jbarnette-johnson 1.0.0.200806240111 → 1.0.0.200807291507
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/MANIFEST +1 -0
- data/Rakefile +3 -10
- data/bin/johnson +2 -1
- data/ext/spidermonkey/context.c +3 -4
- data/ext/spidermonkey/context.h +1 -1
- data/ext/spidermonkey/conversions.c +39 -33
- data/ext/spidermonkey/debugger.c +5 -5
- data/ext/spidermonkey/immutable_node.c.erb +11 -11
- data/ext/spidermonkey/jroot.h +4 -4
- data/ext/spidermonkey/js_land_proxy.c +9 -8
- data/ext/spidermonkey/ruby_land_proxy.c +5 -4
- data/ext/spidermonkey/runtime.c +1 -1
- data/johnson.gemspec +36 -0
- data/lib/hoe.rb +0 -7
- data/lib/johnson/cli/options.rb +10 -4
- data/lib/johnson/spidermonkey/runtime.rb +2 -2
- data/lib/johnson/version.rb +4 -2
- data/lib/johnson.rb +1 -0
- data/test/johnson/runtime_test.rb +11 -0
- data/test/johnson/spidermonkey/ruby_land_proxy_test.rb +6 -0
- data/vendor/spidermonkey/.cvsignore +9 -0
- data/vendor/spidermonkey/Makefile.in +462 -0
- data/vendor/spidermonkey/Makefile.ref +364 -0
- data/vendor/spidermonkey/README.html +820 -0
- data/vendor/spidermonkey/SpiderMonkey.rsp +12 -0
- data/vendor/spidermonkey/Y.js +19 -0
- data/vendor/spidermonkey/build.mk +43 -0
- data/vendor/spidermonkey/config/AIX4.1.mk +65 -0
- data/vendor/spidermonkey/config/AIX4.2.mk +64 -0
- data/vendor/spidermonkey/config/AIX4.3.mk +65 -0
- data/vendor/spidermonkey/config/Darwin.mk +83 -0
- data/vendor/spidermonkey/config/Darwin1.3.mk +81 -0
- data/vendor/spidermonkey/config/Darwin1.4.mk +41 -0
- data/vendor/spidermonkey/config/Darwin5.2.mk +81 -0
- data/vendor/spidermonkey/config/Darwin5.3.mk +81 -0
- data/vendor/spidermonkey/config/HP-UXB.10.10.mk +77 -0
- data/vendor/spidermonkey/config/HP-UXB.10.20.mk +77 -0
- data/vendor/spidermonkey/config/HP-UXB.11.00.mk +80 -0
- data/vendor/spidermonkey/config/IRIX.mk +87 -0
- data/vendor/spidermonkey/config/IRIX5.3.mk +44 -0
- data/vendor/spidermonkey/config/IRIX6.1.mk +44 -0
- data/vendor/spidermonkey/config/IRIX6.2.mk +44 -0
- data/vendor/spidermonkey/config/IRIX6.3.mk +44 -0
- data/vendor/spidermonkey/config/IRIX6.5.mk +44 -0
- data/vendor/spidermonkey/config/Linux_All.mk +103 -0
- data/vendor/spidermonkey/config/Mac_OS10.0.mk +82 -0
- data/vendor/spidermonkey/config/OSF1V4.0.mk +72 -0
- data/vendor/spidermonkey/config/OSF1V5.0.mk +69 -0
- data/vendor/spidermonkey/config/SunOS4.1.4.mk +101 -0
- data/vendor/spidermonkey/config/SunOS5.10.mk +50 -0
- data/vendor/spidermonkey/config/SunOS5.3.mk +91 -0
- data/vendor/spidermonkey/config/SunOS5.4.mk +92 -0
- data/vendor/spidermonkey/config/SunOS5.5.1.mk +44 -0
- data/vendor/spidermonkey/config/SunOS5.5.mk +87 -0
- data/vendor/spidermonkey/config/SunOS5.6.mk +89 -0
- data/vendor/spidermonkey/config/SunOS5.7.mk +44 -0
- data/vendor/spidermonkey/config/SunOS5.8.mk +44 -0
- data/vendor/spidermonkey/config/SunOS5.9.mk +44 -0
- data/vendor/spidermonkey/config/WINNT4.0.mk +117 -0
- data/vendor/spidermonkey/config/WINNT5.0.mk +117 -0
- data/vendor/spidermonkey/config/WINNT5.1.mk +117 -0
- data/vendor/spidermonkey/config/WINNT5.2.mk +117 -0
- data/vendor/spidermonkey/config/WINNT6.0.mk +117 -0
- data/vendor/spidermonkey/config/dgux.mk +64 -0
- data/vendor/spidermonkey/config.mk +192 -0
- data/vendor/spidermonkey/editline/Makefile.ref +144 -0
- data/vendor/spidermonkey/editline/README +83 -0
- data/vendor/spidermonkey/editline/editline.3 +175 -0
- data/vendor/spidermonkey/editline/editline.c +1369 -0
- data/vendor/spidermonkey/editline/editline.h +135 -0
- data/vendor/spidermonkey/editline/sysunix.c +182 -0
- data/vendor/spidermonkey/editline/unix.h +82 -0
- data/vendor/spidermonkey/fdlibm/.cvsignore +7 -0
- data/vendor/spidermonkey/fdlibm/Makefile.in +127 -0
- data/vendor/spidermonkey/fdlibm/Makefile.ref +192 -0
- data/vendor/spidermonkey/fdlibm/e_acos.c +147 -0
- data/vendor/spidermonkey/fdlibm/e_acosh.c +105 -0
- data/vendor/spidermonkey/fdlibm/e_asin.c +156 -0
- data/vendor/spidermonkey/fdlibm/e_atan2.c +165 -0
- data/vendor/spidermonkey/fdlibm/e_atanh.c +110 -0
- data/vendor/spidermonkey/fdlibm/e_cosh.c +133 -0
- data/vendor/spidermonkey/fdlibm/e_exp.c +202 -0
- data/vendor/spidermonkey/fdlibm/e_fmod.c +184 -0
- data/vendor/spidermonkey/fdlibm/e_gamma.c +71 -0
- data/vendor/spidermonkey/fdlibm/e_gamma_r.c +70 -0
- data/vendor/spidermonkey/fdlibm/e_hypot.c +173 -0
- data/vendor/spidermonkey/fdlibm/e_j0.c +524 -0
- data/vendor/spidermonkey/fdlibm/e_j1.c +523 -0
- data/vendor/spidermonkey/fdlibm/e_jn.c +315 -0
- data/vendor/spidermonkey/fdlibm/e_lgamma.c +71 -0
- data/vendor/spidermonkey/fdlibm/e_lgamma_r.c +347 -0
