imagecore 0.0.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/.gitignore +24 -0
- data/Gemfile +4 -0
- data/Rakefile +2 -0
- data/ext/imagecore/analyze_image.cxx +58 -0
- data/ext/imagecore/analyze_image.h +6 -0
- data/ext/imagecore/extconf.rb +9 -0
- data/ext/imagecore/imagecore.cxx +34 -0
- data/ext/opencv/core/___.c +3 -0
- data/ext/opencv/core/alloc.cpp +697 -0
- data/ext/opencv/core/array.cpp +3206 -0
- data/ext/opencv/core/datastructs.cpp +4064 -0
- data/ext/opencv/core/extconf.rb +22 -0
- data/ext/opencv/core/matrix.cpp +3777 -0
- data/ext/opencv/core/precomp.hpp +216 -0
- data/ext/opencv/core/system.cpp +832 -0
- data/ext/opencv/core/tables.cpp +3512 -0
- data/ext/opencv/highgui/___.c +3 -0
- data/ext/opencv/highgui/bitstrm.cpp +582 -0
- data/ext/opencv/highgui/bitstrm.hpp +182 -0
- data/ext/opencv/highgui/extconf.rb +28 -0
- data/ext/opencv/highgui/grfmt_base.cpp +128 -0
- data/ext/opencv/highgui/grfmt_base.hpp +113 -0
- data/ext/opencv/highgui/grfmt_bmp.cpp +564 -0
- data/ext/opencv/highgui/grfmt_bmp.hpp +99 -0
- data/ext/opencv/highgui/grfmt_exr.hpp +113 -0
- data/ext/opencv/highgui/grfmt_imageio.hpp +56 -0
- data/ext/opencv/highgui/grfmt_jpeg.cpp +622 -0
- data/ext/opencv/highgui/grfmt_jpeg.hpp +90 -0
- data/ext/opencv/highgui/grfmt_jpeg2000.cpp +529 -0
- data/ext/opencv/highgui/grfmt_jpeg2000.hpp +95 -0
- data/ext/opencv/highgui/grfmt_png.cpp +406 -0
- data/ext/opencv/highgui/grfmt_png.hpp +101 -0
- data/ext/opencv/highgui/grfmt_pxm.cpp +513 -0
- data/ext/opencv/highgui/grfmt_pxm.hpp +92 -0
- data/ext/opencv/highgui/grfmt_sunras.cpp +425 -0
- data/ext/opencv/highgui/grfmt_sunras.hpp +105 -0
- data/ext/opencv/highgui/grfmt_tiff.cpp +718 -0
- data/ext/opencv/highgui/grfmt_tiff.hpp +136 -0
- data/ext/opencv/highgui/grfmts.hpp +56 -0
- data/ext/opencv/highgui/loadsave.cpp +535 -0
- data/ext/opencv/highgui/precomp.hpp +223 -0
- data/ext/opencv/highgui/utils.cpp +689 -0
- data/ext/opencv/highgui/utils.hpp +128 -0
- data/ext/opencv/imgproc/___.c +3 -0
- data/ext/opencv/imgproc/_geom.h +72 -0
- data/ext/opencv/imgproc/color.cpp +3179 -0
- data/ext/opencv/imgproc/contours.cpp +1780 -0
- data/ext/opencv/imgproc/extconf.rb +11 -0
- data/ext/opencv/imgproc/filter.cpp +3063 -0
- data/ext/opencv/imgproc/precomp.hpp +159 -0
- data/ext/opencv/imgproc/shapedescr.cpp +1306 -0
- data/ext/opencv/imgproc/smooth.cpp +1566 -0
- data/ext/opencv/imgproc/tables.cpp +214 -0
- data/ext/opencv/imgproc/thresh.cpp +636 -0
- data/ext/opencv/imgproc/utils.cpp +242 -0
- data/ext/opencv/include/opencv2/core/core.hpp +4344 -0
- data/ext/opencv/include/opencv2/core/core_c.h +1885 -0
- data/ext/opencv/include/opencv2/core/internal.hpp +710 -0
- data/ext/opencv/include/opencv2/core/mat.hpp +2557 -0
- data/ext/opencv/include/opencv2/core/operations.hpp +3623 -0
- data/ext/opencv/include/opencv2/core/types_c.h +1875 -0
- data/ext/opencv/include/opencv2/core/version.hpp +58 -0
- data/ext/opencv/include/opencv2/highgui/highgui.hpp +198 -0
- data/ext/opencv/include/opencv2/highgui/highgui_c.h +506 -0
- data/ext/opencv/include/opencv2/imgproc/imgproc.hpp +1139 -0
- data/ext/opencv/include/opencv2/imgproc/imgproc_c.h +783 -0
- data/ext/opencv/include/opencv2/imgproc/types_c.h +538 -0
- data/imagecore.gemspec +20 -0
- data/lib/imagecore.rb +16 -0
- data/lib/imagecore/version.rb +3 -0
- metadata +119 -0
|
@@ -0,0 +1,22 @@
|
|
|
1
|
+
require 'mkmf'
|
|
2
|
+
|
|
3
|
+
# not valid for C++ code
|
|
4
|
+
$warnflags = ($warnflags.split - %w(-Wdeclaration-after-statement -Wimplicit-function-declaration)) * ' '
|
|
5
|
+
|
|
6
|
+
# OpenCV includes
|
|
7
|
+
$INCFLAGS << ' -I ../include'
|
|
8
|
+
|
|
9
|
+
# Find stuff
|
|
10
|
+
#if have_library('jpeg')
|
|
11
|
+
#$defs.push '-DHAVE_JPEG'
|
|
12
|
+
#end
|
|
13
|
+
|
|
14
|
+
#if have_library('tiff')
|
|
15
|
+
#$defs.push '-DHAVE_TIFF'
|
|
16
|
+
#end
|
|
17
|
+
|
|
18
|
+
# Sources
|
|
19
|
+
|
|
20
|
+
#dir_config("imagecore")
|
|
21
|
+
create_header('cvconfig.h')
|
|
22
|
+
create_makefile("opencv_core")
|
|
@@ -0,0 +1,3777 @@
|
|
|
1
|
+
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
2
|
+
//
|
|
3
|
+
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
4
|
+
//
|
|
5
|
+
// By downloading, copying, installing or using the software you agree to this license.
|
|
6
|
+
// If you do not agree to this license, do not download, install,
|
|
7
|
+
// copy or use the software.
|
|
8
|
+
//
|
|
9
|
+
//
|
|
10
|
+
// License Agreement
|
|
11
|
+
// For Open Source Computer Vision Library
|
|
12
|
+
//
|
|
13
|
+
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
14
|
+
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
15
|
+
// Third party copyrights are property of their respective owners.
|
|
16
|
+
//
|
|
17
|
+
// Redistribution and use in source and binary forms, with or without modification,
|
|
18
|
+
// are permitted provided that the following conditions are met:
|
|
19
|
+
//
|
|
20
|
+
// * Redistribution's of source code must retain the above copyright notice,
|
|
21
|
+
// this list of conditions and the following disclaimer.
|
|
22
|
+
//
|
|
23
|
+
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
24
|
+
// this list of conditions and the following disclaimer in the documentation
|
|
25
|
+
// and/or other materials provided with the distribution.
|
|
26
|
+
//
|
|
27
|
+
// * The name of the copyright holders may not be used to endorse or promote products
|
|
28
|
+
// derived from this software without specific prior written permission.
|
|
29
|
+
//
|
|
30
|
+
// This software is provided by the copyright holders and contributors "as is" and
|
|
31
|
+
// any express or implied warranties, including, but not limited to, the implied
|
|
32
|
+
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
33
|
+
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
34
|
+
// indirect, incidental, special, exemplary, or consequential damages
|
|
35
|
+
// (including, but not limited to, procurement of substitute goods or services;
|
|
36
|
+
// loss of use, data, or profits; or business interruption) however caused
|
|
37
|
+
// and on any theory of liability, whether in contract, strict liability,
|
|
38
|
+
// or tort (including negligence or otherwise) arising in any way out of
|
|
39
|
+
// the use of this software, even if advised of the possibility of such damage.
|
|
40
|
+
//
|
|
41
|
+
//M*/
|
|
42
|
+
|
|
43
|
+
#include "precomp.hpp"
|
|
44
|
+
|
|
45
|
+
/****************************************************************************************\
|
|
46
|
+
* [scaled] Identity matrix initialization *
|
|
47
|
+
\****************************************************************************************/
|
|
48
|
+
|
|
49
|
+
namespace cv {
|
|
50
|
+
|
|
51
|
+
void swap( Mat& a, Mat& b )
|
|
52
|
+
{
|
|
53
|
+
std::swap(a.flags, b.flags);
|
|
54
|
+
std::swap(a.dims, b.dims);
|
|
55
|
+
std::swap(a.rows, b.rows);
|
|
56
|
+
std::swap(a.cols, b.cols);
|
|
57
|
+
std::swap(a.data, b.data);
|
|
58
|
+
std::swap(a.refcount, b.refcount);
|
|
59
|
+
std::swap(a.datastart, b.datastart);
|
|
60
|
+
std::swap(a.dataend, b.dataend);
|
|
61
|
+
std::swap(a.datalimit, b.datalimit);
|
|
62
|
+
std::swap(a.allocator, b.allocator);
|
|
63
|
+
|
|
64
|
+
std::swap(a.size.p, b.size.p);
|
|
65
|
+
std::swap(a.step.p, b.step.p);
|
|
66
|
+
std::swap(a.step.buf[0], b.step.buf[0]);
|
|
67
|
+
std::swap(a.step.buf[1], b.step.buf[1]);
|
|
68
|
+
|
|
69
|
+
if( a.step.p == b.step.buf )
|
|
70
|
+
{
|
|
71
|
+
a.step.p = a.step.buf;
|
|
72
|
+
a.size.p = &a.rows;
|
|
73
|
+
}
|
|
74
|
+
|
|
75
|
+
if( b.step.p == a.step.buf )
|
|
76
|
+
{
|
|
77
|
+
b.step.p = b.step.buf;
|
|
78
|
+
b.size.p = &b.rows;
|
|
79
|
+
}
|
|
80
|
+
}
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
static inline void setSize( Mat& m, int _dims, const int* _sz,
|
|
84
|
+
const size_t* _steps, bool autoSteps=false )
|
|
85
|
+
{
|
|
86
|
+
CV_Assert( 0 <= _dims && _dims <= CV_MAX_DIM );
|
|
87
|
+
if( m.dims != _dims )
|
|
88
|
+
{
|
|
89
|
+
if( m.step.p != m.step.buf )
|
|
90
|
+
{
|
|
91
|
+
fastFree(m.step.p);
|
|
92
|
+
m.step.p = m.step.buf;
|
|
93
|
+
m.size.p = &m.rows;
|
|
94
|
+
}
|
|
95
|
+
if( _dims > 2 )
|
|
96
|
+
{
|
|
97
|
+
m.step.p = (size_t*)fastMalloc(_dims*sizeof(m.step.p[0]) + (_dims+1)*sizeof(m.size.p[0]));
|
|
98
|
+
m.size.p = (int*)(m.step.p + _dims) + 1;
|
|
99
|
+
m.size.p[-1] = _dims;
|
|
100
|
+
m.rows = m.cols = -1;
|
|
101
|
+
}
|
|
102
|
+
}
|
|
103
|
+
|
|
104
|
+
m.dims = _dims;
|
|
105
|
+
if( !_sz )
|
|
106
|
+
return;
|
|
107
|
+
|
|
108
|
+
size_t esz = CV_ELEM_SIZE(m.flags), total = esz;
|
|
109
|
+
int i;
|
|
110
|
+
for( i = _dims-1; i >= 0; i-- )
|
|
111
|
+
{
|
|
112
|
+
int s = _sz[i];
|
|
113
|
+
CV_Assert( s >= 0 );
|
|
114
|
+
m.size.p[i] = s;
|
|
115
|
+
|
|
116
|
+
if( _steps )
|
|
117
|
+
m.step.p[i] = i < _dims-1 ? _steps[i] : esz;
|
|
118
|
+
else if( autoSteps )
|
|
119
|
+
{
|
|
120
|
+
m.step.p[i] = total;
|
|
121
|
+
int64 total1 = (int64)total*s;
|
|
122
|
+
if( (uint64)total1 != (size_t)total1 )
|
|
123
|
+
CV_Error( CV_StsOutOfRange, "The total matrix size does not fit to \"size_t\" type" );
|
|
124
|
+
total = (size_t)total1;
|
|
125
|
+
}
|
|
126
|
+
}
|
|
127
|
+
|
|
128
|
+
if( _dims == 1 )
|
|
129
|
+
{
|
|
130
|
+
m.dims = 2;
|
|
131
|
+
m.cols = 1;
|
|
132
|
+
m.step[1] = esz;
|
|
133
|
+
}
|
|
134
|
+
}
|
|
135
|
+
|
|
136
|
+
static void updateContinuityFlag(Mat& m)
|
|
137
|
+
{
|
|
138
|
+
int i, j;
|
|
139
|
+
for( i = 0; i < m.dims; i++ )
|
|
140
|
+
{
|
|
141
|
+
if( m.size[i] > 1 )
|
|
142
|
+
break;
|
|
143
|
+
}
|
|
144
|
+
|
|
145
|
+
for( j = m.dims-1; j > i; j-- )
|
|
146
|
+
{
|
|
147
|
+
if( m.step[j]*m.size[j] < m.step[j-1] )
|
|
148
|
+
break;
|
|
149
|
+
}
|
|
150
|
+
|
|
151
|
+
int64 t = (int64)m.step[0]*m.size[0];
|
|
152
|
+
if( j <= i && t == (int)t )
|
|
153
|
+
m.flags |= Mat::CONTINUOUS_FLAG;
|
|
154
|
+
else
|
|
155
|
+
m.flags &= ~Mat::CONTINUOUS_FLAG;
|
|
156
|
+
}
|
|
157
|
+
|
|
158
|
+
static void finalizeHdr(Mat& m)
|
|
159
|
+
{
|
|
160
|
+
updateContinuityFlag(m);
|
|
161
|
+
int d = m.dims;
|
|
162
|
+
if( d > 2 )
|
|
163
|
+
m.rows = m.cols = -1;
|
|
164
|
+
if( m.data )
|
|
165
|
+
{
|
|
166
|
+
m.datalimit = m.datastart + m.size[0]*m.step[0];
|
|
167
|
+
if( m.size[0] > 0 )
|
|
168
|
+
{
|
|
169
|
+
m.dataend = m.data + m.size[d-1]*m.step[d-1];
|
|
170
|
+
for( int i = 0; i < d-1; i++ )
|
|
171
|
+
m.dataend += (m.size[i] - 1)*m.step[i];
|
|
172
|
+
}
|
|
173
|
+
else
|
|
174
|
+
m.dataend = m.datalimit;
|
|
175
|
+
}
|
|
176
|
+
else
|
|
177
|
+
m.dataend = m.datalimit = 0;
|
|
178
|
+
}
|
|
179
|
+
|
|
180
|
+
|
|
181
|
+
void Mat::create(int d, const int* _sizes, int _type)
|
|
182
|
+
{
|
|
183
|
+
int i;
|
|
184
|
+
CV_Assert(0 <= d && _sizes && d <= CV_MAX_DIM && _sizes);
|
|
185
|
+
_type = CV_MAT_TYPE(_type);
|
|
186
|
+
|
|
187
|
+
if( data && (d == dims || (d == 1 && dims <= 2)) && _type == type() )
|
|
188
|
+
{
|
|
189
|
+
if( d == 2 && rows == _sizes[0] && cols == _sizes[1] )
|
|
190
|
+
return;
|
|
191
|
+
for( i = 0; i < d; i++ )
|
|
192
|
+
if( size[i] != _sizes[i] )
|
|
193
|
+
break;
|
|
194
|
+
if( i == d && (d > 1 || size[1] == 1))
|
|
195
|
+
return;
|
|
196
|
+
}
|
|
197
|
+
|
|
198
|
+
release();
|
|
199
|
+
if( d == 0 )
|
|
200
|
+
return;
|
|
201
|
+
flags = (_type & CV_MAT_TYPE_MASK) | MAGIC_VAL;
|
|
202
|
+
setSize(*this, d, _sizes, 0, allocator == 0);
|
|
203
|
+
|
|
204
|
+
if( total() > 0 )
|
|
205
|
+
{
|
|
206
|
+
if( !allocator )
|
|
207
|
+
{
|
|
208
|
+
size_t total = alignSize(step.p[0]*size.p[0], (int)sizeof(*refcount));
|
|
209
|
+
data = datastart = (uchar*)fastMalloc(total + (int)sizeof(*refcount));
|
|
210
|
+
refcount = (int*)(data + total);
|
|
211
|
+
*refcount = 1;
|
|
212
|
+
}
|
|
213
|
+
else
|
|
214
|
+
{
|
|
215
|
+
allocator->allocate(dims, size, _type, refcount, datastart, data, step.p);
|
|
216
|
+
CV_Assert( step[dims-1] == (size_t)CV_ELEM_SIZE(flags) );
|
|
217
|
+
}
|
|
218
|
+
}
|
|
219
|
+
|
|
220
|
+
finalizeHdr(*this);
|
|
221
|
+
}
|
|
222
|
+
|
|
223
|
+
void Mat::copySize(const Mat& m)
|
|
224
|
+
{
|
|
225
|
+
setSize(*this, m.dims, 0, 0);
|
|
226
|
+
for( int i = 0; i < dims; i++ )
|
|
227
|
+
{
|
|
228
|
+
size[i] = m.size[i];
|
|
229
|
+
step[i] = m.step[i];
|
|
230
|
+
}
|
|
231
|
+
}
|
|
232
|
+
|
|
233
|
+
void Mat::deallocate()
|
|
234
|
+
{
|
|
235
|
+
if( allocator )
|
|
236
|
+
allocator->deallocate(refcount, datastart, data);
|
|
237
|
+
else
|
|
238
|
+
{
|
|
239
|
+
CV_DbgAssert(refcount != 0);
|
|
240
|
+
fastFree(datastart);
|
|
241
|
+
}
|
|
242
|
+
}
|
|
243
|
+
|
|
244
|
+
|
|
245
|
+
Mat::Mat(const Mat& m, const Range& rowRange, const Range& colRange)
|
|
246
|
+
: flags(0), dims(0), rows(0), cols(0), data(0), refcount(0),
|
|
247
|
+
datastart(0), dataend(0), datalimit(0), allocator(0), size(&rows)
|
|
248
|
+
{
|
|
249
|
+
CV_Assert( m.dims >= 2 );
|
|
250
|
+
if( m.dims > 2 )
|
|
251
|
+
{
|
|
252
|
+
AutoBuffer<Range> rs(m.dims);
|
|
253
|
+
rs[0] = rowRange;
|
|
254
|
+
rs[1] = colRange;
|
|
255
|
+
for( int i = 2; i < m.dims; i++ )
|
|
256
|
+
rs[i] = Range::all();
|
|
257
|
+
*this = m(rs);
|
|
258
|
+
return;
|
|
259
|
+
}
|
|
260
|
+
|
|
261
|
+
*this = m;
|
|
262
|
+
if( rowRange != Range::all() && rowRange != Range(0,rows) )
|
|
263
|
+
{
|
|
264
|
+
CV_Assert( 0 <= rowRange.start && rowRange.start <= rowRange.end && rowRange.end <= m.rows );
|
|
265
|
+
rows = rowRange.size();
|
|
266
|
+
data += step*rowRange.start;
|
|
267
|
+
flags |= SUBMATRIX_FLAG;
|
|
268
|
+
}
|
|
269
|
+
|
|
270
|
+
if( colRange != Range::all() && colRange != Range(0,cols) )
|
|
271
|
+
{
|
|
272
|
+
CV_Assert( 0 <= colRange.start && colRange.start <= colRange.end && colRange.end <= m.cols );
|
|
273
|
+
cols = colRange.size();
|
|
274
|
+
data += colRange.start*elemSize();
|
|
275
|
+
flags &= cols < m.cols ? ~CONTINUOUS_FLAG : -1;
|
|
276
|
+
flags |= SUBMATRIX_FLAG;
|
|
277
|
+
}
|
|
278
|
+
|
|
279
|
+
if( rows == 1 )
|
|
280
|
+
flags |= CONTINUOUS_FLAG;
|
|
281
|
+
|
|
282
|
+
if( rows <= 0 || cols <= 0 )
|
|
283
|
+
{
|
|
284
|
+
release();
|
|
285
|
+
rows = cols = 0;
|
|
286
|
+
}
|
|
287
|
+
}
|
|
288
|
+
|
|
289
|
+
|
|
290
|
+
Mat::Mat(const Mat& m, const Rect& roi)
|
|
291
|
+
: flags(m.flags), dims(2), rows(roi.height), cols(roi.width),
|
|
292
|
+
data(m.data + roi.y*m.step[0]), refcount(m.refcount),
|
|
293
|
+
datastart(m.datastart), dataend(m.dataend), datalimit(m.datalimit),
|
|
294
|
+
allocator(m.allocator), size(&rows)
|
|
295
|
+
{
|
|
296
|
+
CV_Assert( m.dims <= 2 );
|
|
297
|
+
flags &= roi.width < m.cols ? ~CONTINUOUS_FLAG : -1;
|
|
298
|
+
flags |= roi.height == 1 ? CONTINUOUS_FLAG : 0;
|
|
299
|
+
|
|
300
|
+
size_t esz = CV_ELEM_SIZE(flags);
|
|
301
|
+
data += roi.x*esz;
|
|
302
|
+
CV_Assert( 0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols &&
|
|
303
|
+
0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows );
|
|
304
|
+
if( refcount )
|
|
305
|
+
CV_XADD(refcount, 1);
|
|
306
|
+
if( roi.width < m.cols || roi.height < m.rows )
|
|
307
|
+
flags |= SUBMATRIX_FLAG;
|
|
308
|
+
|
|
309
|
+
step[0] = m.step[0]; step[1] = esz;
|
|
310
|
+
|
|
311
|
+
if( rows <= 0 || cols <= 0 )
|
|
312
|
+
{
|
|
313
|
+
release();
|
|
314
|
+
rows = cols = 0;
|
|
315
|
+
}
|
|
316
|
+
}
|
|
317
|
+
|
|
318
|
+
|
|
319
|
+
Mat::Mat(int _dims, const int* _sizes, int _type, void* _data, const size_t* _steps)
|
|
320
|
+
: flags(MAGIC_VAL|CV_MAT_TYPE(_type)), dims(0),
|
|
321
|
+
rows(0), cols(0), data((uchar*)_data), refcount(0),
|
|
322
|
+
datastart((uchar*)_data), dataend((uchar*)_data), datalimit((uchar*)_data),
|
|
323
|
+
allocator(0), size(&rows)
|
|
324
|
+
{
|
|
325
|
+
setSize(*this, _dims, _sizes, _steps, true);
|
|
326
|
+
finalizeHdr(*this);
|
|
327
|
+
}
|
|
328
|
+
|
|
329
|
+
|
|
330
|
+
Mat::Mat(const Mat& m, const Range* ranges)
|
|
331
|
+
: flags(m.flags), dims(0), rows(0), cols(0), data(0), refcount(0),
|
|
332
|
+
datastart(0), dataend(0), datalimit(0), allocator(0), size(&rows)
|
|
333
|
+
{
|
|
334
|
+
int i, d = m.dims;
|
|
335
|
+
|
|
336
|
+
CV_Assert(ranges);
|
|
337
|
+
for( i = 0; i < d; i++ )
|
|
338
|
+
{
|
|
339
|
+
Range r = ranges[i];
|
|
340
|
+
CV_Assert( r == Range::all() || (0 <= r.start && r.start < r.end && r.end <= m.size[i]) );
|
|
341
|
+
}
|
|
342
|
+
*this = m;
|
|
343
|
+
for( i = 0; i < d; i++ )
|
|
344
|
+
{
|
|
345
|
+
Range r = ranges[i];
|
|
346
|
+
if( r != Range::all() && r != Range(0, size.p[i]))
|
|
347
|
+
{
|
|
348
|
+
size.p[i] = r.end - r.start;
|
|
349
|
+
data += r.start*step.p[i];
|
|
350
|
+
flags |= SUBMATRIX_FLAG;
|
|
351
|
+
}
|
|
352
|
+
}
|
|
353
|
+
updateContinuityFlag(*this);
|
|
354
|
+
}
|
|
355
|
+
|
|
356
|
+
|
|
357
|
+
Mat::Mat(const CvMatND* m, bool copyData)
|
|
358
|
+
: flags(MAGIC_VAL|CV_MAT_TYPE(m->type)), dims(0), rows(0), cols(0),
|
|
359
|
+
data((uchar*)m->data.ptr), refcount(0),
|
|
360
|
+
datastart((uchar*)m->data.ptr), allocator(0),
