imagecore 0.0.1
Sign up to get free protection for your applications and to get access to all the features.
- data/.gitignore +24 -0
- data/Gemfile +4 -0
- data/Rakefile +2 -0
- data/ext/imagecore/analyze_image.cxx +58 -0
- data/ext/imagecore/analyze_image.h +6 -0
- data/ext/imagecore/extconf.rb +9 -0
- data/ext/imagecore/imagecore.cxx +34 -0
- data/ext/opencv/core/___.c +3 -0
- data/ext/opencv/core/alloc.cpp +697 -0
- data/ext/opencv/core/array.cpp +3206 -0
- data/ext/opencv/core/datastructs.cpp +4064 -0
- data/ext/opencv/core/extconf.rb +22 -0
- data/ext/opencv/core/matrix.cpp +3777 -0
- data/ext/opencv/core/precomp.hpp +216 -0
- data/ext/opencv/core/system.cpp +832 -0
- data/ext/opencv/core/tables.cpp +3512 -0
- data/ext/opencv/highgui/___.c +3 -0
- data/ext/opencv/highgui/bitstrm.cpp +582 -0
- data/ext/opencv/highgui/bitstrm.hpp +182 -0
- data/ext/opencv/highgui/extconf.rb +28 -0
- data/ext/opencv/highgui/grfmt_base.cpp +128 -0
- data/ext/opencv/highgui/grfmt_base.hpp +113 -0
- data/ext/opencv/highgui/grfmt_bmp.cpp +564 -0
- data/ext/opencv/highgui/grfmt_bmp.hpp +99 -0
- data/ext/opencv/highgui/grfmt_exr.hpp +113 -0
- data/ext/opencv/highgui/grfmt_imageio.hpp +56 -0
- data/ext/opencv/highgui/grfmt_jpeg.cpp +622 -0
- data/ext/opencv/highgui/grfmt_jpeg.hpp +90 -0
- data/ext/opencv/highgui/grfmt_jpeg2000.cpp +529 -0
- data/ext/opencv/highgui/grfmt_jpeg2000.hpp +95 -0
- data/ext/opencv/highgui/grfmt_png.cpp +406 -0
- data/ext/opencv/highgui/grfmt_png.hpp +101 -0
- data/ext/opencv/highgui/grfmt_pxm.cpp +513 -0
- data/ext/opencv/highgui/grfmt_pxm.hpp +92 -0
- data/ext/opencv/highgui/grfmt_sunras.cpp +425 -0
- data/ext/opencv/highgui/grfmt_sunras.hpp +105 -0
- data/ext/opencv/highgui/grfmt_tiff.cpp +718 -0
- data/ext/opencv/highgui/grfmt_tiff.hpp +136 -0
- data/ext/opencv/highgui/grfmts.hpp +56 -0
- data/ext/opencv/highgui/loadsave.cpp +535 -0
- data/ext/opencv/highgui/precomp.hpp +223 -0
- data/ext/opencv/highgui/utils.cpp +689 -0
- data/ext/opencv/highgui/utils.hpp +128 -0
- data/ext/opencv/imgproc/___.c +3 -0
- data/ext/opencv/imgproc/_geom.h +72 -0
- data/ext/opencv/imgproc/color.cpp +3179 -0
- data/ext/opencv/imgproc/contours.cpp +1780 -0
- data/ext/opencv/imgproc/extconf.rb +11 -0
- data/ext/opencv/imgproc/filter.cpp +3063 -0
- data/ext/opencv/imgproc/precomp.hpp +159 -0
- data/ext/opencv/imgproc/shapedescr.cpp +1306 -0
- data/ext/opencv/imgproc/smooth.cpp +1566 -0
- data/ext/opencv/imgproc/tables.cpp +214 -0
- data/ext/opencv/imgproc/thresh.cpp +636 -0
- data/ext/opencv/imgproc/utils.cpp +242 -0
- data/ext/opencv/include/opencv2/core/core.hpp +4344 -0
- data/ext/opencv/include/opencv2/core/core_c.h +1885 -0
- data/ext/opencv/include/opencv2/core/internal.hpp +710 -0
- data/ext/opencv/include/opencv2/core/mat.hpp +2557 -0
- data/ext/opencv/include/opencv2/core/operations.hpp +3623 -0
- data/ext/opencv/include/opencv2/core/types_c.h +1875 -0
- data/ext/opencv/include/opencv2/core/version.hpp +58 -0
- data/ext/opencv/include/opencv2/highgui/highgui.hpp +198 -0
- data/ext/opencv/include/opencv2/highgui/highgui_c.h +506 -0
- data/ext/opencv/include/opencv2/imgproc/imgproc.hpp +1139 -0
- data/ext/opencv/include/opencv2/imgproc/imgproc_c.h +783 -0
- data/ext/opencv/include/opencv2/imgproc/types_c.h +538 -0
- data/imagecore.gemspec +20 -0
- data/lib/imagecore.rb +16 -0
- data/lib/imagecore/version.rb +3 -0
- metadata +119 -0
@@ -0,0 +1,1566 @@
|
|
1
|
+
/*M///////////////////////////////////////////////////////////////////////////////////////
|
2
|
+
//
|
3
|
+
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
4
|
+
//
|
5
|
+
// By downloading, copying, installing or using the software you agree to this license.