- data/vendor/spidermonkey/fdlibm/e_log.c +184 -0
- data/vendor/spidermonkey/fdlibm/e_log10.c +134 -0
- data/vendor/spidermonkey/fdlibm/e_pow.c +386 -0
- data/vendor/spidermonkey/fdlibm/e_rem_pio2.c +222 -0
- data/vendor/spidermonkey/fdlibm/e_remainder.c +120 -0
- data/vendor/spidermonkey/fdlibm/e_scalb.c +89 -0
- data/vendor/spidermonkey/fdlibm/e_sinh.c +122 -0
- data/vendor/spidermonkey/fdlibm/e_sqrt.c +497 -0
- data/vendor/spidermonkey/fdlibm/fdlibm.h +273 -0
- data/vendor/spidermonkey/fdlibm/fdlibm.mak +1453 -0
- data/vendor/spidermonkey/fdlibm/fdlibm.mdp +0 -0
- data/vendor/spidermonkey/fdlibm/k_cos.c +135 -0
- data/vendor/spidermonkey/fdlibm/k_rem_pio2.c +354 -0
- data/vendor/spidermonkey/fdlibm/k_sin.c +114 -0
- data/vendor/spidermonkey/fdlibm/k_standard.c +785 -0
- data/vendor/spidermonkey/fdlibm/k_tan.c +170 -0
- data/vendor/spidermonkey/fdlibm/s_asinh.c +101 -0
- data/vendor/spidermonkey/fdlibm/s_atan.c +175 -0
- data/vendor/spidermonkey/fdlibm/s_cbrt.c +133 -0
- data/vendor/spidermonkey/fdlibm/s_ceil.c +120 -0
- data/vendor/spidermonkey/fdlibm/s_copysign.c +72 -0
- data/vendor/spidermonkey/fdlibm/s_cos.c +118 -0
- data/vendor/spidermonkey/fdlibm/s_erf.c +356 -0
- data/vendor/spidermonkey/fdlibm/s_expm1.c +267 -0
- data/vendor/spidermonkey/fdlibm/s_fabs.c +70 -0
- data/vendor/spidermonkey/fdlibm/s_finite.c +71 -0
- data/vendor/spidermonkey/fdlibm/s_floor.c +121 -0
- data/vendor/spidermonkey/fdlibm/s_frexp.c +99 -0
- data/vendor/spidermonkey/fdlibm/s_ilogb.c +85 -0
- data/vendor/spidermonkey/fdlibm/s_isnan.c +74 -0
- data/vendor/spidermonkey/fdlibm/s_ldexp.c +66 -0
- data/vendor/spidermonkey/fdlibm/s_lib_version.c +73 -0
- data/vendor/spidermonkey/fdlibm/s_log1p.c +211 -0
- data/vendor/spidermonkey/fdlibm/s_logb.c +79 -0
- data/vendor/spidermonkey/fdlibm/s_matherr.c +64 -0
- data/vendor/spidermonkey/fdlibm/s_modf.c +132 -0
- data/vendor/spidermonkey/fdlibm/s_nextafter.c +124 -0
- data/vendor/spidermonkey/fdlibm/s_rint.c +131 -0
- data/vendor/spidermonkey/fdlibm/s_scalbn.c +107 -0
- data/vendor/spidermonkey/fdlibm/s_signgam.c +40 -0
- data/vendor/spidermonkey/fdlibm/s_significand.c +68 -0
- data/vendor/spidermonkey/fdlibm/s_sin.c +118 -0
- data/vendor/spidermonkey/fdlibm/s_tan.c +112 -0
- data/vendor/spidermonkey/fdlibm/s_tanh.c +122 -0
- data/vendor/spidermonkey/fdlibm/w_acos.c +78 -0
- data/vendor/spidermonkey/fdlibm/w_acosh.c +78 -0
- data/vendor/spidermonkey/fdlibm/w_asin.c +80 -0
- data/vendor/spidermonkey/fdlibm/w_atan2.c +79 -0
- data/vendor/spidermonkey/fdlibm/w_atanh.c +81 -0
- data/vendor/spidermonkey/fdlibm/w_cosh.c +77 -0
- data/vendor/spidermonkey/fdlibm/w_exp.c +88 -0
- data/vendor/spidermonkey/fdlibm/w_fmod.c +78 -0
- data/vendor/spidermonkey/fdlibm/w_gamma.c +85 -0
- data/vendor/spidermonkey/fdlibm/w_gamma_r.c +81 -0
- data/vendor/spidermonkey/fdlibm/w_hypot.c +78 -0
- data/vendor/spidermonkey/fdlibm/w_j0.c +105 -0
- data/vendor/spidermonkey/fdlibm/w_j1.c +106 -0
- data/vendor/spidermonkey/fdlibm/w_jn.c +128 -0
- data/vendor/spidermonkey/fdlibm/w_lgamma.c +85 -0
- data/vendor/spidermonkey/fdlibm/w_lgamma_r.c +81 -0
- data/vendor/spidermonkey/fdlibm/w_log.c +78 -0
- data/vendor/spidermonkey/fdlibm/w_log10.c +81 -0
- data/vendor/spidermonkey/fdlibm/w_pow.c +99 -0
- data/vendor/spidermonkey/fdlibm/w_remainder.c +77 -0
- data/vendor/spidermonkey/fdlibm/w_scalb.c +95 -0
- data/vendor/spidermonkey/fdlibm/w_sinh.c +77 -0
- data/vendor/spidermonkey/fdlibm/w_sqrt.c +77 -0
- data/vendor/spidermonkey/javascript-trace.d +73 -0
- data/vendor/spidermonkey/js.c +3951 -0
- data/vendor/spidermonkey/js.mak +4438 -0
- data/vendor/spidermonkey/js.mdp +0 -0
- data/vendor/spidermonkey/js.msg +307 -0
- data/vendor/spidermonkey/js.pkg +2 -0
- data/vendor/spidermonkey/js3240.rc +79 -0
- data/vendor/spidermonkey/jsOS240.def +654 -0
- data/vendor/spidermonkey/jsapi.c +5836 -0
- data/vendor/spidermonkey/jsapi.h +2624 -0
- data/vendor/spidermonkey/jsarena.c +450 -0
- data/vendor/spidermonkey/jsarena.h +318 -0
- data/vendor/spidermonkey/jsarray.c +2988 -0
- data/vendor/spidermonkey/jsarray.h +124 -0
- data/vendor/spidermonkey/jsatom.c +1045 -0
- data/vendor/spidermonkey/jsatom.h +442 -0
- data/vendor/spidermonkey/jsbit.h +253 -0
- data/vendor/spidermonkey/jsbool.c +176 -0
- data/vendor/spidermonkey/jsbool.h +73 -0
- data/vendor/spidermonkey/jsclist.h +139 -0
- data/vendor/spidermonkey/jscntxt.c +1348 -0
- data/vendor/spidermonkey/jscntxt.h +1120 -0
- data/vendor/spidermonkey/jscompat.h +57 -0
- data/vendor/spidermonkey/jsconfig.h +248 -0
- data/vendor/spidermonkey/jsconfig.mk +181 -0
