jbarnette-johnson 1.0.0.200806240111 → 1.0.0.200807291507

Sign up to get free protection for your applications and to get access to all the features.
Files changed (269) hide show
  1. data/MANIFEST +1 -0
  2. data/Rakefile +3 -10
  3. data/bin/johnson +2 -1
  4. data/ext/spidermonkey/context.c +3 -4
  5. data/ext/spidermonkey/context.h +1 -1
  6. data/ext/spidermonkey/conversions.c +39 -33
  7. data/ext/spidermonkey/debugger.c +5 -5
  8. data/ext/spidermonkey/immutable_node.c.erb +11 -11
  9. data/ext/spidermonkey/jroot.h +4 -4
  10. data/ext/spidermonkey/js_land_proxy.c +9 -8
  11. data/ext/spidermonkey/ruby_land_proxy.c +5 -4
  12. data/ext/spidermonkey/runtime.c +1 -1
  13. data/johnson.gemspec +36 -0
  14. data/lib/hoe.rb +0 -7
  15. data/lib/johnson/cli/options.rb +10 -4
  16. data/lib/johnson/spidermonkey/runtime.rb +2 -2
  17. data/lib/johnson/version.rb +4 -2
  18. data/lib/johnson.rb +1 -0
  19. data/test/johnson/runtime_test.rb +11 -0
  20. data/test/johnson/spidermonkey/ruby_land_proxy_test.rb +6 -0
  21. data/vendor/spidermonkey/.cvsignore +9 -0
  22. data/vendor/spidermonkey/Makefile.in +462 -0
  23. data/vendor/spidermonkey/Makefile.ref +364 -0
  24. data/vendor/spidermonkey/README.html +820 -0
  25. data/vendor/spidermonkey/SpiderMonkey.rsp +12 -0
  26. data/vendor/spidermonkey/Y.js +19 -0
  27. data/vendor/spidermonkey/build.mk +43 -0
  28. data/vendor/spidermonkey/config/AIX4.1.mk +65 -0
  29. data/vendor/spidermonkey/config/AIX4.2.mk +64 -0
  30. data/vendor/spidermonkey/config/AIX4.3.mk +65 -0
  31. data/vendor/spidermonkey/config/Darwin.mk +83 -0
  32. data/vendor/spidermonkey/config/Darwin1.3.mk +81 -0
  33. data/vendor/spidermonkey/config/Darwin1.4.mk +41 -0
  34. data/vendor/spidermonkey/config/Darwin5.2.mk +81 -0
  35. data/vendor/spidermonkey/config/Darwin5.3.mk +81 -0
  36. data/vendor/spidermonkey/config/HP-UXB.10.10.mk +77 -0
  37. data/vendor/spidermonkey/config/HP-UXB.10.20.mk +77 -0
  38. data/vendor/spidermonkey/config/HP-UXB.11.00.mk +80 -0
  39. data/vendor/spidermonkey/config/IRIX.mk +87 -0
  40. data/vendor/spidermonkey/config/IRIX5.3.mk +44 -0
  41. data/vendor/spidermonkey/config/IRIX6.1.mk +44 -0
  42. data/vendor/spidermonkey/config/IRIX6.2.mk +44 -0
  43. data/vendor/spidermonkey/config/IRIX6.3.mk +44 -0
  44. data/vendor/spidermonkey/config/IRIX6.5.mk +44 -0
  45. data/vendor/spidermonkey/config/Linux_All.mk +103 -0
  46. data/vendor/spidermonkey/config/Mac_OS10.0.mk +82 -0
  47. data/vendor/spidermonkey/config/OSF1V4.0.mk +72 -0
  48. data/vendor/spidermonkey/config/OSF1V5.0.mk +69 -0
  49. data/vendor/spidermonkey/config/SunOS4.1.4.mk +101 -0
  50. data/vendor/spidermonkey/config/SunOS5.10.mk +50 -0
  51. data/vendor/spidermonkey/config/SunOS5.3.mk +91 -0
  52. data/vendor/spidermonkey/config/SunOS5.4.mk +92 -0
  53. data/vendor/spidermonkey/config/SunOS5.5.1.mk +44 -0
  54. data/vendor/spidermonkey/config/SunOS5.5.mk +87 -0
  55. data/vendor/spidermonkey/config/SunOS5.6.mk +89 -0
  56. data/vendor/spidermonkey/config/SunOS5.7.mk +44 -0
  57. data/vendor/spidermonkey/config/SunOS5.8.mk +44 -0
  58. data/vendor/spidermonkey/config/SunOS5.9.mk +44 -0
  59. data/vendor/spidermonkey/config/WINNT4.0.mk +117 -0
  60. data/vendor/spidermonkey/config/WINNT5.0.mk +117 -0
  61. data/vendor/spidermonkey/config/WINNT5.1.mk +117 -0
  62. data/vendor/spidermonkey/config/WINNT5.2.mk +117 -0
  63. data/vendor/spidermonkey/config/WINNT6.0.mk +117 -0
  64. data/vendor/spidermonkey/config/dgux.mk +64 -0
  65. data/vendor/spidermonkey/config.mk +192 -0
  66. data/vendor/spidermonkey/editline/Makefile.ref +144 -0
  67. data/vendor/spidermonkey/editline/README +83 -0
  68. data/vendor/spidermonkey/editline/editline.3 +175 -0