|
|
361
|
+
size(&rows)
|
|
362
|
+
{
|
|
363
|
+
int _sizes[CV_MAX_DIM];
|
|
364
|
+
size_t _steps[CV_MAX_DIM];
|
|
365
|
+
|
|
366
|
+
int i, d = m->dims;
|
|
367
|
+
for( i = 0; i < d; i++ )
|
|
368
|
+
{
|
|
369
|
+
_sizes[i] = m->dim[i].size;
|
|
370
|
+
_steps[i] = m->dim[i].step;
|
|
371
|
+
}
|
|
372
|
+
|
|
373
|
+
setSize(*this, d, _sizes, _steps);
|
|
374
|
+
finalizeHdr(*this);
|
|
375
|
+
|
|
376
|
+
if( copyData )
|
|
377
|
+
{
|
|
378
|
+
Mat temp(*this);
|
|
379
|
+
temp.copyTo(*this);
|
|
380
|
+
}
|
|
381
|
+
}
|
|
382
|
+
|
|
383
|
+
|
|
384
|
+
Mat Mat::diag(int d) const
|
|
385
|
+
{
|
|
386
|
+
CV_Assert( dims <= 2 );
|
|
387
|
+
Mat m = *this;
|
|
388
|
+
size_t esz = elemSize();
|
|
389
|
+
int len;
|
|
390
|
+
|
|
391
|
+
if( d >= 0 )
|
|
392
|
+
{
|
|
393
|
+
len = std::min(cols - d, rows);
|
|
394
|
+
m.data += esz*d;
|
|
395
|
+
}
|
|
396
|
+
else
|
|
397
|
+
{
|
|
398
|
+
len = std::min(rows + d, cols);
|
|
399
|
+
m.data -= step[0]*d;
|
|
400
|
+
}
|
|
401
|
+
CV_DbgAssert( len > 0 );
|
|
402
|
+
|
|
403
|
+
m.size[0] = m.rows = len;
|
|
404
|
+
m.size[1] = m.cols = 1;
|
|
405
|
+
m.step[0] += (len > 1 ? esz : 0);
|
|
406
|
+
|
|
407
|
+
if( m.rows > 1 )
|
|
408
|
+
m.flags &= ~CONTINUOUS_FLAG;
|
|
409
|
+
else
|
|
410
|
+
m.flags |= CONTINUOUS_FLAG;
|
|
411
|
+
|
|
412
|
+
if( size() != Size(1,1) )
|
|
413
|
+
m.flags |= SUBMATRIX_FLAG;
|
|
414
|
+
|
|
415
|
+
return m;
|
|
416
|
+
}
|
|
417
|
+
|
|
418
|
+
|
|
419
|
+
Mat::Mat(const IplImage* img, bool copyData)
|
|
420
|
+
: flags(MAGIC_VAL), dims(2), rows(0), cols(0),
|
|
421
|
+
data(0), refcount(0), datastart(0), dataend(0), allocator(0), size(&rows)
|
|
422
|
+
{
|
|
423
|
+
CV_DbgAssert(CV_IS_IMAGE(img) && img->imageData != 0);
|
|
424
|
+
|
|
425
|
+
int depth = IPL2CV_DEPTH(img->depth);
|
|
426
|
+
size_t esz;
|
|
427
|
+
step[0] = img->widthStep;
|
|
428
|
+
|
|
429
|
+
if(!img->roi)
|
|
430
|
+
{
|
|
431
|
+
CV_Assert(img->dataOrder == IPL_DATA_ORDER_PIXEL);
|
|
432
|
+
flags = MAGIC_VAL + CV_MAKETYPE(depth, img->nChannels);
|
|
433
|
+
rows = img->height; cols = img->width;
|
|
434
|
+
datastart = data = (uchar*)img->imageData;
|
|
435
|
+
esz = CV_ELEM_SIZE(flags);
|
|
436
|
+
}
|
|
437
|
+
else
|
|
438
|
+
{
|
|
439
|
+
CV_Assert(img->dataOrder == IPL_DATA_ORDER_PIXEL || img->roi->coi != 0);
|
|
440
|
+
bool selectedPlane = img->roi->coi && img->dataOrder == IPL_DATA_ORDER_PLANE;
|
|
441
|
+
flags = MAGIC_VAL + CV_MAKETYPE(depth, selectedPlane ? 1 : img->nChannels);
|
|
442
|
+
rows = img->roi->height; cols = img->roi->width;
|
|
443
|
+
esz = CV_ELEM_SIZE(flags);
|
|
444
|
+
data = datastart = (uchar*)img->imageData +
|
|
445
|
+
(selectedPlane ? (img->roi->coi - 1)*step*img->height : 0) +
|
|
446
|
+
img->roi->yOffset*step[0] + img->roi->xOffset*esz;
|
|
447
|
+
}
|
|
448
|
+
datalimit = datastart + step.p[0]*rows;
|
|
449
|
+
dataend = datastart + step.p[0]*(rows-1) + esz*cols;
|
|
450
|
+
flags |= (cols*esz == step.p[0] || rows == 1 ? CONTINUOUS_FLAG : 0);
|
|
451
|
+
step[1] = esz;
|
|
452
|
+
|
|
453
|
+
if( copyData )
|
|
454
|
+
{
|
|
455
|
+
Mat m = *this;
|
|
456
|
+
release();
|
|
457
|
+
if( !img->roi || !img->roi->coi ||
|
|
458
|
+
img->dataOrder == IPL_DATA_ORDER_PLANE)
|
|
459
|
+
m.copyTo(*this);
|
|
460
|
+
else
|
|
461
|
+
{
|
|
462
|
+
int ch[] = {img->roi->coi - 1, 0};
|
|
463
|
+
create(m.rows, m.cols, m.type());
|
|
464
|
+
mixChannels(&m, 1, this, 1, ch, 1);
|
|
465
|
+
}
|
|
466
|
+
}
|
|
467
|
+
}
|
|
468
|
+
|
|
469
|
+
|
|
470
|
+
Mat::operator IplImage() const
|
|
471
|
+
{
|
|
472
|
+
CV_Assert( dims <= 2 );
|
|
473
|
+
IplImage img;
|
|
474
|
+
cvInitImageHeader(&img, size(), cvIplDepth(flags), channels());
|
|
475
|
+
cvSetData(&img, data, (int)step[0]);
|
|
476
|
+
return img;
|
|
477
|
+
}
|
|
478
|
+
|
|
479
|
+
|
|
480
|
+
void Mat::pop_back(size_t nelems)
|
|
481
|
+
{
|
|
482
|
+
CV_Assert( nelems <= (size_t)size.p[0] );
|
|
483
|
+
|
|
484
|
+
if( isSubmatrix() )
|
|
485
|
+
*this = rowRange(0, size.p[0] - (int)nelems);
|
|
486
|
+
else
|
|
487
|
+
{
|
|
488
|
+
size.p[0] -= (int)nelems;
|
|
489
|
+
dataend -= nelems*step.p[0];
|
|
490
|
+
/*if( size.p[0] <= 1 )
|
|
491
|
+
{
|
|
492
|
+
if( dims <= 2 )
|
|
493
|
+
flags |= CONTINUOUS_FLAG;
|
|
494
|
+
else
|
|
495
|
+
updateContinuityFlag(*this);
|
|
496
|
+
}*/
|
|
497
|
+
}
|
|
498
|
+
}
|
|
499
|
+
|
|
500
|
+
|
|
501
|
+
void Mat::push_back_(const void* elem)
|
|
502
|
+
{
|
|
503
|
+
int r = size.p[0];
|
|
504
|
+
if( isSubmatrix() || dataend + step.p[0] > datalimit )
|
|
505
|
+
reserve( std::max(r + 1, (r*3+1)/2) );
|
|
506
|
+
|
|
507
|
+
size_t esz = elemSize();
|
|
508
|
+
memcpy(data + r*step.p[0], elem, esz);
|
|
509
|
+
size.p[0] = r + 1;
|
|
510
|
+
dataend += step.p[0];
|
|
511
|
+
if( esz < step.p[0] )
|
|
512
|
+
flags &= ~CONTINUOUS_FLAG;
|
|
513
|
+
}
|
|
514
|
+
|
|
515
|
+
void Mat::reserve(size_t nelems)
|
|
516
|
+
{
|
|
517
|
+
const size_t MIN_SIZE = 64;
|
|
518
|
+
|
|
519
|
+
CV_Assert( (int)nelems >= 0 );
|
|
520
|
+
if( !isSubmatrix() && data + step.p[0]*nelems <= datalimit )
|
|
521
|
+
return;
|
|
522
|
+
|
|
523
|
+
int r = size.p[0];
|
|
524
|
+
|
|
525
|
+
if( (size_t)r >= nelems )
|
|
526
|
+
return;
|
|
527
|
+
|
|
528
|
+
size.p[0] = std::max((int)nelems, 1);
|
|
529
|
+
size_t newsize = total()*elemSize();
|
|
530
|
+
|
|
531
|
+
if( newsize < MIN_SIZE )
|
|
532
|
+
size.p[0] = (int)((MIN_SIZE + newsize - 1)*nelems/newsize);
|
|
533
|
+
|
|
534
|
+
Mat m(dims, size.p, type());
|
|
535
|
+
size.p[0] = r;
|
|
536
|
+
if( r > 0 )
|
|
537
|
+
{
|
|
538
|
+
Mat mpart = m.rowRange(0, r);
|
|
539
|
+
copyTo(mpart);
|
|
540
|
+
}
|
|
541
|
+
|
|
542
|
+
*this = m;
|
|
543
|
+
size.p[0] = r;
|
|
544
|
+
dataend = data + step.p[0]*r;
|
|
545
|
+
}
|
|
546
|
+
|
|
547
|
+
|
|
548
|
+
void Mat::resize(size_t nelems)
|
|
549
|
+
{
|
|
550
|
+
int saveRows = size.p[0];
|
|
551
|
+
if( saveRows == (int)nelems )
|
|
552
|
+
return;
|
|
553
|
+
CV_Assert( (int)nelems >= 0 );
|
|
554
|
+
|
|
555
|
+
if( isSubmatrix() || data + step.p[0]*nelems > datalimit )
|
|
556
|
+
reserve(nelems);
|
|
557
|
+
|
|
558
|
+
size.p[0] = (int)nelems;
|
|
559
|
+
dataend += (size.p[0] - saveRows)*step.p[0];
|
|
560
|
+
|
|
561
|
+
//updateContinuityFlag(*this);
|
|
562
|
+
}
|
|
563
|
+
|
|
564
|
+
|
|
565
|
+
void Mat::resize(size_t nelems, const Scalar& s)
|
|
566
|
+
{
|
|
567
|
+
int saveRows = size.p[0];
|
|
568
|
+
resize(nelems);
|
|
569
|
+
|
|
570
|
+
if( size.p[0] > saveRows )
|
|
571
|
+
{
|
|
572
|
+
Mat part = rowRange(saveRows, size.p[0]);
|
|
573
|
+
part = s;
|
|
574
|
+
}
|
|
575
|
+
}
|
|
576
|
+
|
|
577
|
+
void Mat::push_back(const Mat& elems)
|
|
578
|
+
{
|
|
579
|
+
int r = size.p[0], delta = elems.size.p[0];
|
|
580
|
+
if( delta == 0 )
|
|
581
|
+
return;
|
|
582
|
+
if( this == &elems )
|
|
583
|
+
{
|
|
584
|
+
Mat tmp = elems;
|
|
585
|
+
push_back(tmp);
|
|
586
|
+
return;
|
|
587
|
+
}
|
|
588
|
+
if( !data )
|
|
589
|
+
{
|
|
590
|
+
*this = elems.clone();
|
|
591
|
+
return;
|
|
592
|
+
}
|
|
593
|
+
|
|
594
|
+
size.p[0] = elems.size.p[0];
|
|
595
|
+
bool eq = size == elems.size;
|
|
596
|
+
size.p[0] = r;
|
|
597
|
+
if( !eq )
|
|
598
|
+
CV_Error(CV_StsUnmatchedSizes, "");
|
|
599
|
+
if( type() != elems.type() )
|
|
600
|
+
CV_Error(CV_StsUnmatchedFormats, "");
|
|
601
|
+
|
|
602
|
+
if( isSubmatrix() || dataend + step.p[0]*delta > datalimit )
|
|
603
|
+
reserve( std::max(r + delta, (r*3+1)/2) );
|
|
604
|
+
|
|
605
|
+
size.p[0] += delta;
|
|
606
|
+
dataend += step.p[0]*delta;
|
|
607
|
+
|
|
608
|
+
//updateContinuityFlag(*this);
|
|
609
|
+
|
|
610
|
+
if( isContinuous() && elems.isContinuous() )
|
|
611
|
+
memcpy(data + r*step.p[0], elems.data, elems.total()*elems.elemSize());
|
|
612
|
+
else
|
|
613
|
+
{
|
|
614
|
+
Mat part = rowRange(r, r + delta);
|
|
615
|
+
elems.copyTo(part);
|
|
616
|
+
}
|
|
617
|
+
}
|
|
618
|
+
|
|
619
|
+
|
|
620
|
+
Mat cvarrToMat(const CvArr* arr, bool copyData,
|
|
621
|
+
bool /*allowND*/, int coiMode)
|
|
622
|
+
{
|
|
623
|
+
if( !arr )
|
|
624
|
+
return Mat();
|
|
625
|
+
if( CV_IS_MAT(arr) )
|
|
626
|
+
return Mat((const CvMat*)arr, copyData );
|
|
627
|
+
if( CV_IS_MATND(arr) )
|
|
628
|
+
return Mat((const CvMatND*)arr, copyData );
|
|
629
|
+
if( CV_IS_IMAGE(arr) )
|
|
630
|
+
{
|
|
631
|
+
const IplImage* iplimg = (const IplImage*)arr;
|
|
632
|
+
if( coiMode == 0 && iplimg->roi && iplimg->roi->coi > 0 )
|
|
633
|
+
CV_Error(CV_BadCOI, "COI is not supported by the function");
|
|
634
|
+
return Mat(iplimg, copyData);
|
|
635
|
+
}
|
|
636
|
+
if( CV_IS_SEQ(arr) )
|
|
637
|
+
{
|
|
638
|
+
CvSeq* seq = (CvSeq*)arr;
|
|
639
|
+
CV_Assert(seq->total > 0 && CV_ELEM_SIZE(seq->flags) == seq->elem_size);
|
|
640
|
+
if(!copyData && seq->first->next == seq->first)
|
|
641
|
+
return Mat(seq->total, 1, CV_MAT_TYPE(seq->flags), seq->first->data);
|
|
642
|
+
Mat buf(seq->total, 1, CV_MAT_TYPE(seq->flags));
|
|
643
|
+
cvCvtSeqToArray(seq, buf.data, CV_WHOLE_SEQ);
|
|
644
|
+
return buf;
|
|
645
|
+
}
|
|
646
|
+
CV_Error(CV_StsBadArg, "Unknown array type");
|
|
647
|
+
return Mat();
|
|
648
|
+
}
|
|
649
|
+
|
|
650
|
+
void Mat::locateROI( Size& wholeSize, Point& ofs ) const
|
|
651
|
+
{
|
|
652
|
+
CV_Assert( dims <= 2 && step[0] > 0 );
|
|
653
|
+
size_t esz = elemSize(), minstep;
|
|
654
|
+
ptrdiff_t delta1 = data - datastart, delta2 = dataend - datastart;
|
|
655
|
+
|
|
656
|
+
if( delta1 == 0 )
|
|
657
|
+
ofs.x = ofs.y = 0;
|
|
658
|
+
else
|
|
659
|
+
{
|
|
660
|
+
ofs.y = (int)(delta1/step[0]);
|
|
661
|
+
ofs.x = (int)((delta1 - step[0]*ofs.y)/esz);
|
|
662
|
+
CV_DbgAssert( data == datastart + ofs.y*step[0] + ofs.x*esz );
|
|
663
|
+
}
|
|
664
|
+
minstep = (ofs.x + cols)*esz;
|
|
665
|
+
wholeSize.height = (int)((delta2 - minstep)/step[0] + 1);
|
|
666
|
+
wholeSize.height = std::max(wholeSize.height, ofs.y + rows);
|
|
667
|
+
wholeSize.width = (int)((delta2 - step*(wholeSize.height-1))/esz);
|
|
668
|
+
wholeSize.width = std::max(wholeSize.width, ofs.x + cols);
|
|
669
|
+
}
|
|
670
|
+
|
|
671
|
+
Mat& Mat::adjustROI( int dtop, int dbottom, int dleft, int dright )
|
|
672
|
+
{
|
|
673
|
+
CV_Assert( dims <= 2 && step[0] > 0 );
|
|
674
|
+
Size wholeSize; Point ofs;
|
|
675
|
+
size_t esz = elemSize();
|
|
676
|
+
locateROI( wholeSize, ofs );
|
|
677
|
+
int row1 = std::max(ofs.y - dtop, 0), row2 = std::min(ofs.y + rows + dbottom, wholeSize.height);
|
|
678
|
+
int col1 = std::max(ofs.x - dleft, 0), col2 = std::min(ofs.x + cols + dright, wholeSize.width);
|
|
679
|
+
data += (row1 - ofs.y)*step + (col1 - ofs.x)*esz;
|
|
680
|
+
rows = row2 - row1; cols = col2 - col1;
|
|
681
|
+
size.p[0] = rows; size.p[1] = cols;
|
|
682
|
+
if( esz*cols == step[0] || rows == 1 )
|
|
683
|
+
flags |= CONTINUOUS_FLAG;
|
|
684
|
+
else
|
|
685
|
+
flags &= ~CONTINUOUS_FLAG;
|
|
686
|
+
return *this;
|
|
687
|
+
}
|
|
688
|
+
|
|
689
|
+
}
|
|
690
|
+
|
|
691
|
+
void cv::extractImageCOI(const CvArr* arr, OutputArray _ch, int coi)
|
|
692
|
+
{
|
|
693
|
+
Mat mat = cvarrToMat(arr, false, true, 1);
|
|
694
|
+
_ch.create(mat.dims, mat.size, mat.depth());
|
|
695
|
+
Mat ch = _ch.getMat();
|
|
696
|
+
if(coi < 0)
|
|
697
|
+
{
|
|
698
|
+
CV_Assert( CV_IS_IMAGE(arr) );
|
|
699
|
+
coi = cvGetImageCOI((const IplImage*)arr)-1;
|
|
700
|
+
}
|
|
701
|
+
CV_Assert(0 <= coi && coi < mat.channels());
|
|
702
|
+
int _pairs[] = { coi, 0 };
|
|
703
|
+
mixChannels( &mat, 1, &ch, 1, _pairs, 1 );
|
|
704
|
+
}
|
|
705
|
+
|
|
706
|
+
void cv::insertImageCOI(InputArray _ch, CvArr* arr, int coi)
|
|
707
|
+
{
|
|
708
|
+
Mat ch = _ch.getMat(), mat = cvarrToMat(arr, false, true, 1);
|
|
709
|
+
if(coi < 0)
|
|
710
|
+
{
|
|
711
|
+
CV_Assert( CV_IS_IMAGE(arr) );
|
|
712
|
+
coi = cvGetImageCOI((const IplImage*)arr)-1;
|
|
713
|
+
}
|
|
714
|
+
CV_Assert(ch.size == mat.size && ch.depth() == mat.depth() && 0 <= coi && coi < mat.channels());
|
|
715
|
+
int _pairs[] = { 0, coi };
|
|
716
|
+
mixChannels( &ch, 1, &mat, 1, _pairs, 1 );
|
|
717
|
+
}
|
|
718
|
+
|
|
719
|
+
namespace cv
|
|
720
|
+
{
|
|
721
|
+
|
|
722
|
+
Mat Mat::reshape(int new_cn, int new_rows) const
|
|
723
|
+
{
|
|
724
|
+
int cn = channels();
|
|
725
|
+
Mat hdr = *this;
|
|
726
|
+
|
|
727
|
+
if( dims > 2 && new_rows == 0 && new_cn != 0 && size[dims-1]*cn % new_cn == 0 )
|
|
728
|
+
{
|
|
729
|
+
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn-1) << CV_CN_SHIFT);
|
|
730
|
+
hdr.step[dims-1] = CV_ELEM_SIZE(hdr.flags);
|
|
731
|
+
hdr.size[dims-1] = hdr.size[dims-1]*cn / new_cn;
|
|
732
|
+
return hdr;
|
|
733
|
+
}
|
|
734
|
+
|
|
735
|
+
CV_Assert( dims <= 2 );
|
|
736
|
+
|
|
737
|
+
if( new_cn == 0 )
|
|
738
|
+
new_cn = cn;
|
|
739
|
+
|
|
740
|
+
int total_width = cols * cn;
|
|
741
|
+
|
|
742
|
+
if( (new_cn > total_width || total_width % new_cn != 0) && new_rows == 0 )
|
|
743
|
+
new_rows = rows * total_width / new_cn;
|
|
744
|
+
|
|
745
|
+
if( new_rows != 0 && new_rows != rows )
|
|
746
|
+
{
|
|
747
|
+
int total_size = total_width * rows;
|
|
748
|
+
if( !isContinuous() )
|
|
749
|
+
CV_Error( CV_BadStep,
|
|
750
|
+
"The matrix is not continuous, thus its number of rows can not be changed" );
|
|
751
|
+
|
|
752
|
+
if( (unsigned)new_rows > (unsigned)total_size )
|
|
753
|
+
CV_Error( CV_StsOutOfRange, "Bad new number of rows" );
|
|
754
|
+
|
|
755
|
+
total_width = total_size / new_rows;
|
|
756
|
+
|
|
757
|
+
if( total_width * new_rows != total_size )
|
|
758
|
+
CV_Error( CV_StsBadArg, "The total number of matrix elements "
|
|
759
|
+
"is not divisible by the new number of rows" );
|
|
760
|
+
|
|
761
|
+
hdr.rows = new_rows;
|
|
762
|
+
hdr.step[0] = total_width * elemSize1();
|
|
763
|
+
}
|
|
764
|
+
|
|
765
|
+
int new_width = total_width / new_cn;
|
|
766
|
+
|
|
767
|
+
if( new_width * new_cn != total_width )
|
|
768
|
+
CV_Error( CV_BadNumChannels,
|
|
769
|
+
"The total width is not divisible by the new number of channels" );
|
|
770
|
+
|
|
771
|
+
hdr.cols = new_width;
|
|
772
|
+
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn-1) << CV_CN_SHIFT);
|
|
773
|
+
hdr.step[1] = CV_ELEM_SIZE(hdr.flags);
|
|
774
|
+
return hdr;
|
|
775
|
+
}
|
|
776
|
+
|
|
777
|
+
|
|
778
|
+
int Mat::checkVector(int _elemChannels, int _depth, bool _requireContinuous) const
|
|
779
|
+
{
|
|
780
|
+
return (depth() == _depth || _depth <= 0) &&
|
|
781
|
+
(isContinuous() || !_requireContinuous) &&
|
|
782
|
+
((dims == 2 && (((rows == 1 || cols == 1) && channels() == _elemChannels) || (cols == _elemChannels))) ||
|
|
783
|
+
(dims == 3 && channels() == 1 && size.p[2] == _elemChannels && (size.p[0] == 1 || size.p[1] == 1) &&
|
|
784
|
+
(isContinuous() || step.p[1] == step.p[2]*size.p[2])))
|
|
785
|
+
? (int)(total()*channels()/_elemChannels) : -1;
|
|
786
|
+
}
|
|
787
|
+
|
|
788
|
+
|
|
789
|
+
void scalarToRawData(const Scalar& s, void* _buf, int type, int unroll_to)
|
|
790
|
+
{
|
|
791
|
+
int i, depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
|
792
|
+
CV_Assert(cn <= 4);
|
|
793
|
+
switch(depth)
|
|
794
|
+
{
|
|
795
|
+
case CV_8U:
|
|
796
|
+
{
|
|
797
|
+
uchar* buf = (uchar*)_buf;
|
|
798
|
+
for(i = 0; i < cn; i++)
|
|
799
|
+
buf[i] = saturate_cast<uchar>(s.val[i]);
|
|
800
|
+
for(; i < unroll_to; i++)
|
|
801
|
+
buf[i] = buf[i-cn];
|
|
802
|
+
}
|
|
803
|
+
break;
|
|
804
|
+
case CV_8S:
|
|
805
|
+
{
|
|
806
|
+
schar* buf = (schar*)_buf;
|
|
807
|
+
for(i = 0; i < cn; i++)
|
|
808
|
+
buf[i] = saturate_cast<schar>(s.val[i]);
|
|
809
|
+
for(; i < unroll_to; i++)
|
|
810
|
+
buf[i] = buf[i-cn];
|
|
811
|
+
}
|
|
812
|
+
break;
|
|
813
|
+
case CV_16U:
|
|
814
|
+
{
|
|
815
|
+
ushort* buf = (ushort*)_buf;
|
|
816
|
+
for(i = 0; i < cn; i++)
|
|
817
|
+
buf[i] = saturate_cast<ushort>(s.val[i]);
|
|
818
|
+
for(; i < unroll_to; i++)
|
|
819
|
+
buf[i] = buf[i-cn];
|
|
820
|
+
}
|
|
821
|
+
break;
|
|
822
|
+
case CV_16S:
|
|
823
|
+
{
|
|
824
|
+
short* buf = (short*)_buf;
|
|
825
|
+
for(i = 0; i < cn; i++)
|
|
826
|
+
buf[i] = saturate_cast<short>(s.val[i]);
|
|
827
|
+
for(; i < unroll_to; i++)
|
|
828
|
+
buf[i] = buf[i-cn];
|
|
829
|
+
}
|
|
830
|
+
break;
|
|
831
|
+
case CV_32S:
|
|
832
|
+
{
|
|
833
|
+
int* buf = (int*)_buf;
|
|
834
|
+
for(i = 0; i < cn; i++)
|
|
835
|
+
buf[i] = saturate_cast<int>(s.val[i]);
|
|
836
|
+
for(; i < unroll_to; i++)
|
|
837
|
+
buf[i] = buf[i-cn];
|
|
838
|
+
}
|
|
839
|
+
break;
|
|
840
|
+
case CV_32F:
|
|
841
|
+
{
|
|
842
|
+
float* buf = (float*)_buf;
|
|
843
|
+
for(i = 0; i < cn; i++)
|
|
844
|
+
buf[i] = saturate_cast<float>(s.val[i]);
|
|
845
|
+
for(; i < unroll_to; i++)
|
|
846
|
+
buf[i] = buf[i-cn];
|
|
847
|
+
}
|
|
848
|
+
break;
|
|
849
|
+
case CV_64F:
|
|
850
|
+
{
|
|
851
|
+
double* buf = (double*)_buf;
|
|
852
|
+
for(i = 0; i < cn; i++)
|
|
853
|
+
buf[i] = saturate_cast<double>(s.val[i]);
|
|
854
|
+
for(; i < unroll_to; i++)
|
|
855
|
+
buf[i] = buf[i-cn];
|
|
856