- data/vendor/spidermonkey/jscpucfg.c +383 -0
- data/vendor/spidermonkey/jscpucfg.h +212 -0
- data/vendor/spidermonkey/jsdate.c +2398 -0
- data/vendor/spidermonkey/jsdate.h +124 -0
- data/vendor/spidermonkey/jsdbgapi.c +1799 -0
- data/vendor/spidermonkey/jsdbgapi.h +464 -0
- data/vendor/spidermonkey/jsdhash.c +868 -0
- data/vendor/spidermonkey/jsdhash.h +592 -0
- data/vendor/spidermonkey/jsdtoa.c +3167 -0
- data/vendor/spidermonkey/jsdtoa.h +130 -0
- data/vendor/spidermonkey/jsdtracef.c +317 -0
- data/vendor/spidermonkey/jsdtracef.h +77 -0
- data/vendor/spidermonkey/jsemit.c +6909 -0
- data/vendor/spidermonkey/jsemit.h +741 -0
- data/vendor/spidermonkey/jsexn.c +1371 -0
- data/vendor/spidermonkey/jsexn.h +96 -0
- data/vendor/spidermonkey/jsfile.c +2736 -0
- data/vendor/spidermonkey/jsfile.h +56 -0
- data/vendor/spidermonkey/jsfile.msg +90 -0
- data/vendor/spidermonkey/jsfun.c +2634 -0
- data/vendor/spidermonkey/jsfun.h +254 -0
- data/vendor/spidermonkey/jsgc.c +3554 -0
- data/vendor/spidermonkey/jsgc.h +403 -0
- data/vendor/spidermonkey/jshash.c +476 -0
- data/vendor/spidermonkey/jshash.h +151 -0
- data/vendor/spidermonkey/jsify.pl +485 -0
- data/vendor/spidermonkey/jsinterp.c +6981 -0
- data/vendor/spidermonkey/jsinterp.h +521 -0
- data/vendor/spidermonkey/jsinvoke.c +43 -0
- data/vendor/spidermonkey/jsiter.c +1067 -0
- data/vendor/spidermonkey/jsiter.h +122 -0
- data/vendor/spidermonkey/jskeyword.tbl +124 -0
- data/vendor/spidermonkey/jskwgen.c +460 -0
- data/vendor/spidermonkey/jslibmath.h +266 -0
- data/vendor/spidermonkey/jslock.c +1309 -0
- data/vendor/spidermonkey/jslock.h +313 -0
- data/vendor/spidermonkey/jslocko.asm +60 -0
- data/vendor/spidermonkey/jslog2.c +94 -0
- data/vendor/spidermonkey/jslong.c +264 -0
- data/vendor/spidermonkey/jslong.h +412 -0
- data/vendor/spidermonkey/jsmath.c +568 -0
- data/vendor/spidermonkey/jsmath.h +57 -0
- data/vendor/spidermonkey/jsnum.c +1228 -0
- data/vendor/spidermonkey/jsnum.h +283 -0
- data/vendor/spidermonkey/jsobj.c +5266 -0
- data/vendor/spidermonkey/jsobj.h +709 -0
- data/vendor/spidermonkey/jsopcode.c +5245 -0
- data/vendor/spidermonkey/jsopcode.h +394 -0
- data/vendor/spidermonkey/jsopcode.tbl +523 -0
- data/vendor/spidermonkey/jsotypes.h +202 -0
- data/vendor/spidermonkey/jsparse.c +6680 -0
- data/vendor/spidermonkey/jsparse.h +511 -0
- data/vendor/spidermonkey/jsprf.c +1262 -0
- data/vendor/spidermonkey/jsprf.h +150 -0
- data/vendor/spidermonkey/jsproto.tbl +128 -0
- data/vendor/spidermonkey/jsprvtd.h +267 -0
- data/vendor/spidermonkey/jspubtd.h +744 -0
- data/vendor/spidermonkey/jsregexp.c +4352 -0
- data/vendor/spidermonkey/jsregexp.h +183 -0
- data/vendor/spidermonkey/jsreops.tbl +145 -0
- data/vendor/spidermonkey/jsscan.c +2003 -0
- data/vendor/spidermonkey/jsscan.h +387 -0
- data/vendor/spidermonkey/jsscope.c +1948 -0
- data/vendor/spidermonkey/jsscope.h +418 -0
- data/vendor/spidermonkey/jsscript.c +1832 -0
- data/vendor/spidermonkey/jsscript.h +287 -0
- data/vendor/spidermonkey/jsshell.msg +50 -0
- data/vendor/spidermonkey/jsstddef.h +83 -0
- data/vendor/spidermonkey/jsstr.c +5004 -0
- data/vendor/spidermonkey/jsstr.h +641 -0
- data/vendor/spidermonkey/jstypes.h +475 -0
- data/vendor/spidermonkey/jsutil.c +345 -0
- data/vendor/spidermonkey/jsutil.h +157 -0
- data/vendor/spidermonkey/jsxdrapi.c +800 -0
- data/vendor/spidermonkey/jsxdrapi.h +218 -0
- data/vendor/spidermonkey/jsxml.c +8471 -0
- data/vendor/spidermonkey/jsxml.h +349 -0
- data/vendor/spidermonkey/lock_SunOS.s +119 -0
- data/vendor/spidermonkey/perfect.js +39 -0
- data/vendor/spidermonkey/plify_jsdhash.sed +36 -0
- data/vendor/spidermonkey/prmjtime.c +846 -0
- data/vendor/spidermonkey/prmjtime.h +103 -0
- data/vendor/spidermonkey/resource.h +15 -0
- data/vendor/spidermonkey/rules.mk +197 -0
- data/vendor/spidermonkey/win32.order +384 -0
- metadata +4 -3
@@ -0,0 +1,315 @@
|
|
1
|
+
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
2
|
+
*
|
3
|
+
* ***** BEGIN LICENSE BLOCK *****
|
4
|
+
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
5
|
+
*
|
6
|
+
* The contents of this file are subject to the Mozilla Public License Version
|
7
|
+
* 1.1 (the "License"); you may not use this file except in compliance with
|
8
|
+
* the License. You may obtain a copy of the License at
|
9
|
+
* http://www.mozilla.org/MPL/
|
10
|
+
*
|
11
|
+
* Software distributed under the License is distributed on an "AS IS" basis,
|
12
|
+
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
13
|
+
* for the specific language governing rights and limitations under the
|
14
|
+
* License.
