jbarnette-johnson 1.0.0.200806240111 → 1.0.0.200807291507

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (269) hide show
  1. data/MANIFEST +1 -0
  2. data/Rakefile +3 -10
  3. data/bin/johnson +2 -1
  4. data/ext/spidermonkey/context.c +3 -4
  5. data/ext/spidermonkey/context.h +1 -1
  6. data/ext/spidermonkey/conversions.c +39 -33
  7. data/ext/spidermonkey/debugger.c +5 -5
  8. data/ext/spidermonkey/immutable_node.c.erb +11 -11
  9. data/ext/spidermonkey/jroot.h +4 -4
  10. data/ext/spidermonkey/js_land_proxy.c +9 -8
  11. data/ext/spidermonkey/ruby_land_proxy.c +5 -4
  12. data/ext/spidermonkey/runtime.c +1 -1
  13. data/johnson.gemspec +36 -0
  14. data/lib/hoe.rb +0 -7
  15. data/lib/johnson/cli/options.rb +10 -4
  16. data/lib/johnson/spidermonkey/runtime.rb +2 -2
  17. data/lib/johnson/version.rb +4 -2
  18. data/lib/johnson.rb +1 -0
  19. data/test/johnson/runtime_test.rb +11 -0
  20. data/test/johnson/spidermonkey/ruby_land_proxy_test.rb +6 -0
  21. data/vendor/spidermonkey/.cvsignore +9 -0
  22. data/vendor/spidermonkey/Makefile.in +462 -0
  23. data/vendor/spidermonkey/Makefile.ref +364 -0
  24. data/vendor/spidermonkey/README.html +820 -0
  25. data/vendor/spidermonkey/SpiderMonkey.rsp +12 -0
  26. data/vendor/spidermonkey/Y.js +19 -0
  27. data/vendor/spidermonkey/build.mk +43 -0
  28. data/vendor/spidermonkey/config/AIX4.1.mk +65 -0
  29. data/vendor/spidermonkey/config/AIX4.2.mk +64 -0
  30. data/vendor/spidermonkey/config/AIX4.3.mk +65 -0
  31. data/vendor/spidermonkey/config/Darwin.mk +83 -0
  32. data/vendor/spidermonkey/config/Darwin1.3.mk +81 -0
  33. data/vendor/spidermonkey/config/Darwin1.4.mk +41 -0
  34. data/vendor/spidermonkey/config/Darwin5.2.mk +81 -0
  35. data/vendor/spidermonkey/config/Darwin5.3.mk +81 -0
  36. data/vendor/spidermonkey/config/HP-UXB.10.10.mk +77 -0
  37. data/vendor/spidermonkey/config/HP-UXB.10.20.mk +77 -0
  38. data/vendor/spidermonkey/config/HP-UXB.11.00.mk +80 -0
  39. data/vendor/spidermonkey/config/IRIX.mk +87 -0
  40. data/vendor/spidermonkey/config/IRIX5.3.mk +44 -0
  41. data/vendor/spidermonkey/config/IRIX6.1.mk +44 -0
  42. data/vendor/spidermonkey/config/IRIX6.2.mk +44 -0
  43. data/vendor/spidermonkey/config/IRIX6.3.mk +44 -0
  44. data/vendor/spidermonkey/config/IRIX6.5.mk +44 -0
  45. data/vendor/spidermonkey/config/Linux_All.mk +103 -0
  46. data/vendor/spidermonkey/config/Mac_OS10.0.mk +82 -0
  47. data/vendor/spidermonkey/config/OSF1V4.0.mk +72 -0
  48. data/vendor/spidermonkey/config/OSF1V5.0.mk +69 -0
  49. data/vendor/spidermonkey/config/SunOS4.1.4.mk +101 -0
  50. data/vendor/spidermonkey/config/SunOS5.10.mk +50 -0
  51. data/vendor/spidermonkey/config/SunOS5.3.mk +91 -0
  52. data/vendor/spidermonkey/config/SunOS5.4.mk +92 -0
  53. data/vendor/spidermonkey/config/SunOS5.5.1.mk +44 -0
  54. data/vendor/spidermonkey/config/SunOS5.5.mk +87 -0
  55. data/vendor/spidermonkey/config/SunOS5.6.mk +89 -0
  56. data/vendor/spidermonkey/config/SunOS5.7.mk +44 -0
  57. data/vendor/spidermonkey/config/SunOS5.8.mk +44 -0
  58. data/vendor/spidermonkey/config/SunOS5.9.mk +44 -0
  59. data/vendor/spidermonkey/config/WINNT4.0.mk +117 -0
  60. data/vendor/spidermonkey/config/WINNT5.0.mk +117 -0
  61. data/vendor/spidermonkey/config/WINNT5.1.mk +117 -0
  62. data/vendor/spidermonkey/config/WINNT5.2.mk +117 -0
  63. data/vendor/spidermonkey/config/WINNT6.0.mk +117 -0
  64. data/vendor/spidermonkey/config/dgux.mk +64 -0
  65. data/vendor/spidermonkey/config.mk +192 -0
  66. data/vendor/spidermonkey/editline/Makefile.ref +144 -0
  67. data/vendor/spidermonkey/editline/README +83 -0
  68. data/vendor/spidermonkey/editline/editline.3 +175 -0
  69. data/vendor/spidermonkey/editline/editline.c +1369 -0