|
+
break;
|
|
857
|
+
}
|
|
858
|
+
default:
|
|
859
|
+
CV_Error(CV_StsUnsupportedFormat,"");
|
|
860
|
+
}
|
|
861
|
+
}
|
|
862
|
+
|
|
863
|
+
|
|
864
|
+
/*************************************************************************************************\
|
|
865
|
+
Input/Output Array
|
|
866
|
+
\*************************************************************************************************/
|
|
867
|
+
|
|
868
|
+
_InputArray::_InputArray() : flags(0), obj(0) {}
|
|
869
|
+
_InputArray::_InputArray(const Mat& m) : flags(MAT), obj((void*)&m) {}
|
|
870
|
+
_InputArray::_InputArray(const vector<Mat>& vec) : flags(STD_VECTOR_MAT), obj((void*)&vec) {}
|
|
871
|
+
_InputArray::_InputArray(const double& val) : flags(MATX+CV_64F), obj((void*)&val), sz(Size(1,1)) {}
|
|
872
|
+
_InputArray::_InputArray(const MatExpr& expr) : flags(EXPR), obj((void*)&expr) {}
|
|
873
|
+
|
|
874
|
+
Mat _InputArray::getMat(int i) const
|
|
875
|
+
{
|
|
876
|
+
int k = kind();
|
|
877
|
+
|
|
878
|
+
if( k == MAT )
|
|
879
|
+
{
|
|
880
|
+
CV_Assert( i < 0 );
|
|
881
|
+
return *(const Mat*)obj;
|
|
882
|
+
}
|
|
883
|
+
|
|
884
|
+
if( k == EXPR )
|
|
885
|
+
{
|
|
886
|
+
CV_Assert( i < 0 );
|
|
887
|
+
return (Mat)*((const MatExpr*)obj);
|
|
888
|
+
}
|
|
889
|
+
|
|
890
|
+
if( k == MATX )
|
|
891
|
+
{
|
|
892
|
+
CV_Assert( i < 0 );
|
|
893
|
+
return Mat(sz, flags, obj);
|
|
894
|
+
}
|
|
895
|
+
|
|
896
|
+
if( k == STD_VECTOR )
|
|
897
|
+
{
|
|
898
|
+
CV_Assert( i < 0 );
|
|
899
|
+
int t = CV_MAT_TYPE(flags);
|
|
900
|
+
const vector<uchar>& v = *(const vector<uchar>*)obj;
|
|
901
|
+
|
|
902
|
+
return !v.empty() ? Mat(size(), t, (void*)&v[0]) : Mat();
|
|
903
|
+
}
|
|
904
|
+
|
|
905
|
+
if( k == NONE )
|
|
906
|
+
return Mat();
|
|
907
|
+
|
|
908
|
+
if( k == STD_VECTOR_VECTOR )
|
|
909
|
+
{
|
|
910
|
+
int t = type(i);
|
|
911
|
+
const vector<vector<uchar> >& vv = *(const vector<vector<uchar> >*)obj;
|
|
912
|
+
CV_Assert( 0 <= i && i < (int)vv.size() );
|
|
913
|
+
const vector<uchar>& v = vv[i];
|
|
914
|
+
|
|
915
|
+
return !v.empty() ? Mat(size(i), t, (void*)&v[0]) : Mat();
|
|
916
|
+
}
|
|
917
|
+
|
|
918
|
+
CV_Assert( k == STD_VECTOR_MAT );
|
|
919
|
+
//if( k == STD_VECTOR_MAT )
|
|
920
|
+
{
|
|
921
|
+
const vector<Mat>& v = *(const vector<Mat>*)obj;
|
|
922
|
+
CV_Assert( 0 <= i && i < (int)v.size() );
|
|
923
|
+
|
|
924
|
+
return v[i];
|
|
925
|
+
}
|
|
926
|
+
}
|
|
927
|
+
|
|
928
|
+
|
|
929
|
+
void _InputArray::getMatVector(vector<Mat>& mv) const
|
|
930
|
+
{
|
|
931
|
+
int k = kind();
|
|
932
|
+
|
|
933
|
+
if( k == MAT )
|
|
934
|
+
{
|
|
935
|
+
const Mat& m = *(const Mat*)obj;
|
|
936
|
+
int i, n = (int)m.size[0];
|
|
937
|
+
mv.resize(n);
|
|
938
|
+
|
|
939
|
+
for( i = 0; i < n; i++ )
|
|
940
|
+
mv[i] = m.dims == 2 ? Mat(1, m.cols, m.type(), (void*)m.ptr(i)) :
|
|
941
|
+
Mat(m.dims-1, &m.size[1], m.type(), (void*)m.ptr(i), &m.step[1]);
|
|
942
|
+
return;
|
|
943
|
+
}
|
|
944
|
+
|
|
945
|
+
if( k == EXPR )
|
|
946
|
+
{
|
|
947
|
+
Mat m = *(const MatExpr*)obj;
|
|
948
|
+
int i, n = m.size[0];
|
|
949
|
+
mv.resize(n);
|
|
950
|
+
|
|
951
|
+
for( i = 0; i < n; i++ )
|
|
952
|
+
mv[i] = m.row(i);
|
|
953
|
+
return;
|
|
954
|
+
}
|
|
955
|
+
|
|
956
|
+
if( k == MATX )
|
|
957
|
+
{
|
|
958
|
+
size_t i, n = sz.height, esz = CV_ELEM_SIZE(flags);
|
|
959
|
+
mv.resize(n);
|
|
960
|
+
|
|
961
|
+
for( i = 0; i < n; i++ )
|
|
962
|
+
mv[i] = Mat(1, sz.width, CV_MAT_TYPE(flags), (uchar*)obj + esz*sz.width*i);
|
|
963
|
+
return;
|
|
964
|
+
}
|
|
965
|
+
|
|
966
|
+
if( k == STD_VECTOR )
|
|
967
|
+
{
|
|
968
|
+
const vector<uchar>& v = *(const vector<uchar>*)obj;
|
|
969
|
+
|
|
970
|
+
size_t i, n = v.size(), esz = CV_ELEM_SIZE(flags);
|
|
971
|
+
int t = CV_MAT_DEPTH(flags), cn = CV_MAT_CN(flags);
|
|
972
|
+
mv.resize(n);
|
|
973
|
+
|
|
974
|
+
for( i = 0; i < n; i++ )
|
|
975
|
+
mv[i] = Mat(1, cn, t, (void*)(&v[0] + esz*i));
|
|
976
|
+
return;
|
|
977
|
+
}
|
|
978
|
+
|
|
979
|
+
if( k == NONE )
|
|
980
|
+
{
|
|
981
|
+
mv.clear();
|
|
982
|
+
return;
|
|
983
|
+
}
|
|
984
|
+
|
|
985
|
+
if( k == STD_VECTOR_VECTOR )
|
|
986
|
+
{
|
|
987
|
+
const vector<vector<uchar> >& vv = *(const vector<vector<uchar> >*)obj;
|
|
988
|
+
int i, n = (int)vv.size();
|
|
989
|
+
int t = CV_MAT_TYPE(flags);
|
|
990
|
+
mv.resize(n);
|
|
991
|
+
|
|
992
|
+
for( i = 0; i < n; i++ )
|
|
993
|
+
{
|
|
994
|
+
const vector<uchar>& v = vv[i];
|
|
995
|
+
mv[i] = Mat(size(i), t, (void*)&v[0]);
|
|
996
|
+
}
|
|
997
|
+
return;
|
|
998
|
+
}
|
|
999
|
+
|
|
1000
|
+
CV_Assert( k == STD_VECTOR_MAT );
|
|
1001
|
+
//if( k == STD_VECTOR_MAT )
|
|
1002
|
+
{
|
|
1003
|
+
const vector<Mat>& v = *(const vector<Mat>*)obj;
|
|
1004
|
+
mv.resize(v.size());
|
|
1005
|
+
std::copy(v.begin(), v.end(), mv.begin());
|
|
1006
|
+
return;
|
|
1007
|
+
}
|
|
1008
|
+
}
|
|
1009
|
+
|
|
1010
|
+
int _InputArray::kind() const
|
|
1011
|
+
{
|
|
1012
|
+
return flags & -(1 << KIND_SHIFT);
|
|
1013
|
+
}
|
|
1014
|
+
|
|
1015
|
+
Size _InputArray::size(int i) const
|
|
1016
|
+
{
|
|
1017
|
+
int k = kind();
|
|
1018
|
+
|
|
1019
|
+
if( k == MAT )
|
|
1020
|
+
{
|
|
1021
|
+
CV_Assert( i < 0 );
|
|
1022
|
+
return ((const Mat*)obj)->size();
|
|
1023
|
+
}
|
|
1024
|
+
|
|
1025
|
+
if( k == EXPR )
|
|
1026
|
+
{
|
|
1027
|
+
CV_Assert( i < 0 );
|
|
1028
|
+
return ((const MatExpr*)obj)->size();
|
|
1029
|
+
}
|
|
1030
|
+
|
|
1031
|
+
if( k == MATX )
|
|
1032
|
+
{
|
|
1033
|
+
CV_Assert( i < 0 );
|
|
1034
|
+
return sz;
|
|
1035
|
+
}
|
|
1036
|
+
|
|
1037
|
+
if( k == STD_VECTOR )
|
|
1038
|
+
{
|
|
1039
|
+
CV_Assert( i < 0 );
|
|
1040
|
+
const vector<uchar>& v = *(const vector<uchar>*)obj;
|
|
1041
|
+
const vector<int>& iv = *(const vector<int>*)obj;
|
|
1042
|
+
size_t szb = v.size(), szi = iv.size();
|
|
1043
|
+
return szb == szi ? Size((int)szb, 1) : Size((int)(szb/CV_ELEM_SIZE(flags)), 1);
|
|
1044
|
+
}
|
|
1045
|
+
|
|
1046
|
+
if( k == NONE )
|
|
1047
|
+
return Size();
|
|
1048
|
+
|
|
1049
|
+
if( k == STD_VECTOR_VECTOR )
|
|
1050
|
+
{
|
|
1051
|
+
const vector<vector<uchar> >& vv = *(const vector<vector<uchar> >*)obj;
|
|
1052
|
+
if( i < 0 )
|
|
1053
|
+
return vv.empty() ? Size() : Size((int)vv.size(), 1);
|
|
1054
|
+
CV_Assert( i < (int)vv.size() );
|
|
1055
|
+
const vector<vector<int> >& ivv = *(const vector<vector<int> >*)obj;
|
|
1056
|
+
|
|
1057
|
+
size_t szb = vv[i].size(), szi = ivv[i].size();
|
|
1058
|
+
return szb == szi ? Size((int)szb, 1) : Size((int)(szb/CV_ELEM_SIZE(flags)), 1);
|
|
1059
|
+
}
|
|
1060
|
+
|
|
1061
|
+
CV_Assert( k == STD_VECTOR_MAT );
|
|
1062
|
+
//if( k == STD_VECTOR_MAT )
|
|
1063
|
+
{
|
|
1064
|
+
const vector<Mat>& vv = *(const vector<Mat>*)obj;
|
|
1065
|
+
if( i < 0 )
|
|
1066
|
+
return vv.empty() ? Size() : Size((int)vv.size(), 1);
|
|
1067
|
+
CV_Assert( i < (int)vv.size() );
|
|
1068
|
+
|
|
1069
|
+
return vv[i].size();
|
|
1070
|
+
}
|
|
1071
|
+
}
|
|
1072
|
+
|
|
1073
|
+
size_t _InputArray::total(int i) const
|
|
1074
|
+
{
|
|
1075
|
+
return size(i).area();
|
|
1076
|
+
}
|
|
1077
|
+
|
|
1078
|
+
int _InputArray::type(int i) const
|
|
1079
|
+
{
|
|
1080
|
+
int k = kind();
|
|
1081
|
+
|
|
1082
|
+
if( k == MAT )
|
|
1083
|
+
return ((const Mat*)obj)->type();
|
|
1084
|
+
|
|
1085
|
+
if( k == EXPR )
|
|
1086
|
+
return ((const MatExpr*)obj)->type();
|
|
1087
|
+
|
|
1088
|
+
if( k == MATX || k == STD_VECTOR || k == STD_VECTOR_VECTOR )
|
|
1089
|
+
return CV_MAT_TYPE(flags);
|
|
1090
|
+
|
|
1091
|
+
if( k == NONE )
|
|
1092
|
+
return -1;
|
|
1093
|
+
|
|
1094
|
+
CV_Assert( k == STD_VECTOR_MAT );
|
|
1095
|
+
//if( k == STD_VECTOR_MAT )
|
|
1096
|
+
{
|
|
1097
|
+
const vector<Mat>& vv = *(const vector<Mat>*)obj;
|
|
1098
|
+
CV_Assert( i < (int)vv.size() );
|
|
1099
|
+
|
|
1100
|
+
return vv[i >= 0 ? i : 0].type();
|
|
1101
|
+
}
|
|
1102
|
+
}
|
|
1103
|
+
|
|
1104
|
+
int _InputArray::depth(int i) const
|
|
1105
|
+
{
|
|
1106
|
+
return CV_MAT_DEPTH(type(i));
|
|
1107
|
+
}
|
|
1108
|
+
|
|
1109
|
+
int _InputArray::channels(int i) const
|
|
1110
|
+
{
|
|
1111
|
+
return CV_MAT_CN(type(i));
|
|
1112
|
+
}
|
|
1113
|
+
|
|
1114
|
+
bool _InputArray::empty() const
|
|
1115
|
+
{
|
|
1116
|
+
int k = kind();
|
|
1117
|
+
|
|
1118
|
+
if( k == MAT )
|
|
1119
|
+
return ((const Mat*)obj)->empty();
|
|
1120
|
+
|
|
1121
|
+
if( k == EXPR )
|
|
1122
|
+
return false;
|
|
1123
|
+
|
|
1124
|
+
if( k == MATX )
|
|
1125
|
+
return false;
|
|
1126
|
+
|
|
1127
|
+
if( k == STD_VECTOR )
|
|
1128
|
+
{
|
|
1129
|
+
const vector<uchar>& v = *(const vector<uchar>*)obj;
|
|
1130
|
+
return v.empty();
|
|
1131
|
+
}
|
|
1132
|
+
|
|
1133
|
+
if( k == NONE )
|
|
1134
|
+
return true;
|
|
1135
|
+
|
|
1136
|
+
if( k == STD_VECTOR_VECTOR )
|
|
1137
|
+
{
|
|
1138
|
+
const vector<vector<uchar> >& vv = *(const vector<vector<uchar> >*)obj;
|
|
1139
|
+
return vv.empty();
|
|
1140
|
+
}
|
|
1141
|
+
|
|
1142
|
+
CV_Assert( k == STD_VECTOR_MAT );
|
|
1143
|
+
//if( k == STD_VECTOR_MAT )
|
|
1144
|
+
{
|
|
1145
|
+
const vector<Mat>& vv = *(const vector<Mat>*)obj;
|
|
1146
|
+
return vv.empty();
|
|
1147
|
+
}
|
|
1148
|
+
}
|
|
1149
|
+
|
|
1150
|
+
|
|
1151
|
+
_OutputArray::_OutputArray() {}
|
|
1152
|
+
_OutputArray::_OutputArray(Mat& m) : _InputArray(m) {}
|
|
1153
|
+
_OutputArray::_OutputArray(vector<Mat>& vec) : _InputArray(vec) {}
|
|
1154
|
+
|
|
1155
|
+
bool _OutputArray::fixedSize() const
|
|
1156
|
+
{
|
|
1157
|
+
int k = kind();
|
|
1158
|
+
return k == MATX;
|
|
1159
|
+
}
|
|
1160
|
+
|
|
1161
|
+
bool _OutputArray::fixedType() const
|
|
1162
|
+
{
|
|
1163
|
+
int k = kind();
|
|
1164
|
+
return k != MAT && k != STD_VECTOR_MAT;
|
|
1165
|
+
}
|
|
1166
|
+
|
|
1167
|
+
void _OutputArray::create(Size _sz, int type, int i, bool allowTransposed, int fixedDepthMask) const
|
|
1168
|
+
{
|
|
1169
|
+
int k = kind();
|
|
1170
|
+
if( k == MAT && i < 0 && !allowTransposed && fixedDepthMask == 0 )
|
|
1171
|
+
{
|
|
1172
|
+
((Mat*)obj)->create(_sz, type);
|
|
1173
|
+
return;
|
|
1174
|
+
}
|
|
1175
|
+
int sz[] = {_sz.height, _sz.width};
|
|
1176
|
+
create(2, sz, type, i, allowTransposed, fixedDepthMask);
|
|
1177
|
+
}
|
|
1178
|
+
|
|
1179
|
+
void _OutputArray::create(int rows, int cols, int type, int i, bool allowTransposed, int fixedDepthMask) const
|
|
1180
|
+
{
|
|
1181
|
+
int k = kind();
|
|
1182
|
+
if( k == MAT && i < 0 && !allowTransposed && fixedDepthMask == 0 )
|
|
1183
|
+
{
|
|
1184
|
+
((Mat*)obj)->create(rows, cols, type);
|
|
1185
|
+
return;
|
|
1186
|
+
}
|
|
1187
|
+
int sz[] = {rows, cols};
|
|
1188
|
+
create(2, sz, type, i, allowTransposed, fixedDepthMask);
|
|
1189
|
+
}
|
|
1190
|
+
|
|
1191
|
+
void _OutputArray::create(int dims, const int* size, int type, int i, bool allocateVector, int fixedDepthMask) const
|
|
1192
|
+
{
|
|
1193
|
+
int k = kind();
|
|
1194
|
+
type = CV_MAT_TYPE(type);
|
|
1195
|
+
|
|
1196
|
+
if( k == MAT )
|
|
1197
|
+
{
|
|
1198
|
+
CV_Assert( i < 0 );
|
|
1199
|
+
Mat& m = *(Mat*)obj;
|
|
1200
|
+
if( allocateVector )
|
|
1201
|
+
{
|
|
1202
|
+
if( !m.isContinuous() )
|
|
1203
|
+
m.release();
|
|
1204
|
+
|
|
1205
|
+
if( dims == 2 && m.dims == 2 && m.data &&
|
|
1206
|
+
m.type() == type && m.rows == size[1] && m.cols == size[0] )
|
|
1207
|
+
return;
|
|
1208
|
+
}
|
|
1209
|
+
m.create(dims, size, type);
|
|
1210
|
+
return;
|
|
1211
|
+
}
|
|
1212
|
+
|
|
1213
|
+
if( k == MATX )
|
|
1214
|
+
{
|
|
1215
|
+
CV_Assert( i < 0 );
|
|
1216
|
+
int type0 = CV_MAT_TYPE(flags);
|
|
1217
|
+
CV_Assert( type == type0 || (CV_MAT_CN(type) == 1 && ((1 << type0) & fixedDepthMask) != 0) );
|
|
1218
|
+
CV_Assert( dims == 2 && ((size[0] == sz.height && size[1] == sz.width) ||
|
|
1219
|
+
(allocateVector && size[0] == sz.width && size[1] == sz.height)));
|
|
1220
|
+
return;
|
|
1221
|
+
}
|
|
1222
|
+
|
|
1223
|
+
if( k == STD_VECTOR || k == STD_VECTOR_VECTOR )
|
|
1224
|
+
{
|
|
1225
|
+
CV_Assert( dims == 2 && (size[0] == 1 || size[1] == 1 || size[0]*size[1] == 0) );
|
|
1226
|
+
size_t len = size[0]*size[1] > 0 ? size[0] + size[1] - 1 : 0;
|
|
1227
|
+
vector<uchar>* v = (vector<uchar>*)obj;
|
|
1228
|
+
|
|
1229
|
+
if( k == STD_VECTOR_VECTOR )
|
|
1230
|
+
{
|
|
1231
|
+
vector<vector<uchar> >& vv = *(vector<vector<uchar> >*)obj;
|
|
1232
|
+
if( i < 0 )
|
|
1233
|
+
{
|
|
1234
|
+
vv.resize(len);
|
|
1235
|
+
return;
|
|
1236
|
+
}
|
|
1237
|
+
CV_Assert( i < (int)vv.size() );
|
|
1238
|
+
v = &vv[i];
|
|
1239
|
+
}
|
|
1240
|
+
else
|
|
1241
|
+
CV_Assert( i < 0 );
|
|
1242
|
+
|
|
1243
|
+
int type0 = CV_MAT_TYPE(flags);
|
|
1244
|
+
CV_Assert( type == type0 || (CV_MAT_CN(type) == CV_MAT_CN(type0) && ((1 << type0) & fixedDepthMask) != 0) );
|
|
1245
|
+
|
|
1246
|
+
int esz = CV_ELEM_SIZE(type0);
|
|
1247
|
+
switch( esz )
|
|
1248
|
+
{
|
|
1249
|
+
case 1:
|
|
1250
|
+
((vector<uchar>*)v)->resize(len);
|
|
1251
|
+
break;
|
|
1252
|
+
case 2:
|
|
1253
|
+
((vector<Vec2b>*)v)->resize(len);
|
|
1254
|
+
break;
|
|
1255
|
+
case 3:
|
|
1256
|
+
((vector<Vec3b>*)v)->resize(len);
|
|
1257
|
+
break;
|
|
1258
|
+
case 4:
|
|
1259
|
+
((vector<int>*)v)->resize(len);
|
|
1260
|
+
break;
|
|
1261
|
+
case 6:
|
|
1262
|
+
((vector<Vec3s>*)v)->resize(len);
|
|
1263
|
+
break;
|
|
1264
|
+
case 8:
|
|
1265
|
+
((vector<Vec2i>*)v)->resize(len);
|
|
1266
|
+
break;
|
|
1267
|
+
case 12:
|
|
1268
|
+
((vector<Vec3i>*)v)->resize(len);
|
|
1269
|
+
break;
|
|
1270
|
+
case 16:
|
|
1271
|
+
((vector<Vec4i>*)v)->resize(len);
|
|
1272
|
+
break;
|
|
1273
|
+
case 24:
|
|
1274
|
+
((vector<Vec6i>*)v)->resize(len);
|
|
1275
|
+
break;
|
|
1276
|
+
case 32:
|
|
1277
|
+
((vector<Vec8i>*)v)->resize(len);
|
|
1278
|
+
break;
|
|
1279
|
+
case 36:
|
|
1280
|
+
((vector<Vec<int, 9> >*)v)->resize(len);
|
|
1281
|
+
break;
|
|
1282
|
+
case 48:
|
|
1283
|
+
((vector<Vec<int, 12> >*)v)->resize(len);
|
|
1284
|
+
break;
|
|
1285
|
+
case 64:
|
|
1286
|
+
((vector<Vec<int, 16> >*)v)->resize(len);
|
|
1287
|
+
break;
|
|
1288
|
+
case 128:
|
|
1289
|
+
((vector<Vec<int, 32> >*)v)->resize(len);
|
|
1290
|
+
break;
|
|
1291
|
+
case 256:
|
|
1292
|
+
((vector<Vec<int, 64> >*)v)->resize(len);
|
|
1293
|
+
break;
|
|
1294
|
+
case 512:
|
|
1295
|
+
((vector<Vec<int, 128> >*)v)->resize(len);
|
|
1296
|
+
break;
|
|
1297
|
+
default:
|
|
1298
|
+
CV_Error_(CV_StsBadArg, ("Vectors with element size %d are not supported. Please, modify OutputArray::create()\n", esz));
|
|
1299
|
+
}
|
|
1300
|
+
return;
|
|
1301
|
+
}
|
|
1302
|
+
|
|
1303
|
+
if( k == NONE )
|
|
1304
|
+
{
|
|
1305
|
+
CV_Error(CV_StsNullPtr, "create() called for the missing output array" );
|
|
1306
|
+
return;
|
|
1307
|
+
}
|
|
1308
|
+
|
|
1309
|
+
CV_Assert( k == STD_VECTOR_MAT );
|
|
1310
|
+
//if( k == STD_VECTOR_MAT )
|
|
1311
|
+
{
|
|
1312
|
+
vector<Mat>& v = *(vector<Mat>*)obj;
|
|
1313
|
+
|
|
1314
|
+
if( i < 0 )
|
|
1315
|
+
{
|
|
1316
|
+
CV_Assert( dims == 2 && (size[0] == 1 || size[1] == 1 || size[0]*size[1] == 0) );
|
|
1317
|
+
size_t len = size[0]*size[1] > 0 ? size[0] + size[1] - 1 : 0;
|
|
1318
|
+
|
|
1319
|
+
v.resize(len);
|
|
1320
|
+
return;
|
|
1321
|
+
}
|
|
1322
|
+
|
|
1323
|
+
CV_Assert( i < (int)v.size() );
|
|
1324
|
+
Mat& m = v[i];
|
|
1325
|
+
|
|
1326
|
+
if( allocateVector )
|
|
1327
|
+
{
|
|
1328
|
+
if( !m.isContinuous() )
|
|
1329
|
+
m.release();
|
|
1330
|
+
|
|
1331
|
+
if( dims == 2 && m.dims == 2 && m.data &&
|
|
1332
|
+
m.type() == type && m.rows == size[1] && m.cols == size[0] )
|
|
1333
|
+
return;
|
|
1334
|
+
}
|
|
1335
|
+
m.create(dims, size, type);
|
|
1336
|
+
}
|
|
1337
|
+
}
|
|
1338
|
+
|
|
1339
|
+
void _OutputArray::release() const
|
|
1340
|
+
{
|
|
1341
|
+
int k = kind();
|
|
1342
|
+
|
|
1343
|
+
if( k == MAT )
|
|
1344
|
+
{
|
|
1345
|
+
((Mat*)obj)->release();
|
|
1346
|
+
return;
|
|
1347
|
+
}
|
|
1348
|
+
|
|
1349
|
+
if( k == NONE )
|
|
1350
|
+
return;
|
|
1351
|
+
|
|
1352
|
+
if( k == STD_VECTOR )
|
|
1353
|
+
{
|
|
1354
|
+
create(Size(), CV_MAT_TYPE(flags));
|
|
1355
|
+
return;
|
|
1356
|
+
}
|
|
1357
|
+
|
|
1358
|
+
if( k == STD_VECTOR_VECTOR )
|
|
1359
|
+
{
|
|
1360
|
+
((vector<vector<uchar> >*)obj)->clear();
|
|
1361
|
+
return;
|
|
1362
|
+
}
|
|
1363
|
+
|
|
1364
|
+
CV_Assert( k == STD_VECTOR_MAT );
|
|
1365
|
+
//if( k == STD_VECTOR_MAT )
|
|
1366
|
+
{
|
|
1367
|
+
((vector<Mat>*)obj)->clear();
|
|
1368
|
+
}
|
|
1369
|
+
}
|
|
1370
|
+
|
|
1371
|
+
void _OutputArray::clear() const
|
|
1372
|
+
{
|
|
1373
|
+
int k = kind();
|
|
1374
|
+
|
|
1375
|
+
if( k == MAT )
|
|
1376
|
+
{
|
|
1377
|
+
((Mat*)obj)->resize(0);
|
|
1378
|
+
return;
|
|
1379
|
+
}
|
|
1380
|
+
|
|
1381
|
+
release();
|
|
1382
|
+
}
|
|
1383
|
+
|
|
1384
|
+
bool _OutputArray::needed() const
|
|
1385
|
+
{
|
|
1386
|
+
return kind() != NONE;
|
|
1387
|
+
}
|
|
1388
|
+
|
|
1389
|
+
Mat& _OutputArray::getMatRef(int i) const
|
|
1390
|
+
{
|
|
1391
|
+
int k = kind();
|
|
1392
|
+
if( i < 0 )
|
|