  69. data/vendor/spidermonkey/editline/editline.c +1369 -0
  70. data/vendor/spidermonkey/editline/editline.h +135 -0
  71. data/vendor/spidermonkey/editline/sysunix.c +182 -0
  72. data/vendor/spidermonkey/editline/unix.h +82 -0
  73. data/vendor/spidermonkey/fdlibm/.cvsignore +7 -0
  74. data/vendor/spidermonkey/fdlibm/Makefile.in +127 -0
  75. data/vendor/spidermonkey/fdlibm/Makefile.ref +192 -0
  76. data/vendor/spidermonkey/fdlibm/e_acos.c +147 -0
  77. data/vendor/spidermonkey/fdlibm/e_acosh.c +105 -0
  78. data/vendor/spidermonkey/fdlibm/e_asin.c +156 -0
  79. data/vendor/spidermonkey/fdlibm/e_atan2.c +165 -0
  80. data/vendor/spidermonkey/fdlibm/e_atanh.c +110 -0
  81. data/vendor/spidermonkey/fdlibm/e_cosh.c +133 -0
  82. data/vendor/spidermonkey/fdlibm/e_exp.c +202 -0
  83. data/vendor/spidermonkey/fdlibm/e_fmod.c +184 -0
  84. data/vendor/spidermonkey/fdlibm/e_gamma.c +71 -0
  85. data/vendor/spidermonkey/fdlibm/e_gamma_r.c +70 -0
  86. data/vendor/spidermonkey/fdlibm/e_hypot.c +173 -0
  87. data/vendor/spidermonkey/fdlibm/e_j0.c +524 -0
  88. data/vendor/spidermonkey/fdlibm/e_j1.c +523 -0
  89. data/vendor/spidermonkey/fdlibm/e_jn.c +315 -0
  90. data/vendor/spidermonkey/fdlibm/e_lgamma.c +71 -0
  91. data/vendor/spidermonkey/fdlibm/e_lgamma_r.c +347 -0
  92. data/vendor/spidermonkey/fdlibm/e_log.c +184 -0
  93. data/vendor/spidermonkey/fdlibm/e_log10.c +134 -0
  94. data/vendor/spidermonkey/fdlibm/e_pow.c +386 -0
  95. data/vendor/spidermonkey/fdlibm/e_rem_pio2.c +222 -0
  96. data/vendor/spidermonkey/fdlibm/e_remainder.c +120 -0
  97. data/vendor/spidermonkey/fdlibm/e_scalb.c +89 -0
  98. data/vendor/spidermonkey/fdlibm/e_sinh.c +122 -0
  99. data/vendor/spidermonkey/fdlibm/e_sqrt.c +497 -0
  100. data/vendor/spidermonkey/fdlibm/fdlibm.h +273 -0
  101. data/vendor/spidermonkey/fdlibm/fdlibm.mak +1453 -0
  102. data/vendor/spidermonkey/fdlibm/fdlibm.mdp +0 -0
  103. data/vendor/spidermonkey/fdlibm/k_cos.c +135 -0
  104. data/vendor/spidermonkey/fdlibm/k_rem_pio2.c +354 -0
  105. data/vendor/spidermonkey/fdlibm/k_sin.c +114 -0
  106. data/vendor/spidermonkey/fdlibm/k_standard.c +785 -0
  107. data/vendor/spidermonkey/fdlibm/k_tan.c +170 -0
  108. data/vendor/spidermonkey/fdlibm/s_asinh.c +101 -0
  109. data/vendor/spidermonkey/fdlibm/s_atan.c +175 -0
  110. data/vendor/spidermonkey/fdlibm/s_cbrt.c +133 -0
  111. data/vendor/spidermonkey/fdlibm/s_ceil.c +120 -0
  112. data/vendor/spidermonkey/fdlibm/s_copysign.c +72 -0
  113. data/vendor/spidermonkey/fdlibm/s_cos.c +118 -0
  114. data/vendor/spidermonkey/fdlibm/s_erf.c +356 -0
  115. data/vendor/spidermonkey/fdlibm/s_expm1.c +267 -0
  116. data/vendor/spidermonkey/fdlibm/s_fabs.c +70 -0
  117. data/vendor/spidermonkey/fdlibm/s_finite.c +71 -0
  118. data/vendor/spidermonkey/fdlibm/s_floor.c +121 -0
  119. data/vendor/spidermonkey/fdlibm/s_frexp.c +99 -0
  120. data/vendor/spidermonkey/fdlibm/s_ilogb.c +85 -0
  121. data/vendor/spidermonkey/fdlibm/s_isnan.c +74 -0
  122. data/vendor/spidermonkey/fdlibm/s_ldexp.c +66 -0
  123. data/vendor/spidermonkey/fdlibm/s_lib_version.c +73 -0
  124. data/vendor/spidermonkey/fdlibm/s_log1p.c +211 -0
  125. data/vendor/spidermonkey/fdlibm/s_logb.c +79 -0
  126. data/vendor/spidermonkey/fdlibm/s_matherr.c +64 -0
  127. data/vendor/spidermonkey/fdlibm/s_modf.c +132 -0
  128. data/vendor/spidermonkey/fdlibm/s_nextafter.c +124 -0
  129. data/vendor/spidermonkey/fdlibm/s_rint.c +131 -0
  130. data/vendor/spidermonkey/fdlibm/s_scalbn.c +107 -0
  131. data/vendor/spidermonkey/fdlibm/s_signgam.c +40 -0
  132. data/vendor/spidermonkey/fdlibm/s_significand.c +68 -0
  133. data/vendor/spidermonkey/fdlibm/s_sin.c +118 -0
  134. data/vendor/spidermonkey/fdlibm/s_tan.c +112 -0
  135. data/vendor/spidermonkey/fdlibm/s_tanh.c +122 -0