|
6
|
+
// If you do not agree to this license, do not download, install,
|
7
|
+
// copy or use the software.
|
8
|
+
//
|
9
|
+
//
|
10
|
+
// License Agreement
|
11
|
+
// For Open Source Computer Vision Library
|
12
|
+
//
|
13
|
+
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
14
|
+
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
15
|
+
// Third party copyrights are property of their respective owners.
|
16
|
+
//
|
17
|
+
// Redistribution and use in source and binary forms, with or without modification,
|
18
|
+
// are permitted provided that the following conditions are met:
|
19
|
+
//
|
20
|
+
// * Redistribution's of source code must retain the above copyright notice,
|
21
|
+
// this list of conditions and the following disclaimer.
|
22
|
+
//
|
23
|
+
// * Redistribution's in binary form must reproduce the above copyright notice,
|
24
|
+
// this list of conditions and the following disclaimer in the documentation
|
25
|
+
// and/or other materials provided with the distribution.
|
26
|
+
//
|
27
|
+
// * The name of the copyright holders may not be used to endorse or promote products
|
28
|
+
// derived from this software without specific prior written permission.
|
29
|
+
//
|
30
|
+
// This software is provided by the copyright holders and contributors "as is" and
|
31
|
+
// any express or implied warranties, including, but not limited to, the implied
|
32
|
+
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
33
|
+
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
34
|
+
// indirect, incidental, special, exemplary, or consequential damages
|
35
|
+
// (including, but not limited to, procurement of substitute goods or services;
|
36
|
+
// loss of use, data, or profits; or business interruption) however caused
|
37
|
+
// and on any theory of liability, whether in contract, strict liability,
|
38
|
+
// or tort (including negligence or otherwise) arising in any way out of
|
39
|
+
// the use of this software, even if advised of the possibility of such damage.