1393
|
+
{
|
|
1394
|
+
CV_Assert( k == MAT );
|
|
1395
|
+
return *(Mat*)obj;
|
|
1396
|
+
}
|
|
1397
|
+
else
|
|
1398
|
+
{
|
|
1399
|
+
CV_Assert( k == STD_VECTOR_MAT );
|
|
1400
|
+
vector<Mat>& v = *(vector<Mat>*)obj;
|
|
1401
|
+
CV_Assert( i < (int)v.size() );
|
|
1402
|
+
return v[i];
|
|
1403
|
+
}
|
|
1404
|
+
}
|
|
1405
|
+
|
|
1406
|
+
static _OutputArray _none;
|
|
1407
|
+
OutputArray noArray() { return _none; }
|
|
1408
|
+
|
|
1409
|
+
}
|
|
1410
|
+
|
|
1411
|
+
/*************************************************************************************************\
|
|
1412
|
+
Matrix Operations
|
|
1413
|
+
\*************************************************************************************************/
|
|
1414
|
+
|
|
1415
|
+
void cv::hconcat(const Mat* src, size_t nsrc, OutputArray _dst)
|
|
1416
|
+
{
|
|
1417
|
+
if( nsrc == 0 || !src )
|
|
1418
|
+
{
|
|
1419
|
+
_dst.release();
|
|
1420
|
+
return;
|
|
1421
|
+
}
|
|
1422
|
+
|
|
1423
|
+
int totalCols = 0, cols = 0;
|
|
1424
|
+
size_t i;
|
|
1425
|
+
for( i = 0; i < nsrc; i++ )
|
|
1426
|
+
{
|
|
1427
|
+
CV_Assert( !src[i].empty() && src[i].dims <= 2 &&
|
|
1428
|
+
src[i].rows == src[0].rows &&
|
|
1429
|
+
src[i].type() == src[0].type());
|
|
1430
|
+
totalCols += src[i].cols;
|
|
1431
|
+
}
|
|
1432
|
+
_dst.create( src[0].rows, totalCols, src[0].type());
|
|
1433
|
+
Mat dst = _dst.getMat();
|
|
1434
|
+
for( i = 0; i < nsrc; i++ )
|
|
1435
|
+
{
|
|
1436
|
+
Mat dpart = dst(Rect(cols, 0, src[i].cols, src[i].rows));
|
|
1437
|
+
src[i].copyTo(dpart);
|
|
1438
|
+
cols += src[i].cols;
|
|
1439
|
+
}
|
|
1440
|
+
}
|
|
1441
|
+
|
|
1442
|
+
void cv::hconcat(InputArray src1, InputArray src2, OutputArray dst)
|
|
1443
|
+
{
|
|
1444
|
+
Mat src[] = {src1.getMat(), src2.getMat()};
|
|
1445
|
+
hconcat(src, 2, dst);
|
|
1446
|
+
}
|
|
1447
|
+
|
|
1448
|
+
void cv::hconcat(InputArray _src, OutputArray dst)
|
|
1449
|
+
{
|
|
1450
|
+
vector<Mat> src;
|
|
1451
|
+
_src.getMatVector(src);
|
|
1452
|
+
hconcat(!src.empty() ? &src[0] : 0, src.size(), dst);
|
|
1453
|
+
}
|
|
1454
|
+
|
|
1455
|
+
void cv::vconcat(const Mat* src, size_t nsrc, OutputArray _dst)
|
|
1456
|
+
{
|
|
1457
|
+
if( nsrc == 0 || !src )
|
|
1458
|
+
{
|
|
1459
|
+
_dst.release();
|
|
1460
|
+
return;
|
|
1461
|
+
}
|
|
1462
|
+
|
|
1463
|
+
int totalRows = 0, rows = 0;
|
|
1464
|
+
size_t i;
|
|
1465
|
+
for( i = 0; i < nsrc; i++ )
|
|
1466
|
+
{
|
|
1467
|
+
CV_Assert( !src[i].empty() && src[i].dims <= 2 &&
|
|
1468
|
+
src[i].cols == src[0].cols &&
|
|
1469
|
+
src[i].type() == src[0].type());
|
|
1470
|
+
totalRows += src[i].rows;
|
|
1471
|
+
}
|
|
1472
|
+
_dst.create( totalRows, src[0].cols, src[0].type());
|
|
1473
|
+
Mat dst = _dst.getMat();
|
|
1474
|
+
for( i = 0; i < nsrc; i++ )
|
|
1475
|
+
{
|
|
1476
|
+
Mat dpart(dst, Rect(0, rows, src[i].cols, src[i].rows));
|
|
1477
|
+
src[i].copyTo(dpart);
|
|
1478
|
+
rows += src[i].rows;
|
|
1479
|
+
}
|
|
1480
|
+
}
|
|
1481
|
+
|
|
1482
|
+
void cv::vconcat(InputArray src1, InputArray src2, OutputArray dst)
|
|
1483
|
+
{
|
|
1484
|
+
Mat src[] = {src1.getMat(), src2.getMat()};
|
|
1485
|
+
vconcat(src, 2, dst);
|
|
1486
|
+
}
|
|
1487
|
+
|
|
1488
|
+
void cv::vconcat(InputArray _src, OutputArray dst)
|
|
1489
|
+
{
|
|
1490
|
+
vector<Mat> src;
|
|
1491
|
+
_src.getMatVector(src);
|
|
1492
|
+
vconcat(!src.empty() ? &src[0] : 0, src.size(), dst);
|
|
1493
|
+
}
|
|
1494
|
+
|
|
1495
|
+
//////////////////////////////////////// set identity ////////////////////////////////////////////
|
|
1496
|
+
void cv::setIdentity( InputOutputArray _m, const Scalar& s )
|
|
1497
|
+
{
|
|
1498
|
+
Mat m = _m.getMat();
|
|
1499
|
+
CV_Assert( m.dims <= 2 );
|
|
1500
|
+
int i, j, rows = m.rows, cols = m.cols, type = m.type();
|
|
1501
|
+
|
|
1502
|
+
if( type == CV_32FC1 )
|
|
1503
|
+
{
|
|
1504
|
+
float* data = (float*)m.data;
|
|
1505
|
+
float val = (float)s[0];
|
|
1506
|
+
size_t step = m.step/sizeof(data[0]);
|
|
1507
|
+
|
|
1508
|
+
for( i = 0; i < rows; i++, data += step )
|
|
1509
|
+
{
|
|
1510
|
+
for( j = 0; j < cols; j++ )
|
|
1511
|
+
data[j] = 0;
|
|
1512
|
+
if( i < cols )
|
|
1513
|
+
data[i] = val;
|
|
1514
|
+
}
|
|
1515
|
+
}
|
|
1516
|
+
else if( type == CV_64FC1 )
|
|
1517
|
+
{
|
|
1518
|
+
double* data = (double*)m.data;
|
|
1519
|
+
double val = s[0];
|
|
1520
|
+
size_t step = m.step/sizeof(data[0]);
|
|
1521
|
+
|
|
1522
|
+
for( i = 0; i < rows; i++, data += step )
|
|
1523
|
+
{
|
|
1524
|
+
for( j = 0; j < cols; j++ )
|
|
1525
|
+
data[j] = j == i ? val : 0;
|
|
1526
|
+
}
|
|
1527
|
+
}
|
|
1528
|
+
else
|
|
1529
|
+
{
|
|
1530
|
+
m = Scalar(0);
|
|
1531
|
+
m.diag() = s;
|
|
1532
|
+
}
|
|
1533
|
+
}
|
|
1534
|
+
|
|
1535
|
+
//////////////////////////////////////////// trace ///////////////////////////////////////////
|
|
1536
|
+
|
|
1537
|
+
cv::Scalar cv::trace( InputArray _m )
|
|
1538
|
+
{
|
|
1539
|
+
Mat m = _m.getMat();
|
|
1540
|
+
CV_Assert( m.dims <= 2 );
|
|
1541
|
+
int i, type = m.type();
|
|
1542
|
+
int nm = std::min(m.rows, m.cols);
|
|
1543
|
+
|
|
1544
|
+
if( type == CV_32FC1 )
|
|
1545
|
+
{
|
|
1546
|
+
const float* ptr = (const float*)m.data;
|
|
1547
|
+
size_t step = m.step/sizeof(ptr[0]) + 1;
|
|
1548
|
+
double _s = 0;
|
|
1549
|
+
for( i = 0; i < nm; i++ )
|
|
1550
|
+
_s += ptr[i*step];
|
|
1551
|
+
return _s;
|
|
1552
|
+
}
|
|
1553
|
+
|
|
1554
|
+
if( type == CV_64FC1 )
|
|
1555
|
+
{
|
|
1556
|
+
const double* ptr = (const double*)m.data;
|
|
1557
|
+
size_t step = m.step/sizeof(ptr[0]) + 1;
|
|
1558
|
+
double _s = 0;
|
|
1559
|
+
for( i = 0; i < nm; i++ )
|
|
1560
|
+
_s += ptr[i*step];
|
|
1561
|
+
return _s;
|
|
1562
|
+
}
|
|
1563
|
+
|
|
1564
|
+
return cv::sum(m.diag());
|
|
1565
|
+
}
|
|
1566
|
+
|
|
1567
|
+
////////////////////////////////////// transpose /////////////////////////////////////////
|
|
1568
|
+
|
|
1569
|
+
namespace cv
|
|
1570
|
+
{
|
|
1571
|
+
|
|
1572
|
+
template<typename T> static void
|
|
1573
|
+
transpose_( const uchar* src, size_t sstep, uchar* dst, size_t dstep, Size sz )
|
|
1574
|
+
{
|
|
1575
|
+
int i, j, m = sz.width, n = sz.height;
|
|
1576
|
+
|
|
1577
|
+
for( i = 0; i <= m - 4; i += 4 )
|
|
1578
|
+
{
|
|
1579
|
+
T* d0 = (T*)(dst + dstep*i);
|
|
1580
|
+
T* d1 = (T*)(dst + dstep*(i+1));
|
|
1581
|
+
T* d2 = (T*)(dst + dstep*(i+2));
|
|
1582
|
+
T* d3 = (T*)(dst + dstep*(i+3));
|
|
1583
|
+
|
|
1584
|
+
for( j = 0; j <= n - 4; j += 4 )
|
|
1585
|
+
{
|
|
1586
|
+
const T* s0 = (const T*)(src + i*sizeof(T) + sstep*j);
|
|
1587
|
+
const T* s1 = (const T*)(src + i*sizeof(T) + sstep*(j+1));
|
|
1588
|
+
const T* s2 = (const T*)(src + i*sizeof(T) + sstep*(j+2));
|
|
1589
|
+
const T* s3 = (const T*)(src + i*sizeof(T) + sstep*(j+3));
|
|
1590
|
+
|
|
1591
|
+
d0[j] = s0[0]; d0[j+1] = s1[0]; d0[j+2] = s2[0]; d0[j+3] = s3[0];
|
|
1592
|
+
d1[j] = s0[1]; d1[j+1] = s1[1]; d1[j+2] = s2[1]; d1[j+3] = s3[1];
|
|
1593
|
+
d2[j] = s0[2]; d2[j+1] = s1[2]; d2[j+2] = s2[2]; d2[j+3] = s3[2];
|
|
1594
|
+
d3[j] = s0[3]; d3[j+1] = s1[3]; d3[j+2] = s2[3]; d3[j+3] = s3[3];
|
|
1595
|
+
}
|
|
1596
|
+
|
|
1597
|
+
for( ; j < n; j++ )
|
|
1598
|
+
{
|
|
1599
|
+
const T* s0 = (const T*)(src + i*sizeof(T) + j*sstep);
|
|
1600
|
+
d0[j] = s0[0]; d1[j] = s0[1]; d2[j] = s0[2]; d3[j] = s0[3];
|
|
1601
|
+
}
|
|
1602
|
+
}
|
|
1603
|
+
|
|
1604
|
+
for( ; i < m; i++ )
|
|
1605
|
+
{
|
|
1606
|
+
T* d0 = (T*)(dst + dstep*i);
|
|
1607
|
+
|
|
1608
|
+
for( j = 0; j <= n - 4; j += 4 )
|
|
1609
|
+
{
|
|
1610
|
+
const T* s0 = (const T*)(src + i*sizeof(T) + sstep*j);
|
|
1611
|
+
const T* s1 = (const T*)(src + i*sizeof(T) + sstep*(j+1));
|
|
1612
|
+
const T* s2 = (const T*)(src + i*sizeof(T) + sstep*(j+2));
|
|
1613
|
+
const T* s3 = (const T*)(src + i*sizeof(T) + sstep*(j+3));
|
|
1614
|
+
|
|
1615
|
+
d0[j] = s0[0]; d0[j+1] = s1[0]; d0[j+2] = s2[0]; d0[j+3] = s3[0];
|
|
1616
|
+
}
|
|
1617
|
+
|
|
1618
|
+
for( ; j < n; j++ )
|
|
1619
|
+
{
|
|
1620
|
+
const T* s0 = (const T*)(src + i*sizeof(T) + j*sstep);
|
|
1621
|
+
d0[j] = s0[0];
|
|
1622
|
+
}
|
|
1623
|
+
}
|
|
1624
|
+
}
|
|
1625
|
+
|
|
1626
|
+
template<typename T> static void
|
|
1627
|
+
transposeI_( uchar* data, size_t step, int n )
|
|
1628
|
+
{
|
|
1629
|
+
int i, j;
|
|
1630
|
+
for( i = 0; i < n; i++ )
|
|
1631
|
+
{
|
|
1632
|
+
T* row = (T*)(data + step*i);
|
|
1633
|
+
uchar* data1 = data + i*sizeof(T);
|
|
1634
|
+
for( j = i+1; j < n; j++ )
|
|
1635
|
+
std::swap( row[j], *(T*)(data1 + step*j) );
|
|
1636
|
+
}
|
|
1637
|
+
}
|
|
1638
|
+
|
|
1639
|
+
typedef void (*TransposeFunc)( const uchar* src, size_t sstep, uchar* dst, size_t dstep, Size sz );
|
|
1640
|
+
typedef void (*TransposeInplaceFunc)( uchar* data, size_t step, int n );
|
|
1641
|
+
|
|
1642
|
+
#define DEF_TRANSPOSE_FUNC(suffix, type) \
|
|
1643
|
+
static void transpose_##suffix( const uchar* src, size_t sstep, uchar* dst, size_t dstep, Size sz ) \
|
|
1644
|
+
{ transpose_<type>(src, sstep, dst, dstep, sz); } \
|
|
1645
|
+
\
|
|
1646
|
+
static void transposeI_##suffix( uchar* data, size_t step, int n ) \
|
|
1647
|
+
{ transposeI_<type>(data, step, n); }
|
|
1648
|
+
|
|
1649
|
+
DEF_TRANSPOSE_FUNC(8u, uchar)
|
|
1650
|
+
DEF_TRANSPOSE_FUNC(16u, ushort)
|
|
1651
|
+
DEF_TRANSPOSE_FUNC(8uC3, Vec3b)
|
|
1652
|
+
DEF_TRANSPOSE_FUNC(32s, int)
|
|
1653
|
+
DEF_TRANSPOSE_FUNC(16uC3, Vec3s)
|
|
1654
|
+
DEF_TRANSPOSE_FUNC(32sC2, Vec2i)
|
|
1655
|
+
DEF_TRANSPOSE_FUNC(32sC3, Vec3i)
|
|
1656
|
+
DEF_TRANSPOSE_FUNC(32sC4, Vec4i)
|
|
1657
|
+
DEF_TRANSPOSE_FUNC(32sC6, Vec6i)
|
|
1658
|
+
DEF_TRANSPOSE_FUNC(32sC8, Vec8i)
|
|
1659
|
+
|
|
1660
|
+
static TransposeFunc transposeTab[] =
|
|
1661
|
+
{
|
|
1662
|
+
0, transpose_8u, transpose_16u, transpose_8uC3, transpose_32s, 0, transpose_16uC3, 0,
|
|
1663
|
+
transpose_32sC2, 0, 0, 0, transpose_32sC3, 0, 0, 0, transpose_32sC4,
|
|
1664
|
+
0, 0, 0, 0, 0, 0, 0, transpose_32sC6, 0, 0, 0, 0, 0, 0, 0, transpose_32sC8
|
|
1665
|
+
};
|
|
1666
|
+
|
|
1667
|
+
static TransposeInplaceFunc transposeInplaceTab[] =
|
|
1668
|
+
{
|
|
1669
|
+
0, transposeI_8u, transposeI_16u, transposeI_8uC3, transposeI_32s, 0, transposeI_16uC3, 0,
|
|
1670
|
+
transposeI_32sC2, 0, 0, 0, transposeI_32sC3, 0, 0, 0, transposeI_32sC4,
|
|
1671
|
+
0, 0, 0, 0, 0, 0, 0, transposeI_32sC6, 0, 0, 0, 0, 0, 0, 0, transposeI_32sC8
|
|
1672
|
+
};
|
|
1673
|
+
|
|
1674
|
+
}
|
|
1675
|
+
|
|
1676
|
+
void cv::transpose( InputArray _src, OutputArray _dst )
|
|
1677
|
+
{
|
|
1678
|
+
Mat src = _src.getMat();
|
|
1679
|
+
size_t esz = src.elemSize();
|
|
1680
|
+
CV_Assert( src.dims <= 2 && esz <= (size_t)32 );
|
|
1681
|
+
|
|
1682
|
+
_dst.create(src.cols, src.rows, src.type());
|
|
1683
|
+
Mat dst = _dst.getMat();
|
|
1684
|
+
|
|
1685
|
+
if( dst.data == src.data )
|
|
1686
|
+
{
|
|
1687
|
+
TransposeInplaceFunc func = transposeInplaceTab[esz];
|
|
1688
|
+
CV_Assert( func != 0 );
|
|
1689
|
+
func( dst.data, dst.step, dst.rows );
|
|
1690
|
+
}
|
|
1691
|
+
else
|
|
1692
|
+
{
|
|
1693
|
+
TransposeFunc func = transposeTab[esz];
|
|
1694
|
+
CV_Assert( func != 0 );
|
|
1695
|
+
func( src.data, src.step, dst.data, dst.step, src.size() );
|
|
1696
|
+
}
|
|
1697
|
+
}
|
|
1698
|
+
|
|
1699
|
+
|
|
1700
|
+
void cv::completeSymm( InputOutputArray _m, bool LtoR )
|
|
1701
|
+
{
|
|
1702
|
+
Mat m = _m.getMat();
|
|
1703
|
+
CV_Assert( m.dims <= 2 );
|
|
1704
|
+
|
|
1705
|
+
int i, j, nrows = m.rows, type = m.type();
|
|
1706
|
+
int j0 = 0, j1 = nrows;
|
|
1707
|
+
CV_Assert( m.rows == m.cols );
|
|
1708
|
+
|
|
1709
|
+
if( type == CV_32FC1 || type == CV_32SC1 )
|
|
1710
|
+
{
|
|
1711
|
+
int* data = (int*)m.data;
|
|
1712
|
+
size_t step = m.step/sizeof(data[0]);
|
|
1713
|
+
for( i = 0; i < nrows; i++ )
|
|
1714
|
+
{
|
|
1715
|
+
if( !LtoR ) j1 = i; else j0 = i+1;
|
|
1716
|
+
for( j = j0; j < j1; j++ )
|
|
1717
|
+
data[i*step + j] = data[j*step + i];
|
|
1718
|
+
}
|
|
1719
|
+
}
|
|
1720
|
+
else if( type == CV_64FC1 )
|
|
1721
|
+
{
|
|
1722
|
+
double* data = (double*)m.data;
|
|
1723
|
+
size_t step = m.step/sizeof(data[0]);
|
|
1724
|
+
for( i = 0; i < nrows; i++ )
|
|
1725
|
+
{
|
|
1726
|
+
if( !LtoR ) j1 = i; else j0 = i+1;
|
|
1727
|
+
for( j = j0; j < j1; j++ )
|
|
1728
|
+
data[i*step + j] = data[j*step + i];
|
|
1729
|
+
}
|
|
1730
|
+
}
|
|
1731
|
+
else
|
|
1732
|
+
CV_Error( CV_StsUnsupportedFormat, "" );
|
|
1733
|
+
}
|
|
1734
|
+
|
|
1735
|
+
|
|
1736
|
+
cv::Mat cv::Mat::cross(InputArray _m) const
|
|
1737
|
+
{
|
|
1738
|
+
Mat m = _m.getMat();
|
|
1739
|
+
int t = type(), d = CV_MAT_DEPTH(t);
|
|
1740
|
+
CV_Assert( dims <= 2 && m.dims <= 2 && size() == m.size() && t == m.type() &&
|
|
1741
|
+
((rows == 3 && cols == 1) || (cols*channels() == 3 && rows == 1)));
|
|
1742
|
+
Mat result(rows, cols, t);
|
|
1743
|
+
|
|
1744
|
+
if( d == CV_32F )
|
|
1745
|
+
{
|
|
1746
|
+
const float *a = (const float*)data, *b = (const float*)m.data;
|
|
1747
|
+
float* c = (float*)result.data;
|
|
1748
|
+
size_t lda = rows > 1 ? step/sizeof(a[0]) : 1;
|
|
1749
|
+
size_t ldb = rows > 1 ? m.step/sizeof(b[0]) : 1;
|
|
1750
|
+
|
|
1751
|
+
c[0] = a[lda] * b[ldb*2] - a[lda*2] * b[ldb];
|
|
1752
|
+
c[1] = a[lda*2] * b[0] - a[0] * b[ldb*2];
|
|
1753
|
+
c[2] = a[0] * b[ldb] - a[lda] * b[0];
|
|
1754
|
+
}
|
|
1755
|
+
else if( d == CV_64F )
|
|
1756
|
+
{
|
|
1757
|
+
const double *a = (const double*)data, *b = (const double*)m.data;
|
|
1758
|
+
double* c = (double*)result.data;
|
|
1759
|
+
size_t lda = rows > 1 ? step/sizeof(a[0]) : 1;
|
|
1760
|
+
size_t ldb = rows > 1 ? m.step/sizeof(b[0]) : 1;
|
|
1761
|
+
|
|
1762
|
+
c[0] = a[lda] * b[ldb*2] - a[lda*2] * b[ldb];
|
|
1763
|
+
c[1] = a[lda*2] * b[0] - a[0] * b[ldb*2];
|
|
1764
|
+
c[2] = a[0] * b[ldb] - a[lda] * b[0];
|
|
1765
|
+
}
|
|
1766
|
+
|
|
1767
|
+
return result;
|
|
1768
|
+
}
|
|
1769
|
+
|
|
1770
|
+
|
|
1771
|
+
////////////////////////////////////////// reduce ////////////////////////////////////////////
|
|
1772
|
+
|
|
1773
|
+
namespace cv
|
|
1774
|
+
{
|
|
1775
|
+
|
|
1776
|
+
template<typename T, typename ST, class Op> static void
|
|
1777
|
+
reduceR_( const Mat& srcmat, Mat& dstmat )
|
|
1778
|
+
{
|
|
1779
|
+
typedef typename Op::rtype WT;
|
|
1780
|
+
Size size = srcmat.size();
|
|
1781
|
+
size.width *= srcmat.channels();
|
|
1782
|
+
AutoBuffer<WT> buffer(size.width);
|
|
1783
|
+
WT* buf = buffer;
|
|
1784
|
+
ST* dst = (ST*)dstmat.data;
|
|
1785
|
+
const T* src = (const T*)srcmat.data;
|
|
1786
|
+
size_t srcstep = srcmat.step/sizeof(src[0]);
|
|
1787
|
+
int i;
|
|
1788
|
+
Op op;
|
|
1789
|
+
|
|
1790
|
+
for( i = 0; i < size.width; i++ )
|
|
1791
|
+
buf[i] = src[i];
|
|
1792
|
+
|
|
1793
|
+
for( ; --size.height; )
|
|
1794
|
+
{
|
|
1795
|
+
src += srcstep;
|
|
1796
|
+
for( i = 0; i <= size.width - 4; i += 4 )
|
|
1797
|
+
{
|
|
1798
|
+
WT s0, s1;
|
|
1799
|
+
s0 = op(buf[i], (WT)src[i]);
|
|
1800
|
+
s1 = op(buf[i+1], (WT)src[i+1]);
|
|
1801
|
+
buf[i] = s0; buf[i+1] = s1;
|
|
1802
|
+
|
|
1803
|
+
s0 = op(buf[i+2], (WT)src[i+2]);
|
|
1804
|
+
s1 = op(buf[i+3], (WT)src[i+3]);
|
|
1805
|
+
buf[i+2] = s0; buf[i+3] = s1;
|
|
1806
|
+
}
|
|
1807
|
+
|
|
1808
|
+
for( ; i < size.width; i++ )
|
|
1809
|
+
buf[i] = op(buf[i], (WT)src[i]);
|
|
1810
|
+
}
|
|
1811
|
+
|
|
1812
|
+
for( i = 0; i < size.width; i++ )
|
|
1813
|
+
dst[i] = (ST)buf[i];
|
|
1814
|
+
}
|
|
1815
|
+
|
|
1816
|
+
|
|
1817
|
+
template<typename T, typename ST, class Op> static void
|
|
1818
|
+
reduceC_( const Mat& srcmat, Mat& dstmat )
|
|
1819
|
+
{
|
|
1820
|
+
typedef typename Op::rtype WT;
|
|
1821
|
+
Size size = srcmat.size();
|
|
1822
|
+
int i, k, cn = srcmat.channels();
|
|
1823
|
+
size.width *= cn;
|
|
1824
|
+
Op op;
|
|
1825
|
+
|
|
1826
|
+
for( int y = 0; y < size.height; y++ )
|
|
1827
|
+
{
|
|
1828
|
+
const T* src = (const T*)(srcmat.data + srcmat.step*y);
|
|
1829
|
+
ST* dst = (ST*)(dstmat.data + dstmat.step*y);
|
|
1830
|
+
if( size.width == cn )
|
|
1831
|
+
for( k = 0; k < cn; k++ )
|
|
1832
|
+
dst[k] = src[k];
|
|
1833
|
+
else
|
|
1834
|
+
{
|
|
1835
|
+
for( k = 0; k < cn; k++ )
|
|
1836
|
+
{
|
|
1837
|
+
WT a0 = src[k], a1 = src[k+cn];
|
|
1838
|
+
for( i = 2*cn; i <= size.width - 4*cn; i += 4*cn )
|
|
1839
|
+
{
|
|
1840
|
+
a0 = op(a0, (WT)src[i+k]);
|
|
1841
|
+
a1 = op(a1, (WT)src[i+k+cn]);
|
|
1842
|
+
a0 = op(a0, (WT)src[i+k+cn*2]);
|
|
1843
|
+
a1 = op(a1, (WT)src[i+k+cn*3]);
|
|
1844
|
+
}
|
|
1845
|
+
|
|
1846
|
+
for( ; i < size.width; i += cn )
|
|
1847
|
+
{
|
|
1848
|
+
a0 = op(a0, (WT)src[i]);
|
|
1849
|
+
}
|
|
1850
|
+
a0 = op(a0, a1);
|
|
1851
|
+
dst[k] = (ST)a0;
|
|
1852
|
+
}
|
|
1853
|
+
}
|
|
1854
|
+
}
|
|
1855
|
+
}
|
|
1856
|
+
|
|
1857
|
+
typedef void (*ReduceFunc)( const Mat& src, Mat& dst );
|
|
1858
|
+
|
|
1859
|
+
}
|
|
1860
|
+
|
|
1861
|
+
void cv::reduce(InputArray _src, OutputArray _dst, int dim, int op, int dtype)
|
|
1862
|
+
{
|
|
1863
|
+
Mat src = _src.getMat();