  136. data/vendor/spidermonkey/fdlibm/w_acos.c +78 -0
  137. data/vendor/spidermonkey/fdlibm/w_acosh.c +78 -0
  138. data/vendor/spidermonkey/fdlibm/w_asin.c +80 -0
  139. data/vendor/spidermonkey/fdlibm/w_atan2.c +79 -0
  140. data/vendor/spidermonkey/fdlibm/w_atanh.c +81 -0
  141. data/vendor/spidermonkey/fdlibm/w_cosh.c +77 -0
  142. data/vendor/spidermonkey/fdlibm/w_exp.c +88 -0
  143. data/vendor/spidermonkey/fdlibm/w_fmod.c +78 -0
  144. data/vendor/spidermonkey/fdlibm/w_gamma.c +85 -0
  145. data/vendor/spidermonkey/fdlibm/w_gamma_r.c +81 -0
  146. data/vendor/spidermonkey/fdlibm/w_hypot.c +78 -0
  147. data/vendor/spidermonkey/fdlibm/w_j0.c +105 -0
  148. data/vendor/spidermonkey/fdlibm/w_j1.c +106 -0
  149. data/vendor/spidermonkey/fdlibm/w_jn.c +128 -0
  150. data/vendor/spidermonkey/fdlibm/w_lgamma.c +85 -0
  151. data/vendor/spidermonkey/fdlibm/w_lgamma_r.c +81 -0
  152. data/vendor/spidermonkey/fdlibm/w_log.c +78 -0
  153. data/vendor/spidermonkey/fdlibm/w_log10.c +81 -0
  154. data/vendor/spidermonkey/fdlibm/w_pow.c +99 -0
  155. data/vendor/spidermonkey/fdlibm/w_remainder.c +77 -0
  156. data/vendor/spidermonkey/fdlibm/w_scalb.c +95 -0
  157. data/vendor/spidermonkey/fdlibm/w_sinh.c +77 -0
  158. data/vendor/spidermonkey/fdlibm/w_sqrt.c +77 -0
  159. data/vendor/spidermonkey/javascript-trace.d +73 -0
  160. data/vendor/spidermonkey/js.c +3951 -0
  161. data/vendor/spidermonkey/js.mak +4438 -0
  162. data/vendor/spidermonkey/js.mdp +0 -0
  163. data/vendor/spidermonkey/js.msg +307 -0
  164. data/vendor/spidermonkey/js.pkg +2 -0
  165. data/vendor/spidermonkey/js3240.rc +79 -0
  166. data/vendor/spidermonkey/jsOS240.def +654 -0
  167. data/vendor/spidermonkey/jsapi.c +5836 -0
  168. data/vendor/spidermonkey/jsapi.h +2624 -0
  169. data/vendor/spidermonkey/jsarena.c +450 -0
  170. data/vendor/spidermonkey/jsarena.h +318 -0
  171. data/vendor/spidermonkey/jsarray.c +2988 -0
  172. data/vendor/spidermonkey/jsarray.h +124 -0
  173. data/vendor/spidermonkey/jsatom.c +1045 -0
  174. data/vendor/spidermonkey/jsatom.h +442 -0
  175. data/vendor/spidermonkey/jsbit.h +253 -0
  176. data/vendor/spidermonkey/jsbool.c +176 -0
  177. data/vendor/spidermonkey/jsbool.h +73 -0
  178. data/vendor/spidermonkey/jsclist.h +139 -0
  179. data/vendor/spidermonkey/jscntxt.c +1348 -0
  180. data/vendor/spidermonkey/jscntxt.h +1120 -0
  181. data/vendor/spidermonkey/jscompat.h +57 -0
  182. data/vendor/spidermonkey/jsconfig.h +248 -0
  183. data/vendor/spidermonkey/jsconfig.mk +181 -0
  184. data/vendor/spidermonkey/jscpucfg.c +383 -0
  185. data/vendor/spidermonkey/jscpucfg.h +212 -0
  186. data/vendor/spidermonkey/jsdate.c +2398 -0
  187. data/vendor/spidermonkey/jsdate.h +124 -0
  188. data/vendor/spidermonkey/jsdbgapi.c +1799 -0
  189. data/vendor/spidermonkey/jsdbgapi.h +464 -0
  190. data/vendor/spidermonkey/jsdhash.c +868 -0
  191. data/vendor/spidermonkey/jsdhash.h +592 -0
  192. data/vendor/spidermonkey/jsdtoa.c +3167 -0
  193. data/vendor/spidermonkey/jsdtoa.h +130 -0
  194. data/vendor/spidermonkey/jsdtracef.c +317 -0
  195. data/vendor/spidermonkey/jsdtracef.h +77 -0
  196. data/vendor/spidermonkey/jsemit.c +6909 -0
  197. data/vendor/spidermonkey/jsemit.h +741 -0
  198. data/vendor/spidermonkey/jsexn.c +1371 -0
  199. data/vendor/spidermonkey/jsexn.h +96 -0
  200. data/vendor/spidermonkey/jsfile.c +2736 -0
  201. data/vendor/spidermonkey/jsfile.h +56 -0
  202. data/vendor/spidermonkey/jsfile.msg +90 -0
  203. data/vendor/spidermonkey/jsfun.c +2634 -0
  204. data/vendor/spidermonkey/jsfun.h +254 -0
  205. data/vendor/spidermonkey/jsgc.c +3554 -0
  206. data/vendor/spidermonkey/jsgc.h +403 -0
  207. data/vendor/spidermonkey/jshash.c +476 -0