|
15
|
+
*
|
16
|
+
* The Original Code is Mozilla Communicator client code, released
|
17
|
+
* March 31, 1998.
|
18
|
+
*
|
19
|
+
* The Initial Developer of the Original Code is
|
20
|
+
* Sun Microsystems, Inc.
|
21
|
+
* Portions created by the Initial Developer are Copyright (C) 1998
|
22
|
+
* the Initial Developer. All Rights Reserved.
|
23
|
+
*
|
24
|
+
* Contributor(s):
|
25
|
+
*
|
26
|
+
* Alternatively, the contents of this file may be used under the terms of
|
27
|
+
* either of the GNU General Public License Version 2 or later (the "GPL"),
|
28
|
+
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
29
|
+
* in which case the provisions of the GPL or the LGPL are applicable instead
|
30
|
+
* of those above. If you wish to allow use of your version of this file only
|
31
|
+
* under the terms of either the GPL or the LGPL, and not to allow others to
|
32
|
+
* use your version of this file under the terms of the MPL, indicate your
|
33
|
+
* decision by deleting the provisions above and replace them with the notice
|
34
|
+
* and other provisions required by the GPL or the LGPL. If you do not delete
|
35
|
+
* the provisions above, a recipient may use your version of this file under
|
36
|
+
* the terms of any one of the MPL, the GPL or the LGPL.
|
37
|
+
*
|
38
|
+
* ***** END LICENSE BLOCK ***** */
|
39
|
+
|
40
|
+
/* @(#)e_jn.c 1.4 95/01/18 */
|
41
|
+
/*
|
42
|
+
* ====================================================
|
43
|
+
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
44
|
+
*
|
45
|
+
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
46
|
+
* Permission to use, copy, modify, and distribute this
|
47
|
+
* software is freely granted, provided that this notice
|
48
|
+
* is preserved.
|
49
|
+
* ====================================================
|
50
|
+
*/
|
51
|
+
|
52
|
+
/*
|
53
|
+
* __ieee754_jn(n, x), __ieee754_yn(n, x)
|
54
|
+
* floating point Bessel's function of the 1st and 2nd kind
|
55
|
+
* of order n
|
56
|
+
*
|
57
|
+
* Special cases:
|
58
|
+
* y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
|
59
|
+
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
|
60
|
+
* Note 2. About jn(n,x), yn(n,x)
|
61
|
+
* For n=0, j0(x) is called,
|
62
|
+
* for n=1, j1(x) is called,
|
63
|
+
* for n<x, forward recursion us used starting
|
64
|
+
* from values of j0(x) and j1(x).
|
65
|
+
* for n>x, a continued fraction approximation to
|
66
|
+
* j(n,x)/j(n-1,x) is evaluated and then backward
|
67
|
+
* recursion is used starting from a supposed value
|
68
|
+
* for j(n,x). The resulting value of j(0,x) is
|
69
|
+
* compared with the actual value to correct the
|
70
|
+
* supposed value of j(n,x).
|
71
|
+
*
|
72
|
+
* yn(n,x) is similar in all respects, except
|
73
|
+
* that forward recursion is used for all
|
74
|
+
* values of n>1.
|
75
|
+
*
|
76
|
+
*/
|
77
|
+
|
78
|
+
#include "fdlibm.h"
|
79
|
+
|
80
|
+
#ifdef __STDC__
|
81
|
+
static const double
|
82
|
+
#else
|
83
|
+
static double
|
84
|
+
#endif
|
85
|
+
invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
|
86
|
+
two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
|
87
|
+
one = 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
|
88
|
+
|
89
|
+
static double zero = 0.00000000000000000000e+00;
|
90
|
+
|
91
|
+
#ifdef __STDC__
|
92
|
+
double __ieee754_jn(int n, double x)
|
93
|
+
#else
|
94
|
+
double __ieee754_jn(n,x)
|
95
|
+
int n; double x;
|
96
|
+
#endif
|
97
|
+
{
|
98
|
+
fd_twoints u;
|
99
|
+
int i,hx,ix,lx, sgn;
|
100
|
+
double a, b, temp, di;
|
101
|
+
double z, w;
|
102
|
+
|
103
|
+
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
|
104
|
+
* Thus, J(-n,x) = J(n,-x)
|
105
|
+
*/
|
106
|
+
u.d = x;
|
107
|
+
hx = __HI(u);
|
108
|
+
ix = 0x7fffffff&hx;
|
109
|
+
lx = __LO(u);
|
110
|
+
/* if J(n,NaN) is NaN */
|
111
|
+
if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x;
|
112
|
+
if(n<0){
|
113
|
+
n = -n;
|
114
|
+
x = -x;
|
115
|
+
hx ^= 0x80000000;
|
116
|
+
}
|
117
|
+
if(n==0) return(__ieee754_j0(x));
|
118
|
+
if(n==1) return(__ieee754_j1(x));
|
119
|
+
sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */
|
120
|
+
x = fd_fabs(x);
|
121
|
+
if((ix|lx)==0||ix>=0x7ff00000) /* if x is 0 or inf */
|
122
|
+
b = zero;
|
123
|
+
else if((double)n<=x) {
|
124
|
+
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
125
|
+
if(ix>=0x52D00000) { /* x > 2**302 */
|
126
|
+
/* (x >> n**2)
|
127
|
+
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
128
|
+
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
129
|
+
* Let s=sin(x), c=cos(x),
|
130
|
+
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
131
|
+
*
|
132
|
+
* n sin(xn)*sqt2 cos(xn)*sqt2
|
133
|
+
* ----------------------------------
|
134
|
+
* 0 s-c c+s
|
135
|
+
* 1 -s-c -c+s
|
136
|
+
* 2 -s+c -c-s
|
137
|
+
* 3 s+c c-s
|
138
|
+
*/
|
139
|
+
switch(n&3) {
|
140
|
+
case 0: temp = fd_cos(x)+fd_sin(x); break;
|
141
|
+
case 1: temp = -fd_cos(x)+fd_sin(x); break;
|
142
|
+
case 2: temp = -fd_cos(x)-fd_sin(x); break;
|
143
|
+
case 3: temp = fd_cos(x)-fd_sin(x); break;
|
144
|
+
}
|
145
|
+
b = invsqrtpi*temp/fd_sqrt(x);
|
146
|
+
} else {
|
147
|
+
a = __ieee754_j0(x);
|
148
|
+
b = __ieee754_j1(x);
|
149
|
+
for(i=1;i<n;i++){
|
150
|
+
temp = b;
|
151
|
+
b = b*((double)(i+i)/x) - a; /* avoid underflow */
|
152
|
+
a = temp;
|
153
|
+
}
|
154
|
+
}
|
155
|
+
} else {
|
156
|
+
if(ix<0x3e100000) { /* x < 2**-29 */
|
157
|
+
/* x is tiny, return the first Taylor expansion of J(n,x)
|
158
|
+
* J(n,x) = 1/n!*(x/2)^n - ...