|
|
1864
|
+
CV_Assert( src.dims <= 2 );
|
|
1865
|
+
int op0 = op;
|
|
1866
|
+
int stype = src.type(), sdepth = src.depth(), cn = src.channels();
|
|
1867
|
+
if( dtype < 0 )
|
|
1868
|
+
dtype = _dst.fixedType() ? _dst.type() : stype;
|
|
1869
|
+
int ddepth = CV_MAT_DEPTH(dtype);
|
|
1870
|
+
|
|
1871
|
+
_dst.create(dim == 0 ? 1 : src.rows, dim == 0 ? src.cols : 1,
|
|
1872
|
+
CV_MAKETYPE(dtype >= 0 ? dtype : stype, cn));
|
|
1873
|
+
Mat dst = _dst.getMat(), temp = dst;
|
|
1874
|
+
|
|
1875
|
+
CV_Assert( op == CV_REDUCE_SUM || op == CV_REDUCE_MAX ||
|
|
1876
|
+
op == CV_REDUCE_MIN || op == CV_REDUCE_AVG );
|
|
1877
|
+
CV_Assert( src.channels() == dst.channels() );
|
|
1878
|
+
|
|
1879
|
+
if( op == CV_REDUCE_AVG )
|
|
1880
|
+
{
|
|
1881
|
+
op = CV_REDUCE_SUM;
|
|
1882
|
+
if( sdepth < CV_32S && ddepth < CV_32S )
|
|
1883
|
+
{
|
|
1884
|
+
temp.create(dst.rows, dst.cols, CV_32SC(cn));
|
|
1885
|
+
ddepth = CV_32S;
|
|
1886
|
+
}
|
|
1887
|
+
}
|
|
1888
|
+
|
|
1889
|
+
ReduceFunc func = 0;
|
|
1890
|
+
if( dim == 0 )
|
|
1891
|
+
{
|
|
1892
|
+
if( op == CV_REDUCE_SUM )
|
|
1893
|
+
{
|
|
1894
|
+
if(sdepth == CV_8U && ddepth == CV_32S)
|
|
1895
|
+
func = reduceR_<uchar,int,OpAdd<int> >;
|
|
1896
|
+
else if(sdepth == CV_8U && ddepth == CV_32F)
|
|
1897
|
+
func = reduceR_<uchar,float,OpAdd<int> >;
|
|
1898
|
+
else if(sdepth == CV_8U && ddepth == CV_64F)
|
|
1899
|
+
func = reduceR_<uchar,double,OpAdd<int> >;
|
|
1900
|
+
else if(sdepth == CV_16U && ddepth == CV_32F)
|
|
1901
|
+
func = reduceR_<ushort,float,OpAdd<float> >;
|
|
1902
|
+
else if(sdepth == CV_16U && ddepth == CV_64F)
|
|
1903
|
+
func = reduceR_<ushort,double,OpAdd<double> >;
|
|
1904
|
+
else if(sdepth == CV_16S && ddepth == CV_32F)
|
|
1905
|
+
func = reduceR_<short,float,OpAdd<float> >;
|
|
1906
|
+
else if(sdepth == CV_16S && ddepth == CV_64F)
|
|
1907
|
+
func = reduceR_<short,double,OpAdd<double> >;
|
|
1908
|
+
else if(sdepth == CV_32F && ddepth == CV_32F)
|
|
1909
|
+
func = reduceR_<float,float,OpAdd<float> >;
|
|
1910
|
+
else if(sdepth == CV_32F && ddepth == CV_64F)
|
|
1911
|
+
func = reduceR_<float,double,OpAdd<double> >;
|
|
1912
|
+
else if(sdepth == CV_64F && ddepth == CV_64F)
|
|
1913
|
+
func = reduceR_<double,double,OpAdd<double> >;
|
|
1914
|
+
}
|
|
1915
|
+
else if(op == CV_REDUCE_MAX)
|
|
1916
|
+
{
|
|
1917
|
+
if(sdepth == CV_8U && ddepth == CV_8U)
|
|
1918
|
+
func = reduceR_<uchar, uchar, OpMax<uchar> >;
|
|
1919
|
+
else if(sdepth == CV_16U && ddepth == CV_16U)
|
|
1920
|
+
func = reduceR_<ushort, ushort, OpMax<ushort> >;
|
|
1921
|
+
else if(sdepth == CV_16S && ddepth == CV_16S)
|
|
1922
|
+
func = reduceR_<short, short, OpMax<short> >;
|
|
1923
|
+
else if(sdepth == CV_32F && ddepth == CV_32F)
|
|
1924
|
+
func = reduceR_<float, float, OpMax<float> >;
|
|
1925
|
+
else if(sdepth == CV_64F && ddepth == CV_64F)
|
|
1926
|
+
func = reduceR_<double, double, OpMax<double> >;
|
|
1927
|
+
}
|
|
1928
|
+
else if(op == CV_REDUCE_MIN)
|
|
1929
|
+
{
|
|
1930
|
+
if(sdepth == CV_8U && ddepth == CV_8U)
|
|
1931
|
+
func = reduceR_<uchar, uchar, OpMin<uchar> >;
|
|
1932
|
+
else if(sdepth == CV_16U && ddepth == CV_16U)
|
|
1933
|
+
func = reduceR_<ushort, ushort, OpMin<ushort> >;
|
|
1934
|
+
else if(sdepth == CV_16S && ddepth == CV_16S)
|
|
1935
|
+
func = reduceR_<short, short, OpMin<short> >;
|
|
1936
|
+
else if(sdepth == CV_32F && ddepth == CV_32F)
|
|
1937
|
+
func = reduceR_<float, float, OpMin<float> >;
|
|
1938
|
+
else if(sdepth == CV_64F && ddepth == CV_64F)
|
|
1939
|
+
func = reduceR_<double, double, OpMin<double> >;
|
|
1940
|
+
}
|
|
1941
|
+
}
|
|
1942
|
+
else
|
|
1943
|
+
{
|
|
1944
|
+
if(op == CV_REDUCE_SUM)
|
|
1945
|
+
{
|
|
1946
|
+
if(sdepth == CV_8U && ddepth == CV_32S)
|
|
1947
|
+
func = reduceC_<uchar,int,OpAdd<int> >;
|
|
1948
|
+
else if(sdepth == CV_8U && ddepth == CV_32F)
|
|
1949
|
+
func = reduceC_<uchar,float,OpAdd<int> >;
|
|
1950
|
+
else if(sdepth == CV_8U && ddepth == CV_64F)
|
|
1951
|
+
func = reduceC_<uchar,double,OpAdd<int> >;
|
|
1952
|
+
else if(sdepth == CV_16U && ddepth == CV_32F)
|
|
1953
|
+
func = reduceC_<ushort,float,OpAdd<float> >;
|
|
1954
|
+
else if(sdepth == CV_16U && ddepth == CV_64F)
|
|
1955
|
+
func = reduceC_<ushort,double,OpAdd<double> >;
|
|
1956
|
+
else if(sdepth == CV_16S && ddepth == CV_32F)
|
|
1957
|
+
func = reduceC_<short,float,OpAdd<float> >;
|
|
1958
|
+
else if(sdepth == CV_16S && ddepth == CV_64F)
|
|
1959
|
+
func = reduceC_<short,double,OpAdd<double> >;
|
|
1960
|
+
else if(sdepth == CV_32F && ddepth == CV_32F)
|
|
1961
|
+
func = reduceC_<float,float,OpAdd<float> >;
|
|
1962
|
+
else if(sdepth == CV_32F && ddepth == CV_64F)
|
|
1963
|
+
func = reduceC_<float,double,OpAdd<double> >;
|
|
1964
|
+
else if(sdepth == CV_64F && ddepth == CV_64F)
|
|
1965
|
+
func = reduceC_<double,double,OpAdd<double> >;
|
|
1966
|
+
}
|
|
1967
|
+
else if(op == CV_REDUCE_MAX)
|
|
1968
|
+
{
|
|
1969
|
+
if(sdepth == CV_8U && ddepth == CV_8U)
|
|
1970
|
+
func = reduceC_<uchar, uchar, OpMax<uchar> >;
|
|
1971
|
+
else if(sdepth == CV_16U && ddepth == CV_16U)
|
|
1972
|
+
func = reduceC_<ushort, ushort, OpMax<ushort> >;
|
|
1973
|
+
else if(sdepth == CV_16S && ddepth == CV_16S)
|
|
1974
|
+
func = reduceC_<short, short, OpMax<short> >;
|
|
1975
|
+
else if(sdepth == CV_32F && ddepth == CV_32F)
|
|
1976
|
+
func = reduceC_<float, float, OpMax<float> >;
|
|
1977
|
+
else if(sdepth == CV_64F && ddepth == CV_64F)
|
|
1978
|
+
func = reduceC_<double, double, OpMax<double> >;
|
|
1979
|
+
}
|
|
1980
|
+
else if(op == CV_REDUCE_MIN)
|
|
1981
|
+
{
|
|
1982
|
+
if(sdepth == CV_8U && ddepth == CV_8U)
|
|
1983
|
+
func = reduceC_<uchar, uchar, OpMin<uchar> >;
|
|
1984
|
+
else if(sdepth == CV_16U && ddepth == CV_16U)
|
|
1985
|
+
func = reduceC_<ushort, ushort, OpMin<ushort> >;
|
|
1986
|
+
else if(sdepth == CV_16S && ddepth == CV_16S)
|
|
1987
|
+
func = reduceC_<short, short, OpMin<short> >;
|
|
1988
|
+
else if(sdepth == CV_32F && ddepth == CV_32F)
|
|
1989
|
+
func = reduceC_<float, float, OpMin<float> >;
|
|
1990
|
+
else if(sdepth == CV_64F && ddepth == CV_64F)
|
|
1991
|
+
func = reduceC_<double, double, OpMin<double> >;
|
|
1992
|
+
}
|
|
1993
|
+
}
|
|
1994
|
+
|
|
1995
|
+
if( !func )
|
|
1996
|
+
CV_Error( CV_StsUnsupportedFormat,
|
|
1997
|
+
"Unsupported combination of input and output array formats" );
|
|
1998
|
+
|
|
1999
|
+
func( src, temp );
|
|
2000
|
+
|
|
2001
|
+
if( op0 == CV_REDUCE_AVG )
|
|
2002
|
+
temp.convertTo(dst, dst.type(), 1./(dim == 0 ? src.rows : src.cols));
|
|
2003
|
+
}
|
|
2004
|
+
|
|
2005
|
+
|
|
2006
|
+
//////////////////////////////////////// sort ///////////////////////////////////////////
|
|
2007
|
+
|
|
2008
|
+
namespace cv
|
|
2009
|
+
{
|
|
2010
|
+
|
|
2011
|
+
template<typename T> static void sort_( const Mat& src, Mat& dst, int flags )
|
|
2012
|
+
{
|
|
2013
|
+
AutoBuffer<T> buf;
|
|
2014
|
+
T* bptr;
|
|
2015
|
+
int i, j, n, len;
|
|
2016
|
+
bool sortRows = (flags & 1) == CV_SORT_EVERY_ROW;
|
|
2017
|
+
bool inplace = src.data == dst.data;
|
|
2018
|
+
bool sortDescending = (flags & CV_SORT_DESCENDING) != 0;
|
|
2019
|
+
|
|
2020
|
+
if( sortRows )
|
|
2021
|
+
n = src.rows, len = src.cols;
|
|
2022
|
+
else
|
|
2023
|
+
{
|
|
2024
|
+
n = src.cols, len = src.rows;
|
|
2025
|
+
buf.allocate(len);
|
|
2026
|
+
}
|
|
2027
|
+
bptr = (T*)buf;
|
|
2028
|
+
|
|
2029
|
+
for( i = 0; i < n; i++ )
|
|
2030
|
+
{
|
|
2031
|
+
T* ptr = bptr;
|
|
2032
|
+
if( sortRows )
|
|
2033
|
+
{
|
|
2034
|
+
T* dptr = (T*)(dst.data + dst.step*i);
|
|
2035
|
+
if( !inplace )
|
|
2036
|
+
{
|
|
2037
|
+
const T* sptr = (const T*)(src.data + src.step*i);
|
|
2038
|
+
for( j = 0; j < len; j++ )
|
|
2039
|
+
dptr[j] = sptr[j];
|
|
2040
|
+
}
|
|
2041
|
+
ptr = dptr;
|
|
2042
|
+
}
|
|
2043
|
+
else
|
|
2044
|
+
{
|
|
2045
|
+
for( j = 0; j < len; j++ )
|
|
2046
|
+
ptr[j] = ((const T*)(src.data + src.step*j))[i];
|
|
2047
|
+
}
|
|
2048
|
+
std::sort( ptr, ptr + len, LessThan<T>() );
|
|
2049
|
+
if( sortDescending )
|
|
2050
|
+
for( j = 0; j < len/2; j++ )
|
|
2051
|
+
std::swap(ptr[j], ptr[len-1-j]);
|
|
2052
|
+
if( !sortRows )
|
|
2053
|
+
for( j = 0; j < len; j++ )
|
|
2054
|
+
((T*)(dst.data + dst.step*j))[i] = ptr[j];
|
|
2055
|
+
}
|
|
2056
|
+
}
|
|
2057
|
+
|
|
2058
|
+
|
|
2059
|
+
template<typename T> static void sortIdx_( const Mat& src, Mat& dst, int flags )
|
|
2060
|
+
{
|
|
2061
|
+
AutoBuffer<T> buf;
|
|
2062
|
+
AutoBuffer<int> ibuf;
|
|
2063
|
+
T* bptr;
|
|
2064
|
+
int* _iptr;
|
|
2065
|
+
int i, j, n, len;
|
|
2066
|
+
bool sortRows = (flags & 1) == CV_SORT_EVERY_ROW;
|
|
2067
|
+
bool sortDescending = (flags & CV_SORT_DESCENDING) != 0;
|
|
2068
|
+
|
|
2069
|
+
CV_Assert( src.data != dst.data );
|
|
2070
|
+
|
|
2071
|
+
if( sortRows )
|
|
2072
|
+
n = src.rows, len = src.cols;
|
|
2073
|
+
else
|
|
2074
|
+
{
|
|
2075
|
+
n = src.cols, len = src.rows;
|
|
2076
|
+
buf.allocate(len);
|
|
2077
|
+
ibuf.allocate(len);
|
|
2078
|
+
}
|
|
2079
|
+
bptr = (T*)buf;
|
|
2080
|
+
_iptr = (int*)ibuf;
|
|
2081
|
+
|
|
2082
|
+
for( i = 0; i < n; i++ )
|
|
2083
|
+
{
|
|
2084
|
+
T* ptr = bptr;
|
|
2085
|
+
int* iptr = _iptr;
|
|
2086
|
+
|
|
2087
|
+
if( sortRows )
|
|
2088
|
+
{
|
|
2089
|
+
ptr = (T*)(src.data + src.step*i);
|
|
2090
|
+
iptr = (int*)(dst.data + dst.step*i);
|
|
2091
|
+
}
|
|
2092
|
+
else
|
|
2093
|
+
{
|
|
2094
|
+
for( j = 0; j < len; j++ )
|
|
2095
|
+
ptr[j] = ((const T*)(src.data + src.step*j))[i];
|
|
2096
|
+
}
|
|
2097
|
+
for( j = 0; j < len; j++ )
|
|
2098
|
+
iptr[j] = j;
|
|
2099
|
+
std::sort( iptr, iptr + len, LessThanIdx<T>(ptr) );
|
|
2100
|
+
if( sortDescending )
|
|
2101
|
+
for( j = 0; j < len/2; j++ )
|
|
2102
|
+
std::swap(iptr[j], iptr[len-1-j]);
|
|
2103
|
+
if( !sortRows )
|
|
2104
|
+
for( j = 0; j < len; j++ )
|
|
2105
|
+
((int*)(dst.data + dst.step*j))[i] = iptr[j];
|
|
2106
|
+
}
|
|
2107
|
+
}
|
|
2108
|
+
|
|
2109
|
+
typedef void (*SortFunc)(const Mat& src, Mat& dst, int flags);
|
|
2110
|
+
|
|
2111
|
+
}
|
|
2112
|
+
|
|
2113
|
+
void cv::sort( InputArray _src, OutputArray _dst, int flags )
|
|
2114
|
+
{
|
|
2115
|
+
static SortFunc tab[] =
|
|
2116
|
+
{
|
|
2117
|
+
sort_<uchar>, sort_<schar>, sort_<ushort>, sort_<short>,
|
|
2118
|
+
sort_<int>, sort_<float>, sort_<double>, 0
|
|
2119
|
+
};
|
|
2120
|
+
Mat src = _src.getMat();
|
|
2121
|
+
SortFunc func = tab[src.depth()];
|
|
2122
|
+
CV_Assert( src.dims <= 2 && src.channels() == 1 && func != 0 );
|
|
2123
|
+
_dst.create( src.size(), src.type() );
|
|
2124
|
+
Mat dst = _dst.getMat();
|
|
2125
|
+
func( src, dst, flags );
|
|
2126
|
+
}
|
|
2127
|
+
|
|
2128
|
+
void cv::sortIdx( InputArray _src, OutputArray _dst, int flags )
|
|
2129
|
+
{
|
|
2130
|
+
static SortFunc tab[] =
|
|
2131
|
+
{
|
|
2132
|
+
sortIdx_<uchar>, sortIdx_<schar>, sortIdx_<ushort>, sortIdx_<short>,
|
|
2133
|
+
sortIdx_<int>, sortIdx_<float>, sortIdx_<double>, 0
|
|
2134
|
+
};
|
|
2135
|
+
Mat src = _src.getMat();
|
|
2136
|
+
SortFunc func = tab[src.depth()];
|
|
2137
|
+
CV_Assert( src.dims <= 2 && src.channels() == 1 && func != 0 );
|
|
2138
|
+
|
|
2139
|
+
Mat dst = _dst.getMat();
|
|
2140
|
+
if( dst.data == src.data )
|
|
2141
|
+
_dst.release();
|
|
2142
|
+
_dst.create( src.size(), CV_32S );
|
|
2143
|
+
dst = _dst.getMat();
|
|
2144
|
+
func( src, dst, flags );
|
|
2145
|
+
}
|
|
2146
|
+
|
|
2147
|
+
|
|
2148
|
+
////////////////////////////////////////// kmeans ////////////////////////////////////////////
|
|
2149
|
+
|
|
2150
|
+
namespace cv
|
|
2151
|
+
{
|
|
2152
|
+
|
|
2153
|
+
static void generateRandomCenter(const vector<Vec2f>& box, float* center, RNG& rng)
|
|
2154
|
+
{
|
|
2155
|
+
size_t j, dims = box.size();
|
|
2156
|
+
float margin = 1.f/dims;
|
|
2157
|
+
for( j = 0; j < dims; j++ )
|
|
2158
|
+
center[j] = ((float)rng*(1.f+margin*2.f)-margin)*(box[j][1] - box[j][0]) + box[j][0];
|
|
2159
|
+
}
|
|
2160
|
+
|
|
2161
|
+
|
|
2162
|
+
static inline float distance(const float* a, const float* b, int n)
|
|
2163
|
+
{
|
|
2164
|
+
int j = 0; float d = 0.f;
|
|
2165
|
+
#if CV_SSE
|
|
2166
|
+
if( USE_SSE2 )
|
|
2167
|
+
{
|
|
2168
|
+
float CV_DECL_ALIGNED(16) buf[4];
|
|
2169
|
+
__m128 d0 = _mm_setzero_ps(), d1 = _mm_setzero_ps();
|
|
2170
|
+
|
|
2171
|
+
for( ; j <= n - 8; j += 8 )
|
|
2172
|
+
{
|
|
2173
|
+
__m128 t0 = _mm_sub_ps(_mm_loadu_ps(a + j), _mm_loadu_ps(b + j));
|
|
2174
|
+
__m128 t1 = _mm_sub_ps(_mm_loadu_ps(a + j + 4), _mm_loadu_ps(b + j + 4));
|
|
2175
|
+
d0 = _mm_add_ps(d0, _mm_mul_ps(t0, t0));
|
|
2176
|
+
d1 = _mm_add_ps(d1, _mm_mul_ps(t1, t1));
|
|
2177
|
+
}
|
|
2178
|
+
_mm_store_ps(buf, _mm_add_ps(d0, d1));
|
|
2179
|
+
d = buf[0] + buf[1] + buf[2] + buf[3];
|
|
2180
|
+
}
|
|
2181
|
+
else
|
|
2182
|
+
#endif
|
|
2183
|
+
{
|
|
2184
|
+
for( ; j <= n - 4; j += 4 )
|
|
2185
|
+
{
|
|
2186
|
+
float t0 = a[j] - b[j], t1 = a[j+1] - b[j+1], t2 = a[j+2] - b[j+2], t3 = a[j+3] - b[j+3];
|
|
2187
|
+
d += t0*t0 + t1*t1 + t2*t2 + t3*t3;
|
|
2188
|
+
}
|
|
2189
|
+
}
|
|
2190
|
+
|
|
2191
|
+
for( ; j < n; j++ )
|
|
2192
|
+
{
|
|
2193
|
+
float t = a[j] - b[j];
|
|
2194
|
+
d += t*t;
|
|
2195
|
+
}
|
|
2196
|
+
return d;
|
|
2197
|
+
}
|
|
2198
|
+
|
|
2199
|
+
/*
|
|
2200
|
+
k-means center initialization using the following algorithm:
|
|
2201
|
+
Arthur & Vassilvitskii (2007) k-means++: The Advantages of Careful Seeding
|
|
2202
|
+
*/
|
|
2203
|
+
static void generateCentersPP(const Mat& _data, Mat& _out_centers,
|
|
2204
|
+
int K, RNG& rng, int trials)
|
|
2205
|
+
{
|
|
2206
|
+
int i, j, k, dims = _data.cols, N = _data.rows;
|
|
2207
|
+
const float* data = _data.ptr<float>(0);
|
|
2208
|
+
size_t step = _data.step/sizeof(data[0]);
|
|
2209
|
+
vector<int> _centers(K);
|
|
2210
|
+
int* centers = &_centers[0];
|
|
2211
|
+
vector<float> _dist(N*3);
|
|
2212
|
+
float* dist = &_dist[0], *tdist = dist + N, *tdist2 = tdist + N;
|
|
2213
|
+
double sum0 = 0;
|
|
2214
|
+
|
|
2215
|
+
centers[0] = (unsigned)rng % N;
|
|
2216
|
+
|
|
2217
|
+
for( i = 0; i < N; i++ )
|
|
2218
|
+
{
|
|
2219
|
+
dist[i] = distance(data + step*i, data + step*centers[0], dims);
|
|
2220
|
+
sum0 += dist[i];
|
|
2221
|
+
}
|
|
2222
|
+
|
|
2223
|
+
for( k = 1; k < K; k++ )
|
|
2224
|
+
{
|
|
2225
|
+
double bestSum = DBL_MAX;
|
|
2226
|
+
int bestCenter = -1;
|
|
2227
|
+
|
|
2228
|
+
for( j = 0; j < trials; j++ )
|
|
2229
|
+
{
|
|
2230
|
+
double p = (double)rng*sum0, s = 0;
|
|
2231
|
+
for( i = 0; i < N-1; i++ )
|
|
2232
|
+
if( (p -= dist[i]) <= 0 )
|
|
2233
|
+
break;
|
|
2234
|
+
int ci = i;
|
|
2235
|
+
for( i = 0; i < N; i++ )
|
|
2236
|
+
{
|
|
2237
|
+
tdist2[i] = std::min(distance(data + step*i, data + step*ci, dims), dist[i]);
|
|
2238
|
+
s += tdist2[i];
|
|
2239
|
+
}
|
|
2240
|
+
|
|
2241
|
+
if( s < bestSum )
|
|
2242
|
+
{
|
|
2243
|
+
bestSum = s;
|
|
2244
|
+
bestCenter = ci;
|
|
2245
|
+
std::swap(tdist, tdist2);
|
|
2246
|
+
}
|
|
2247
|
+
}
|
|
2248
|
+
centers[k] = bestCenter;
|
|
2249
|
+
sum0 = bestSum;
|
|
2250
|
+
std::swap(dist, tdist);
|
|
2251
|
+
}
|
|
2252
|
+
|
|
2253
|
+
for( k = 0; k < K; k++ )
|
|
2254
|
+
{
|
|
2255
|
+
const float* src = data + step*centers[k];
|
|
2256
|
+
float* dst = _out_centers.ptr<float>(k);
|
|
2257
|
+
for( j = 0; j < dims; j++ )
|
|
2258
|
+
dst[j] = src[j];
|
|
2259
|
+
}
|
|
2260
|
+
}
|
|
2261
|
+
|
|
2262
|
+
}
|
|
2263
|
+
|
|
2264
|
+
double cv::kmeans( InputArray _data, int K,
|
|
2265
|
+
InputOutputArray _bestLabels,
|
|
2266
|
+
TermCriteria criteria, int attempts,
|
|
2267
|
+
int flags, OutputArray _centers )
|
|
2268
|
+
{
|
|
2269
|
+
const int SPP_TRIALS = 3;
|
|
2270
|
+
Mat data = _data.getMat();
|
|
2271
|
+
int N = data.rows > 1 ? data.rows : data.cols;
|
|
2272
|
+
int dims = (data.rows > 1 ? data.cols : 1)*data.channels();
|
|
2273
|
+
int type = data.depth();
|
|
2274
|
+
|
|
2275
|
+
attempts = std::max(attempts, 1);
|
|
2276
|
+
CV_Assert( data.dims <= 2 && type == CV_32F && K > 0 );
|
|
2277
|
+
|
|
2278
|
+
_bestLabels.create(N, 1, CV_32S, -1, true);
|
|
2279
|
+
|
|
2280
|
+
Mat _labels, best_labels = _bestLabels.getMat();
|
|
2281
|
+
if( flags & CV_KMEANS_USE_INITIAL_LABELS )
|
|
2282
|
+
{
|
|
2283
|
+
CV_Assert( (best_labels.cols == 1 || best_labels.rows == 1) &&
|
|
2284
|
+
best_labels.cols*best_labels.rows == N &&
|
|
2285
|
+
best_labels.type() == CV_32S &&
|
|
2286
|
+
best_labels.isContinuous());
|
|
2287
|
+
best_labels.copyTo(_labels);
|
|
2288
|
+
}
|
|
2289
|
+
else
|
|
2290
|
+
{
|
|
2291
|
+
if( !((best_labels.cols == 1 || best_labels.rows == 1) &&
|
|
2292
|
+
best_labels.cols*best_labels.rows == N &&
|
|
2293
|
+
best_labels.type() == CV_32S &&
|
|
2294
|
+
best_labels.isContinuous()))
|
|
2295
|
+
best_labels.create(N, 1, CV_32S);
|
|
2296
|
+
_labels.create(best_labels.size(), best_labels.type());
|
|
2297
|
+
}
|
|
2298
|
+
int* labels = _labels.ptr<int>();
|
|
2299
|
+
|
|
2300
|
+