  208. data/vendor/spidermonkey/jshash.h +151 -0
  209. data/vendor/spidermonkey/jsify.pl +485 -0
  210. data/vendor/spidermonkey/jsinterp.c +6981 -0
  211. data/vendor/spidermonkey/jsinterp.h +521 -0
  212. data/vendor/spidermonkey/jsinvoke.c +43 -0
  213. data/vendor/spidermonkey/jsiter.c +1067 -0
  214. data/vendor/spidermonkey/jsiter.h +122 -0
  215. data/vendor/spidermonkey/jskeyword.tbl +124 -0
  216. data/vendor/spidermonkey/jskwgen.c +460 -0
  217. data/vendor/spidermonkey/jslibmath.h +266 -0
  218. data/vendor/spidermonkey/jslock.c +1309 -0
  219. data/vendor/spidermonkey/jslock.h +313 -0
  220. data/vendor/spidermonkey/jslocko.asm +60 -0
  221. data/vendor/spidermonkey/jslog2.c +94 -0
  222. data/vendor/spidermonkey/jslong.c +264 -0
  223. data/vendor/spidermonkey/jslong.h +412 -0
  224. data/vendor/spidermonkey/jsmath.c +568 -0
  225. data/vendor/spidermonkey/jsmath.h +57 -0
  226. data/vendor/spidermonkey/jsnum.c +1228 -0
  227. data/vendor/spidermonkey/jsnum.h +283 -0
  228. data/vendor/spidermonkey/jsobj.c +5266 -0
  229. data/vendor/spidermonkey/jsobj.h +709 -0
  230. data/vendor/spidermonkey/jsopcode.c +5245 -0
  231. data/vendor/spidermonkey/jsopcode.h +394 -0
  232. data/vendor/spidermonkey/jsopcode.tbl +523 -0
  233. data/vendor/spidermonkey/jsotypes.h +202 -0
  234. data/vendor/spidermonkey/jsparse.c +6680 -0
  235. data/vendor/spidermonkey/jsparse.h +511 -0
  236. data/vendor/spidermonkey/jsprf.c +1262 -0
  237. data/vendor/spidermonkey/jsprf.h +150 -0
  238. data/vendor/spidermonkey/jsproto.tbl +128 -0
  239. data/vendor/spidermonkey/jsprvtd.h +267 -0
  240. data/vendor/spidermonkey/jspubtd.h +744 -0
  241. data/vendor/spidermonkey/jsregexp.c +4352 -0
  242. data/vendor/spidermonkey/jsregexp.h +183 -0
  243. data/vendor/spidermonkey/jsreops.tbl +145 -0
  244. data/vendor/spidermonkey/jsscan.c +2003 -0
  245. data/vendor/spidermonkey/jsscan.h +387 -0
  246. data/vendor/spidermonkey/jsscope.c +1948 -0
  247. data/vendor/spidermonkey/jsscope.h +418 -0
  248. data/vendor/spidermonkey/jsscript.c +1832 -0
  249. data/vendor/spidermonkey/jsscript.h +287 -0
  250. data/vendor/spidermonkey/jsshell.msg +50 -0
  251. data/vendor/spidermonkey/jsstddef.h +83 -0
  252. data/vendor/spidermonkey/jsstr.c +5004 -0
  253. data/vendor/spidermonkey/jsstr.h +641 -0
  254. data/vendor/spidermonkey/jstypes.h +475 -0
  255. data/vendor/spidermonkey/jsutil.c +345 -0
  256. data/vendor/spidermonkey/jsutil.h +157 -0
  257. data/vendor/spidermonkey/jsxdrapi.c +800 -0
  258. data/vendor/spidermonkey/jsxdrapi.h +218 -0
  259. data/vendor/spidermonkey/jsxml.c +8471 -0
  260. data/vendor/spidermonkey/jsxml.h +349 -0
  261. data/vendor/spidermonkey/lock_SunOS.s +119 -0
  262. data/vendor/spidermonkey/perfect.js +39 -0
  263. data/vendor/spidermonkey/plify_jsdhash.sed +36 -0
  264. data/vendor/spidermonkey/prmjtime.c +846 -0
  265. data/vendor/spidermonkey/prmjtime.h +103 -0
  266. data/vendor/spidermonkey/resource.h +15 -0
  267. data/vendor/spidermonkey/rules.mk +197 -0
  268. data/vendor/spidermonkey/win32.order +384 -0
  269. metadata +4 -3
@@ -0,0 +1,497 @@
1
+ /* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2
+ *
3
+ * ***** BEGIN LICENSE BLOCK *****
4
+ * Version: MPL 1.1/GPL 2.0/LGPL 2.1
5
+ *
6
+ * The contents of this file are subject to the Mozilla Public License Version
7
+ * 1.1 (the "License"); you may not use this file except in compliance with
8
+ * the License. You may obtain a copy of the License at
9
+ * http://www.mozilla.org/MPL/
10
+ *
11
+ * Software distributed under the License is distributed on an "AS IS" basis,
12
+ * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
13
+ * for the specific language governing rights and limitations under the
14
+ * License.