|
40
|
+
//
|
41
|
+
//M*/
|
42
|
+
|
43
|
+
#include "precomp.hpp"
|
44
|
+
|
45
|
+
/*
|
46
|
+
* This file includes the code, contributed by Simon Perreault
|
47
|
+
* (the function icvMedianBlur_8u_O1)
|
48
|
+
*
|
49
|
+
* Constant-time median filtering -- http://nomis80.org/ctmf.html
|
50
|
+
* Copyright (C) 2006 Simon Perreault
|
51
|
+
*
|
52
|
+
* Contact:
|
53
|
+
* Laboratoire de vision et systemes numeriques
|
54
|
+
* Pavillon Adrien-Pouliot
|
55
|
+
* Universite Laval
|
56
|
+
* Sainte-Foy, Quebec, Canada
|
57
|
+
* G1K 7P4
|
58
|
+
*
|
59
|
+
* perreaul@gel.ulaval.ca
|
60
|
+
*/
|
61
|
+
|
62
|
+
namespace cv
|
63
|
+
{
|
64
|
+
|
65
|
+
/****************************************************************************************\
|
66
|
+
Box Filter
|
67
|
+
\****************************************************************************************/
|
68
|
+
|
69
|
+
template<typename T, typename ST> struct RowSum : public BaseRowFilter
|
70
|
+
{
|
71
|
+
RowSum( int _ksize, int _anchor )
|
72
|
+
{
|
73
|
+
ksize = _ksize;
|
74
|
+
anchor = _anchor;
|
75
|
+
}
|
76
|
+
|
77
|
+
void operator()(const uchar* src, uchar* dst, int width, int cn)
|
78
|
+
{
|
79
|
+
const T* S = (const T*)src;
|
80
|
+
ST* D = (ST*)dst;
|
81
|
+
int i = 0, k, ksz_cn = ksize*cn;
|
82
|
+
|
83
|
+
width = (width - 1)*cn;
|
84
|
+
for( k = 0; k < cn; k++, S++, D++ )
|
85
|
+
{
|
86
|
+
ST s = 0;
|
87
|
+
for( i = 0; i < ksz_cn; i += cn )
|
88
|
+
s += S[i];
|
89
|
+
D[0] = s;
|
90
|
+
for( i = 0; i < width; i += cn )
|
91
|
+
{
|
92
|
+
s += S[i + ksz_cn] - S[i];
|
93
|
+
D[i+cn] = s;
|
94
|
+
}
|
95
|
+
}
|
96
|
+
}
|
97
|
+
};
|
98
|
+
|
99
|
+
|
100
|
+
template<typename ST, typename T> struct ColumnSum : public BaseColumnFilter
|
101
|
+
{
|
102
|
+
ColumnSum( int _ksize, int _anchor, double _scale )
|
103
|
+
{
|
104
|
+
ksize = _ksize;
|
105
|
+
anchor = _anchor;
|
106
|
+
scale = _scale;
|
107
|
+
sumCount = 0;
|
108
|
+
}
|
109
|
+
|
110
|
+
void reset() { sumCount = 0; }
|
111
|
+
|
112
|
+
void operator()(const uchar** src, uchar* dst, int dststep, int count, int width)
|
113
|
+
{
|
114
|
+
int i;
|
115
|
+
ST* SUM;
|
116
|
+
bool haveScale = scale != 1;
|
117
|
+
double _scale = scale;
|
118
|
+
|
119
|
+
if( width != (int)sum.size() )
|
120
|
+
{
|
121
|
+
sum.resize(width);
|
122
|
+
sumCount = 0;
|
123
|
+
}
|
124
|
+
|
125
|
+
SUM = &sum[0];
|
126
|
+
if( sumCount == 0 )
|
127
|
+
{
|
128
|
+
for( i = 0; i < width; i++ )
|
129
|
+
SUM[i] = 0;
|
130
|
+
for( ; sumCount < ksize - 1; sumCount++, src++ )
|
131
|
+
{
|
132
|
+
const ST* Sp = (const ST*)src[0];
|
133
|
+
for( i = 0; i <= width - 2; i += 2 )
|
134
|
+
{
|
135
|
+
ST s0 = SUM[i] + Sp[i], s1 = SUM[i+1] + Sp[i+1];
|
136
|
+
SUM[i] = s0; SUM[i+1] = s1;
|
137