Mat centers(K, dims, type), old_centers(K, dims, type);
|
|
2301
|
+
vector<int> counters(K);
|
|
2302
|
+
vector<Vec2f> _box(dims);
|
|
2303
|
+
Vec2f* box = &_box[0];
|
|
2304
|
+
|
|
2305
|
+
double best_compactness = DBL_MAX, compactness = 0;
|
|
2306
|
+
RNG& rng = theRNG();
|
|
2307
|
+
int a, iter, i, j, k;
|
|
2308
|
+
|
|
2309
|
+
if( criteria.type & TermCriteria::EPS )
|
|
2310
|
+
criteria.epsilon = std::max(criteria.epsilon, 0.);
|
|
2311
|
+
else
|
|
2312
|
+
criteria.epsilon = FLT_EPSILON;
|
|
2313
|
+
criteria.epsilon *= criteria.epsilon;
|
|
2314
|
+
|
|
2315
|
+
if( criteria.type & TermCriteria::COUNT )
|
|
2316
|
+
criteria.maxCount = std::min(std::max(criteria.maxCount, 2), 100);
|
|
2317
|
+
else
|
|
2318
|
+
criteria.maxCount = 100;
|
|
2319
|
+
|
|
2320
|
+
if( K == 1 )
|
|
2321
|
+
{
|
|
2322
|
+
attempts = 1;
|
|
2323
|
+
criteria.maxCount = 2;
|
|
2324
|
+
}
|
|
2325
|
+
|
|
2326
|
+
const float* sample = data.ptr<float>(0);
|
|
2327
|
+
for( j = 0; j < dims; j++ )
|
|
2328
|
+
box[j] = Vec2f(sample[j], sample[j]);
|
|
2329
|
+
|
|
2330
|
+
for( i = 1; i < N; i++ )
|
|
2331
|
+
{
|
|
2332
|
+
sample = data.ptr<float>(i);
|
|
2333
|
+
for( j = 0; j < dims; j++ )
|
|
2334
|
+
{
|
|
2335
|
+
float v = sample[j];
|
|
2336
|
+
box[j][0] = std::min(box[j][0], v);
|
|
2337
|
+
box[j][1] = std::max(box[j][1], v);
|
|
2338
|
+
}
|
|
2339
|
+
}
|
|
2340
|
+
|
|
2341
|
+
for( a = 0; a < attempts; a++ )
|
|
2342
|
+
{
|
|
2343
|
+
double max_center_shift = DBL_MAX;
|
|
2344
|
+
for( iter = 0; iter < criteria.maxCount && max_center_shift > criteria.epsilon; iter++ )
|
|
2345
|
+
{
|
|
2346
|
+
swap(centers, old_centers);
|
|
2347
|
+
|
|
2348
|
+
if( iter == 0 && (a > 0 || !(flags & KMEANS_USE_INITIAL_LABELS)) )
|
|
2349
|
+
{
|
|
2350
|
+
if( flags & KMEANS_PP_CENTERS )
|
|
2351
|
+
generateCentersPP(data, centers, K, rng, SPP_TRIALS);
|
|
2352
|
+
else
|
|
2353
|
+
{
|
|
2354
|
+
for( k = 0; k < K; k++ )
|
|
2355
|
+
generateRandomCenter(_box, centers.ptr<float>(k), rng);
|
|
2356
|
+
}
|
|
2357
|
+
}
|
|
2358
|
+
else
|
|
2359
|
+
{
|
|
2360
|
+
if( iter == 0 && a == 0 && (flags & KMEANS_USE_INITIAL_LABELS) )
|
|
2361
|
+
{
|
|
2362
|
+
for( i = 0; i < N; i++ )
|
|
2363
|
+
CV_Assert( (unsigned)labels[i] < (unsigned)K );
|
|
2364
|
+
}
|
|
2365
|
+
|
|
2366
|
+
// compute centers
|
|
2367
|
+
centers = Scalar(0);
|
|
2368
|
+
for( k = 0; k < K; k++ )
|
|
2369
|
+
counters[k] = 0;
|
|
2370
|
+
|
|
2371
|
+
for( i = 0; i < N; i++ )
|
|
2372
|
+
{
|
|
2373
|
+
sample = data.ptr<float>(i);
|
|
2374
|
+
k = labels[i];
|
|
2375
|
+
float* center = centers.ptr<float>(k);
|
|
2376
|
+
for( j = 0; j <= dims - 4; j += 4 )
|
|
2377
|
+
{
|
|
2378
|
+
float t0 = center[j] + sample[j];
|
|
2379
|
+
float t1 = center[j+1] + sample[j+1];
|
|
2380
|
+
|
|
2381
|
+
center[j] = t0;
|
|
2382
|
+
center[j+1] = t1;
|
|
2383
|
+
|
|
2384
|
+
t0 = center[j+2] + sample[j+2];
|
|
2385
|
+
t1 = center[j+3] + sample[j+3];
|
|
2386
|
+
|
|
2387
|
+
center[j+2] = t0;
|
|
2388
|
+
center[j+3] = t1;
|
|
2389
|
+
}
|
|
2390
|
+
for( ; j < dims; j++ )
|
|
2391
|
+
center[j] += sample[j];
|
|
2392
|
+
counters[k]++;
|
|
2393
|
+
}
|
|
2394
|
+
|
|
2395
|
+
if( iter > 0 )
|
|
2396
|
+
max_center_shift = 0;
|
|
2397
|
+
|
|
2398
|
+
for( k = 0; k < K; k++ )
|
|
2399
|
+
{
|
|
2400
|
+
float* center = centers.ptr<float>(k);
|
|
2401
|
+
if( counters[k] != 0 )
|
|
2402
|
+
{
|
|
2403
|
+
float scale = 1.f/counters[k];
|
|
2404
|
+
for( j = 0; j < dims; j++ )
|
|
2405
|
+
center[j] *= scale;
|
|
2406
|
+
}
|
|
2407
|
+
else
|
|
2408
|
+
generateRandomCenter(_box, center, rng);
|
|
2409
|
+
|
|
2410
|
+
if( iter > 0 )
|
|
2411
|
+
{
|
|
2412
|
+
double dist = 0;
|
|
2413
|
+
const float* old_center = old_centers.ptr<float>(k);
|
|
2414
|
+
for( j = 0; j < dims; j++ )
|
|
2415
|
+
{
|
|
2416
|
+
double t = center[j] - old_center[j];
|
|
2417
|
+
dist += t*t;
|
|
2418
|
+
}
|
|
2419
|
+
max_center_shift = std::max(max_center_shift, dist);
|
|
2420
|
+
}
|
|
2421
|
+
}
|
|
2422
|
+
}
|
|
2423
|
+
|
|
2424
|
+
// assign labels
|
|
2425
|
+
compactness = 0;
|
|
2426
|
+
for( i = 0; i < N; i++ )
|
|
2427
|
+
{
|
|
2428
|
+
sample = data.ptr<float>(i);
|
|
2429
|
+
int k_best = 0;
|
|
2430
|
+
double min_dist = DBL_MAX;
|
|
2431
|
+
|
|
2432
|
+
for( k = 0; k < K; k++ )
|
|
2433
|
+
{
|
|
2434
|
+
const float* center = centers.ptr<float>(k);
|
|
2435
|
+
double dist = distance(sample, center, dims);
|
|
2436
|
+
|
|
2437
|
+
if( min_dist > dist )
|
|
2438
|
+
{
|
|
2439
|
+
min_dist = dist;
|
|
2440
|
+
k_best = k;
|
|
2441
|
+
}
|
|
2442
|
+
}
|
|
2443
|
+
|
|
2444
|
+
compactness += min_dist;
|
|
2445
|
+
labels[i] = k_best;
|
|
2446
|
+
}
|
|
2447
|
+
}
|
|
2448
|
+
|
|
2449
|
+
if( compactness < best_compactness )
|
|
2450
|
+
{
|
|
2451
|
+
best_compactness = compactness;
|
|
2452
|
+
if( _centers.needed() )
|
|
2453
|
+
centers.copyTo(_centers);
|
|
2454
|
+
_labels.copyTo(best_labels);
|
|
2455
|
+
}
|
|
2456
|
+
}
|
|
2457
|
+
|
|
2458
|
+
return best_compactness;
|
|
2459
|
+
}
|
|
2460
|
+
|
|
2461
|
+
|
|
2462
|
+
CV_IMPL void cvSetIdentity( CvArr* arr, CvScalar value )
|
|
2463
|
+
{
|
|
2464
|
+
cv::Mat m = cv::cvarrToMat(arr);
|
|
2465
|
+
cv::setIdentity(m, value);
|
|
2466
|
+
}
|
|
2467
|
+
|
|
2468
|
+
|
|
2469
|
+
CV_IMPL CvScalar cvTrace( const CvArr* arr )
|
|
2470
|
+
{
|
|
2471
|
+
return cv::trace(cv::cvarrToMat(arr));
|
|
2472
|
+
}
|
|
2473
|
+
|
|
2474
|
+
|
|
2475
|
+
CV_IMPL void cvTranspose( const CvArr* srcarr, CvArr* dstarr )
|
|
2476
|
+
{
|
|
2477
|
+
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
|
|
2478
|
+
|
|
2479
|
+
CV_Assert( src.rows == dst.cols && src.cols == dst.rows && src.type() == dst.type() );
|
|
2480
|
+
transpose( src, dst );
|
|
2481
|
+
}
|
|
2482
|
+
|
|
2483
|
+
|
|
2484
|
+
CV_IMPL void cvCompleteSymm( CvMat* matrix, int LtoR )
|
|
2485
|
+
{
|
|
2486
|
+
cv::Mat m(matrix);
|
|
2487
|
+
cv::completeSymm( m, LtoR != 0 );
|
|
2488
|
+
}
|
|
2489
|
+
|
|
2490
|
+
|
|
2491
|
+
CV_IMPL void cvCrossProduct( const CvArr* srcAarr, const CvArr* srcBarr, CvArr* dstarr )
|
|
2492
|
+
{
|
|
2493
|
+
cv::Mat srcA = cv::cvarrToMat(srcAarr), dst = cv::cvarrToMat(dstarr);
|
|
2494
|
+
|
|
2495
|
+
CV_Assert( srcA.size() == dst.size() && srcA.type() == dst.type() );
|
|
2496
|
+
srcA.cross(cv::cvarrToMat(srcBarr)).copyTo(dst);
|
|
2497
|
+
}
|
|
2498
|
+
|
|
2499
|
+
|
|
2500
|
+
CV_IMPL void
|
|
2501
|
+
cvReduce( const CvArr* srcarr, CvArr* dstarr, int dim, int op )
|
|
2502
|
+
{
|
|
2503
|
+
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
|
|
2504
|
+
|
|
2505
|
+
if( dim < 0 )
|
|
2506
|
+
dim = src.rows > dst.rows ? 0 : src.cols > dst.cols ? 1 : dst.cols == 1;
|
|
2507
|
+
|
|
2508
|
+
if( dim > 1 )
|
|
2509
|
+
CV_Error( CV_StsOutOfRange, "The reduced dimensionality index is out of range" );
|
|
2510
|
+
|
|
2511
|
+
if( (dim == 0 && (dst.cols != src.cols || dst.rows != 1)) ||
|
|
2512
|
+
(dim == 1 && (dst.rows != src.rows || dst.cols != 1)) )
|
|
2513
|
+
CV_Error( CV_StsBadSize, "The output array size is incorrect" );
|
|
2514
|
+
|
|
2515
|
+
if( src.channels() != dst.channels() )
|
|
2516
|
+
CV_Error( CV_StsUnmatchedFormats, "Input and output arrays must have the same number of channels" );
|
|
2517
|
+
|
|
2518
|
+
cv::reduce(src, dst, dim, op, dst.type());
|
|
2519
|
+
}
|
|
2520
|
+
|
|
2521
|
+
|
|
2522
|
+
CV_IMPL CvArr*
|
|
2523
|
+
cvRange( CvArr* arr, double start, double end )
|
|
2524
|
+
{
|
|
2525
|
+
int ok = 0;
|
|
2526
|
+
|
|
2527
|
+
CvMat stub, *mat = (CvMat*)arr;
|
|
2528
|
+
double delta;
|
|
2529
|
+
int type, step;
|
|
2530
|
+
double val = start;
|
|
2531
|
+
int i, j;
|
|
2532
|
+
int rows, cols;
|
|
2533
|
+
|
|
2534
|
+
if( !CV_IS_MAT(mat) )
|
|
2535
|
+
mat = cvGetMat( mat, &stub);
|
|
2536
|
+
|
|
2537
|
+
rows = mat->rows;
|
|
2538
|
+
cols = mat->cols;
|
|
2539
|
+
type = CV_MAT_TYPE(mat->type);
|
|
2540
|
+
delta = (end-start)/(rows*cols);
|
|
2541
|
+
|
|
2542
|
+
if( CV_IS_MAT_CONT(mat->type) )
|
|
2543
|
+
{
|
|
2544
|
+
cols *= rows;
|
|
2545
|
+
rows = 1;
|
|
2546
|
+
step = 1;
|
|
2547
|
+
}
|
|
2548
|
+
else
|
|
2549
|
+
step = mat->step / CV_ELEM_SIZE(type);
|
|
2550
|
+
|
|
2551
|
+
if( type == CV_32SC1 )
|
|
2552
|
+
{
|
|
2553
|
+
int* idata = mat->data.i;
|
|
2554
|
+
int ival = cvRound(val), idelta = cvRound(delta);
|
|
2555
|
+
|
|
2556
|
+
if( fabs(val - ival) < DBL_EPSILON &&
|
|
2557
|
+
fabs(delta - idelta) < DBL_EPSILON )
|
|
2558
|
+
{
|
|
2559
|
+
for( i = 0; i < rows; i++, idata += step )
|
|
2560
|
+
for( j = 0; j < cols; j++, ival += idelta )
|
|
2561
|
+
idata[j] = ival;
|
|
2562
|
+
}
|
|
2563
|
+
else
|
|
2564
|
+
{
|
|
2565
|
+
for( i = 0; i < rows; i++, idata += step )
|
|
2566
|
+
for( j = 0; j < cols; j++, val += delta )
|
|
2567
|
+
idata[j] = cvRound(val);
|
|
2568
|
+
}
|
|
2569
|
+
}
|
|
2570
|
+
else if( type == CV_32FC1 )
|
|
2571
|
+
{
|
|
2572
|
+
float* fdata = mat->data.fl;
|
|
2573
|
+
for( i = 0; i < rows; i++, fdata += step )
|
|
2574
|
+
for( j = 0; j < cols; j++, val += delta )
|
|
2575
|
+
fdata[j] = (float)val;
|
|
2576
|
+
}
|
|
2577
|
+
else
|
|
2578
|
+
CV_Error( CV_StsUnsupportedFormat, "The function only supports 32sC1 and 32fC1 datatypes" );
|
|
2579
|
+
|
|
2580
|
+
ok = 1;
|
|
2581
|
+
return ok ? arr : 0;
|
|
2582
|
+
}
|
|
2583
|
+
|
|
2584
|
+
|
|
2585
|
+
CV_IMPL void
|
|
2586
|
+
cvSort( const CvArr* _src, CvArr* _dst, CvArr* _idx, int flags )
|
|
2587
|
+
{
|
|
2588
|
+
cv::Mat src = cv::cvarrToMat(_src), dst, idx;
|
|
2589
|
+
|
|
2590
|
+
if( _idx )
|
|
2591
|
+
{
|
|
2592
|
+
cv::Mat idx0 = cv::cvarrToMat(_idx), idx = idx0;
|
|
2593
|
+
CV_Assert( src.size() == idx.size() && idx.type() == CV_32S && src.data != idx.data );
|
|
2594
|
+
cv::sortIdx( src, idx, flags );
|
|
2595
|
+
CV_Assert( idx0.data == idx.data );
|
|
2596
|
+
}
|
|
2597
|
+
|
|
2598
|
+
if( _dst )
|
|
2599
|
+
{
|
|
2600
|
+
cv::Mat dst0 = cv::cvarrToMat(_dst), dst = dst0;
|
|
2601
|
+
CV_Assert( src.size() == dst.size() && src.type() == dst.type() );
|
|
2602
|
+
cv::sort( src, dst, flags );
|
|
2603
|
+
CV_Assert( dst0.data == dst.data );
|
|
2604
|
+
}
|
|
2605
|
+
}
|
|
2606
|
+
|
|
2607
|
+
|
|
2608
|
+
CV_IMPL int
|
|
2609
|
+
cvKMeans2( const CvArr* _samples, int cluster_count, CvArr* _labels,
|
|
2610
|
+
CvTermCriteria termcrit, int attempts, CvRNG*,
|
|
2611
|
+
int flags, CvArr* _centers, double* _compactness )
|
|
2612
|
+
{
|
|
2613
|
+
cv::Mat data = cv::cvarrToMat(_samples), labels = cv::cvarrToMat(_labels), centers;
|
|
2614
|
+
if( _centers )
|
|
2615
|
+
{
|
|
2616
|
+
centers = cv::cvarrToMat(_centers);
|
|
2617
|
+
centers = centers.reshape(1);
|
|
2618
|
+
}
|
|
2619
|
+
CV_Assert( labels.isContinuous() && labels.type() == CV_32S &&
|
|
2620
|
+
(labels.cols == 1 || labels.rows == 1) &&
|
|
2621
|
+
labels.cols + labels.rows - 1 == data.rows );
|
|
2622
|
+
|
|
2623
|
+
double compactness = cv::kmeans(data, cluster_count, labels, termcrit, attempts,
|
|
2624
|
+
flags, _centers ? cv::_OutputArray(centers) : cv::_OutputArray() );
|
|
2625
|
+
if( _compactness )
|
|
2626
|
+
*_compactness = compactness;
|
|
2627
|
+
return 1;
|
|
2628
|
+
}
|
|
2629
|
+
|
|
2630
|
+
///////////////////////////// n-dimensional matrices ////////////////////////////
|
|
2631
|
+
|
|
2632
|
+
namespace cv
|
|
2633
|
+
{
|
|
2634
|
+
|
|
2635
|
+
Mat Mat::reshape(int, int, const int*) const
|
|
2636
|
+
{
|
|
2637
|
+
CV_Error(CV_StsNotImplemented, "");
|
|
2638
|
+
// TBD
|
|
2639
|
+
return Mat();
|
|
2640
|
+
}
|
|
2641
|
+
|
|
2642
|
+
Mat::operator CvMatND() const
|
|
2643
|
+
{
|
|
2644
|
+
CvMatND mat;
|
|
2645
|
+
cvInitMatNDHeader( &mat, dims, size, type(), data );
|
|
2646
|
+
int i, d = dims;
|
|
2647
|
+
for( i = 0; i < d; i++ )
|
|
2648
|
+
mat.dim[i].step = (int)step[i];
|
|
2649
|
+
mat.type |= flags & CONTINUOUS_FLAG;
|
|
2650
|
+
return mat;
|
|
2651
|
+
}
|
|
2652
|
+
|
|
2653
|
+
NAryMatIterator::NAryMatIterator()
|
|
2654
|
+
: arrays(0), planes(0), ptrs(0), narrays(0), nplanes(0), size(0), iterdepth(0), idx(0)
|
|
2655
|
+
{
|
|
2656
|
+
}
|
|
2657
|
+
|
|
2658
|
+
NAryMatIterator::NAryMatIterator(const Mat** _arrays, Mat* _planes, int _narrays)
|
|
2659
|
+
: arrays(0), planes(0), ptrs(0), narrays(0), nplanes(0), size(0), iterdepth(0), idx(0)
|
|
2660
|
+
{
|
|
2661
|
+
init(_arrays, _planes, 0, _narrays);
|
|
2662
|
+
}
|
|
2663
|
+
|
|
2664
|
+
NAryMatIterator::NAryMatIterator(const Mat** _arrays, uchar** _ptrs, int _narrays)
|
|
2665
|
+
: arrays(0), planes(0), ptrs(0), narrays(0), nplanes(0), size(0), iterdepth(0), idx(0)
|
|
2666
|
+
{
|
|
2667
|
+
init(_arrays, 0, _ptrs, _narrays);
|
|
2668
|
+
}
|
|
2669
|
+
|
|
2670
|
+
void NAryMatIterator::init(const Mat** _arrays, Mat* _planes, uchar** _ptrs, int _narrays)
|
|
2671
|
+
{
|
|
2672
|
+
CV_Assert( _arrays && (_ptrs || _planes) );
|
|
2673
|
+
int i, j, d1=0, i0 = -1, d = -1;
|
|
2674
|
+
|
|
2675
|
+
arrays = _arrays;
|
|
2676
|
+
ptrs = _ptrs;
|
|
2677
|
+
planes = _planes;
|
|
2678
|
+
narrays = _narrays;
|
|
2679
|
+
nplanes = 0;
|
|
2680
|
+
size = 0;
|
|
2681
|
+
|
|
2682
|
+
if( narrays < 0 )
|
|
2683
|
+
{
|
|
2684
|
+
for( i = 0; _arrays[i] != 0; i++ )
|
|
2685
|
+
;
|
|
2686
|
+
narrays = i;
|
|
2687
|
+
CV_Assert(narrays <= 1000);
|
|
2688
|
+
}
|
|
2689
|
+
|
|
2690
|
+
iterdepth = 0;
|
|
2691
|
+
|
|
2692
|
+
for( i = 0; i < narrays; i++ )
|
|
2693
|
+
{
|
|
2694
|
+
CV_Assert(arrays[i] != 0);
|
|
2695
|
+
const Mat& A = *arrays[i];
|
|
2696
|
+
if( ptrs )
|
|
2697
|
+
ptrs[i] = A.data;
|
|
2698
|
+
|
|
2699
|
+
if( !A.data )
|
|
2700
|
+
continue;
|
|
2701
|
+
|
|
2702
|
+
if( i0 < 0 )
|
|
2703
|
+
{
|
|
2704
|
+
i0 = i;
|
|
2705
|
+
d = A.dims;
|
|
2706
|
+
|
|
2707
|
+
// find the first dimensionality which is different from 1;
|
|
2708
|
+
// in any of the arrays the first "d1" step do not affect the continuity
|
|
2709
|
+
for( d1 = 0; d1 < d; d1++ )
|
|
2710
|
+
if( A.size[d1] > 1 )
|
|
2711
|
+
break;
|
|
2712
|
+
}
|
|
2713
|
+
else
|
|
2714
|
+
CV_Assert( A.size == arrays[i0]->size );
|
|
2715
|
+
|
|
2716
|
+
if( !A.isContinuous() )
|
|
2717
|
+
{
|
|
2718
|
+
CV_Assert( A.step[d-1] == A.elemSize() );
|
|
2719
|
+
for( j = d-1; j > d1; j-- )
|
|
2720
|
+
if( A.step[j]*A.size[j] < A.step[j-1] )
|
|
2721
|
+
break;
|
|
2722
|
+
iterdepth = std::max(iterdepth, j);
|
|
2723
|
+
}
|
|
2724
|
+
}
|
|
2725
|
+
|
|
2726
|
+
if( i0 >= 0 )
|
|
2727
|
+
{
|
|
2728
|
+
size = arrays[i0]->size[d-1];
|
|
2729
|
+
for( j = d-1; j > iterdepth; j-- )
|
|
2730
|
+
{
|
|
2731
|
+
int64 total1 = (int64)size*arrays[i0]->size[j-1];
|
|
2732
|
+
if( total1 != (int)total1 )
|
|
2733
|
+
break;
|
|
2734
|
+
size = (int)total1;
|
|
2735
|
+
}
|
|
2736
|
+
|
|
2737
|
+
iterdepth = j;
|
|
2738
|
+
if( iterdepth == d1 )
|
|
2739
|
+
iterdepth = 0;
|
|
2740
|
+
|
|
2741
|
+
nplanes = 1;
|
|
2742
|
+
for( j = iterdepth-1; j >= 0; j-- )
|
|
2743
|
+
nplanes *= arrays[i0]->size[j];
|
|
2744
|
+
}
|
|
2745
|
+
else
|
|
2746
|
+
iterdepth = 0;
|
|
2747
|
+
|
|
2748
|
+
idx = 0;
|
|
2749
|
+
|
|
2750
|
+
if( !planes )
|
|
2751
|
+
return;
|
|
2752
|
+
|
|
2753
|
+
for( i = 0; i < narrays; i++ )
|
|
2754
|
+
{
|
|
2755
|
+
CV_Assert(arrays[i] != 0);
|
|
2756
|
+
const Mat& A = *arrays[i];
|
|
2757
|
+
|
|
2758
|
+
if( !A.data )
|
|
2759
|
+
{
|
|
2760
|
+
planes[i] = Mat();
|
|
2761
|
+
continue;
|
|
2762
|
+
}
|
|
2763
|
+
|
|
2764
|
+
planes[i] = Mat(1, (int)size, A.type(), A.data);
|
|
2765
|
+
}
|
|
2766
|
+
}
|
|
2767
|
+
|
|
2768
|
+
|
|
2769
|
+
NAryMatIterator& NAryMatIterator::operator ++()
|
|
2770
|
+
{
|
|
2771
|
+
if( idx >= nplanes-1 )
|
|
2772
|
+
return *this;
|
|
2773
|
+
++idx;
|
|
2774
|
+
|
|
2775
|
+
if( iterdepth == 1 )
|
|
2776
|
+
{
|
|
2777
|
+
if( ptrs )
|
|
2778
|
+
{
|
|
2779
|
+
for( int i = 0; i < narrays; i++ )
|
|
2780
|
+
{
|
|
2781
|
+
if( !ptrs[i] )
|
|
2782
|
+
continue;
|
|
2783
|
+
ptrs[i] = arrays[i]->data + arrays[i]->step[0]*idx;
|
|
2784
|
+
}
|
|
2785
|
+
}
|
|
2786
|
+
if( planes )
|
|
2787
|
+
{
|
|
2788
|
+
for( int i = 0; i < narrays; i++ )
|
|
2789
|
+
{
|
|
2790
|
+
if( !planes[i].data )
|
|
2791
|
+
continue;
|
|
2792
|
+
planes[i].data = arrays[i]->data + arrays[i]->step[0]*idx;
|
|
2793
|
+
}
|
|
2794
|
+
}
|
|
2795
|
+
}
|
|
2796
|
+
else
|
|
2797
|
+
{
|
|
2798
|
+
for( int i = 0; i < narrays; i++ )
|
|
2799
|
+
{
|
|
2800
|
+
const Mat& A = *arrays[i];
|
|
2801
|
+
if( !A.data )
|
|
2802
|
+
continue;
|
|
2803
|
+
int _idx = (int)idx;
|
|
2804
|
+
uchar* data = A.data;
|
|
2805
|
+
for( int j = iterdepth-1; j >= 0 && _idx > 0; j-- )
|
|
2806
|
+
{
|
|
2807
|
+
int szi = A.size[j], t = _idx/szi;
|
|
2808
|
+
data += (_idx - t * szi)*A.step[j];
|
|
2809
|
+
_idx = t;
|
|
2810
|
+
}
|
|
2811
|
+
if( ptrs )
|
|
2812
|
+
ptrs[i] = data;
|
|
2813
|
+
if( planes )
|
|
2814
|
+
planes[i].data = data;
|
|
2815
|
+
}
|
|
2816
|
+
}
|
|
2817
|
+
|
|
2818
|
+
return *this;
|
|
2819
|
+
}
|
|
2820
|
+
|
|
2821
|
+
