h +157 -0
- data/vendor/spidermonkey/jsxdrapi.c +800 -0
- data/vendor/spidermonkey/jsxdrapi.h +218 -0
- data/vendor/spidermonkey/jsxml.c +8471 -0
- data/vendor/spidermonkey/jsxml.h +349 -0
- data/vendor/spidermonkey/lock_SunOS.s +119 -0
- data/vendor/spidermonkey/perfect.js +39 -0
- data/vendor/spidermonkey/plify_jsdhash.sed +36 -0
- data/vendor/spidermonkey/prmjtime.c +846 -0
- data/vendor/spidermonkey/prmjtime.h +103 -0
- data/vendor/spidermonkey/resource.h +15 -0
- data/vendor/spidermonkey/rules.mk +197 -0
- data/vendor/spidermonkey/win32.order +384 -0
- metadata +4 -3
@@ -0,0 +1,497 @@
|
|
1
|
+
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
2
|
+
*
|
3
|
+
* ***** BEGIN LICENSE BLOCK *****
|
4
|
+
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
5
|
+
*
|
6
|
+
* The contents of this file are subject to the Mozilla Public License Version
|
7
|
+
* 1.1 (the "License"); you may not use this file except in compliance with
|
8
|
+
* the License. You may obtain a copy of the License at
|
9
|
+
* http://www.mozilla.org/MPL/
|
10
|
+
*
|
11
|
+
* Software distributed under the License is distributed on an "AS IS" basis,
|
12
|
+
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
13
|
+
* for the specific language governing rights and limitations under the
|
14
|
+
* License.
|
15
|
+
*
|
16
|
+
* The Original Code is Mozilla Communicator client code, released
|
17
|
+
* March 31, 1998.
|
18
|
+
*
|
19
|
+
* The Initial Developer of the Original Code is
|
20
|
+
* Sun Microsystems, Inc.
|
21
|
+
* Portions created by the Initial Developer are Copyright (C) 1998
|
22
|
+
* the Initial Developer. All Rights Reserved.
|
23
|
+
*
|
24
|
+
* Contributor(s):
|
25
|
+
*
|
26
|
+
* Alternatively, the contents of this file may be used under the terms of
|
27
|
+
* either of the GNU General Public License Version 2 or later (the "GPL"),
|
28
|
+
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
29
|
+
* in which case the provisions of the GPL or the LGPL are applicable instead
|
30
|
+
* of those above. If you wish to allow use of your version of this file only
|
31
|
+
* under the terms of either the GPL or the LGPL, and not to allow others to
|
32
|
+
* use your version of this file under the terms of the MPL, indicate your
|
33
|
+
* decision by deleting the provisions above and replace them with the notice
|
34
|
+
* and other provisions required by the GPL or the LGPL. If you do not delete
|
35
|
+
* the provisions above, a recipient may use your version of this file under
|
36
|
+
* the terms of any one of the MPL, the GPL or the LGPL.
|
37
|
+
*
|
38
|
+
* ***** END LICENSE BLOCK ***** */
|
39
|
+
/* @(#)e_sqrt.c 1.3 95/01/18 */
|
40
|
+
/*
|
41
|
+
* ====================================================
|
42
|
+
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
43
|
+
*
|
44
|
+
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
45
|
+
* Permission to use, copy, modify, and distribute this
|
46
|
+
* software is freely granted, provided that this notice
|
47
|
+
* is preserved.
|
48
|
+
* ====================================================
|
49
|
+
*/
|
50
|
+
|
51
|
+
/* __ieee754_sqrt(x)
|
52
|
+
* Return correctly rounded sqrt.