|
+
}
|
138
|
+
|
139
|
+
for( ; i < width; i++ )
|
140
|
+
SUM[i] += Sp[i];
|
141
|
+
}
|
142
|
+
}
|
143
|
+
else
|
144
|
+
{
|
145
|
+
CV_Assert( sumCount == ksize-1 );
|
146
|
+
src += ksize-1;
|
147
|
+
}
|
148
|
+
|
149
|
+
for( ; count--; src++ )
|
150
|
+
{
|
151
|
+
const ST* Sp = (const ST*)src[0];
|
152
|
+
const ST* Sm = (const ST*)src[1-ksize];
|
153
|
+
T* D = (T*)dst;
|
154
|
+
if( haveScale )
|
155
|
+
{
|
156
|
+
for( i = 0; i <= width - 2; i += 2 )
|
157
|
+
{
|
158
|
+
ST s0 = SUM[i] + Sp[i], s1 = SUM[i+1] + Sp[i+1];
|
159
|
+
D[i] = saturate_cast<T>(s0*_scale);
|
160
|
+
D[i+1] = saturate_cast<T>(s1*_scale);
|
161
|
+
s0 -= Sm[i]; s1 -= Sm[i+1];
|
162
|
+
SUM[i] = s0; SUM[i+1] = s1;
|
163
|
+
}
|
164
|
+
|
165
|
+
for( ; i < width; i++ )
|
166
|
+
{
|
167
|
+
ST s0 = SUM[i] + Sp[i];
|
168
|
+
D[i] = saturate_cast<T>(s0*_scale);
|
169
|
+
SUM[i] = s0 - Sm[i];
|
170
|
+
}
|
171
|
+
}
|
172
|
+
else
|
173
|
+
{
|
174
|
+
for( i = 0; i <= width - 2; i += 2 )
|
175
|
+
{
|
176
|
+
ST s0 = SUM[i] + Sp[i], s1 = SUM[i+1] + Sp[i+1];
|
177
|
+
D[i] = saturate_cast<T>(s0);
|
178
|
+
D[i+1] = saturate_cast<T>(s1);
|
179
|
+
s0 -= Sm[i]; s1 -= Sm[i+1];
|
180
|
+
SUM[i] = s0; SUM[i+1] = s1;
|
181
|
+
}
|
182
|
+
|
183
|
+
for( ; i < width; i++ )
|
184
|
+
{
|
185
|
+
ST s0 = SUM[i] + Sp[i];
|
186
|
+
D[i] = saturate_cast<T>(s0);
|
187
|
+
SUM[i] = s0 - Sm[i];
|
188
|
+
}
|
189
|
+
}
|
190
|
+
dst += dststep;
|
191
|
+
}
|
192
|
+
}
|
193
|
+
|
194
|
+
double scale;
|
195
|
+
int sumCount;
|
196
|
+
vector<ST> sum;
|
197
|
+
};
|
198
|
+
|
199
|
+
|
200
|
+
}
|
201
|
+
|
202
|
+
cv::Ptr<cv::BaseRowFilter> cv::getRowSumFilter(int srcType, int sumType, int ksize, int anchor)
|
203
|
+
{
|
204
|
+
int sdepth = CV_MAT_DEPTH(srcType), ddepth = CV_MAT_DEPTH(sumType);
|
205
|
+
CV_Assert( CV_MAT_CN(sumType) == CV_MAT_CN(srcType) );
|
206
|
+
|
207
|
+
if( anchor < 0 )
|
208
|
+
anchor = ksize/2;
|
209
|
+
|
210
|
+
if( sdepth == CV_8U && ddepth == CV_32S )
|
211
|
+
return Ptr<BaseRowFilter>(new RowSum<uchar, int>(ksize, anchor));
|
212
|
+
if( sdepth == CV_8U && ddepth == CV_64F )
|
213
|
+
return Ptr<BaseRowFilter>(new RowSum<uchar, double>(ksize, anchor));
|
214
|
+
if( sdepth == CV_16U && ddepth == CV_32S )
|
215
|
+
return Ptr<BaseRowFilter>(new RowSum<ushort, int>(ksize, anchor));
|
216
|
+
if( sdepth == CV_16U && ddepth == CV_64F )
|
217
|
+
return Ptr<BaseRowFilter>(new RowSum<ushort, double>(ksize, anchor));
|
218
|
+
if( sdepth == CV_16S && ddepth == CV_32S )
|
219
|
+
return Ptr<BaseRowFilter>(new RowSum<short, int>(ksize, anchor));
|
220
|
+
if( sdepth == CV_32S && ddepth == CV_32S )
|
221
|
+
return Ptr<BaseRowFilter>(new RowSum<int, int>(ksize, anchor));
|
222
|
+
if( sdepth == CV_16S && ddepth == CV_64F )