NAryMatIterator NAryMatIterator::operator ++(int)
|
|
2822
|
+
{
|
|
2823
|
+
NAryMatIterator it = *this;
|
|
2824
|
+
++*this;
|
|
2825
|
+
return it;
|
|
2826
|
+
}
|
|
2827
|
+
|
|
2828
|
+
///////////////////////////////////////////////////////////////////////////
|
|
2829
|
+
// MatConstIterator //
|
|
2830
|
+
///////////////////////////////////////////////////////////////////////////
|
|
2831
|
+
|
|
2832
|
+
Point MatConstIterator::pos() const
|
|
2833
|
+
{
|
|
2834
|
+
if( !m )
|
|
2835
|
+
return Point();
|
|
2836
|
+
CV_DbgAssert(m->dims <= 2);
|
|
2837
|
+
|
|
2838
|
+
ptrdiff_t ofs = ptr - m->data;
|
|
2839
|
+
int y = (int)(ofs/m->step[0]);
|
|
2840
|
+
return Point((int)((ofs - y*m->step[0])/elemSize), y);
|
|
2841
|
+
}
|
|
2842
|
+
|
|
2843
|
+
void MatConstIterator::pos(int* _idx) const
|
|
2844
|
+
{
|
|
2845
|
+
CV_Assert(m != 0 && _idx);
|
|
2846
|
+
ptrdiff_t ofs = ptr - m->data;
|
|
2847
|
+
for( int i = 0; i < m->dims; i++ )
|
|
2848
|
+
{
|
|
2849
|
+
size_t s = m->step[i], v = ofs/s;
|
|
2850
|
+
ofs -= v*s;
|
|
2851
|
+
_idx[i] = (int)v;
|
|
2852
|
+
}
|
|
2853
|
+
}
|
|
2854
|
+
|
|
2855
|
+
ptrdiff_t MatConstIterator::lpos() const
|
|
2856
|
+
{
|
|
2857
|
+
if(!m)
|
|
2858
|
+
return 0;
|
|
2859
|
+
if( m->isContinuous() )
|
|
2860
|
+
return (ptr - sliceStart)/elemSize;
|
|
2861
|
+
ptrdiff_t ofs = ptr - m->data;
|
|
2862
|
+
int i, d = m->dims;
|
|
2863
|
+
if( d == 2 )
|
|
2864
|
+
{
|
|
2865
|
+
ptrdiff_t y = ofs/m->step[0];
|
|
2866
|
+
return y*m->cols + (ofs - y*m->step[0])/elemSize;
|
|
2867
|
+
}
|
|
2868
|
+
ptrdiff_t result = 0;
|
|
2869
|
+
for( i = 0; i < d; i++ )
|
|
2870
|
+
{
|
|
2871
|
+
size_t s = m->step[i], v = ofs/s;
|
|
2872
|
+
ofs -= v*s;
|
|
2873
|
+
result = result*m->size[i] + v;
|
|
2874
|
+
}
|
|
2875
|
+
return result;
|
|
2876
|
+
}
|
|
2877
|
+
|
|
2878
|
+
void MatConstIterator::seek(ptrdiff_t ofs, bool relative)
|
|
2879
|
+
{
|
|
2880
|
+
if( m->isContinuous() )
|
|
2881
|
+
{
|
|
2882
|
+
ptr = (relative ? ptr : sliceStart) + ofs*elemSize;
|
|
2883
|
+
if( ptr < sliceStart )
|
|
2884
|
+
ptr = sliceStart;
|
|
2885
|
+
else if( ptr > sliceEnd )
|
|
2886
|
+
ptr = sliceEnd;
|
|
2887
|
+
return;
|
|
2888
|
+
}
|
|
2889
|
+
|
|
2890
|
+
int d = m->dims;
|
|
2891
|
+
if( d == 2 )
|
|
2892
|
+
{
|
|
2893
|
+
ptrdiff_t ofs0, y;
|
|
2894
|
+
if( relative )
|
|
2895
|
+
{
|
|
2896
|
+
ofs0 = ptr - m->data;
|
|
2897
|
+
y = ofs0/m->step[0];
|
|
2898
|
+
ofs += y*m->cols + (ofs0 - y*m->step[0])/elemSize;
|
|
2899
|
+
}
|
|
2900
|
+
y = ofs/m->cols;
|
|
2901
|
+
int y1 = std::min(std::max((int)y, 0), m->rows-1);
|
|
2902
|
+
sliceStart = m->data + y1*m->step[0];
|
|
2903
|
+
sliceEnd = sliceStart + m->cols*elemSize;
|
|
2904
|
+
ptr = y < 0 ? sliceStart : y >= m->rows ? sliceEnd :
|
|
2905
|
+
sliceStart + (ofs - y*m->cols)*elemSize;
|
|
2906
|
+
return;
|
|
2907
|
+
}
|
|
2908
|
+
|
|
2909
|
+
if( relative )
|
|
2910
|
+
ofs += lpos();
|
|
2911
|
+
|
|
2912
|
+
if( ofs < 0 )
|
|
2913
|
+
ofs = 0;
|
|
2914
|
+
|
|
2915
|
+
int szi = m->size[d-1];
|
|
2916
|
+
ptrdiff_t t = ofs/szi;
|
|
2917
|
+
int v = (int)(ofs - t*szi);
|
|
2918
|
+
ofs = t;
|
|
2919
|
+
ptr = m->data + v*elemSize;
|
|
2920
|
+
sliceStart = m->data;
|
|
2921
|
+
|
|
2922
|
+
for( int i = d-2; i >= 0; i-- )
|
|
2923
|
+
{
|
|
2924
|
+
szi = m->size[i];
|
|
2925
|
+
t = ofs/szi;
|
|
2926
|
+
v = (int)(ofs - t*szi);
|
|
2927
|
+
ofs = t;
|
|
2928
|
+
sliceStart += v*m->step[i];
|
|
2929
|
+
}
|
|
2930
|
+
|
|
2931
|
+
sliceEnd = sliceStart + m->size[d-1]*elemSize;
|
|
2932
|
+
if( ofs > 0 )
|
|
2933
|
+
ptr = sliceEnd;
|
|
2934
|
+
else
|
|
2935
|
+
ptr = sliceStart + (ptr - m->data);
|
|
2936
|
+
}
|
|
2937
|
+
|
|
2938
|
+
void MatConstIterator::seek(const int* _idx, bool relative)
|
|
2939
|
+
{
|
|
2940
|
+
int i, d = m->dims;
|
|
2941
|
+
ptrdiff_t ofs = 0;
|
|
2942
|
+
if( !_idx )
|
|
2943
|
+
;
|
|
2944
|
+
else if( d == 2 )
|
|
2945
|
+
ofs = _idx[0]*m->size[1] + _idx[1];
|
|
2946
|
+
else
|
|
2947
|
+
{
|
|
2948
|
+
for( i = 0; i < d; i++ )
|
|
2949
|
+
ofs = ofs*m->size[i] + _idx[i];
|
|
2950
|
+
}
|
|
2951
|
+
seek(ofs, relative);
|
|
2952
|
+
}
|
|
2953
|
+
|
|
2954
|
+
ptrdiff_t operator - (const MatConstIterator& b, const MatConstIterator& a)
|
|
2955
|
+
{
|
|
2956
|
+
if( a.m != b.m )
|
|
2957
|
+
return INT_MAX;
|
|
2958
|
+
if( a.sliceEnd == b.sliceEnd )
|
|
2959
|
+
return (b.ptr - a.ptr)/b.elemSize;
|
|
2960
|
+
|
|
2961
|
+
return b.lpos() - a.lpos();
|
|
2962
|
+
}
|
|
2963
|
+
|
|
2964
|
+
//////////////////////////////// SparseMat ////////////////////////////////
|
|
2965
|
+
|
|
2966
|
+
template<typename T1, typename T2> void
|
|
2967
|
+
convertData_(const void* _from, void* _to, int cn)
|
|
2968
|
+
{
|
|
2969
|
+
const T1* from = (const T1*)_from;
|
|
2970
|
+
T2* to = (T2*)_to;
|
|
2971
|
+
if( cn == 1 )
|
|
2972
|
+
*to = saturate_cast<T2>(*from);
|
|
2973
|
+
else
|
|
2974
|
+
for( int i = 0; i < cn; i++ )
|
|
2975
|
+
to[i] = saturate_cast<T2>(from[i]);
|
|
2976
|
+
}
|
|
2977
|
+
|
|
2978
|
+
template<typename T1, typename T2> void
|
|
2979
|
+
convertScaleData_(const void* _from, void* _to, int cn, double alpha, double beta)
|
|
2980
|
+
{
|
|
2981
|
+
const T1* from = (const T1*)_from;
|
|
2982
|
+
T2* to = (T2*)_to;
|
|
2983
|
+
if( cn == 1 )
|
|
2984
|
+
*to = saturate_cast<T2>(*from*alpha + beta);
|
|
2985
|
+
else
|
|
2986
|
+
for( int i = 0; i < cn; i++ )
|
|
2987
|
+
to[i] = saturate_cast<T2>(from[i]*alpha + beta);
|
|
2988
|
+
}
|
|
2989
|
+
|
|
2990
|
+
ConvertData getConvertData(int fromType, int toType)
|
|
2991
|
+
{
|
|
2992
|
+
static ConvertData tab[][8] =
|
|
2993
|
+
{{ convertData_<uchar, uchar>, convertData_<uchar, schar>,
|
|
2994
|
+
convertData_<uchar, ushort>, convertData_<uchar, short>,
|
|
2995
|
+
convertData_<uchar, int>, convertData_<uchar, float>,
|
|
2996
|
+
convertData_<uchar, double>, 0 },
|
|
2997
|
+
|
|
2998
|
+
{ convertData_<schar, uchar>, convertData_<schar, schar>,
|
|
2999
|
+
convertData_<schar, ushort>, convertData_<schar, short>,
|
|
3000
|
+
convertData_<schar, int>, convertData_<schar, float>,
|
|
3001
|
+
convertData_<schar, double>, 0 },
|
|
3002
|
+
|
|
3003
|
+
{ convertData_<ushort, uchar>, convertData_<ushort, schar>,
|
|
3004
|
+
convertData_<ushort, ushort>, convertData_<ushort, short>,
|
|
3005
|
+
convertData_<ushort, int>, convertData_<ushort, float>,
|
|
3006
|
+
convertData_<ushort, double>, 0 },
|
|
3007
|
+
|
|
3008
|
+
{ convertData_<short, uchar>, convertData_<short, schar>,
|
|
3009
|
+
convertData_<short, ushort>, convertData_<short, short>,
|
|
3010
|
+
convertData_<short, int>, convertData_<short, float>,
|
|
3011
|
+
convertData_<short, double>, 0 },
|
|
3012
|
+
|
|
3013
|
+
{ convertData_<int, uchar>, convertData_<int, schar>,
|
|
3014
|
+
convertData_<int, ushort>, convertData_<int, short>,
|
|
3015
|
+
convertData_<int, int>, convertData_<int, float>,
|
|
3016
|
+
convertData_<int, double>, 0 },
|
|
3017
|
+
|
|
3018
|
+
{ convertData_<float, uchar>, convertData_<float, schar>,
|
|
3019
|
+
convertData_<float, ushort>, convertData_<float, short>,
|
|
3020
|
+
convertData_<float, int>, convertData_<float, float>,
|
|
3021
|
+
convertData_<float, double>, 0 },
|
|
3022
|
+
|
|
3023
|
+
{ convertData_<double, uchar>, convertData_<double, schar>,
|
|
3024
|
+
convertData_<double, ushort>, convertData_<double, short>,
|
|
3025
|
+
convertData_<double, int>, convertData_<double, float>,
|
|
3026
|
+
convertData_<double, double>, 0 },
|
|
3027
|
+
|
|
3028
|
+
{ 0, 0, 0, 0, 0, 0, 0, 0 }};
|
|
3029
|
+
|
|
3030
|
+
ConvertData func = tab[CV_MAT_DEPTH(fromType)][CV_MAT_DEPTH(toType)];
|
|
3031
|
+
CV_Assert( func != 0 );
|
|
3032
|
+
return func;
|
|
3033
|
+
}
|
|
3034
|
+
|
|
3035
|
+
ConvertScaleData getConvertScaleData(int fromType, int toType)
|
|
3036
|
+
{
|
|
3037
|
+
static ConvertScaleData tab[][8] =
|
|
3038
|
+
{{ convertScaleData_<uchar, uchar>, convertScaleData_<uchar, schar>,
|
|
3039
|
+
convertScaleData_<uchar, ushort>, convertScaleData_<uchar, short>,
|
|
3040
|
+
convertScaleData_<uchar, int>, convertScaleData_<uchar, float>,
|
|
3041
|
+
convertScaleData_<uchar, double>, 0 },
|
|
3042
|
+
|
|
3043
|
+
{ convertScaleData_<schar, uchar>, convertScaleData_<schar, schar>,
|
|
3044
|
+
convertScaleData_<schar, ushort>, convertScaleData_<schar, short>,
|
|
3045
|
+
convertScaleData_<schar, int>, convertScaleData_<schar, float>,
|
|
3046
|
+
convertScaleData_<schar, double>, 0 },
|
|
3047
|
+
|
|
3048
|
+
{ convertScaleData_<ushort, uchar>, convertScaleData_<ushort, schar>,
|
|
3049
|
+
convertScaleData_<ushort, ushort>, convertScaleData_<ushort, short>,
|
|
3050
|
+
convertScaleData_<ushort, int>, convertScaleData_<ushort, float>,
|
|
3051
|
+
convertScaleData_<ushort, double>, 0 },
|
|
3052
|
+
|
|
3053
|
+
{ convertScaleData_<short, uchar>, convertScaleData_<short, schar>,
|
|
3054
|
+
convertScaleData_<short, ushort>, convertScaleData_<short, short>,
|
|
3055
|
+
convertScaleData_<short, int>, convertScaleData_<short, float>,
|
|
3056
|
+
convertScaleData_<short, double>, 0 },
|
|
3057
|
+
|
|
3058
|
+
{ convertScaleData_<int, uchar>, convertScaleData_<int, schar>,
|
|
3059
|
+
convertScaleData_<int, ushort>, convertScaleData_<int, short>,
|
|
3060
|
+
convertScaleData_<int, int>, convertScaleData_<int, float>,
|
|
3061
|
+
convertScaleData_<int, double>, 0 },
|
|
3062
|
+
|
|
3063
|
+
{ convertScaleData_<float, uchar>, convertScaleData_<float, schar>,
|
|
3064
|
+
convertScaleData_<float, ushort>, convertScaleData_<float, short>,
|
|
3065
|
+
convertScaleData_<float, int>, convertScaleData_<float, float>,
|
|
3066
|
+
convertScaleData_<float, double>, 0 },
|
|
3067
|
+
|
|
3068
|
+
{ convertScaleData_<double, uchar>, convertScaleData_<double, schar>,
|
|
3069
|
+
convertScaleData_<double, ushort>, convertScaleData_<double, short>,
|
|
3070
|
+
convertScaleData_<double, int>, convertScaleData_<double, float>,
|
|
3071
|
+
convertScaleData_<double, double>, 0 },
|
|
3072
|
+
|
|
3073
|
+
{ 0, 0, 0, 0, 0, 0, 0, 0 }};
|
|
3074
|
+
|
|
3075
|
+
ConvertScaleData func = tab[CV_MAT_DEPTH(fromType)][CV_MAT_DEPTH(toType)];
|
|
3076
|
+
CV_Assert( func != 0 );
|
|
3077
|
+
return func;
|
|
3078
|
+
}
|
|
3079
|
+
|
|
3080
|
+
enum { HASH_SIZE0 = 8 };
|
|
3081
|
+
|
|
3082
|
+
static inline void copyElem(const uchar* from, uchar* to, size_t elemSize)
|
|
3083
|
+
{
|
|
3084
|
+
size_t i;
|
|
3085
|
+
for( i = 0; (int)i <= (int)(elemSize - sizeof(int)); i += sizeof(int) )
|
|
3086
|
+
*(int*)(to + i) = *(const int*)(from + i);
|
|
3087
|
+
for( ; i < elemSize; i++ )
|
|
3088
|
+
to[i] = from[i];
|
|
3089
|
+
}
|
|
3090
|
+
|
|
3091
|
+
static inline bool isZeroElem(const uchar* data, size_t elemSize)
|
|
3092
|
+
{
|
|
3093
|
+
size_t i;
|
|
3094
|
+
for( i = 0; i <= elemSize - sizeof(int); i += sizeof(int) )
|
|
3095
|
+
if( *(int*)(data + i) != 0 )
|
|
3096
|
+
return false;
|
|
3097
|
+
for( ; i < elemSize; i++ )
|
|
3098
|
+
if( data[i] != 0 )
|
|
3099
|
+
return false;
|
|
3100
|
+
return true;
|
|
3101
|
+
}
|
|
3102
|
+
|
|
3103
|
+
SparseMat::Hdr::Hdr( int _dims, const int* _sizes, int _type )
|
|
3104
|
+
{
|
|
3105
|
+
refcount = 1;
|
|
3106
|
+
|
|
3107
|
+
dims = _dims;
|
|
3108
|
+
valueOffset = (int)alignSize(sizeof(SparseMat::Node) +
|
|
3109
|
+
sizeof(int)*std::max(dims - CV_MAX_DIM, 0), CV_ELEM_SIZE1(_type));
|
|
3110
|
+
nodeSize = alignSize(valueOffset +
|
|
3111
|
+
CV_ELEM_SIZE(_type), (int)sizeof(size_t));
|
|
3112
|
+
|
|
3113
|
+
int i;
|
|
3114
|
+
for( i = 0; i < dims; i++ )
|
|
3115
|
+
size[i] = _sizes[i];
|
|
3116
|
+
for( ; i < CV_MAX_DIM; i++ )
|
|
3117
|
+
size[i] = 0;
|
|
3118
|
+
clear();
|
|
3119
|
+
}
|
|
3120
|
+
|
|
3121
|
+
void SparseMat::Hdr::clear()
|
|
3122
|
+
{
|
|
3123
|
+
hashtab.clear();
|
|
3124
|
+
hashtab.resize(HASH_SIZE0);
|
|
3125
|
+
pool.clear();
|
|
3126
|
+
pool.resize(nodeSize);
|
|
3127
|
+
nodeCount = freeList = 0;
|
|
3128
|
+
}
|
|
3129
|
+
|
|
3130
|
+
|
|
3131
|
+
SparseMat::SparseMat(const Mat& m)
|
|
3132
|
+
: flags(MAGIC_VAL), hdr(0)
|
|
3133
|
+
{
|
|
3134
|
+
create( m.dims, m.size, m.type() );
|
|
3135
|
+
|
|
3136
|
+
int i, idx[CV_MAX_DIM] = {0}, d = m.dims, lastSize = m.size[d - 1];
|
|
3137
|
+
size_t esz = m.elemSize();
|
|
3138
|
+
uchar* ptr = m.data;
|
|
3139
|
+
|
|
3140
|
+
for(;;)
|
|
3141
|
+
{
|
|
3142
|
+
for( i = 0; i < lastSize; i++, ptr += esz )
|
|
3143
|
+
{
|
|
3144
|
+
if( isZeroElem(ptr, esz) )
|
|
3145
|
+
continue;
|
|
3146
|
+
idx[d-1] = i;
|
|
3147
|
+
uchar* to = newNode(idx, hash(idx));
|
|
3148
|
+
copyElem( ptr, to, esz );
|
|
3149
|
+
}
|
|
3150
|
+
|
|
3151
|
+
for( i = d - 2; i >= 0; i-- )
|
|
3152
|
+
{
|
|
3153
|
+
ptr += m.step[i] - m.size[i+1]*m.step[i+1];
|
|
3154
|
+
if( ++idx[i] < m.size[i] )
|
|
3155
|
+
break;
|
|
3156
|
+
idx[i] = 0;
|
|
3157
|
+
}
|
|
3158
|
+
if( i < 0 )
|
|
3159
|
+
break;
|
|
3160
|
+
}
|
|
3161
|
+
}
|
|
3162
|
+
|
|
3163
|
+
SparseMat::SparseMat(const CvSparseMat* m)
|
|
3164
|
+
: flags(MAGIC_VAL), hdr(0)
|
|
3165
|
+
{
|
|
3166
|
+
CV_Assert(m);
|
|
3167
|
+
create( m->dims, &m->size[0], m->type );
|
|
3168
|
+
|
|
3169
|
+
CvSparseMatIterator it;
|
|
3170
|
+
CvSparseNode* n = cvInitSparseMatIterator(m, &it);
|
|
3171
|
+
size_t esz = elemSize();
|
|
3172
|
+
|
|
3173
|
+
for( ; n != 0; n = cvGetNextSparseNode(&it) )
|
|
3174
|
+
{
|
|
3175
|
+
const int* idx = CV_NODE_IDX(m, n);
|
|
3176
|
+
uchar* to = newNode(idx, hash(idx));
|
|
3177
|
+
copyElem((const uchar*)CV_NODE_VAL(m, n), to, esz);
|
|
3178
|
+
}
|
|
3179
|
+
}
|
|
3180
|
+
|
|
3181
|
+
void SparseMat::create(int d, const int* _sizes, int _type)
|
|
3182
|
+
{
|
|
3183
|
+
int i;
|
|
3184
|
+
CV_Assert( _sizes && 0 < d && d <= CV_MAX_DIM );
|
|
3185
|
+
for( i = 0; i < d; i++ )
|
|
3186
|
+
CV_Assert( _sizes[i] > 0 );
|
|
3187
|
+
_type = CV_MAT_TYPE(_type);
|
|
3188
|
+
if( hdr && _type == type() && hdr->dims == d && hdr->refcount == 1 )
|
|
3189
|
+
{
|
|
3190
|
+
for( i = 0; i < d; i++ )
|
|
3191
|
+
if( _sizes[i] != hdr->size[i] )
|
|
3192
|
+
break;
|
|
3193
|
+
if( i == d )
|
|
3194
|
+
{
|
|
3195
|
+
clear();
|
|
3196
|
+
return;
|
|
3197
|
+
}
|
|
3198
|
+
}
|
|
3199
|
+
release();
|
|
3200
|
+
flags = MAGIC_VAL | _type;
|
|
3201
|
+
hdr = new Hdr(d, _sizes, _type);
|
|
3202
|
+
}
|
|
3203
|
+
|
|
3204
|
+
void SparseMat::copyTo( SparseMat& m ) const
|
|
3205
|
+
{
|
|
3206
|
+
if( hdr == m.hdr )
|
|
3207
|
+
return;
|
|
3208
|
+
if( !hdr )
|
|
3209
|
+
{
|
|
3210
|
+
m.release();
|
|
3211
|
+
return;
|
|
3212
|
+
}
|
|
3213
|
+
m.create( hdr->dims, hdr->size, type() );
|
|
3214
|
+
SparseMatConstIterator from = begin();
|
|
3215
|
+
size_t i, N = nzcount(), esz = elemSize();
|
|
3216
|
+
|
|
3217
|
+
for( i = 0; i < N; i++, ++from )
|
|
3218
|
+
{
|
|
3219
|
+
const Node* n = from.node();
|
|
3220
|
+
uchar* to = m.newNode(n->idx, n->hashval);
|
|
3221
|
+
copyElem( from.ptr, to, esz );
|
|
3222
|
+
}
|
|
3223
|
+
}
|
|
3224
|
+
|
|
3225
|
+
void SparseMat::copyTo( Mat& m ) const
|
|
3226
|
+
{
|
|
3227
|
+
CV_Assert( hdr );
|
|
3228
|
+
m.create( dims(), hdr->size, type() );
|
|
3229
|
+
m = Scalar(0);
|
|
3230
|
+
|
|
3231
|
+
SparseMatConstIterator from = begin();
|
|
3232
|
+
size_t i, N = nzcount(), esz = elemSize();
|
|
3233
|
+
|
|
3234
|
+
for( i = 0; i < N; i++, ++from )
|
|
3235
|
+
{
|
|
3236
|
+
const Node* n = from.node();
|
|
3237
|
+
copyElem( from.ptr, m.ptr(n->idx), esz);
|
|
3238
|
+
}
|
|
3239
|
+
}
|
|
3240
|
+
|
|
3241
|
+
|
|
3242
|
+
void SparseMat::convertTo( SparseMat& m, int rtype, double alpha ) const
|
|
3243
|
+
{
|
|
3244
|
+
int cn = channels();
|
|
3245
|
+
if( rtype < 0 )
|
|
3246
|
+
rtype = type();
|
|
3247
|
+
rtype = CV_MAKETYPE(rtype, cn);
|
|
3248
|
+
if( hdr == m.hdr && rtype != type() )
|
|
3249
|
+
{
|
|
3250
|
+
SparseMat temp;
|
|
3251
|
+
convertTo(temp, rtype, alpha);
|
|
3252
|
+
m = temp;
|
|
3253
|
+
return;
|
|
3254
|
+
}
|
|
3255
|
+
|
|
3256
|
+
CV_Assert(hdr != 0);
|
|
3257
|
+
if( hdr != m.hdr )
|
|
3258
|
+
m.create( hdr->dims, hdr->size, rtype );
|
|
3259
|
+
|
|
3260
|
+
SparseMatConstIterator from = begin();
|
|
3261
|
+
size_t i, N = nzcount();
|
|
3262
|
+
|
|
3263
|
+
if( alpha == 1 )
|
|
3264
|
+
{
|
|
3265
|
+
ConvertData cvtfunc = getConvertData(type(), rtype);
|
|
3266
|
+
for( i = 0; i < N; i++, ++from )
|
|
3267
|
+
{
|
|
3268
|
+
const Node* n = from.node();
|
|
3269
|
+
uchar* to = hdr == m.hdr ? from.ptr : m.newNode(n->idx, n->hashval);
|
|
3270
|
+
cvtfunc( from.ptr, to, cn );
|
|
3271
|
+
}
|
|
3272
|
+
}
|
|
3273
|
+
else
|
|
3274
|
+
{
|
|
3275
|
+
ConvertScaleData cvtfunc = getConvertScaleData(type(), rtype);
|
|
3276
|
+
for( i = 0; i < N; i++, ++from )
|
|
3277
|
+
{
|
|
3278
|
+
const Node* n = from.node();
|
|
3279
|
+
uchar* to = hdr == m.hdr ? from.ptr : m.newNode(n->idx, n->hashval);
|
|
3280
|
+
cvtfunc( from.ptr, to, cn, alpha, 0 );
|
|
3281
|
+
}
|
|
3282
|
+
}
|
|
3283
|
+
}
|
|
3284
|
+
|
|
3285
|
+
|
|
3286