|
53
|
+
* ------------------------------------------
|
54
|
+
* | Use the hardware sqrt if you have one |
|
55
|
+
* ------------------------------------------
|
56
|
+
* Method:
|
57
|
+
* Bit by bit method using integer arithmetic. (Slow, but portable)
|
58
|
+
* 1. Normalization
|
59
|
+
* Scale x to y in [1,4) with even powers of 2:
|
60
|
+
* find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
|
61
|
+
* sqrt(y) = 2^k * sqrt(x)
|
62
|
+
* 2. Bit by bit computation
|
63
|
+
* Let q = sqrt(y) truncated to i bit after binary point (q = 1),
|
64
|
+
* i 0
|
65
|
+
* i+1 2
|
66
|
+
* s = 2*q , and y = 2 * ( y - q ). (1)
|
67
|
+
* i i i i
|
68
|
+
*
|
69
|
+
* To compute q from q , one checks whether
|
70
|
+
* i+1 i
|
71
|
+
*
|
72
|
+
* -(i+1) 2
|
73
|
+
* (q + 2 ) <= y. (2)
|
74
|
+
* i
|
75
|
+
* -(i+1)
|
76
|
+
* If (2) is false, then q = q ; otherwise q = q + 2 .
|
77
|
+
* i+1 i i+1 i
|
78
|
+
*
|
79
|
+
* With some algebric manipulation, it is not difficult to see
|
80
|
+
* that (2) is equivalent to
|
81
|
+
* -(i+1)
|
82
|
+
* s + 2 <= y (3)
|
83
|
+
* i i
|
84
|
+
*
|
85
|
+
* The advantage of (3) is that s and y can be computed by
|
86
|
+
* i i
|
87
|
+
* the following recurrence formula:
|
88
|
+
* if (3) is false
|
89
|
+
*
|
90
|
+
* s = s , y = y ; (4)
|
91
|
+
* i+1 i i+1 i
|
92
|
+
*
|
93
|
+
* otherwise,
|
94
|
+
* -i -(i+1)
|
95
|
+
* s = s + 2 , y = y - s - 2 (5)
|
96
|
+
* i+1 i i+1 i i
|
97
|
+
*
|
98
|
+
* One may easily use induction to prove (4) and (5).
|
99
|
+
* Note. Since the left hand side of (3) contain only i+2 bits,
|
100
|
+
* it does not necessary to do a full (53-bit) comparison
|
101
|
+
* in (3).
|
102
|
+
* 3. Final rounding
|
103
|
+
* After generating the 53 bits result, we compute one more bit.
|
104
|
+
* Together with the remainder, we can decide whether the
|
105
|
+
* result is exact, bigger than 1/2ulp, or less than 1/2ulp
|
106
|
+
* (it will never equal to 1/2ulp).
|
107
|
+
* The rounding mode can be detected by checking whether
|
108
|
+
* huge + tiny is equal to huge, and whether huge - tiny is
|
109
|
+
* equal to huge for some floating point number "huge" and "tiny".
|
110
|
+
*
|
111
|
+
* Special cases:
|
112
|
+
* sqrt(+-0) = +-0 ... exact
|
113
|
+
* sqrt(inf) = inf
|
114
|
+
* sqrt(-ve) = NaN ... with invalid signal
|
115
|
+
* sqrt(NaN) = NaN ... with invalid signal for signaling NaN
|
116
|
+
*
|
117
|
+
* Other methods : see the appended file at the end of the program below.
|
118
|
+
*---------------
|
119
|
+
*/
|
120
|
+
|
121
|
+
#include "fdlibm.h"
|
122
|
+
|
123
|
+
#if defined(_MSC_VER)
|
124
|
+
/* Microsoft Compiler */
|
125
|
+
#pragma warning( disable : 4723 ) /* disables potential divide by 0 warning */
|
126
|
+
#endif
|
127
|
+
|
128
|
+
#ifdef __STDC__
|
129
|
+
static const double one = 1.0, tiny=1.0e-300;
|
130
|
+
#else
|
131
|
+
static double one = 1.0, tiny=1.0e-300;
|
132
|
+
#endif
|
133
|
+
|
134
|
+
#ifdef __STDC__
|
135
|
+
double __ieee754_sqrt(double x)
|
136
|
+
#else
|
137
|
+
double __ieee754_sqrt(x)
|
138
|
+
double x;
|
139
|
+
#endif
|
140
|
+
{
|
141
|
+
fd_twoints u;
|
142
|
+
double z;
|
143
|
+