15
+ *
16
+ * The Original Code is Mozilla Communicator client code, released
17
+ * March 31, 1998.
18
+ *
19
+ * The Initial Developer of the Original Code is
20
+ * Sun Microsystems, Inc.
21
+ * Portions created by the Initial Developer are Copyright (C) 1998
22
+ * the Initial Developer. All Rights Reserved.
23
+ *
24
+ * Contributor(s):
25
+ *
26
+ * Alternatively, the contents of this file may be used under the terms of
27
+ * either of the GNU General Public License Version 2 or later (the "GPL"),
28
+ * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
29
+ * in which case the provisions of the GPL or the LGPL are applicable instead
30
+ * of those above. If you wish to allow use of your version of this file only
31
+ * under the terms of either the GPL or the LGPL, and not to allow others to
32
+ * use your version of this file under the terms of the MPL, indicate your
33
+ * decision by deleting the provisions above and replace them with the notice
34
+ * and other provisions required by the GPL or the LGPL. If you do not delete
35
+ * the provisions above, a recipient may use your version of this file under
36
+ * the terms of any one of the MPL, the GPL or the LGPL.
37
+ *
38
+ * ***** END LICENSE BLOCK ***** */
39
+ /* @(#)e_sqrt.c 1.3 95/01/18 */
40
+ /*
41
+ * ====================================================
42
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
43
+ *
44
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
45
+ * Permission to use, copy, modify, and distribute this
46
+ * software is freely granted, provided that this notice
47
+ * is preserved.
48
+ * ====================================================
49
+ */
50
+
51
+ /* __ieee754_sqrt(x)
52
+ * Return correctly rounded sqrt.
53
+ * ------------------------------------------
54
+ * | Use the hardware sqrt if you have one |
55
+ * ------------------------------------------
56
+ * Method:
57
+ * Bit by bit method using integer arithmetic. (Slow, but portable)
58
+ * 1. Normalization
59
+ * Scale x to y in [1,4) with even powers of 2:
60
+ * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
61
+ * sqrt(y) = 2^k * sqrt(x)
62
+ * 2. Bit by bit computation
63
+ * Let q = sqrt(y) truncated to i bit after binary point (q = 1),
64
+ * i 0
65
+ * i+1 2
66
+ * s = 2*q , and y = 2 * ( y - q ). (1)
67
+ * i i i i
68
+ *
69
+ * To compute q from q , one checks whether
70
+ * i+1 i
71
+ *
72
+ * -(i+1) 2
73
+ * (q + 2 ) <= y. (2)
74
+ * i
75
+ * -(i+1)
76
+ * If (2) is false, then q = q ; otherwise q = q + 2 .
77
+ * i+1 i i+1 i
78
+ *
79
+ * With some algebric manipulation, it is not difficult to see
80
+ * that (2) is equivalent to
81
+ * -(i+1)
82
+ * s + 2 <= y (3)
83
+ * i i
84
+ *
85
+ * The advantage of (3) is that s and y can be computed by
86
+ * i i
87
+ * the following recurrence formula:
88
+ * if (3) is false
89
+ *
90
+ * s = s , y = y ; (4)
91
+ * i+1 i i+1 i
92
+ *
93
+ * otherwise,
94
+ * -i -(i+1)
95
+ * s = s + 2 , y = y - s - 2 (5)
96
+ * i+1 i i+1 i i
97
+ *
98
+ * One may easily use induction to prove (4) and (5).
99
+ * Note. Since the left hand side of (3) contain only i+2 bits,
100
+ * it does not necessary to do a full (53-bit) comparison
101
+ * in (3).