  70. data/vendor/spidermonkey/editline/editline.h +135 -0
  71. data/vendor/spidermonkey/editline/sysunix.c +182 -0
  72. data/vendor/spidermonkey/editline/unix.h +82 -0
  73. data/vendor/spidermonkey/fdlibm/.cvsignore +7 -0
  74. data/vendor/spidermonkey/fdlibm/Makefile.in +127 -0
  75. data/vendor/spidermonkey/fdlibm/Makefile.ref +192 -0
  76. data/vendor/spidermonkey/fdlibm/e_acos.c +147 -0
  77. data/vendor/spidermonkey/fdlibm/e_acosh.c +105 -0
  78. data/vendor/spidermonkey/fdlibm/e_asin.c +156 -0
  79. data/vendor/spidermonkey/fdlibm/e_atan2.c +165 -0
  80. data/vendor/spidermonkey/fdlibm/e_atanh.c +110 -0
  81. data/vendor/spidermonkey/fdlibm/e_cosh.c +133 -0
  82. data/vendor/spidermonkey/fdlibm/e_exp.c +202 -0
  83. data/vendor/spidermonkey/fdlibm/e_fmod.c +184 -0
  84. data/vendor/spidermonkey/fdlibm/e_gamma.c +71 -0
  85. data/vendor/spidermonkey/fdlibm/e_gamma_r.c +70 -0
  86. data/vendor/spidermonkey/fdlibm/e_hypot.c +173 -0
  87. data/vendor/spidermonkey/fdlibm/e_j0.c +524 -0
  88. data/vendor/spidermonkey/fdlibm/e_j1.c +523 -0
  89. data/vendor/spidermonkey/fdlibm/e_jn.c +315 -0
  90. data/vendor/spidermonkey/fdlibm/e_lgamma.c +71 -0
  91. data/vendor/spidermonkey/fdlibm/e_lgamma_r.c +347 -0
  92. data/vendor/spidermonkey/fdlibm/e_log.c +184 -0
  93. data/vendor/spidermonkey/fdlibm/e_log10.c +134 -0
  94. data/vendor/spidermonkey/fdlibm/e_pow.c +386 -0
  95. data/vendor/spidermonkey/fdlibm/e_rem_pio2.c +222 -0
  96. data/vendor/spidermonkey/fdlibm/e_remainder.c +120 -0
  97. data/vendor/spidermonkey/fdlibm/e_scalb.c +89 -0
  98. data/vendor/spidermonkey/fdlibm/e_sinh.c +122 -0
  99. data/vendor/spidermonkey/fdlibm/e_sqrt.c +497 -0
  100. data/vendor/spidermonkey/fdlibm/fdlibm.h +273 -0
  101. data/vendor/spidermonkey/fdlibm/fdlibm.mak +1453 -0
  102. data/vendor/spidermonkey/fdlibm/fdlibm.mdp +0 -0
  103. data/vendor/spidermonkey/fdlibm/k_cos.c +135 -0
  104. data/vendor/spidermonkey/fdlibm/k_rem_pio2.c +354 -0
  105. data/vendor/spidermonkey/fdlibm/k_sin.c +114 -0
  106. data/vendor/spidermonkey/fdlibm/k_standard.c +785 -0
  107. data/vendor/spidermonkey/fdlibm/k_tan.c +170 -0
  108. data/vendor/spidermonkey/fdlibm/s_asinh.c +101 -0
  109. data/vendor/spidermonkey/fdlibm/s_atan.c +175 -0
  110. data/vendor/spidermonkey/fdlibm/s_cbrt.c +133 -0
  111. data/vendor/spidermonkey/fdlibm/s_ceil.c +120 -0
  112. data/vendor/spidermonkey/fdlibm/s_copysign.c +72 -0
  113. data/vendor/spidermonkey/fdlibm/s_cos.c +118 -0
  114. data/vendor/spidermonkey/fdlibm/s_erf.c +356 -0
  115. data/vendor/spidermonkey/fdlibm/s_expm1.c +267 -0
  116. data/vendor/spidermonkey/fdlibm/s_fabs.c +70 -0
  117. data/vendor/spidermonkey/fdlibm/s_finite.c +71 -0
  118. data/vendor/spidermonkey/fdlibm/s_floor.c +121 -0
  119. data/vendor/spidermonkey/fdlibm/s_frexp.c +99 -0
  120. data/vendor/spidermonkey/fdlibm/s_ilogb.c +85 -0
  121. data/vendor/spidermonkey/fdlibm/s_isnan.c +74 -0
  122. data/vendor/spidermonkey/fdlibm/s_ldexp.c +66 -0
  123. data/vendor/spidermonkey/fdlibm/s_lib_version.c +73 -0
  124. data/vendor/spidermonkey/fdlibm/s_log1p.c +211 -0
  125. data/vendor/spidermonkey/fdlibm/s_logb.c +79 -0
  126. data/vendor/spidermonkey/fdlibm/s_matherr.c +64 -0
  127. data/vendor/spidermonkey/fdlibm/s_modf.c +132 -0
  128. data/vendor/spidermonkey/fdlibm/s_nextafter.c +124 -0
  129. data/vendor/spidermonkey/fdlibm/s_rint.c +131 -0
  130. data/vendor/spidermonkey/fdlibm/s_scalbn.c +107 -0
  131. data/vendor/spidermonkey/fdlibm/s_signgam.c +40 -0
  132. data/vendor/spidermonkey/fdlibm/s_significand.c +68 -0
  133. data/vendor/spidermonkey/fdlibm/s_sin.c +118 -0
  134. data/vendor/spidermonkey/fdlibm/s_tan.c +112 -0
  135. data/vendor/spidermonkey/fdlibm/s_tanh.c +122 -0