|
159
|
+
*/
|
160
|
+
if(n>33) /* underflow */
|
161
|
+
b = zero;
|
162
|
+
else {
|
163
|
+
temp = x*0.5; b = temp;
|
164
|
+
for (a=one,i=2;i<=n;i++) {
|
165
|
+
a *= (double)i; /* a = n! */
|
166
|
+
b *= temp; /* b = (x/2)^n */
|
167
|
+
}
|
168
|
+
b = b/a;
|
169
|
+
}
|
170
|
+
} else {
|
171
|
+
/* use backward recurrence */
|
172
|
+
/* x x^2 x^2
|
173
|
+
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
174
|
+
* 2n - 2(n+1) - 2(n+2)
|
175
|
+
*
|
176
|
+
* 1 1 1
|
177
|
+
* (for large x) = ---- ------ ------ .....
|
178
|
+
* 2n 2(n+1) 2(n+2)
|
179
|
+
* -- - ------ - ------ -
|
180
|
+
* x x x
|
181
|
+
*
|
182
|
+
* Let w = 2n/x and h=2/x, then the above quotient
|
183
|
+
* is equal to the continued fraction:
|
184
|
+
* 1
|
185
|
+
* = -----------------------
|
186
|
+
* 1
|
187
|
+
* w - -----------------
|
188
|
+
* 1
|
189
|
+
* w+h - ---------
|
190
|
+
* w+2h - ...
|
191
|
+
*
|
192
|
+
* To determine how many terms needed, let
|
193
|
+
* Q(0) = w, Q(1) = w(w+h) - 1,
|
194
|
+
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
195
|
+
* When Q(k) > 1e4 good for single
|
196
|
+
* When Q(k) > 1e9 good for double
|
197
|
+
* When Q(k) > 1e17 good for quadruple
|
198
|
+
*/
|
199
|
+
/* determine k */
|
200
|
+
double t,v;
|
201
|
+
double q0,q1,h,tmp; int k,m;
|
202
|
+
w = (n+n)/(double)x; h = 2.0/(double)x;
|
203
|
+
q0 = w; z = w+h; q1 = w*z - 1.0; k=1;
|
204
|
+
while(q1<1.0e9) {
|
205
|
+
k += 1; z += h;
|
206
|
+
tmp = z*q1 - q0;
|
207
|
+
q0 = q1;
|
208
|
+
q1 = tmp;
|
209
|
+
}
|
210
|
+
m = n+n;
|
211
|
+
for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
|
212
|
+
a = t;
|
213
|
+
b = one;
|
214
|
+
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
215
|
+
* Hence, if n*(log(2n/x)) > ...
|
216
|
+
* single 8.8722839355e+01
|
217
|
+
* double 7.09782712893383973096e+02
|
218
|
+
* long double 1.1356523406294143949491931077970765006170e+04
|
219
|
+
* then recurrent value may overflow and the result is
|
220
|
+
* likely underflow to zero
|
221
|
+
*/
|
222
|
+
tmp = n;
|
223
|
+
v = two/x;
|
224
|
+
tmp = tmp*__ieee754_log(fd_fabs(v*tmp));
|
225
|
+
if(tmp<7.09782712893383973096e+02) {
|
226
|
+
for(i=n-1,di=(double)(i+i);i>0;i--){
|
227
|
+
temp = b;
|
228
|
+
b *= di;
|
229
|
+
b = b/x - a;
|
230
|
+
a = temp;
|
231
|
+
di -= two;
|
232
|
+
}
|
233
|
+
} else {
|
234
|
+
for(i=n-1,di=(double)(i+i);i>0;i--){
|
235
|
+
temp = b;
|
236
|
+
b *= di;
|
237
|
+
b = b/x - a;
|
238
|
+
a = temp;
|
239
|
+
di -= two;
|
240
|
+
/* scale b to avoid spurious overflow */
|
241
|
+
if(b>1e100) {
|
242
|
+
a /= b;
|
243
|
+
t /= b;
|
244
|
+
b = one;
|
245
|
+
}
|
246
|
+
}
|
247
|
+
}
|
248
|
+
b = (t*__ieee754_j0(x)/b);
|
249
|
+
}
|
250
|
+
}
|
251
|
+
if(sgn==1) return -b; else return b;
|
252
|
+
}
|
253
|
+
|
254
|
+
#ifdef __STDC__
|
255
|
+
double __ieee754_yn(int n, double x)
|
256
|
+
#else
|
257
|
+
double __ieee754_yn(n,x)
|
258
|
+
int n; double x;
|
259
|
+
#endif
|
260
|
+
{
|
261
|
+
fd_twoints u;
|
262
|
+
int i,hx,ix,lx;
|
263
|
+
int sign;
|
264
|
+
double a, b, temp;
|
265
|
+
|
266
|
+
u.d = x;
|
267
|
+
hx = __HI(u);
|
268
|
+
ix = 0x7fffffff&hx;
|
269
|
+
lx = __LO(u);
|
270
|
+
/* if Y(n,NaN) is NaN */
|
271
|
+
if((ix|((unsigned)(lx|-lx))>>31)>0x7ff00000) return x+x;
|
272
|
+
if((ix|lx)==0) return -one/zero;
|
273
|
+
if(hx<0) return zero/zero;
|
274
|
+
sign = 1;
|
275
|
+
if(n<0){
|
276
|
+
n = -n;
|
277
|
+
sign = 1 - ((n&1)<<1);
|
278
|
+
}
|
279
|
+
if(n==0) return(__ieee754_y0(x));
|
280
|
+
if(n==1) return(sign*__ieee754_y1(x));
|
281
|
+
if(ix==0x7ff00000) return zero;
|
282
|
+
if(ix>=0x52D00000) { /* x > 2**302 */
|
283
|
+
/* (x >> n**2)
|
284
|
+
* Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
285
|
+
* Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
286
|
+
* Let s=sin(x), c=cos(x),
|
287
|
+
* xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
288
|
+
*
|
289
|
+
* n sin(xn)*sqt2 cos(xn)*sqt2
|
290
|
+
* ----------------------------------
|
291
|
+
* 0 s-c c+s
|
292
|
+
* 1 -s-c -c+s
|
293
|
+
* 2 -s+c -c-s
|
294
|
+
* 3 s+c c-s
|
295
|
+
*/
|
296
|
+
switch(n&3) {
|
297
|
+
case 0: temp = fd_sin(x)-fd_cos(x); break;
|
298
|
+
case 1: temp = -fd_sin(x)-fd_cos(x); break;
|
299
|
+
case 2: temp = -fd_sin(x)+fd_cos(x); break;
|
300
|
+
case 3: temp = fd_sin(x)+fd_cos(x); break;
|
301
|
+
}
|
302
|
+
b = invsqrtpi*temp/fd_sqrt(x);
|
303
|
+
} else {
|
304
|
+
a = __ieee754_y0(x);
|
305
|
+
b = __ieee754_y1(x);
|
306
|
+
/* quit if b is -inf */
|
307
|
+
u.d = b;
|
308
|
+
for(i=1;i<n&&(__HI(u) != 0xfff00000);i++){
|
309
|
+
temp = b;
|
310
|
+
b = ((double)(i+i)/x)*b - a;
|
311
|
+
a = temp;
|
312
|
+
}
|
313
|
+
}
|
314
|
+
if(sign>0) return b; else return -b;
|
315
|
+
}
|
@@ -0,0 +1,71 @@
|
|
1
|
+
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
2
|
+
*
|
3
|
+
* ***** BEGIN LICENSE BLOCK *****
|
4
|
+
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
5
|
+
*
|
6
|
+
* The contents of this file are subject to the Mozilla Public License Version
|
7
|
+
* 1.1 (the "License"); you may not use this file except in compliance with
|
8
|
+
* the License. You may obtain a copy of the License at
|
9
|
+
* http://www.mozilla.org/MPL/
|
10
|
+
*
|
11
|
+
* Software distributed under the License is distributed on an "AS IS" basis,
|
12
|
+
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
13
|
+
* for the specific language governing rights and limitations under the
|
14
|
+
* License.