102
+ * 3. Final rounding
103
+ * After generating the 53 bits result, we compute one more bit.
104
+ * Together with the remainder, we can decide whether the
105
+ * result is exact, bigger than 1/2ulp, or less than 1/2ulp
106
+ * (it will never equal to 1/2ulp).
107
+ * The rounding mode can be detected by checking whether
108
+ * huge + tiny is equal to huge, and whether huge - tiny is
109
+ * equal to huge for some floating point number "huge" and "tiny".
110
+ *
111
+ * Special cases:
112
+ * sqrt(+-0) = +-0 ... exact
113
+ * sqrt(inf) = inf
114
+ * sqrt(-ve) = NaN ... with invalid signal
115
+ * sqrt(NaN) = NaN ... with invalid signal for signaling NaN
116
+ *
117
+ * Other methods : see the appended file at the end of the program below.
118
+ *---------------
119
+ */
120
+
121
+ #include "fdlibm.h"
122
+
123
+ #if defined(_MSC_VER)
124
+ /* Microsoft Compiler */
125
+ #pragma warning( disable : 4723 ) /* disables potential divide by 0 warning */
126
+ #endif
127
+
128
+ #ifdef __STDC__
129
+ static const double one = 1.0, tiny=1.0e-300;
130
+ #else
131
+ static double one = 1.0, tiny=1.0e-300;
132
+ #endif
133
+
134
+ #ifdef __STDC__
135
+ double __ieee754_sqrt(double x)
136
+ #else
137
+ double __ieee754_sqrt(x)
138
+ double x;
139
+ #endif
140
+ {
141
+ fd_twoints u;
142
+ double z;
143
+ int sign = (int)0x80000000;
144
+ unsigned r,t1,s1,ix1,q1;
145
+ int ix0,s0,q,m,t,i;
146
+
147
+ u.d = x;
148
+ ix0 = __HI(u); /* high word of x */
149
+ ix1 = __LO(u); /* low word of x */
150
+
151
+ /* take care of Inf and NaN */
152
+ if((ix0&0x7ff00000)==0x7ff00000) {
153
+ return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
154
+ sqrt(-inf)=sNaN */
155
+ }
156
+ /* take care of zero */
157
+ if(ix0<=0) {
158
+ if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
159
+ else if(ix0<0)
160
+ return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
161
+ }
162
+ /* normalize x */
163
+ m = (ix0>>20);
164
+ if(m==0) { /* subnormal x */
165
+ while(ix0==0) {
166
+ m -= 21;
167
+ ix0 |= (ix1>>11); ix1 <<= 21;
168
+ }
169
+ for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
170
+ m -= i-1;
171
+ ix0 |= (ix1>>(32-i));
172
+ ix1 <<= i;
173
+ }
174
+ m -= 1023; /* unbias exponent */
175
+ ix0 = (ix0&0x000fffff)|0x00100000;
176
+ if(m&1){ /* odd m, double x to make it even */
177
+ ix0 += ix0 + ((ix1&sign)>>31);
178
+ ix1 += ix1;
179
+ }
180
+ m >>= 1; /* m = [m/2] */
181
+
182
+ /* generate sqrt(x) bit by bit */
183
+ ix0 += ix0 + ((ix1&sign)>>31);
184
+ ix1 += ix1;
185
+ q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
186
+ r = 0x00200000; /* r = moving bit from right to left */
187
+
188
+ while(r!=0) {
189
+ t = s0+r;
190
+ if(t<=ix0) {
191
+ s0 = t+r;
192
+ ix0 -= t;
193
+ q += r;
194
+ }
195
+ ix0 += ix0 + ((ix1&sign)>>31);
196
+ ix1 += ix1;
197
+ r>>=1;
198
+ }
199
+
200
+ r = sign;
201
+ while(r!=0) {
202
+ t1 = s1+r;
203
+ t = s0;
204
+ if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
205
+ s1 = t1+r;
206
+ if(((int)(t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
207
+ ix0 -= t;
208
+ if (ix1 < t1) ix0 -= 1;
209
+ ix1 -= t1;
210
+ q1 += r;
211
+ }
212
+ ix0 += ix0 + ((ix1&sign)>>31);
213
+ ix1 += ix1;
214
+ r>>=1;
215
+ }
216
+
217
+ /* use floating add to find out rounding direction */
218
+ if((ix0|ix1)!=0) {
219
+ z = one-tiny; /* trigger inexact flag */
220
+ if (z>=one) {
221
+ z = one+tiny;
222
+ if (q1==(unsigned)0xffffffff) { q1=0; q += 1;}
223
+ else if (z>one) {
224
+ if (q1==(unsigned)0xfffffffe) q+=1;
225
+ q1+=2;
226
+ } else
227
+ q1 += (q1&1);
228
+ }
229
+ }
230
+ ix0 = (q>>1)+0x3fe00000;
231
+ ix1 = q1>>1;
232
+ if ((q&1)==1) ix1 |= sign;
233
+ ix0 += (m <<20);
234
+ u.d = z;
235
+ __HI(u) = ix0;
236
+ __LO(u) = ix1;
237
+ z = u.d;
238
+ return z;
239
+ }
240
+
241
+ /*
242
+ Other methods (use floating-point arithmetic)
243
+ -------------
244
+ (This is a copy of a drafted paper by Prof W. Kahan
245
+ and K.C. Ng, written in May, 1986)
246
+
247
+ Two algorithms are given here to implement sqrt(x)
248
+ (IEEE double precision arithmetic) in software.