|
223
|
+
return Ptr<BaseRowFilter>(new RowSum<short, double>(ksize, anchor));
|
224
|
+
if( sdepth == CV_32F && ddepth == CV_64F )
|
225
|
+
return Ptr<BaseRowFilter>(new RowSum<float, double>(ksize, anchor));
|
226
|
+
if( sdepth == CV_64F && ddepth == CV_64F )
|
227
|
+
return Ptr<BaseRowFilter>(new RowSum<double, double>(ksize, anchor));
|
228
|
+
|
229
|
+
CV_Error_( CV_StsNotImplemented,
|
230
|
+
("Unsupported combination of source format (=%d), and buffer format (=%d)",
|
231
|
+
srcType, sumType));
|
232
|
+
|
233
|
+
return Ptr<BaseRowFilter>(0);
|
234
|
+
}
|
235
|
+
|
236
|
+
|
237
|
+
cv::Ptr<cv::BaseColumnFilter> cv::getColumnSumFilter(int sumType, int dstType, int ksize,
|
238
|
+
int anchor, double scale)
|
239
|
+
{
|
240
|
+
int sdepth = CV_MAT_DEPTH(sumType), ddepth = CV_MAT_DEPTH(dstType);
|
241
|
+
CV_Assert( CV_MAT_CN(sumType) == CV_MAT_CN(dstType) );
|
242
|
+
|
243
|
+
if( anchor < 0 )
|
244
|
+
anchor = ksize/2;
|
245
|
+
|
246
|
+
if( ddepth == CV_8U && sdepth == CV_32S )
|
247
|
+
return Ptr<BaseColumnFilter>(new ColumnSum<int, uchar>(ksize, anchor, scale));
|
248
|
+
if( ddepth == CV_8U && sdepth == CV_64F )
|
249
|
+
return Ptr<BaseColumnFilter>(new ColumnSum<double, uchar>(ksize, anchor, scale));
|
250
|
+
if( ddepth == CV_16U && sdepth == CV_32S )
|
251
|
+
return Ptr<BaseColumnFilter>(new ColumnSum<int, ushort>(ksize, anchor, scale));
|
252
|
+
if( ddepth == CV_16U && sdepth == CV_64F )
|
253
|
+
return Ptr<BaseColumnFilter>(new ColumnSum<double, ushort>(ksize, anchor, scale));
|
254
|
+
if( ddepth == CV_16S && sdepth == CV_32S )
|
255
|
+
return Ptr<BaseColumnFilter>(new ColumnSum<int, short>(ksize, anchor, scale));
|
256
|
+
if( ddepth == CV_16S && sdepth == CV_64F )
|
257
|
+
return Ptr<BaseColumnFilter>(new ColumnSum<double, short>(ksize, anchor, scale));
|
258
|
+
if( ddepth == CV_32S && sdepth == CV_32S )
|
259
|
+
return Ptr<BaseColumnFilter>(new ColumnSum<int, int>(ksize, anchor, scale));
|
260
|
+
if( ddepth == CV_32F && sdepth == CV_32S )
|
261
|
+
return Ptr<BaseColumnFilter>(new ColumnSum<int, float>(ksize, anchor, scale));
|
262
|
+
if( ddepth == CV_32F && sdepth == CV_64F )
|
263
|
+
return Ptr<BaseColumnFilter>(new ColumnSum<double, float>(ksize, anchor, scale));
|
264
|
+
if( ddepth == CV_64F && sdepth == CV_32S )
|
265
|
+
return Ptr<BaseColumnFilter>(new ColumnSum<int, double>(ksize, anchor, scale));
|
266
|
+
if( ddepth == CV_64F && sdepth == CV_64F )
|
267
|
+
return Ptr<BaseColumnFilter>(new ColumnSum<double, double>(ksize, anchor, scale));
|
268
|
+
|
269
|
+
CV_Error_( CV_StsNotImplemented,
|
270
|
+
("Unsupported combination of sum format (=%d), and destination format (=%d)",
|
271
|
+
sumType, dstType));
|
272
|
+
|
273
|
+
return Ptr<BaseColumnFilter>(0);