  136. data/vendor/spidermonkey/fdlibm/w_acos.c +78 -0
  137. data/vendor/spidermonkey/fdlibm/w_acosh.c +78 -0
  138. data/vendor/spidermonkey/fdlibm/w_asin.c +80 -0
  139. data/vendor/spidermonkey/fdlibm/w_atan2.c +79 -0
  140. data/vendor/spidermonkey/fdlibm/w_atanh.c +81 -0
  141. data/vendor/spidermonkey/fdlibm/w_cosh.c +77 -0
  142. data/vendor/spidermonkey/fdlibm/w_exp.c +88 -0
  143. data/vendor/spidermonkey/fdlibm/w_fmod.c +78 -0
  144. data/vendor/spidermonkey/fdlibm/w_gamma.c +85 -0
  145. data/vendor/spidermonkey/fdlibm/w_gamma_r.c +81 -0
  146. data/vendor/spidermonkey/fdlibm/w_hypot.c +78 -0
  147. data/vendor/spidermonkey/fdlibm/w_j0.c +105 -0
  148. data/vendor/spidermonkey/fdlibm/w_j1.c +106 -0
  149. data/vendor/spidermonkey/fdlibm/w_jn.c +128 -0
  150. data/vendor/spidermonkey/fdlibm/w_lgamma.c +85 -0
  151. data/vendor/spidermonkey/fdlibm/w_lgamma_r.c +81 -0
  152. data/vendor/spidermonkey/fdlibm/w_log.c +78 -0
  153. data/vendor/spidermonkey/fdlibm/w_log10.c +81 -0
  154. data/vendor/spidermonkey/fdlibm/w_pow.c +99 -0
  155. data/vendor/spidermonkey/fdlibm/w_remainder.c +77 -0
  156. data/vendor/spidermonkey/fdlibm/w_scalb.c +95 -0
  157. data/vendor/spidermonkey/fdlibm/w_sinh.c +77 -0
  158. data/vendor/spidermonkey/fdlibm/w_sqrt.c +77 -0
  159. data/vendor/spidermonkey/javascript-trace.d +73 -0
  160. data/vendor/spidermonkey/js.c +3951 -0
  161. data/vendor/spidermonkey/js.mak +4438 -0
  162. data/vendor/spidermonkey/js.mdp +0 -0
  163. data/vendor/spidermonkey/js.msg +307 -0
  164. data/vendor/spidermonkey/js.pkg +2 -0
  165. data/vendor/spidermonkey/js3240.rc +79 -0
  166. data/vendor/spidermonkey/jsOS240.def +654 -0
  167. data/vendor/spidermonkey/jsapi.c +5836 -0
  168. data/vendor/spidermonkey/jsapi.h +2624 -0
  169. data/vendor/spidermonkey/jsarena.c +450 -0
  170. data/vendor/spidermonkey/jsarena.h +318 -0
  171. data/vendor/spidermonkey/jsarray.c +2988 -0
  172. data/vendor/spidermonkey/jsarray.h +124 -0
  173. data/vendor/spidermonkey/jsatom.c +1045 -0
  174. data/vendor/spidermonkey/jsatom.h +442 -0
  175. data/vendor/spidermonkey/jsbit.h +253 -0
  176. data/vendor/spidermonkey/jsbool.c +176 -0
  177. data/vendor/spidermonkey/jsbool.h +73 -0
  178. data/vendor/spidermonkey/jsclist.h +139 -0
  179. data/vendor/spidermonkey/jscntxt.c +1348 -0
  180. data/vendor/spidermonkey/jscntxt.h +1120 -0
  181. data/vendor/spidermonkey/jscompat.h +57 -0
  182. data/vendor/spidermonkey/jsconfig.h +248 -0
  183. data/vendor/spidermonkey/jsconfig.mk +181 -0
  184. data/vendor/spidermonkey/jscpucfg.c +383 -0
  185. data/vendor/spidermonkey/jscpucfg.h +212 -0
  186. data/vendor/spidermonkey/jsdate.c +2398 -0
  187. data/vendor/spidermonkey/jsdate.h +124 -0
  188. data/vendor/spidermonkey/jsdbgapi.c +1799 -0
  189. data/vendor/spidermonkey/jsdbgapi.h +464 -0
  190. data/vendor/spidermonkey/jsdhash.c +868 -0
  191. data/vendor/spidermonkey/jsdhash.h +592 -0
  192. data/vendor/spidermonkey/jsdtoa.c +3167 -0
  193. data/vendor/spidermonkey/jsdtoa.h +130 -0
  194. data/vendor/spidermonkey/jsdtracef.c +317 -0
  195. data/vendor/spidermonkey/jsdtracef.h +77 -0
  196. data/vendor/spidermonkey/jsemit.c +6909 -0
  197. data/vendor/spidermonkey/jsemit.h +741 -0
  198. data/vendor/spidermonkey/jsexn.c +1371 -0
  199. data/vendor/spidermonkey/jsexn.h +96 -0
  200. data/vendor/spidermonkey/jsfile.c +2736 -0
  201. data/vendor/spidermonkey/jsfile.h +56 -0
  202. data/vendor/spidermonkey/jsfile.msg +90 -0
  203. data/vendor/spidermonkey/jsfun.c +2634 -0
  204. data/vendor/spidermonkey/jsfun.h +254 -0
  205. data/vendor/spidermonkey/jsgc.c +3554 -0
  206. data/vendor/spidermonkey/jsgc.h +403 -0
  207. data/vendor/spidermonkey/jshash.c +476 -0