|
+
void SparseMat::convertTo( Mat& m, int rtype, double alpha, double beta ) const
|
|
3287
|
+
{
|
|
3288
|
+
int cn = channels();
|
|
3289
|
+
if( rtype < 0 )
|
|
3290
|
+
rtype = type();
|
|
3291
|
+
rtype = CV_MAKETYPE(rtype, cn);
|
|
3292
|
+
|
|
3293
|
+
CV_Assert( hdr );
|
|
3294
|
+
m.create( dims(), hdr->size, rtype );
|
|
3295
|
+
m = Scalar(beta);
|
|
3296
|
+
|
|
3297
|
+
SparseMatConstIterator from = begin();
|
|
3298
|
+
size_t i, N = nzcount();
|
|
3299
|
+
|
|
3300
|
+
if( alpha == 1 && beta == 0 )
|
|
3301
|
+
{
|
|
3302
|
+
ConvertData cvtfunc = getConvertData(type(), rtype);
|
|
3303
|
+
for( i = 0; i < N; i++, ++from )
|
|
3304
|
+
{
|
|
3305
|
+
const Node* n = from.node();
|
|
3306
|
+
uchar* to = m.ptr(n->idx);
|
|
3307
|
+
cvtfunc( from.ptr, to, cn );
|
|
3308
|
+
}
|
|
3309
|
+
}
|
|
3310
|
+
else
|
|
3311
|
+
{
|
|
3312
|
+
ConvertScaleData cvtfunc = getConvertScaleData(type(), rtype);
|
|
3313
|
+
for( i = 0; i < N; i++, ++from )
|
|
3314
|
+
{
|
|
3315
|
+
const Node* n = from.node();
|
|
3316
|
+
uchar* to = m.ptr(n->idx);
|
|
3317
|
+
cvtfunc( from.ptr, to, cn, alpha, beta );
|
|
3318
|
+
}
|
|
3319
|
+
}
|
|
3320
|
+
}
|
|
3321
|
+
|
|
3322
|
+
void SparseMat::clear()
|
|
3323
|
+
{
|
|
3324
|
+
if( hdr )
|
|
3325
|
+
hdr->clear();
|
|
3326
|
+
}
|
|
3327
|
+
|
|
3328
|
+
SparseMat::operator CvSparseMat*() const
|
|
3329
|
+
{
|
|
3330
|
+
if( !hdr )
|
|
3331
|
+
return 0;
|
|
3332
|
+
CvSparseMat* m = cvCreateSparseMat(hdr->dims, hdr->size, type());
|
|
3333
|
+
|
|
3334
|
+
SparseMatConstIterator from = begin();
|
|
3335
|
+
size_t i, N = nzcount(), esz = elemSize();
|
|
3336
|
+
|
|
3337
|
+
for( i = 0; i < N; i++, ++from )
|
|
3338
|
+
{
|
|
3339
|
+
const Node* n = from.node();
|
|
3340
|
+
uchar* to = cvPtrND(m, n->idx, 0, -2, 0);
|
|
3341
|
+
copyElem(from.ptr, to, esz);
|
|
3342
|
+
}
|
|
3343
|
+
return m;
|
|
3344
|
+
}
|
|
3345
|
+
|
|
3346
|
+
uchar* SparseMat::ptr(int i0, int i1, bool createMissing, size_t* hashval)
|
|
3347
|
+
{
|
|
3348
|
+
CV_Assert( hdr && hdr->dims == 2 );
|
|
3349
|
+
size_t h = hashval ? *hashval : hash(i0, i1);
|
|
3350
|
+
size_t hidx = h & (hdr->hashtab.size() - 1), nidx = hdr->hashtab[hidx];
|
|
3351
|
+
uchar* pool = &hdr->pool[0];
|
|
3352
|
+
while( nidx != 0 )
|
|
3353
|
+
{
|
|
3354
|
+
Node* elem = (Node*)(pool + nidx);
|
|
3355
|
+
if( elem->hashval == h && elem->idx[0] == i0 && elem->idx[1] == i1 )
|
|
3356
|
+
return &value<uchar>(elem);
|
|
3357
|
+
nidx = elem->next;
|
|
3358
|
+
}
|
|
3359
|
+
|
|
3360
|
+
if( createMissing )
|
|
3361
|
+
{
|
|
3362
|
+
int idx[] = { i0, i1 };
|
|
3363
|
+
return newNode( idx, h );
|
|
3364
|
+
}
|
|
3365
|
+
return 0;
|
|
3366
|
+
}
|
|
3367
|
+
|
|
3368
|
+
uchar* SparseMat::ptr(int i0, int i1, int i2, bool createMissing, size_t* hashval)
|
|
3369
|
+
{
|
|
3370
|
+
CV_Assert( hdr && hdr->dims == 3 );
|
|
3371
|
+
size_t h = hashval ? *hashval : hash(i0, i1, i2);
|
|
3372
|
+
size_t hidx = h & (hdr->hashtab.size() - 1), nidx = hdr->hashtab[hidx];
|
|
3373
|
+
uchar* pool = &hdr->pool[0];
|
|
3374
|
+
while( nidx != 0 )
|
|
3375
|
+
{
|
|
3376
|
+
Node* elem = (Node*)(pool + nidx);
|
|
3377
|
+
if( elem->hashval == h && elem->idx[0] == i0 &&
|
|
3378
|
+
elem->idx[1] == i1 && elem->idx[2] == i2 )
|
|
3379
|
+
return &value<uchar>(elem);
|
|
3380
|
+
nidx = elem->next;
|
|
3381
|
+
}
|
|
3382
|
+
|
|
3383
|
+
if( createMissing )
|
|
3384
|
+
{
|
|
3385
|
+
int idx[] = { i0, i1, i2 };
|
|
3386
|
+
return newNode( idx, h );
|
|
3387
|
+
}
|
|
3388
|
+
return 0;
|
|
3389
|
+
}
|
|
3390
|
+
|
|
3391
|
+
uchar* SparseMat::ptr(const int* idx, bool createMissing, size_t* hashval)
|
|
3392
|
+
{
|
|
3393
|
+
CV_Assert( hdr );
|
|
3394
|
+
int i, d = hdr->dims;
|
|
3395
|
+
size_t h = hashval ? *hashval : hash(idx);
|
|
3396
|
+
size_t hidx = h & (hdr->hashtab.size() - 1), nidx = hdr->hashtab[hidx];
|
|
3397
|
+
uchar* pool = &hdr->pool[0];
|
|
3398
|
+
while( nidx != 0 )
|
|
3399
|
+
{
|
|
3400
|
+
Node* elem = (Node*)(pool + nidx);
|
|
3401
|
+
if( elem->hashval == h )
|
|
3402
|
+
{
|
|
3403
|
+
for( i = 0; i < d; i++ )
|
|
3404
|
+
if( elem->idx[i] != idx[i] )
|
|
3405
|
+
break;
|
|
3406
|
+
if( i == d )
|
|
3407
|
+
return &value<uchar>(elem);
|
|
3408
|
+
}
|
|
3409
|
+
nidx = elem->next;
|
|
3410
|
+
}
|
|
3411
|
+
|
|
3412
|
+
return createMissing ? newNode(idx, h) : 0;
|
|
3413
|
+
}
|
|
3414
|
+
|
|
3415
|
+
void SparseMat::erase(int i0, int i1, size_t* hashval)
|
|
3416
|
+
{
|
|
3417
|
+
CV_Assert( hdr && hdr->dims == 2 );
|
|
3418
|
+
size_t h = hashval ? *hashval : hash(i0, i1);
|
|
3419
|
+
size_t hidx = h & (hdr->hashtab.size() - 1), nidx = hdr->hashtab[hidx], previdx=0;
|
|
3420
|
+
uchar* pool = &hdr->pool[0];
|
|
3421
|
+
while( nidx != 0 )
|
|
3422
|
+
{
|
|
3423
|
+
Node* elem = (Node*)(pool + nidx);
|
|
3424
|
+
if( elem->hashval == h && elem->idx[0] == i0 && elem->idx[1] == i1 )
|
|
3425
|
+
break;
|
|
3426
|
+
previdx = nidx;
|
|
3427
|
+
nidx = elem->next;
|
|
3428
|
+
}
|
|
3429
|
+
|
|
3430
|
+
if( nidx )
|
|
3431
|
+
removeNode(hidx, nidx, previdx);
|
|
3432
|
+
}
|
|
3433
|
+
|
|
3434
|
+
void SparseMat::erase(int i0, int i1, int i2, size_t* hashval)
|
|
3435
|
+
{
|
|
3436
|
+
CV_Assert( hdr && hdr->dims == 3 );
|
|
3437
|
+
size_t h = hashval ? *hashval : hash(i0, i1, i2);
|
|
3438
|
+
size_t hidx = h & (hdr->hashtab.size() - 1), nidx = hdr->hashtab[hidx], previdx=0;
|
|
3439
|
+
uchar* pool = &hdr->pool[0];
|
|
3440
|
+
while( nidx != 0 )
|
|
3441
|
+
{
|
|
3442
|
+
Node* elem = (Node*)(pool + nidx);
|
|
3443
|
+
if( elem->hashval == h && elem->idx[0] == i0 &&
|
|
3444
|
+
elem->idx[1] == i1 && elem->idx[2] == i2 )
|
|
3445
|
+
break;
|
|
3446
|
+
previdx = nidx;
|
|
3447
|
+
nidx = elem->next;
|
|
3448
|
+
}
|
|
3449
|
+
|
|
3450
|
+
if( nidx )
|
|
3451
|
+
removeNode(hidx, nidx, previdx);
|
|
3452
|
+
}
|
|
3453
|
+
|
|
3454
|
+
void SparseMat::erase(const int* idx, size_t* hashval)
|
|
3455
|
+
{
|
|
3456
|
+
CV_Assert( hdr );
|
|
3457
|
+
int i, d = hdr->dims;
|
|
3458
|
+
size_t h = hashval ? *hashval : hash(idx);
|
|
3459
|
+
size_t hidx = h & (hdr->hashtab.size() - 1), nidx = hdr->hashtab[hidx], previdx=0;
|
|
3460
|
+
uchar* pool = &hdr->pool[0];
|
|
3461
|
+
while( nidx != 0 )
|
|
3462
|
+
{
|
|
3463
|
+
Node* elem = (Node*)(pool + nidx);
|
|
3464
|
+
if( elem->hashval == h )
|
|
3465
|
+
{
|
|
3466
|
+
for( i = 0; i < d; i++ )
|
|
3467
|
+
if( elem->idx[i] != idx[i] )
|
|
3468
|
+
break;
|
|
3469
|
+
if( i == d )
|
|
3470
|
+
break;
|
|
3471
|
+
}
|
|
3472
|
+
previdx = nidx;
|
|
3473
|
+
nidx = elem->next;
|
|
3474
|
+
}
|
|
3475
|
+
|
|
3476
|
+
if( nidx )
|
|
3477
|
+
removeNode(hidx, nidx, previdx);
|
|
3478
|
+
}
|
|
3479
|
+
|
|
3480
|
+
void SparseMat::resizeHashTab(size_t newsize)
|
|
3481
|
+
{
|
|
3482
|
+
newsize = std::max(newsize, (size_t)8);
|
|
3483
|
+
if((newsize & (newsize-1)) != 0)
|
|
3484
|
+
newsize = (size_t)1 << cvCeil(std::log((double)newsize)/CV_LOG2);
|
|
3485
|
+
|
|
3486
|
+
size_t i, hsize = hdr->hashtab.size();
|
|
3487
|
+
vector<size_t> _newh(newsize);
|
|
3488
|
+
size_t* newh = &_newh[0];
|
|
3489
|
+
for( i = 0; i < newsize; i++ )
|
|
3490
|
+
newh[i] = 0;
|
|
3491
|
+
uchar* pool = &hdr->pool[0];
|
|
3492
|
+
for( i = 0; i < hsize; i++ )
|
|
3493
|
+
{
|
|
3494
|
+
size_t nidx = hdr->hashtab[i];
|
|
3495
|
+
while( nidx )
|
|
3496
|
+
{
|
|
3497
|
+
Node* elem = (Node*)(pool + nidx);
|
|
3498
|
+
size_t next = elem->next;
|
|
3499
|
+
size_t newhidx = elem->hashval & (newsize - 1);
|
|
3500
|
+
elem->next = newh[newhidx];
|
|
3501
|
+
newh[newhidx] = nidx;
|
|
3502
|
+
nidx = next;
|
|
3503
|
+
}
|
|
3504
|
+
}
|
|
3505
|
+
hdr->hashtab = _newh;
|
|
3506
|
+
}
|
|
3507
|
+
|
|
3508
|
+
uchar* SparseMat::newNode(const int* idx, size_t hashval)
|
|
3509
|
+
{
|
|
3510
|
+
const int HASH_MAX_FILL_FACTOR=3;
|
|
3511
|
+
assert(hdr);
|
|
3512
|
+
size_t hsize = hdr->hashtab.size();
|
|
3513
|
+
if( ++hdr->nodeCount > hsize*HASH_MAX_FILL_FACTOR )
|
|
3514
|
+
{
|
|
3515
|
+
resizeHashTab(std::max(hsize*2, (size_t)8));
|
|
3516
|
+
hsize = hdr->hashtab.size();
|
|
3517
|
+
}
|
|
3518
|
+
|
|
3519
|
+
if( !hdr->freeList )
|
|
3520
|
+
{
|
|
3521
|
+
size_t i, nsz = hdr->nodeSize, psize = hdr->pool.size(),
|
|
3522
|
+
newpsize = std::max(psize*2, 8*nsz);
|
|
3523
|
+
hdr->pool.resize(newpsize);
|
|
3524
|
+
uchar* pool = &hdr->pool[0];
|
|
3525
|
+
hdr->freeList = std::max(psize, nsz);
|
|
3526
|
+
for( i = hdr->freeList; i < newpsize - nsz; i += nsz )
|
|
3527
|
+
((Node*)(pool + i))->next = i + nsz;
|
|
3528
|
+
((Node*)(pool + i))->next = 0;
|
|
3529
|
+
}
|
|
3530
|
+
size_t nidx = hdr->freeList;
|
|
3531
|
+
Node* elem = (Node*)&hdr->pool[nidx];
|
|
3532
|
+
hdr->freeList = elem->next;
|
|
3533
|
+
elem->hashval = hashval;
|
|
3534
|
+
size_t hidx = hashval & (hsize - 1);
|
|
3535
|
+
elem->next = hdr->hashtab[hidx];
|
|
3536
|
+
hdr->hashtab[hidx] = nidx;
|
|
3537
|
+
|
|
3538
|
+
int i, d = hdr->dims;
|
|
3539
|
+
for( i = 0; i < d; i++ )
|
|
3540
|
+
elem->idx[i] = idx[i];
|
|
3541
|
+
size_t esz = elemSize();
|
|
3542
|
+
uchar* p = &value<uchar>(elem);
|
|
3543
|
+
if( esz == sizeof(float) )
|
|
3544
|
+
*((float*)p) = 0.f;
|
|
3545
|
+
else if( esz == sizeof(double) )
|
|
3546
|
+
*((double*)p) = 0.;
|
|
3547
|
+
else
|
|
3548
|
+
memset(p, 0, esz);
|
|
3549
|
+
|
|
3550
|
+
return p;
|
|
3551
|
+
}
|
|
3552
|
+
|
|
3553
|
+
|
|
3554
|
+
void SparseMat::removeNode(size_t hidx, size_t nidx, size_t previdx)
|
|
3555
|
+
{
|
|
3556
|
+
Node* n = node(nidx);
|
|
3557
|
+
if( previdx )
|
|
3558
|
+
{
|
|
3559
|
+
Node* prev = node(previdx);
|
|
3560
|
+
prev->next = n->next;
|
|
3561
|
+
}
|
|
3562
|
+
else
|
|
3563
|
+
hdr->hashtab[hidx] = n->next;
|
|
3564
|
+
n->next = hdr->freeList;
|
|
3565
|
+
hdr->freeList = nidx;
|
|
3566
|
+
--hdr->nodeCount;
|
|
3567
|
+
}
|
|
3568
|
+
|
|
3569
|
+
|
|
3570
|
+
SparseMatConstIterator::SparseMatConstIterator(const SparseMat* _m)
|
|
3571
|
+
: m((SparseMat*)_m), hashidx(0), ptr(0)
|
|
3572
|
+
{
|
|
3573
|
+
if(!_m || !_m->hdr)
|
|
3574
|
+
return;
|
|
3575
|
+
SparseMat::Hdr& hdr = *m->hdr;
|
|
3576
|
+
const vector<size_t>& htab = hdr.hashtab;
|
|
3577
|
+
size_t i, hsize = htab.size();
|
|
3578
|
+
for( i = 0; i < hsize; i++ )
|
|
3579
|
+
{
|
|
3580
|
+
size_t nidx = htab[i];
|
|
3581
|
+
if( nidx )
|
|
3582
|
+
{
|
|
3583
|
+
hashidx = i;
|
|
3584
|
+
ptr = &hdr.pool[nidx] + hdr.valueOffset;
|
|
3585
|
+
return;
|
|
3586
|
+
}
|
|
3587
|
+
}
|
|
3588
|
+
}
|
|
3589
|
+
|
|
3590
|
+
SparseMatConstIterator& SparseMatConstIterator::operator ++()
|
|
3591
|
+
{
|
|
3592
|
+
if( !ptr || !m || !m->hdr )
|
|
3593
|
+
return *this;
|
|
3594
|
+
SparseMat::Hdr& hdr = *m->hdr;
|
|
3595
|
+
size_t next = ((const SparseMat::Node*)(ptr - hdr.valueOffset))->next;
|
|
3596
|
+
if( next )
|
|
3597
|
+
{
|
|
3598
|
+
ptr = &hdr.pool[next] + hdr.valueOffset;
|
|
3599
|
+
return *this;
|
|
3600
|
+
}
|
|
3601
|
+
size_t i = hashidx + 1, sz = hdr.hashtab.size();
|
|
3602
|
+
for( ; i < sz; i++ )
|
|
3603
|
+
{
|
|
3604
|
+
size_t nidx = hdr.hashtab[i];
|
|
3605
|
+
if( nidx )
|
|
3606
|
+
{
|
|
3607
|
+
hashidx = i;
|
|
3608
|
+
ptr = &hdr.pool[nidx] + hdr.valueOffset;
|
|
3609
|
+
return *this;
|
|
3610
|
+
}
|
|
3611
|
+
}
|
|
3612
|
+
hashidx = sz;
|
|
3613
|
+
ptr = 0;
|
|
3614
|
+
return *this;
|
|
3615
|
+
}
|
|
3616
|
+
|
|
3617
|
+
|
|
3618
|
+
double norm( const SparseMat& src, int normType )
|
|
3619
|
+
{
|
|
3620
|
+
SparseMatConstIterator it = src.begin();
|
|
3621
|
+
|
|
3622
|
+
size_t i, N = src.nzcount();
|
|
3623
|
+
normType &= NORM_TYPE_MASK;
|
|
3624
|
+
int type = src.type();
|
|
3625
|
+
double result = 0;
|
|
3626
|
+
|
|
3627
|
+
CV_Assert( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2 );
|
|
3628
|
+
|
|
3629
|
+
if( type == CV_32F )
|
|
3630
|
+
{
|
|
3631
|
+
if( normType == NORM_INF )
|
|
3632
|
+
for( i = 0; i < N; i++, ++it )
|
|
3633
|
+
result = std::max(result, std::abs((double)*(const float*)it.ptr));
|
|
3634
|
+
else if( normType == NORM_L1 )
|
|
3635
|
+
for( i = 0; i < N; i++, ++it )
|
|
3636
|
+
result += std::abs(*(const float*)it.ptr);
|
|
3637
|
+
else
|
|
3638
|
+
for( i = 0; i < N; i++, ++it )
|
|
3639
|
+
{
|
|
3640
|
+
double v = *(const float*)it.ptr;
|
|
3641
|
+
result += v*v;
|
|
3642
|
+
}
|
|
3643
|
+
}
|
|
3644
|
+
else if( type == CV_64F )
|
|
3645
|
+
{
|
|
3646
|
+
if( normType == NORM_INF )
|
|
3647
|
+
for( i = 0; i < N; i++, ++it )
|
|
3648
|
+
result = std::max(result, std::abs(*(const double*)it.ptr));
|
|
3649
|
+
else if( normType == NORM_L1 )
|
|
3650
|
+
for( i = 0; i < N; i++, ++it )
|
|
3651
|
+
result += std::abs(*(const double*)it.ptr);
|
|
3652
|
+
else
|
|
3653
|
+
for( i = 0; i < N; i++, ++it )
|
|
3654
|
+
{
|
|
3655
|
+
double v = *(const double*)it.ptr;
|
|
3656
|
+
result += v*v;
|
|
3657
|
+
}
|
|
3658
|
+
}
|
|
3659
|
+
else
|
|
3660
|
+
CV_Error( CV_StsUnsupportedFormat, "Only 32f and 64f are supported" );
|
|
3661
|
+
|
|
3662
|
+
if( normType == NORM_L2 )
|
|
3663
|
+
result = std::sqrt(result);
|
|
3664
|
+
return result;
|
|
3665
|
+
}
|
|
3666
|
+
|
|
3667
|
+
void minMaxLoc( const SparseMat& src, double* _minval, double* _maxval, int* _minidx, int* _maxidx )
|
|
3668
|
+
{
|
|
3669
|
+
SparseMatConstIterator it = src.begin();
|
|
3670
|
+
size_t i, N = src.nzcount(), d = src.hdr ? src.hdr->dims : 0;
|
|
3671
|
+
int type = src.type();
|
|
3672
|
+
const int *minidx = 0, *maxidx = 0;
|
|
3673
|
+
|
|
3674
|
+
if( type == CV_32F )
|
|
3675
|
+
{
|
|
3676
|
+
float minval = FLT_MAX, maxval = -FLT_MAX;
|
|
3677
|
+
for( i = 0; i < N; i++, ++it )
|
|
3678
|
+
{
|
|
3679
|
+
float v = *(const float*)it.ptr;
|
|
3680
|
+
if( v < minval )
|
|
3681
|
+
{
|
|
3682
|
+
minval = v;
|
|
3683
|
+
minidx = it.node()->idx;
|
|
3684
|
+
}
|
|
3685
|
+
if( v > maxval )
|
|
3686
|
+
{
|
|
3687
|
+
maxval = v;
|
|
3688
|
+
maxidx = it.node()->idx;
|
|
3689
|
+
}
|
|
3690
|
+
}
|
|
3691
|
+
if( _minval )
|
|
3692
|
+
*_minval = minval;
|
|
3693
|
+
if( _maxval )
|
|
3694
|
+
*_maxval = maxval;
|
|
3695
|
+
}
|
|
3696
|
+
else if( type == CV_64F )
|
|
3697
|
+
{
|
|
3698
|
+
double minval = DBL_MAX, maxval = -DBL_MAX;
|
|
3699
|
+
for( i = 0; i < N; i++, ++it )
|
|
3700
|
+
{
|
|
3701
|
+
double v = *(const double*)it.ptr;
|
|
3702
|
+
if( v < minval )
|
|
3703
|
+
{
|
|
3704
|
+
minval = v;
|
|
3705
|
+
minidx = it.node()->idx;
|
|
3706
|
+
}
|
|
3707
|
+
if( v > maxval )
|
|
3708
|
+
{
|
|
3709
|
+
maxval = v;
|
|
3710
|
+
maxidx = it.node()->idx;
|
|
3711
|
+
}
|
|
3712
|
+
}
|
|
3713
|
+
if( _minval )
|
|
3714
|
+
*_minval = minval;
|
|
3715
|
+
if( _maxval )
|
|
3716
|
+
*_maxval = maxval;
|
|
3717
|
+
}
|
|
3718
|
+
else
|
|
3719
|
+
CV_Error( CV_StsUnsupportedFormat, "Only 32f and 64f are supported" );
|
|
3720
|
+
|
|
3721
|
+
if( _minidx )
|
|
3722
|
+
for( i = 0; i < d; i++ )
|
|
3723
|
+
_minidx[i] = minidx[i];
|
|
3724
|
+
if( _maxidx )
|
|
3725
|
+
for( i = 0; i < d; i++ )
|
|
3726
|
+
_maxidx[i] = maxidx[i];
|
|
3727
|
+
}
|
|
3728
|
+
|
|
3729
|
+
|
|
3730
|
+
void normalize( const SparseMat& src, SparseMat& dst, double a, int norm_type )
|
|
3731
|
+
{
|
|
3732
|
+
double scale = 1;
|
|
3733
|
+
if( norm_type == CV_L2 || norm_type == CV_L1 || norm_type == CV_C )
|
|
3734
|
+
{
|
|
3735
|
+
scale = norm( src, norm_type );
|
|
3736
|
+
scale = scale > DBL_EPSILON ? a/scale : 0.;
|
|
3737
|
+
}
|
|
3738
|
+
else
|
|
3739
|
+
CV_Error( CV_StsBadArg, "Unknown/unsupported norm type" );
|
|
3740
|
+
|
|
3741
|
+
src.convertTo( dst, -1, scale );
|
|
3742
|
+
}
|
|
3743
|
+
|
|
3744
|
+
////////////////////// RotatedRect //////////////////////
|
|
3745
|
+
|
|
3746
|
+
void RotatedRect::points(Point2f pt[]) const
|
|
3747
|
+
{
|
|
3748
|
+
double _angle = angle*CV_PI/180.;
|
|
3749
|
+
float b = (float)cos(_angle)*0.5f;
|
|
3750
|
+
float a = (float)sin(_angle)*0.5f;
|
|
3751
|
+
|
|
3752
|
+
pt[0].x = center.x - a*size.height - b*size.width;
|
|
3753
|
+
pt[0].y = center.y + b*size.height - a*size.width;
|
|
3754
|
+
pt[1].x = center.x + a*size.height - b*size.width;
|
|
3755
|
+
pt[1].y = center.y - b*size.height - a*size.width;
|
|
3756
|
+
pt[2].x = 2*center.x - pt[0].x;
|
|
3757
|
+
pt[2].y = 2*center.y - pt[0].y;
|
|
3758
|
+
pt[3].x = 2*center.x - pt[1].x;
|
|
3759
|
+
pt[3].y = 2*center.y - pt[1].y;
|
|
3760
|
+
}
|
|
3761
|
+
|
|
3762
|
+
Rect RotatedRect::boundingRect() const
|
|
3763
|
+
{
|
|
3764
|
+
Point2f pt[4];
|
|
3765
|
+
points(pt);
|
|
3766
|
+
Rect r(cvFloor(min(min(min(pt[0].x, pt[1].x), pt[2].x), pt[3].x)),
|
|
3767
|
+
cvFloor(min(min(min(pt[0].y, pt[1].y), pt[2].y), pt[3].y)),
|
|
3768
|
+
cvCeil(max(max(max(pt[0].x, pt[1].x), pt[2].x), pt[3].x)),
|
|
3769
|
+
cvCeil(max(max(max(pt[0].y, pt[1].y), pt[2].y), pt[3].y)));
|
|
3770
|
+
r.width -= r.x - 1;
|
|
3771
|
+
r.height -= r.y - 1;
|
|
3772
|
+
return r;
|
|
3773
|
+
}
|
|
3774
|
+
|
|
3775
|
+
}
|
|
3776
|
+
|
|
3777
|
+
/* End of file. */
|