|
274
|
+
}
|
275
|
+
|
276
|
+
|
277
|
+
cv::Ptr<cv::FilterEngine> cv::createBoxFilter( int srcType, int dstType, Size ksize,
|
278
|
+
Point anchor, bool normalize, int borderType )
|
279
|
+
{
|
280
|
+
int sdepth = CV_MAT_DEPTH(srcType);
|
281
|
+
int cn = CV_MAT_CN(srcType), sumType = CV_64F;
|
282
|
+
if( sdepth < CV_32S && (!normalize ||
|
283
|
+
ksize.width*ksize.height <= (sdepth == CV_8U ? (1<<23) :
|
284
|
+
sdepth == CV_16U ? (1 << 15) : (1 << 16))) )
|
285
|
+
sumType = CV_32S;
|
286
|
+
sumType = CV_MAKETYPE( sumType, cn );
|
287
|
+
|
288
|
+
Ptr<BaseRowFilter> rowFilter = getRowSumFilter(srcType, sumType, ksize.width, anchor.x );
|
289
|
+
Ptr<BaseColumnFilter> columnFilter = getColumnSumFilter(sumType,
|
290
|
+
dstType, ksize.height, anchor.y, normalize ? 1./(ksize.width*ksize.height) : 1);
|
291
|
+
|
292
|
+
return Ptr<FilterEngine>(new FilterEngine(Ptr<BaseFilter>(0), rowFilter, columnFilter,
|
293
|
+
srcType, dstType, sumType, borderType ));
|
294
|
+
}
|
295
|
+
|
296
|
+
|
297
|
+
void cv::boxFilter( InputArray _src, OutputArray _dst, int ddepth,
|
298
|
+
Size ksize, Point anchor,
|
299
|
+
bool normalize, int borderType )
|
300
|
+
{
|
301
|
+
Mat src = _src.getMat();
|
302
|
+
int sdepth = src.depth(), cn = src.channels();
|
303
|
+
if( ddepth < 0 )
|
304
|
+
ddepth = sdepth;
|
305
|
+
_dst.create( src.size(), CV_MAKETYPE(ddepth, cn) );
|
306
|
+
Mat dst = _dst.getMat();
|
307
|
+
if( borderType != BORDER_CONSTANT && normalize )
|
308
|
+
{
|
309
|
+
if( src.rows == 1 )
|
310
|
+
ksize.height = 1;
|
311
|
+
if( src.cols == 1 )
|
312
|
+
ksize.width = 1;
|
313
|
+
}
|
314
|
+
Ptr<FilterEngine> f = createBoxFilter( src.type(), dst.type(),
|
315
|
+
ksize, anchor, normalize, borderType );
|
316
|
+
f->apply( src, dst );
|
317
|
+
}
|
318
|
+
|
319
|
+
void cv::blur( InputArray src, OutputArray dst,
|
320
|
+
Size ksize, Point anchor, int borderType )
|
321
|
+
{
|
322
|
+
boxFilter( src, dst, -1, ksize, anchor, true, borderType );
|
323
|
+
}
|
324
|
+
|
325
|
+
/****************************************************************************************\
|
326
|
+
Gaussian Blur
|
327
|
+
\****************************************************************************************/
|
328
|
+
|
329
|
+
cv::Mat cv::getGaussianKernel( int n, double sigma, int ktype )
|
330
|
+
{
|
331
|
+
const int SMALL_GAUSSIAN_SIZE = 7;
|
332
|
+
static const float small_gaussian_tab[][SMALL_GAUSSIAN_SIZE] =
|
333
|
+
{
|
334
|
+
{1.f},
|
335
|
+
{0.25f, 0.5f, 0.25f},
|
336
|
+
{0.0625f, 0.25f, 0.375f, 0.25f, 0.0625f},
|
337
|
+
{0.03125f, 0.109375f, 0.21875f, 0.28125f, 0.21875f, 0.109375f, 0.03125f}
|
338
|
+
};
|
339
|
+
|
340
|
+
const float* fixed_kernel = n % 2 == 1 && n <= SMALL_GAUSSIAN_SIZE && sigma <= 0 ?