int sign = (int)0x80000000;
|
144
|
+
unsigned r,t1,s1,ix1,q1;
|
145
|
+
int ix0,s0,q,m,t,i;
|
146
|
+
|
147
|
+
u.d = x;
|
148
|
+
ix0 = __HI(u); /* high word of x */
|
149
|
+
ix1 = __LO(u); /* low word of x */
|
150
|
+
|
151
|
+
/* take care of Inf and NaN */
|
152
|
+
if((ix0&0x7ff00000)==0x7ff00000) {
|
153
|
+
return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
|
154
|
+
sqrt(-inf)=sNaN */
|
155
|
+
}
|
156
|
+
/* take care of zero */
|
157
|
+
if(ix0<=0) {
|
158
|
+
if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
|
159
|
+
else if(ix0<0)
|
160
|
+
return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
|
161
|
+
}
|
162
|
+
/* normalize x */
|
163
|
+
m = (ix0>>20);
|
164
|
+
if(m==0) { /* subnormal x */
|
165
|
+
while(ix0==0) {
|
166
|
+
m -= 21;
|
167
|
+
ix0 |= (ix1>>11); ix1 <<= 21;
|
168
|
+
}
|
169
|
+
for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
|
170
|
+
m -= i-1;
|
171
|
+
ix0 |= (ix1>>(32-i));
|
172
|
+
ix1 <<= i;
|
173
|
+
}
|
174
|
+
m -= 1023; /* unbias exponent */
|
175
|
+
ix0 = (ix0&0x000fffff)|0x00100000;
|
176
|
+
if(m&1){ /* odd m, double x to make it even */
|
177
|
+
ix0 += ix0 + ((ix1&sign)>>31);
|
178
|
+
ix1 += ix1;
|
179
|
+
}
|
180
|
+
m >>= 1; /* m = [m/2] */
|
181
|
+
|
182
|
+
/* generate sqrt(x) bit by bit */
|
183
|
+
ix0 += ix0 + ((ix1&sign)>>31);
|
184
|
+
ix1 += ix1;
|
185
|
+
q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
|
186
|
+
r = 0x00200000; /* r = moving bit from right to left */
|
187
|
+
|
188
|
+
while(r!=0) {
|
189
|
+
t = s0+r;
|
190
|
+
if(t<=ix0) {
|
191
|
+
s0 = t+r;
|
192
|
+
ix0 -= t;
|
193
|
+
q += r;
|
194
|
+
}
|
195
|
+
ix0 += ix0 + ((ix1&sign)>>31);
|
196
|
+
ix1 += ix1;
|
197
|
+
r>>=1;
|
198
|
+
}
|
199
|
+
|
200
|
+
r = sign;
|
201
|
+
while(r!=0) {
|
202
|
+
t1 = s1+r;
|
203
|
+
t = s0;
|
204
|
+
if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
|
205
|
+
s1 = t1+r;
|
206
|
+
if(((int)(t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
|
207
|
+
ix0 -= t;
|
208
|
+
if (ix1 < t1) ix0 -= 1;
|
209
|
+
ix1 -= t1;
|
210
|
+
q1 += r;
|
211
|
+
}
|
212
|
+
ix0 += ix0 + ((ix1&sign)>>31);
|
213
|
+
ix1 += ix1;
|
214
|
+
r>>=1;
|
215
|
+
}
|
216
|
+
|
217
|
+
/* use floating add to find out rounding direction */
|
218
|
+
if((ix0|ix1)!=0) {
|
219
|
+
z = one-tiny; /* trigger inexact flag */
|
220
|
+
if (z>=one) {
|
221
|
+
z = one+tiny;
|
222
|
+
if (q1==(unsigned)0xffffffff) { q1=0; q += 1;}
|
223
|
+
else if (z>one) {
|
224
|
+
if (q1==(unsigned)0xfffffffe) q+=1;
|
225
|
+
q1+=2;
|
226
|
+
} else
|
227
|
+
q1 += (q1&1);
|
228
|
+
}
|
229
|
+
}
|
230
|
+
ix0 = (q>>1)+0x3fe00000;
|
231
|
+
ix1 = q1>>1;
|
232
|
+
if ((q&1)==1) ix1 |= sign;
|
233
|
+
ix0 += (m <<20);
|
234
|
+
u.d = z;
|
235
|
+
__HI(u) = ix0;
|
236
|
+
__LO(u) = ix1;
|
237
|
+
z = u.d;
|
238
|
+
return z;
|
239
|
+
}
|
240
|
+
|
241
|
+
/*
|
242
|
+
Other methods (use floating-point arithmetic)
|
243
|
+
-------------
|
244
|
+
(This is a copy of a drafted paper by Prof W. Kahan
|
245
|
+
and K.C. Ng, written in May, 1986)
|
246
|
+
|
247
|
+
Two algorithms are given here to implement sqrt(x)
|
248
|
+
(IEEE double precision arithmetic) in software.