  208. data/vendor/spidermonkey/jshash.h +151 -0
  209. data/vendor/spidermonkey/jsify.pl +485 -0
  210. data/vendor/spidermonkey/jsinterp.c +6981 -0
  211. data/vendor/spidermonkey/jsinterp.h +521 -0
  212. data/vendor/spidermonkey/jsinvoke.c +43 -0
  213. data/vendor/spidermonkey/jsiter.c +1067 -0
  214. data/vendor/spidermonkey/jsiter.h +122 -0
  215. data/vendor/spidermonkey/jskeyword.tbl +124 -0
  216. data/vendor/spidermonkey/jskwgen.c +460 -0
  217. data/vendor/spidermonkey/jslibmath.h +266 -0
  218. data/vendor/spidermonkey/jslock.c +1309 -0
  219. data/vendor/spidermonkey/jslock.h +313 -0
  220. data/vendor/spidermonkey/jslocko.asm +60 -0
  221. data/vendor/spidermonkey/jslog2.c +94 -0
  222. data/vendor/spidermonkey/jslong.c +264 -0
  223. data/vendor/spidermonkey/jslong.h +412 -0
  224. data/vendor/spidermonkey/jsmath.c +568 -0
  225. data/vendor/spidermonkey/jsmath.h +57 -0
  226. data/vendor/spidermonkey/jsnum.c +1228 -0
  227. data/vendor/spidermonkey/jsnum.h +283 -0
  228. data/vendor/spidermonkey/jsobj.c +5266 -0
  229. data/vendor/spidermonkey/jsobj.h +709 -0
  230. data/vendor/spidermonkey/jsopcode.c +5245 -0
  231. data/vendor/spidermonkey/jsopcode.h +394 -0
  232. data/vendor/spidermonkey/jsopcode.tbl +523 -0
  233. data/vendor/spidermonkey/jsotypes.h +202 -0
  234. data/vendor/spidermonkey/jsparse.c +6680 -0
  235. data/vendor/spidermonkey/jsparse.h +511 -0
  236. data/vendor/spidermonkey/jsprf.c +1262 -0
  237. data/vendor/spidermonkey/jsprf.h +150 -0
  238. data/vendor/spidermonkey/jsproto.tbl +128 -0
  239. data/vendor/spidermonkey/jsprvtd.h +267 -0
  240. data/vendor/spidermonkey/jspubtd.h +744 -0
  241. data/vendor/spidermonkey/jsregexp.c +4352 -0
  242. data/vendor/spidermonkey/jsregexp.h +183 -0
  243. data/vendor/spidermonkey/jsreops.tbl +145 -0
  244. data/vendor/spidermonkey/jsscan.c +2003 -0
  245. data/vendor/spidermonkey/jsscan.h +387 -0
  246. data/vendor/spidermonkey/jsscope.c +1948 -0
  247. data/vendor/spidermonkey/jsscope.h +418 -0
  248. data/vendor/spidermonkey/jsscript.c +1832 -0
  249. data/vendor/spidermonkey/jsscript.h +287 -0
  250. data/vendor/spidermonkey/jsshell.msg +50 -0
  251. data/vendor/spidermonkey/jsstddef.h +83 -0
  252. data/vendor/spidermonkey/jsstr.c +5004 -0
  253. data/vendor/spidermonkey/jsstr.h +641 -0
  254. data/vendor/spidermonkey/jstypes.h +475 -0
  255. data/vendor/spidermonkey/jsutil.c +345 -0
  256. data/vendor/spidermonkey/jsutil.h +157 -0
  257. data/vendor/spidermonkey/jsxdrapi.c +800 -0
  258. data/vendor/spidermonkey/jsxdrapi.h +218 -0
  259. data/vendor/spidermonkey/jsxml.c +8471 -0
  260. data/vendor/spidermonkey/jsxml.h +349 -0
  261. data/vendor/spidermonkey/lock_SunOS.s +119 -0
  262. data/vendor/spidermonkey/perfect.js +39 -0
  263. data/vendor/spidermonkey/plify_jsdhash.sed +36 -0
  264. data/vendor/spidermonkey/prmjtime.c +846 -0
  265. data/vendor/spidermonkey/prmjtime.h +103 -0
  266. data/vendor/spidermonkey/resource.h +15 -0
  267. data/vendor/spidermonkey/rules.mk +197 -0
  268. data/vendor/spidermonkey/win32.order +384 -0
  269. metadata +4 -3
@@ -0,0 +1,497 @@
1
+ /* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2
+ *
3
+ * ***** BEGIN LICENSE BLOCK *****
4
+ * Version: MPL 1.1/GPL 2.0/LGPL 2.1
5
+ *
6
+ * The contents of this file are subject to the Mozilla Public License Version
7
+ * 1.1 (the "License"); you may not use this file except in compliance with
8
+ * the License. You may obtain a copy of the License at
9
+ * http://www.mozilla.org/MPL/
10
+ *
11
+ * Software distributed under the License is distributed on an "AS IS" basis,
12
+ * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
13
+ * for the specific language governing rights and limitations under the
14
+ * License.