|
341
|
+
small_gaussian_tab[n>>1] : 0;
|
342
|
+
|
343
|
+
CV_Assert( ktype == CV_32F || ktype == CV_64F );
|
344
|
+
Mat kernel(n, 1, ktype);
|
345
|
+
float* cf = (float*)kernel.data;
|
346
|
+
double* cd = (double*)kernel.data;
|
347
|
+
|
348
|
+
double sigmaX = sigma > 0 ? sigma : ((n-1)*0.5 - 1)*0.3 + 0.8;
|
349
|
+
double scale2X = -0.5/(sigmaX*sigmaX);
|
350
|
+
double sum = 0;
|
351
|
+
|
352
|
+
int i;
|
353
|
+
for( i = 0; i < n; i++ )
|
354
|
+
{
|
355
|
+
double x = i - (n-1)*0.5;
|
356
|
+
double t = fixed_kernel ? (double)fixed_kernel[i] : std::exp(scale2X*x*x);
|
357
|
+
if( ktype == CV_32F )
|
358
|
+
{
|
359
|
+
cf[i] = (float)t;
|
360
|
+
sum += cf[i];
|
361
|
+
}
|
362
|
+
else
|
363
|
+
{
|
364
|
+
cd[i] = t;
|
365
|
+
sum += cd[i];
|
366
|
+
}
|
367
|
+
}
|
368
|
+
|
369
|
+
sum = 1./sum;
|
370
|
+
for( i = 0; i < n; i++ )
|
371
|
+
{
|
372
|
+
if( ktype == CV_32F )
|
373
|
+
cf[i] = (float)(cf[i]*sum);
|
374
|
+
else
|
375
|
+
cd[i] *= sum;
|
376
|
+
}
|
377
|
+
|
378
|
+
return kernel;
|
379
|
+
}
|
380
|
+
|
381
|
+
|
382
|
+
cv::Ptr<cv::FilterEngine> cv::createGaussianFilter( int type, Size ksize,
|
383
|
+
double sigma1, double sigma2,
|
384
|
+
int borderType )
|
385
|
+
{
|
386
|
+
int depth = CV_MAT_DEPTH(type);
|
387
|
+
if( sigma2 <= 0 )
|
388
|
+
sigma2 = sigma1;
|
389
|
+
|
390
|
+
// automatic detection of kernel size from sigma
|
391
|
+
if( ksize.width <= 0 && sigma1 > 0 )
|
392
|
+
ksize.width = cvRound(sigma1*(depth == CV_8U ? 3 : 4)*2 + 1)|1;
|
393
|
+
if( ksize.height <= 0 && sigma2 > 0 )
|
394
|
+
ksize.height = cvRound(sigma2*(depth == CV_8U ? 3 : 4)*2 + 1)|1;
|
395
|
+
|
396
|
+
CV_Assert( ksize.width > 0 && ksize.width % 2 == 1 &&
|
397
|
+
ksize.height > 0 && ksize.height % 2 == 1 );
|
398
|
+
|
399
|
+
sigma1 = std::max( sigma1, 0. );
|
400
|
+
sigma2 = std::max( sigma2, 0. );
|
401
|
+
|
402
|
+
Mat kx = getGaussianKernel( ksize.width, sigma1, std::max(depth, CV_32F) );
|
403
|
+
Mat ky;
|
404
|
+
if( ksize.height == ksize.width && std::abs(sigma1 - sigma2) < DBL_EPSILON )
|
405
|
+
ky = kx;
|
406
|
+
else
|
407
|
+
ky = getGaussianKernel( ksize.height, sigma2, std::max(depth, CV_32F) );
|
408
|
+
|
409
|
+
return createSeparableLinearFilter( type, type, kx, ky, Point(-1,-1), 0, borderType );
|
410
|
+
}
|
411
|
+
|
412
|
+
|
413
|
+
void cv::GaussianBlur( InputArray _src, OutputArray _dst, Size ksize,
|
414
|
+
double sigma1, double sigma2,
|
415
|
+
int borderType )
|
416
|
+
{
|
417
|
+
Mat src = _src.getMat();
|
418
|
+
_dst.create( src.size(), src.type() );
|
419
|
+
Mat dst = _dst.getMat();
|
420
|
+
|
421
|
+
if( ksize.width == 1 && ksize.height == 1 )
|
422
|
+
{
|
423
|
+
src.copyTo(dst);
|
424
|
+
return;
|
425
|
+
}
|
426
|
+
|
427
|
+
if( borderType != BORDER_CONSTANT )
|
428
|
+
{
|
429
|
+
if( src.rows == 1 )
|
430
|
+
ksize.height = 1;
|
431
|
+
if( src.cols == 1 )
|
432
|
+
ksize.width = 1;
|
433
|
+
}
|
434
|
+
Ptr<FilterEngine> f = createGaussianFilter( src.type(), ksize, sigma1, sigma2, borderType );
|
435
|
+
f->apply( src, dst );
|
436
|
+
}
|
437
|
+
|
438
|
+
|
439
|
+
/****************************************************************************************\
|
440
|
+
Median Filter
|
441
|
+
\****************************************************************************************/
|
442
|
+
|
443
|
+
namespace cv
|
444
|
+
{
|
445
|
+
|
446
|
+
#if _MSC_VER >= 1200
|
447
|
+
#pragma warning( disable: 4244 )
|
448
|
+
#endif
|
449
|
+
|
450
|
+
typedef ushort HT;
|
451
|
+
|
452
|
+
/**
|
453
|
+
* This structure represents a two-tier histogram. The first tier (known as the
|
454
|
+
* "coarse" level) is 4 bit wide and the second tier (known as the "fine" level)
|
455
|
+
* is 8 bit wide. Pixels inserted in the fine level also get inserted into the
|
456
|
+
* coarse bucket designated by the 4 MSBs of the fine bucket value.