249
+ Both supply sqrt(x) correctly rounded. The first algorithm (in
250
+ Section A) uses newton iterations and involves four divisions.
251
+ The second one uses reciproot iterations to avoid division, but
252
+ requires more multiplications. Both algorithms need the ability
253
+ to chop results of arithmetic operations instead of round them,
254
+ and the INEXACT flag to indicate when an arithmetic operation
255
+ is executed exactly with no roundoff error, all part of the
256
+ standard (IEEE 754-1985). The ability to perform shift, add,
257
+ subtract and logical AND operations upon 32-bit words is needed
258
+ too, though not part of the standard.
259
+
260
+ A. sqrt(x) by Newton Iteration
261
+
262
+ (1) Initial approximation
263
+
264
+ Let x0 and x1 be the leading and the trailing 32-bit words of
265
+ a floating point number x (in IEEE double format) respectively
266
+
267
+ 1 11 52 ...widths
268
+ ------------------------------------------------------
269
+ x: |s| e | f |
270
+ ------------------------------------------------------
271
+ msb lsb msb lsb ...order
272
+
273
+
274
+ ------------------------ ------------------------
275
+ x0: |s| e | f1 | x1: | f2 |
276
+ ------------------------ ------------------------
277
+
278
+ By performing shifts and subtracts on x0 and x1 (both regarded
279
+ as integers), we obtain an 8-bit approximation of sqrt(x) as
280
+ follows.
281
+
282
+ k := (x0>>1) + 0x1ff80000;
283
+ y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
284
+ Here k is a 32-bit integer and T1[] is an integer array containing
285
+ correction terms. Now magically the floating value of y (y's
286
+ leading 32-bit word is y0, the value of its trailing word is 0)
287
+ approximates sqrt(x) to almost 8-bit.
288
+
289
+ Value of T1:
290
+ static int T1[32]= {
291
+ 0, 1024, 3062, 5746, 9193, 13348, 18162, 23592,
292
+ 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,
293
+ 83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,
294
+ 16499, 12183, 8588, 5674, 3403, 1742, 661, 130,};
295
+
296
+ (2) Iterative refinement
297
+
298
+ Apply Heron's rule three times to y, we have y approximates
299
+ sqrt(x) to within 1 ulp (Unit in the Last Place):
300
+
301
+ y := (y+x/y)/2 ... almost 17 sig. bits
302
+ y := (y+x/y)/2 ... almost 35 sig. bits
303
+ y := y-(y-x/y)/2 ... within 1 ulp
304
+
305
+
306
+ Remark 1.
307
+ Another way to improve y to within 1 ulp is:
308
+
309
+ y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)
310
+ y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
311
+
312
+ 2
313
+ (x-y )*y
314
+ y := y + 2* ---------- ...within 1 ulp
315
+ 2
316
+ 3y + x
317
+
318
+
319
+ This formula has one division fewer than the one above; however,
320
+ it requires more multiplications and additions. Also x must be
321
+ scaled in advance to avoid spurious overflow in evaluating the
322
+ expression 3y*y+x. Hence it is not recommended uless division
323
+ is slow. If division is very slow, then one should use the
324
+ reciproot algorithm given in section B.
325
+
326
+ (3) Final adjustment
327
+
328
+ By twiddling y's last bit it is possible to force y to be
329
+ correctly rounded according to the prevailing rounding mode
330
+ as follows. Let r and i be copies of the rounding mode and
331
+ inexact flag before entering the square root program. Also we
332
+ use the expression y+-ulp for the next representable floating
333
+ numbers (up and down) of y. Note that y+-ulp = either fixed
334
+ point y+-1, or multiply y by nextafter(1,+-inf) in chopped
335
+ mode.
336
+
337
+ I := FALSE; ... reset INEXACT flag I
338
+ R := RZ; ... set rounding mode to round-toward-zero
339
+ z := x/y; ... chopped quotient, possibly inexact
340
+ If(not I) then { ... if the quotient is exact
341
+ if(z=y) {
342
+ I := i; ... restore inexact flag
343
+ R := r; ... restore rounded mode
344
+ return sqrt(x):=y.
345
+ } else {
346
+ z := z - ulp; ... special rounding
347
+ }
348
+ }
349
+ i := TRUE; ... sqrt(x) is inexact
350
+ If (r=RN) then z=z+ulp ... rounded-to-nearest
351
+ If (r=RP) then { ... round-toward-+inf
352
+ y = y+ulp; z=z+ulp;
353
+ }
354
+ y := y+z; ... chopped sum
355
+ y0:=y0-0x00100000; ... y := y/2 is correctly rounded.