|
15
|
+
*
|
16
|
+
* The Original Code is Mozilla Communicator client code, released
|
17
|
+
* March 31, 1998.
|
18
|
+
*
|
19
|
+
* The Initial Developer of the Original Code is
|
20
|
+
* Sun Microsystems, Inc.
|
21
|
+
* Portions created by the Initial Developer are Copyright (C) 1998
|
22
|
+
* the Initial Developer. All Rights Reserved.
|
23
|
+
*
|
24
|
+
* Contributor(s):
|
25
|
+
*
|
26
|
+
* Alternatively, the contents of this file may be used under the terms of
|
27
|
+
* either of the GNU General Public License Version 2 or later (the "GPL"),
|
28
|
+
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
29
|
+
* in which case the provisions of the GPL or the LGPL are applicable instead
|
30
|
+
* of those above. If you wish to allow use of your version of this file only
|
31
|
+
* under the terms of either the GPL or the LGPL, and not to allow others to
|
32
|
+
* use your version of this file under the terms of the MPL, indicate your
|
33
|
+
* decision by deleting the provisions above and replace them with the notice
|
34
|
+
* and other provisions required by the GPL or the LGPL. If you do not delete
|
35
|
+
* the provisions above, a recipient may use your version of this file under
|
36
|
+
* the terms of any one of the MPL, the GPL or the LGPL.
|
37
|
+
*
|
38
|
+
* ***** END LICENSE BLOCK ***** */
|
39
|
+
|
40
|
+
/* @(#)e_lgamma.c 1.3 95/01/18 */
|
41
|
+
/*
|
42
|
+
* ====================================================
|
43
|
+
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
44
|
+
*
|
45
|
+
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
46
|
+
* Permission to use, copy, modify, and distribute this
|
47
|
+
* software is freely granted, provided that this notice
|
48
|
+
* is preserved.
|
49
|
+
* ====================================================
|
50
|
+
*
|
51
|
+
*/
|
52
|
+
|
53
|
+
/* __ieee754_lgamma(x)
|
54
|
+
* Return the logarithm of the Gamma function of x.
|
55
|
+
*
|
56
|
+
* Method: call __ieee754_lgamma_r
|
57
|
+
*/
|
58
|
+
|
59
|
+
#include "fdlibm.h"
|
60
|
+
|
61
|
+
extern int signgam;
|
62
|
+
|
63
|
+
#ifdef __STDC__
|
64
|
+
double __ieee754_lgamma(double x)
|
65
|
+
#else
|
66
|
+
double __ieee754_lgamma(x)
|
67
|
+
double x;
|
68
|
+
#endif
|
69
|
+
{
|
70
|
+
return __ieee754_lgamma_r(x,&signgam);
|
71
|
+
}
|
@@ -0,0 +1,347 @@
|
|
1
|
+
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
2
|
+
*
|
3
|
+
* ***** BEGIN LICENSE BLOCK *****
|
4
|
+
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
5
|
+
*
|
6
|
+
* The contents of this file are subject to the Mozilla Public License Version
|
7
|
+
* 1.1 (the "License"); you may not use this file except in compliance with
|
8
|
+
* the License. You may obtain a copy of the License at
|
9
|
+
* http://www.mozilla.org/MPL/
|
10
|
+
*
|
11
|
+
* Software distributed under the License is distributed on an "AS IS" basis,
|
12
|
+
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
13
|
+
* for the specific language governing rights and limitations under the
|
14
|
+
* License.
|
15
|
+
*
|
16
|
+
* The Original Code is Mozilla Communicator client code, released
|
17
|
+
* March 31, 1998.
|
18
|
+
*
|
19
|
+
* The Initial Developer of the Original Code is
|
20
|
+
* Sun Microsystems, Inc.
|
21
|
+
* Portions created by the Initial Developer are Copyright (C) 1998
|
22
|
+
* the Initial Developer. All Rights Reserved.
|
23
|
+
*
|
24
|
+
* Contributor(s):
|
25
|
+
*
|
26
|
+
* Alternatively, the contents of this file may be used under the terms of
|
27
|
+
* either of the GNU General Public License Version 2 or later (the "GPL"),
|
28
|
+
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
29
|
+
* in which case the provisions of the GPL or the LGPL are applicable instead
|
30
|
+
* of those above. If you wish to allow use of your version of this file only
|
31
|
+
* under the terms of either the GPL or the LGPL, and not to allow others to
|
32
|
+
* use your version of this file under the terms of the MPL, indicate your
|
33
|
+
* decision by deleting the provisions above and replace them with the notice
|
34
|
+
* and other provisions required by the GPL or the LGPL. If you do not delete
|
35
|
+
* the provisions above, a recipient may use your version of this file under
|
36
|
+
* the terms of any one of the MPL, the GPL or the LGPL.
|
37
|
+
*
|
38
|
+
* ***** END LICENSE BLOCK ***** */
|
39
|
+
|
40
|
+
/* @(#)e_lgamma_r.c 1.3 95/01/18 */
|
41
|
+
/*
|
42
|
+
* ====================================================
|
43
|
+
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
44
|
+
*
|
45
|
+
* Developed at SunSoft, a Sun Microsystems, Inc. business.