15
+ *
16
+ * The Original Code is Mozilla Communicator client code, released
17
+ * March 31, 1998.
18
+ *
19
+ * The Initial Developer of the Original Code is
20
+ * Sun Microsystems, Inc.
21
+ * Portions created by the Initial Developer are Copyright (C) 1998
22
+ * the Initial Developer. All Rights Reserved.
23
+ *
24
+ * Contributor(s):
25
+ *
26
+ * Alternatively, the contents of this file may be used under the terms of
27
+ * either of the GNU General Public License Version 2 or later (the "GPL"),
28
+ * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
29
+ * in which case the provisions of the GPL or the LGPL are applicable instead
30
+ * of those above. If you wish to allow use of your version of this file only
31
+ * under the terms of either the GPL or the LGPL, and not to allow others to
32
+ * use your version of this file under the terms of the MPL, indicate your
33
+ * decision by deleting the provisions above and replace them with the notice
34
+ * and other provisions required by the GPL or the LGPL. If you do not delete
35
+ * the provisions above, a recipient may use your version of this file under
36
+ * the terms of any one of the MPL, the GPL or the LGPL.
37
+ *
38
+ * ***** END LICENSE BLOCK ***** */
39
+ /* @(#)e_sqrt.c 1.3 95/01/18 */
40
+ /*
41
+ * ====================================================
42
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
43
+ *
44
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
45
+ * Permission to use, copy, modify, and distribute this
46
+ * software is freely granted, provided that this notice
47
+ * is preserved.
48
+ * ====================================================
49
+ */
50
+
51
+ /* __ieee754_sqrt(x)
52
+ * Return correctly rounded sqrt.
53
+ * ------------------------------------------
54
+ * | Use the hardware sqrt if you have one |
55
+ * ------------------------------------------
56
+ * Method:
57
+ * Bit by bit method using integer arithmetic. (Slow, but portable)
58
+ * 1. Normalization
59
+ * Scale x to y in [1,4) with even powers of 2:
60
+ * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
61
+ * sqrt(y) = 2^k * sqrt(x)
62
+ * 2. Bit by bit computation
63
+ * Let q = sqrt(y) truncated to i bit after binary point (q = 1),
64
+ * i 0
65
+ * i+1 2
66
+ * s = 2*q , and y = 2 * ( y - q ). (1)
67
+ * i i i i
68
+ *
69
+ * To compute q from q , one checks whether
70
+ * i+1 i
71
+ *
72
+ * -(i+1) 2
73
+ * (q + 2 ) <= y. (2)
74
+ * i
75
+ * -(i+1)
76
+ * If (2) is false, then q = q ; otherwise q = q + 2 .
77
+ * i+1 i i+1 i
78
+ *
79
+ * With some algebric manipulation, it is not difficult to see
80
+ * that (2) is equivalent to
81
+ * -(i+1)
82
+ * s + 2 <= y (3)
83
+ * i i
84
+ *
85
+ * The advantage of (3) is that s and y can be computed by
86
+ * i i
87
+ * the following recurrence formula:
88
+ * if (3) is false
89
+ *
90
+ * s = s , y = y ; (4)
91
+ * i+1 i i+1 i
92
+ *
93
+ * otherwise,
94
+ * -i -(i+1)
95
+ * s = s + 2 , y = y - s - 2 (5)
96
+ * i+1 i i+1 i i
97
+ *
98
+ * One may easily use induction to prove (4) and (5).
99
+ * Note. Since the left hand side of (3) contain only i+2 bits,
100
+ * it does not necessary to do a full (53-bit) comparison
101
+ * in (3).