356
+ I := i; ... restore inexact flag
357
+ R := r; ... restore rounded mode
358
+ return sqrt(x):=y.
359
+
360
+ (4) Special cases
361
+
362
+ Square root of +inf, +-0, or NaN is itself;
363
+ Square root of a negative number is NaN with invalid signal.
364
+
365
+
366
+ B. sqrt(x) by Reciproot Iteration
367
+
368
+ (1) Initial approximation
369
+
370
+ Let x0 and x1 be the leading and the trailing 32-bit words of
371
+ a floating point number x (in IEEE double format) respectively
372
+ (see section A). By performing shifs and subtracts on x0 and y0,
373
+ we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
374
+
375
+ k := 0x5fe80000 - (x0>>1);
376
+ y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
377
+
378
+ Here k is a 32-bit integer and T2[] is an integer array
379
+ containing correction terms. Now magically the floating
380
+ value of y (y's leading 32-bit word is y0, the value of
381
+ its trailing word y1 is set to zero) approximates 1/sqrt(x)
382
+ to almost 7.8-bit.
383
+
384
+ Value of T2:
385
+ static int T2[64]= {
386
+ 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
387
+ 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
388
+ 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
389
+ 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
390
+ 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
391
+ 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
392
+ 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
393
+ 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
394
+
395
+ (2) Iterative refinement
396
+
397
+ Apply Reciproot iteration three times to y and multiply the
398
+ result by x to get an approximation z that matches sqrt(x)
399
+ to about 1 ulp. To be exact, we will have
400
+ -1ulp < sqrt(x)-z<1.0625ulp.
401
+
402
+ ... set rounding mode to Round-to-nearest
403
+ y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
404
+ y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
405
+ ... special arrangement for better accuracy
406
+ z := x*y ... 29 bits to sqrt(x), with z*y<1
407
+ z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
408
+
409
+ Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
410
+ (a) the term z*y in the final iteration is always less than 1;
411
+ (b) the error in the final result is biased upward so that
412
+ -1 ulp < sqrt(x) - z < 1.0625 ulp
413
+ instead of |sqrt(x)-z|<1.03125ulp.
414
+
415
+ (3) Final adjustment
416
+
417
+ By twiddling y's last bit it is possible to force y to be
418
+ correctly rounded according to the prevailing rounding mode
419
+ as follows. Let r and i be copies of the rounding mode and
420
+ inexact flag before entering the square root program. Also we
421
+ use the expression y+-ulp for the next representable floating
422
+ numbers (up and down) of y. Note that y+-ulp = either fixed
423
+ point y+-1, or multiply y by nextafter(1,+-inf) in chopped
424
+ mode.
425
+
426
+ R := RZ; ... set rounding mode to round-toward-zero
427
+ switch(r) {
428
+ case RN: ... round-to-nearest
429
+ if(x<= z*(z-ulp)...chopped) z = z - ulp; else
430
+ if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
431
+ break;
432
+ case RZ:case RM: ... round-to-zero or round-to--inf
433
+ R:=RP; ... reset rounding mod to round-to-+inf
434
+ if(x<z*z ... rounded up) z = z - ulp; else
435
+ if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
436
+ break;
437
+ case RP: ... round-to-+inf
438
+ if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
439
+ if(x>z*z ...chopped) z = z+ulp;
440
+ break;
441
+ }
442
+
443
+ Remark 3. The above comparisons can be done in fixed point. For
444
+ example, to compare x and w=z*z chopped, it suffices to compare
445
+ x1 and w1 (the trailing parts of x and w), regarding them as
446
+ two's complement integers.
447
+
448
+ ...Is z an exact square root?
449
+ To determine whether z is an exact square root of x, let z1 be the
450
+ trailing part of z, and also let x0 and x1 be the leading and
451
+ trailing parts of x.
452
+
453
+ If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
454
+ I := 1; ... Raise Inexact flag: z is not exact
455
+ else {
456
+ j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
457
+ k := z1 >> 26; ... get z's 25-th and 26-th
458
+ fraction bits
459
+ I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
460
+ }
461
+ R:= r ... restore rounded mode
462
+ return sqrt(x):=z.
463
+
464
+ If multiplication is cheaper then the foregoing red tape, the
465
+ Inexact flag can be evaluated by
466
+
467
+ I := i;
468
+ I := (z*z!=x) or I.
469
+
470
+ Note that z*z can overwrite I; this value must be sensed if it is
471
+ True.
472
+
473
+ Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
474
+ zero.
475
+
476
+ --------------------
477
+ z1: | f2 |
478
+ --------------------
479
+ bit 31 bit 0
480
+
481
+ Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
482
+ or even of logb(x) have the following relations:
483
+
484
+ -------------------------------------------------
485
+ bit 27,26 of z1 bit 1,0 of x1 logb(x)
486
+ -------------------------------------------------
487
+ 00 00 odd and even
488
+ 01 01 even
489
+ 10 10 odd
490
+ 10 00 even
491
+ 11 01 even
492
+ -------------------------------------------------
493
+
494
+ (4) Special cases (see (4) of Section A).
495
+
496
+ */
497
+