|
249
|
+
Both supply sqrt(x) correctly rounded. The first algorithm (in
|
250
|
+
Section A) uses newton iterations and involves four divisions.
|
251
|
+
The second one uses reciproot iterations to avoid division, but
|
252
|
+
requires more multiplications. Both algorithms need the ability
|
253
|
+
to chop results of arithmetic operations instead of round them,
|
254
|
+
and the INEXACT flag to indicate when an arithmetic operation
|
255
|
+
is executed exactly with no roundoff error, all part of the
|
256
|
+
standard (IEEE 754-1985). The ability to perform shift, add,
|
257
|
+
subtract and logical AND operations upon 32-bit words is needed
|
258
|
+
too, though not part of the standard.
|
259
|
+
|
260
|
+
A. sqrt(x) by Newton Iteration
|
261
|
+
|
262
|
+
(1) Initial approximation
|
263
|
+
|
264
|
+
Let x0 and x1 be the leading and the trailing 32-bit words of
|
265
|
+
a floating point number x (in IEEE double format) respectively
|
266
|
+
|
267
|
+
1 11 52 ...widths
|
268
|
+
------------------------------------------------------
|
269
|
+
x: |s| e | f |
|
270
|
+
------------------------------------------------------
|
271
|
+
msb lsb msb lsb ...order
|
272
|
+
|
273
|
+
|
274
|
+
------------------------ ------------------------
|
275
|
+
x0: |s| e | f1 | x1: | f2 |
|
276
|
+
------------------------ ------------------------
|
277
|
+
|
278
|
+
By performing shifts and subtracts on x0 and x1 (both regarded
|
279
|
+
as integers), we obtain an 8-bit approximation of sqrt(x) as
|
280
|
+
follows.
|
281
|
+
|
282
|
+
k := (x0>>1) + 0x1ff80000;
|
283
|
+
y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
|
284
|
+
Here k is a 32-bit integer and T1[] is an integer array containing
|
285
|
+
correction terms. Now magically the floating value of y (y's
|
286
|
+
leading 32-bit word is y0, the value of its trailing word is 0)
|
287
|
+
approximates sqrt(x) to almost 8-bit.
|
288
|
+
|
289
|
+
Value of T1:
|
290
|
+
static int T1[32]= {
|
291
|
+
0, 1024, 3062, 5746, 9193, 13348, 18162, 23592,
|
292
|
+
29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,
|
293
|
+
83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,
|
294
|
+
16499, 12183, 8588, 5674, 3403, 1742, 661, 130,};
|
295
|
+
|
296
|
+
(2) Iterative refinement
|
297
|
+
|
298
|
+
Apply Heron's rule three times to y, we have y approximates
|
299
|
+
sqrt(x) to within 1 ulp (Unit in the Last Place):
|
300
|
+
|
301
|
+
y := (y+x/y)/2 ... almost 17 sig. bits
|
302
|
+
y := (y+x/y)/2 ... almost 35 sig. bits
|
303
|
+
y := y-(y-x/y)/2 ... within 1 ulp
|
304
|
+
|
305
|
+
|
306
|
+
Remark 1.
|
307
|
+
Another way to improve y to within 1 ulp is:
|
308
|
+
|
309
|
+
y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)
|
310
|
+
y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
|
311
|
+
|
312
|
+
2
|
313
|
+
(x-y )*y
|
314
|
+
y := y + 2* ---------- ...within 1 ulp
|
315
|
+
2
|
316
|
+
3y + x
|
317
|
+
|
318
|
+
|
319
|
+
This formula has one division fewer than the one above; however,
|
320
|
+
it requires more multiplications and additions. Also x must be
|
321
|
+
scaled in advance to avoid spurious overflow in evaluating the
|
322
|
+
expression 3y*y+x. Hence it is not recommended uless division
|
323
|
+
is slow. If division is very slow, then one should use the
|
324
|
+
reciproot algorithm given in section B.