102
+ * 3. Final rounding
103
+ * After generating the 53 bits result, we compute one more bit.
104
+ * Together with the remainder, we can decide whether the
105
+ * result is exact, bigger than 1/2ulp, or less than 1/2ulp
106
+ * (it will never equal to 1/2ulp).
107
+ * The rounding mode can be detected by checking whether
108
+ * huge + tiny is equal to huge, and whether huge - tiny is
109
+ * equal to huge for some floating point number "huge" and "tiny".
110
+ *
111
+ * Special cases:
112
+ * sqrt(+-0) = +-0 ... exact
113
+ * sqrt(inf) = inf
114
+ * sqrt(-ve) = NaN ... with invalid signal
115
+ * sqrt(NaN) = NaN ... with invalid signal for signaling NaN
116
+ *
117
+ * Other methods : see the appended file at the end of the program below.
118
+ *---------------
119
+ */
120
+
121
+ #include "fdlibm.h"
122
+
123
+ #if defined(_MSC_VER)
124
+ /* Microsoft Compiler */
125
+ #pragma warning( disable : 4723 ) /* disables potential divide by 0 warning */
126
+ #endif
127
+
128
+ #ifdef __STDC__
129
+ static const double one = 1.0, tiny=1.0e-300;
130
+ #else
131
+ static double one = 1.0, tiny=1.0e-300;
132
+ #endif
133
+
134
+ #ifdef __STDC__
135
+ double __ieee754_sqrt(double x)
136
+ #else
137
+ double __ieee754_sqrt(x)
138
+ double x;
139
+ #endif
140
+ {
141
+ fd_twoints u;
142
+ double z;
143
+ int sign = (int)0x80000000;
144
+ unsigned r,t1,s1,ix1,q1;
145
+ int ix0,s0,q,m,t,i;
146
+
147
+ u.d = x;
148
+ ix0 = __HI(u); /* high word of x */
149
+ ix1 = __LO(u); /* low word of x */
150
+
151
+ /* take care of Inf and NaN */
152
+ if((ix0&0x7ff00000)==0x7ff00000) {
153
+ return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
154
+ sqrt(-inf)=sNaN */
155
+ }
156
+ /* take care of zero */
157
+ if(ix0<=0) {
158
+ if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
159
+ else if(ix0<0)
160
+ return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
161
+ }
162
+ /* normalize x */
163
+ m = (ix0>>20);
164
+ if(m==0) { /* subnormal x */
165
+ while(ix0==0) {
166
+ m -= 21;
167
+ ix0 |= (ix1>>11); ix1 <<= 21;
168
+ }
169
+ for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
170
+ m -= i-1;
171
+ ix0 |= (ix1>>(32-i));
172
+ ix1 <<= i;
173
+ }
174
+ m -= 1023; /* unbias exponent */
175
+ ix0 = (ix0&0x000fffff)|0x00100000;
176
+ if(m&1){ /* odd m, double x to make it even */
177
+ ix0 += ix0 + ((ix1&sign)>>31);
178
+ ix1 += ix1;
179
+ }
180
+ m >>= 1; /* m = [m/2] */
181
+
182
+ /* generate sqrt(x) bit by bit */
183
+ ix0 += ix0 + ((ix1&sign)>>31);
184
+ ix1 += ix1;
185
+ q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
186
+ r = 0x00200000; /* r = moving bit from right to left */
187
+
188
+ while(r!=0) {
189
+ t = s0+r;
190
+ if(t<=ix0) {
191
+ s0 = t+r;
192
+ ix0 -= t;
193
+ q += r;
194
+ }
195
+ ix0 += ix0 + ((ix1&sign)>>31);
196
+ ix1 += ix1;
197
+ r>>=1;
198
+ }
199
+
200
+ r = sign;
201
+ while(r!=0) {
202
+ t1 = s1+r;
203
+ t = s0;
204
+ if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
205
+ s1 = t1+r;
206
+ if(((int)(t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
207
+ ix0 -= t;
208
+ if (ix1 < t1) ix0 -= 1;
209
+ ix1 -= t1;
210
+ q1 += r;
211
+ }
212
+ ix0 += ix0 + ((ix1&sign)>>31);
213
+ ix1 += ix1;
214
+ r>>=1;
215
+ }
216
+
217
+ /* use floating add to find out rounding direction */
218
+ if((ix0|ix1)!=0) {
219
+ z = one-tiny; /* trigger inexact flag */
220
+ if (z>=one) {
221
+ z = one+tiny;
222
+ if (q1==(unsigned)0xffffffff) { q1=0; q += 1;}
223
+ else if (z>one) {
224
+ if (q1==(unsigned)0xfffffffe) q+=1;
225
+ q1+=2;
226
+ } else
227
+ q1 += (q1&1);
228
+ }
229
+ }
230
+ ix0 = (q>>1)+0x3fe00000;
231
+ ix1 = q1>>1;
232
+ if ((q&1)==1) ix1 |= sign;
233
+ ix0 += (m <<20);
234
+ u.d = z;
235
+ __HI(u) = ix0;
236
+ __LO(u) = ix1;
237
+ z = u.d;
238
+ return z;
239
+ }
240
+
241
+ /*
242
+ Other methods (use floating-point arithmetic)
243
+ -------------
244
+ (This is a copy of a drafted paper by Prof W. Kahan
245
+ and K.C. Ng, written in May, 1986)
246
+
247
+ Two algorithms are given here to implement sqrt(x)
248
+ (IEEE double precision arithmetic) in software.