|
46
|
+
* Permission to use, copy, modify, and distribute this
|
47
|
+
* software is freely granted, provided that this notice
|
48
|
+
* is preserved.
|
49
|
+
* ====================================================
|
50
|
+
*
|
51
|
+
*/
|
52
|
+
|
53
|
+
/* __ieee754_lgamma_r(x, signgamp)
|
54
|
+
* Reentrant version of the logarithm of the Gamma function
|
55
|
+
* with user provide pointer for the sign of Gamma(x).
|
56
|
+
*
|
57
|
+
* Method:
|
58
|
+
* 1. Argument Reduction for 0 < x <= 8
|
59
|
+
* Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
|
60
|
+
* reduce x to a number in [1.5,2.5] by
|
61
|
+
* lgamma(1+s) = log(s) + lgamma(s)
|
62
|
+
* for example,
|
63
|
+
* lgamma(7.3) = log(6.3) + lgamma(6.3)
|
64
|
+
* = log(6.3*5.3) + lgamma(5.3)
|
65
|
+
* = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
|
66
|
+
* 2. Polynomial approximation of lgamma around its
|
67
|
+
* minimun ymin=1.461632144968362245 to maintain monotonicity.
|
68
|
+
* On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
|
69
|
+
* Let z = x-ymin;
|
70
|
+
* lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
|
71
|
+
* where
|
72
|
+
* poly(z) is a 14 degree polynomial.
|
73
|
+
* 2. Rational approximation in the primary interval [2,3]
|
74
|
+
* We use the following approximation:
|
75
|
+
* s = x-2.0;
|
76
|
+
* lgamma(x) = 0.5*s + s*P(s)/Q(s)
|
77
|
+
* with accuracy
|
78
|
+
* |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
|
79
|
+
* Our algorithms are based on the following observation
|
80
|
+
*
|
81
|
+
* zeta(2)-1 2 zeta(3)-1 3
|
82
|
+
* lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
|
83
|
+
* 2 3
|
84
|
+
*
|
85
|
+
* where Euler = 0.5771... is the Euler constant, which is very
|
86
|
+
* close to 0.5.
|
87
|
+
*
|
88
|
+
* 3. For x>=8, we have
|
89
|
+
* lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
|
90
|
+
* (better formula:
|
91
|
+
* lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
|
92
|
+
* Let z = 1/x, then we approximation
|
93
|
+
* f(z) = lgamma(x) - (x-0.5)(log(x)-1)
|
94
|
+
* by
|
95
|
+
* 3 5 11
|
96
|
+
* w = w0 + w1*z + w2*z + w3*z + ... + w6*z
|
97
|
+
* where
|
98
|
+
* |w - f(z)| < 2**-58.74
|
99
|
+
*
|
100
|
+
* 4. For negative x, since (G is gamma function)
|
101
|
+
* -x*G(-x)*G(x) = pi/sin(pi*x),
|
102
|
+
* we have
|
103
|
+
* G(x) = pi/(sin(pi*x)*(-x)*G(-x))
|
104
|
+
* since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
|
105
|
+
* Hence, for x<0, signgam = sign(sin(pi*x)) and
|
106
|
+
* lgamma(x) = log(|Gamma(x)|)
|
107
|
+
* = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
|
108
|
+
* Note: one should avoid compute pi*(-x) directly in the
|
109
|
+
* computation of sin(pi*(-x)).
|
110
|
+
*
|
111
|
+
* 5. Special Cases
|
112
|
+
* lgamma(2+s) ~ s*(1-Euler) for tiny s
|
113
|
+
* lgamma(1)=lgamma(2)=0
|
114
|
+
* lgamma(x) ~ -log(x) for tiny x
|
115
|
+
* lgamma(0) = lgamma(inf) = inf
|
116
|
+
* lgamma(-integer) = +-inf
|
117
|
+
*
|
118
|
+
*/
|
119
|
+
|
120
|
+
#include "fdlibm.h"
|
121
|
+
|
122
|
+
#ifdef __STDC__
|
123
|
+
static const double
|
124
|
+
#else
|
125
|
+
static double
|
126
|
+
#endif
|
127
|
+
two52= 4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
|
128
|
+
half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
|
129
|
+
one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
|
130
|
+
pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
|
131
|
+
a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */
|
132
|
+
a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */
|
133
|
+
a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */
|
134
|
+
a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */
|
135
|
+
a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */
|
136
|
+
a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */
|
137
|
+
a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */
|
138
|
+
a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */
|
139
|
+
a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */
|
140
|
+
a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */
|
141
|
+
a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */
|
142
|
+
a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */
|
143
|
+
tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */
|
144
|
+
tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */
|
145
|
+
/* tt = -(tail of tf) */
|
146
|
+
tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */
|
147
|
+
t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */
|
148
|
+
t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */
|
149
|
+
t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */
|
150
|
+
t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */
|
151
|
+
t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */
|
152
|
+
t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */
|
153
|
+
t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */
|
154
|
+
t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */
|
155
|
+
t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */
|
156
|
+
t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */
|
157
|
+
t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */
|
158
|
+
t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
|
159
|
+
t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */
|
160
|
+
t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
|
161
|
+
t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */
|
162
|
+
u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
|
163
|
+
u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */
|
164
|
+
u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */
|
165
|
+
u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */
|
166
|
+
u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */
|
167
|
+
u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */
|
168
|
+
v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */
|
169
|
+
v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */
|
170
|
+
v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */
|
171
|
+
v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */
|
172
|
+
v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */
|
173
|
+
s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
|
174
|
+
s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */
|
175
|
+
s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */
|
176
|
+
s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */
|
177
|
+
s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */
|
178
|
+
s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */
|
179
|
+
s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */
|
180
|
+
r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */
|
181
|
+
r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */
|
182
|
+
r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */
|
183
|
+
r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */
|
184
|
+
r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */
|
185
|
+
r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */
|
186
|
+
w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */
|
187
|
+
w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */
|
188
|
+
w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */
|
189
|
+
w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */
|
190
|
+
w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */
|
191
|
+
w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */
|
192
|
+
w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
|
193
|
+
|
194
|
+
static double zero= 0.00000000000000000000e+00;
|
195
|
+
|
196
|
+
#ifdef __STDC__
|
197
|
+
static double sin_pi(double x)
|
198
|
+
#else
|
199
|
+
static double sin_pi(x)
|
200
|
+
double x;
|
201
|
+
#endif
|
202
|
+
{
|
203
|
+
fd_twoints u;
|
204
|
+
double y,z;
|
205
|
+
int n,ix;
|
206
|
+
|
207
|
+
u.d = x;
|
208
|
+
ix = 0x7fffffff&__HI(u);
|
209
|
+
|
210
|
+
if(ix<0x3fd00000) return __kernel_sin(pi*x,zero,0);
|
211
|
+
y = -x; /* x is assume negative */
|
212
|
+
|
213
|
+
/*
|
214
|
+
* argument reduction, make sure inexact flag not raised if input
|
215
|
+
* is an integer
|
216
|
+
*/
|
217
|
+
z = fd_floor(y);
|
218
|
+
if(z!=y) { /* inexact anyway */
|
219
|
+
y *= 0.5;
|
220
|
+
y = 2.0*(y - fd_floor(y)); /* y = |x| mod 2.0 */
|
221
|
+
n = (int) (y*4.0);
|
222
|
+
} else {
|
223
|
+
if(ix>=0x43400000) {
|
224
|
+
y = zero; n = 0; /* y must be even */
|
225
|
+
} else {
|
226
|
+
if(ix<0x43300000) z = y+two52; /* exact */
|
227
|
+
u.d = z;
|
228
|
+
n = __LO(u)&1; /* lower word of z */
|
229
|
+
y = n;
|
230
|
+
n<<= 2;
|
231
|
+
}
|
232
|
+
}
|
233
|
+
switch (n) {
|
234
|
+
case 0: y = __kernel_sin(pi*y,zero,0); break;
|
235
|
+
case 1:
|
236
|
+
case 2: y = __kernel_cos(pi*(0.5-y),zero); break;
|
237
|
+
case 3:
|
238
|
+
case 4: y = __kernel_sin(pi*(one-y),zero,0); break;
|
239
|
+
case 5:
|
240
|
+
case 6: y = -__kernel_cos(pi*(y-1.5),zero); break;
|
241
|
+
default: y = __kernel_sin(pi*(y-2.0),zero,0); break;
|
242
|
+
}
|
243
|
+
return -y;
|
244
|
+
}
|
245
|
+
|
246
|
+
|
247
|
+
#ifdef __STDC__
|
248
|
+
double __ieee754_lgamma_r(double x, int *signgamp)
|
249
|
+
#else
|
250
|
+
double __ieee754_lgamma_r(x,signgamp)
|
251
|
+
double x; int *signgamp;
|
252
|
+
#endif
|
253
|
+
{
|
254
|
+
fd_twoints u;
|
255
|
+
double t,y,z,nadj,p,p1,p2,p3,q,r,w;
|
256
|
+
int i,hx,lx,ix;
|
257
|
+
|
258
|
+
u.d = x;
|
259
|
+
hx = __HI(u);
|
260
|
+
lx = __LO(u);
|
261
|
+
|
262
|
+
/* purge off +-inf, NaN, +-0, and negative arguments */
|
263
|
+
*signgamp = 1;
|
264
|
+
ix = hx&0x7fffffff;
|
265
|
+
if(ix>=0x7ff00000) return x*x;
|
266
|
+
if((ix|lx)==0) return one/zero;
|
267
|
+
if(ix<0x3b900000) { /* |x|<2**-70, return -log(|x|) */
|
268
|
+
if(hx<0) {
|
269
|
+
*signgamp = -1;
|
270
|
+
return -__ieee754_log(-x);
|
271
|
+
} else return -__ieee754_log(x);
|
272
|
+
}
|
273
|
+
if(hx<0) {
|
274
|
+
if(ix>=0x43300000) /* |x|>=2**52, must be -integer */
|
275
|
+
return one/zero;
|
276
|
+
t = sin_pi(x);
|
277
|
+
if(t==zero) return one/zero; /* -integer */
|
278
|
+
nadj = __ieee754_log(pi/fd_fabs(t*x));
|
279
|
+
if(t<zero) *signgamp = -1;
|
280
|
+
x = -x;
|
281
|
+
}
|
282
|
+
|
283
|
+
/* purge off 1 and 2 */
|
284
|
+
if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0;
|
285
|
+
/* for x < 2.0 */
|
286
|
+
else if(ix<0x40000000) {
|
287
|
+
if(ix<=0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */
|
288
|
+
r = -__ieee754_log(x);
|
289
|
+
if(ix>=0x3FE76944) {y = one-x; i= 0;}
|
290
|
+
else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;}
|
291
|
+
else {y = x; i=2;}
|
292
|
+
} else {
|
293
|
+
r = zero;
|
294
|
+
if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */
|
295
|
+
else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */
|
296
|
+
else {y=x-one;i=2;}
|
297
|
+
}
|
298
|
+
switch(i) {
|
299
|
+
case 0:
|
300
|
+
z = y*y;
|
301
|
+
p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
|
302
|
+
p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
|
303
|
+
p = y*p1+p2;
|
304
|
+
r += (p-0.5*y); break;
|
305
|
+
case 1:
|
306
|
+
z = y*y;
|
307
|
+
w = z*y;
|
308
|
+
p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */
|
309
|
+
p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
|
310
|
+
p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
|
311
|
+
p = z*p1-(tt-w*(p2+y*p3));
|
312
|
+
r += (tf + p); break;
|
313
|
+
case 2:
|
314
|
+
p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
|
315
|
+
p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
|
316
|
+
r += (-0.5*y + p1/p2);
|
317
|
+
}
|
318
|
+
}
|
319
|
+
else if(ix<0x40200000) { /* x < 8.0 */
|
320
|
+
i = (int)x;
|
321
|
+
t = zero;
|
322
|
+
y = x-(double)i;
|
323
|
+
p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
|
324
|
+
q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
|
325
|
+
r = half*y+p/q;
|
326
|
+
z = one; /* lgamma(1+s) = log(s) + lgamma(s) */
|
327
|
+
switch(i) {
|
328
|
+
case 7: z *= (y+6.0); /* FALLTHRU */
|
329
|
+
case 6: z *= (y+5.0); /* FALLTHRU */
|
330
|
+
case 5: z *= (y+4.0); /* FALLTHRU */
|
331
|
+
case 4: z *= (y+3.0); /* FALLTHRU */
|
332
|
+
case 3: z *= (y+2.0); /* FALLTHRU */
|
333
|
+
r += __ieee754_log(z); break;
|
334
|
+
}
|
335
|
+
/* 8.0 <= x < 2**58 */
|
336
|
+
} else if (ix < 0x43900000) {
|
337
|
+
t = __ieee754_log(x);
|
338
|
+
z = one/x;
|
339
|
+
y = z*z;
|
340
|
+
w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
|
341
|
+
r = (x-half)*(t-one)+w;
|
342
|
+
} else
|
343
|
+
/* 2**58 <= x <= inf */
|
344
|
+
r = x*(__ieee754_log(x)-one);
|
345
|
+
if(hx<0) r = nadj - r;
|
346
|
+
return r;
|
347
|
+
}
|