|
325
|
+
|
326
|
+
(3) Final adjustment
|
327
|
+
|
328
|
+
By twiddling y's last bit it is possible to force y to be
|
329
|
+
correctly rounded according to the prevailing rounding mode
|
330
|
+
as follows. Let r and i be copies of the rounding mode and
|
331
|
+
inexact flag before entering the square root program. Also we
|
332
|
+
use the expression y+-ulp for the next representable floating
|
333
|
+
numbers (up and down) of y. Note that y+-ulp = either fixed
|
334
|
+
point y+-1, or multiply y by nextafter(1,+-inf) in chopped
|
335
|
+
mode.
|
336
|
+
|
337
|
+
I := FALSE; ... reset INEXACT flag I
|
338
|
+
R := RZ; ... set rounding mode to round-toward-zero
|
339
|
+
z := x/y; ... chopped quotient, possibly inexact
|
340
|
+
If(not I) then { ... if the quotient is exact
|
341
|
+
if(z=y) {
|
342
|
+
I := i; ... restore inexact flag
|
343
|
+
R := r; ... restore rounded mode
|
344
|
+
return sqrt(x):=y.
|
345
|
+
} else {
|
346
|
+
z := z - ulp; ... special rounding
|
347
|
+
}
|
348
|
+
}
|
349
|
+
i := TRUE; ... sqrt(x) is inexact
|
350
|
+
If (r=RN) then z=z+ulp ... rounded-to-nearest
|
351
|
+
If (r=RP) then { ... round-toward-+inf
|
352
|
+
y = y+ulp; z=z+ulp;
|
353
|
+
}
|
354
|
+
y := y+z; ... chopped sum
|
355
|
+
y0:=y0-0x00100000; ... y := y/2 is correctly rounded.
|
356
|
+
I := i; ... restore inexact flag
|
357
|
+
R := r; ... restore rounded mode
|
358
|
+
return sqrt(x):=y.
|
359
|
+
|
360
|
+
(4) Special cases
|
361
|
+
|
362
|
+
Square root of +inf, +-0, or NaN is itself;
|
363
|
+
Square root of a negative number is NaN with invalid signal.
|
364
|
+
|
365
|
+
|
366
|
+
B. sqrt(x) by Reciproot Iteration
|
367
|
+
|
368
|
+
(1) Initial approximation
|
369
|
+
|
370
|
+
Let x0 and x1 be the leading and the trailing 32-bit words of
|
371
|
+
a floating point number x (in IEEE double format) respectively
|
372
|
+
(see section A). By performing shifs and subtracts on x0 and y0,
|
373
|
+
we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
|
374
|
+
|
375
|
+
k := 0x5fe80000 - (x0>>1);
|
376
|
+
y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
|
377
|
+
|
378
|
+
Here k is a 32-bit integer and T2[] is an integer array
|
379
|
+
containing correction terms. Now magically the floating
|
380
|
+
value of y (y's leading 32-bit word is y0, the value of
|
381
|
+
its trailing word y1 is set to zero) approximates 1/sqrt(x)
|
382
|
+
to almost 7.8-bit.
|
383
|
+
|
384
|
+
Value of T2:
|
385
|
+
static int T2[64]= {
|
386
|
+
0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
|
387
|
+
0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
|
388
|
+
0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
|
389
|
+
0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
|
390
|
+
0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
|
391
|
+
0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
|
392
|
+
0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
|
393
|
+
0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
|
394
|
+
|
395
|
+
(2) Iterative refinement
|
396
|
+
|
397
|
+
Apply Reciproot iteration three times to y and multiply the
|
398
|
+
result by x to get an approximation z that matches sqrt(x)
|
399
|
+
to about 1 ulp. To be exact, we will have
|
400
|
+
-1ulp < sqrt(x)-z<1.0625ulp.