249
+ Both supply sqrt(x) correctly rounded. The first algorithm (in
250
+ Section A) uses newton iterations and involves four divisions.
251
+ The second one uses reciproot iterations to avoid division, but
252
+ requires more multiplications. Both algorithms need the ability
253
+ to chop results of arithmetic operations instead of round them,
254
+ and the INEXACT flag to indicate when an arithmetic operation
255
+ is executed exactly with no roundoff error, all part of the
256
+ standard (IEEE 754-1985). The ability to perform shift, add,
257
+ subtract and logical AND operations upon 32-bit words is needed
258
+ too, though not part of the standard.
259
+
260
+ A. sqrt(x) by Newton Iteration
261
+
262
+ (1) Initial approximation
263
+
264
+ Let x0 and x1 be the leading and the trailing 32-bit words of
265
+ a floating point number x (in IEEE double format) respectively
266
+
267
+ 1 11 52 ...widths
268
+ ------------------------------------------------------
269
+ x: |s| e | f |
270
+ ------------------------------------------------------
271
+ msb lsb msb lsb ...order
272
+
273
+
274
+ ------------------------ ------------------------
275
+ x0: |s| e | f1 | x1: | f2 |
276
+ ------------------------ ------------------------
277
+
278
+ By performing shifts and subtracts on x0 and x1 (both regarded
279
+ as integers), we obtain an 8-bit approximation of sqrt(x) as
280
+ follows.
281
+
282
+ k := (x0>>1) + 0x1ff80000;
283
+ y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
284
+ Here k is a 32-bit integer and T1[] is an integer array containing
285
+ correction terms. Now magically the floating value of y (y's
286
+ leading 32-bit word is y0, the value of its trailing word is 0)
287
+ approximates sqrt(x) to almost 8-bit.
288
+
289
+ Value of T1:
290
+ static int T1[32]= {
291
+ 0, 1024, 3062, 5746, 9193, 13348, 18162, 23592,
292
+ 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,
293
+ 83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,
294
+ 16499, 12183, 8588, 5674, 3403, 1742, 661, 130,};
295
+
296
+ (2) Iterative refinement
297
+
298
+ Apply Heron's rule three times to y, we have y approximates
299
+ sqrt(x) to within 1 ulp (Unit in the Last Place):
300
+
301
+ y := (y+x/y)/2 ... almost 17 sig. bits
302
+ y := (y+x/y)/2 ... almost 35 sig. bits
303
+ y := y-(y-x/y)/2 ... within 1 ulp
304
+
305
+
306
+ Remark 1.
307
+ Another way to improve y to within 1 ulp is:
308
+
309
+ y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)
310
+ y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
311
+
312
+ 2
313
+ (x-y )*y
314
+ y := y + 2* ---------- ...within 1 ulp
315
+ 2
316
+ 3y + x
317
+
318
+
319
+ This formula has one division fewer than the one above; however,
320
+ it requires more multiplications and additions. Also x must be
321
+ scaled in advance to avoid spurious overflow in evaluating the
322
+ expression 3y*y+x. Hence it is not recommended uless division
323
+ is slow. If division is very slow, then one should use the
324
+ reciproot algorithm given in section B.
325
+
326
+ (3) Final adjustment
327
+
328
+ By twiddling y's last bit it is possible to force y to be
329
+ correctly rounded according to the prevailing rounding mode
330
+ as follows. Let r and i be copies of the rounding mode and
331
+ inexact flag before entering the square root program. Also we
332
+ use the expression y+-ulp for the next representable floating
333
+ numbers (up and down) of y. Note that y+-ulp = either fixed
334
+ point y+-1, or multiply y by nextafter(1,+-inf) in chopped
335
+ mode.
336
+
337
+ I := FALSE; ... reset INEXACT flag I
338
+ R := RZ; ... set rounding mode to round-toward-zero
339
+ z := x/y; ... chopped quotient, possibly inexact
340
+ If(not I) then { ... if the quotient is exact
341
+ if(z=y) {
342
+ I := i; ... restore inexact flag
343
+ R := r; ... restore rounded mode
344
+ return sqrt(x):=y.
345
+ } else {
346
+ z := z - ulp; ... special rounding
347
+ }
348
+ }
349
+ i := TRUE; ... sqrt(x) is inexact
350
+ If (r=RN) then z=z+ulp ... rounded-to-nearest
351
+ If (r=RP) then { ... round-toward-+inf
352
+ y = y+ulp; z=z+ulp;
353
+ }
354
+ y := y+z; ... chopped sum
355
+ y0:=y0-0x00100000; ... y := y/2 is correctly rounded.
356
+ I := i; ... restore inexact flag
357
+ R := r; ... restore rounded mode
358
+ return sqrt(x):=y.
359
+
360
+ (4) Special cases
361
+
362
+ Square root of +inf, +-0, or NaN is itself;
363
+ Square root of a negative number is NaN with invalid signal.
364
+
365
+
366
+ B. sqrt(x) by Reciproot Iteration
367
+
368
+ (1) Initial approximation
369
+
370
+ Let x0 and x1 be the leading and the trailing 32-bit words of
371
+ a floating point number x (in IEEE double format) respectively
372
+ (see section A). By performing shifs and subtracts on x0 and y0,
373
+ we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
374
+
375
+ k := 0x5fe80000 - (x0>>1);
376
+ y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
377
+
378
+ Here k is a 32-bit integer and T2[] is an integer array
379
+ containing correction terms. Now magically the floating
380
+ value of y (y's leading 32-bit word is y0, the value of
381
+ its trailing word y1 is set to zero) approximates 1/sqrt(x)
382
+ to almost 7.8-bit.
383
+
384
+ Value of T2:
385
+ static int T2[64]= {
386
+ 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
387
+ 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
388
+ 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
389
+ 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
390
+ 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
391
+ 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
392
+ 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
393
+ 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
394
+
395
+ (2) Iterative refinement
396
+
397
+ Apply Reciproot iteration three times to y and multiply the
398
+ result by x to get an approximation z that matches sqrt(x)
399
+ to about 1 ulp. To be exact, we will have
400
+ -1ulp < sqrt(x)-z<1.0625ulp.
401
+
402
+ ... set rounding mode to Round-to-nearest
403
+ y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
404
+ y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
405
+ ... special arrangement for better accuracy
406
+ z := x*y ... 29 bits to sqrt(x), with z*y<1
407
+ z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
408
+
409
+ Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
410
+ (a) the term z*y in the final iteration is always less than 1;
411
+ (b) the error in the final result is biased upward so that
412
+ -1 ulp < sqrt(x) - z < 1.0625 ulp
413
+ instead of |sqrt(x)-z|<1.03125ulp.
414
+
415
+ (3) Final adjustment
416
+
417
+ By twiddling y's last bit it is possible to force y to be
418
+ correctly rounded according to the prevailing rounding mode
419
+ as follows. Let r and i be copies of the rounding mode and
420
+ inexact flag before entering the square root program. Also we
421
+ use the expression y+-ulp for the next representable floating
422
+ numbers (up and down) of y. Note that y+-ulp = either fixed
423
+ point y+-1, or multiply y by nextafter(1,+-inf) in chopped
424
+ mode.
425
+
426
+ R := RZ; ... set rounding mode to round-toward-zero
427
+ switch(r) {
428
+ case RN: ... round-to-nearest
429
+ if(x<= z*(z-ulp)...chopped) z = z - ulp; else
430
+ if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
431
+ break;
432
+ case RZ:case RM: ... round-to-zero or round-to--inf
433
+ R:=RP; ... reset rounding mod to round-to-+inf
434
+ if(x<z*z ... rounded up) z = z - ulp; else
435
+ if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
436
+ break;
437
+ case RP: ... round-to-+inf
438
+ if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
439
+ if(x>z*z ...chopped) z = z+ulp;
440
+ break;
441
+ }
442
+
443
+ Remark 3. The above comparisons can be done in fixed point. For
444
+ example, to compare x and w=z*z chopped, it suffices to compare
445
+ x1 and w1 (the trailing parts of x and w), regarding them as
446
+ two's complement integers.
447
+
448
+ ...Is z an exact square root?
449
+ To determine whether z is an exact square root of x, let z1 be the
450
+ trailing part of z, and also let x0 and x1 be the leading and
451
+ trailing parts of x.
452
+
453
+ If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
454
+ I := 1; ... Raise Inexact flag: z is not exact
455
+ else {
456
+ j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
457
+ k := z1 >> 26; ... get z's 25-th and 26-th
458
+ fraction bits
459
+ I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
460
+ }
461
+ R:= r ... restore rounded mode
462
+ return sqrt(x):=z.
463
+
464
+ If multiplication is cheaper then the foregoing red tape, the
465
+ Inexact flag can be evaluated by
466
+
467
+ I := i;
468
+ I := (z*z!=x) or I.
469
+
470
+ Note that z*z can overwrite I; this value must be sensed if it is
471
+ True.
472
+
473
+ Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
474
+ zero.
475
+
476
+ --------------------
477
+ z1: | f2 |
478
+ --------------------
479
+ bit 31 bit 0
480
+
481
+ Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
482
+ or even of logb(x) have the following relations:
483
+
484
+ -------------------------------------------------
485
+ bit 27,26 of z1 bit 1,0 of x1 logb(x)
486
+ -------------------------------------------------
487
+ 00 00 odd and even
488
+ 01 01 even
489
+ 10 10 odd
490
+ 10 00 even
491
+ 11 01 even
492
+ -------------------------------------------------
493
+
494
+ (4) Special cases (see (4) of Section A).
495
+
496
+ */
497
+