|
401
|
+
|
402
|
+
... set rounding mode to Round-to-nearest
|
403
|
+
y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
|
404
|
+
y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
|
405
|
+
... special arrangement for better accuracy
|
406
|
+
z := x*y ... 29 bits to sqrt(x), with z*y<1
|
407
|
+
z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
|
408
|
+
|
409
|
+
Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
|
410
|
+
(a) the term z*y in the final iteration is always less than 1;
|
411
|
+
(b) the error in the final result is biased upward so that
|
412
|
+
-1 ulp < sqrt(x) - z < 1.0625 ulp
|
413
|
+
instead of |sqrt(x)-z|<1.03125ulp.
|
414
|
+
|
415
|
+
(3) Final adjustment
|
416
|
+
|
417
|
+
By twiddling y's last bit it is possible to force y to be
|
418
|
+
correctly rounded according to the prevailing rounding mode
|
419
|
+
as follows. Let r and i be copies of the rounding mode and
|
420
|
+
inexact flag before entering the square root program. Also we
|
421
|
+
use the expression y+-ulp for the next representable floating
|
422
|
+
numbers (up and down) of y. Note that y+-ulp = either fixed
|
423
|
+
point y+-1, or multiply y by nextafter(1,+-inf) in chopped
|
424
|
+
mode.
|
425
|
+
|
426
|
+
R := RZ; ... set rounding mode to round-toward-zero
|
427
|
+
switch(r) {
|
428
|
+
case RN: ... round-to-nearest
|
429
|
+
if(x<= z*(z-ulp)...chopped) z = z - ulp; else
|
430
|
+
if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
|
431
|
+
break;
|
432
|
+
case RZ:case RM: ... round-to-zero or round-to--inf
|
433
|
+
R:=RP; ... reset rounding mod to round-to-+inf
|
434
|
+
if(x<z*z ... rounded up) z = z - ulp; else
|
435
|
+
if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
|
436
|
+
break;
|
437
|
+
case RP: ... round-to-+inf
|
438
|
+
if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
|
439
|
+
if(x>z*z ...chopped) z = z+ulp;
|
440
|
+
break;
|
441
|
+
}
|
442
|
+
|
443
|
+
Remark 3. The above comparisons can be done in fixed point. For
|
444
|
+
example, to compare x and w=z*z chopped, it suffices to compare
|
445
|
+
x1 and w1 (the trailing parts of x and w), regarding them as
|
446
|
+
two's complement integers.
|
447
|
+
|
448
|
+
...Is z an exact square root?
|
449
|
+
To determine whether z is an exact square root of x, let z1 be the
|
450
|
+
trailing part of z, and also let x0 and x1 be the leading and
|
451
|
+
trailing parts of x.
|
452
|
+
|
453
|
+
If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
|
454
|
+
I := 1; ... Raise Inexact flag: z is not exact
|
455
|
+
else {
|
456
|
+
j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
|
457
|
+
k := z1 >> 26; ... get z's 25-th and 26-th
|
458
|
+
fraction bits
|
459
|
+
I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
|
460
|
+
}
|
461
|
+
R:= r ... restore rounded mode
|
462
|
+
return sqrt(x):=z.
|
463
|
+
|
464
|
+
If multiplication is cheaper then the foregoing red tape, the
|
465
|
+
Inexact flag can be evaluated by
|
466
|
+
|
467
|
+
I := i;
|
468
|
+
I := (z*z!=x) or I.
|
469
|
+
|
470
|
+
Note that z*z can overwrite I; this value must be sensed if it is
|
471
|
+
True.
|
472
|
+
|
473
|
+
Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
|
474
|
+
zero.
|
475
|
+
|
476
|
+
--------------------
|
477
|
+
z1: | f2 |
|
478
|
+
--------------------
|
479
|
+
bit 31 bit 0
|
480
|
+
|
481
|
+
Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
|
482
|
+
or even of logb(x) have the following relations:
|
483
|
+
|
484
|
+
-------------------------------------------------
|
485
|
+
bit 27,26 of z1 bit 1,0 of x1 logb(x)
|
486
|
+
-------------------------------------------------
|
487
|
+
00 00 odd and even
|
488
|
+
01 01 even
|
489
|
+
10 10 odd
|
490
|
+
10 00 even
|
491
|
+
11 01 even
|
492
|
+
-------------------------------------------------
|
493
|
+
|
494
|
+
(4) Special cases (see (4) of Section A).
|
495
|
+
|
496
|
+
*/
|
497
|
+
|