|
457
|
+
*
|
458
|
+
* The structure is aligned on 16 bits, which is a prerequisite for SIMD
|
459
|
+
* instructions. Each bucket is 16 bit wide, which means that extra care must be
|
460
|
+
* taken to prevent overflow.
|
461
|
+
*/
|
462
|
+
typedef struct
|
463
|
+
{
|
464
|
+
HT coarse[16];
|
465
|
+
HT fine[16][16];
|
466
|
+
} Histogram;
|
467
|
+
|
468
|
+
|
469
|
+
#if CV_SSE2
|
470
|
+
#define MEDIAN_HAVE_SIMD 1
|
471
|
+
|
472
|
+
static inline void histogram_add_simd( const HT x[16], HT y[16] )
|
473
|
+
{
|
474
|
+
const __m128i* rx = (const __m128i*)x;
|
475
|
+
__m128i* ry = (__m128i*)y;
|
476
|
+
__m128i r0 = _mm_add_epi16(_mm_load_si128(ry+0),_mm_load_si128(rx+0));
|
477
|
+
__m128i r1 = _mm_add_epi16(_mm_load_si128(ry+1),_mm_load_si128(rx+1));
|
478
|
+
_mm_store_si128(ry+0, r0);
|
479
|
+
_mm_store_si128(ry+1, r1);
|
480
|
+
}
|
481
|
+
|
482
|
+
static inline void histogram_sub_simd( const HT x[16], HT y[16] )
|
483
|
+
{
|
484
|
+
const __m128i* rx = (const __m128i*)x;
|
485
|
+
__m128i* ry = (__m128i*)y;
|
486
|
+
__m128i r0 = _mm_sub_epi16(_mm_load_si128(ry+0),_mm_load_si128(rx+0));
|
487
|
+
__m128i r1 = _mm_sub_epi16(_mm_load_si128(ry+1),_mm_load_si128(rx+1));
|
488
|
+
_mm_store_si128(ry+0, r0);
|
489
|
+
_mm_store_si128(ry+1, r1);
|
490
|
+
}
|
491
|
+
|
492
|
+
#else
|
493
|
+
#define MEDIAN_HAVE_SIMD 0
|
494
|
+
#endif
|
495
|
+
|
496
|
+
|
497
|
+
static inline void histogram_add( const HT x[16], HT y[16] )
|
498
|
+
{
|
499
|
+
int i;
|
500
|
+
for( i = 0; i < 16; ++i )
|
501
|
+
y[i] = (HT)(y[i] + x[i]);
|
502
|
+
}
|
503
|
+
|
504
|
+
static inline void histogram_sub( const HT x[16], HT y[16] )
|
505
|
+
{
|
506
|
+
int i;
|
507
|
+
for( i = 0; i < 16; ++i )
|
508
|
+
y[i] = (HT)(y[i] - x[i]);
|
509
|
+
}
|
510
|
+
|
511
|
+
static inline void histogram_muladd( int a, const HT x[16],
|
512
|
+
HT y[16] )
|
513
|
+
{
|
514
|
+
for( int i = 0; i < 16; ++i )
|
515
|
+
y[i] = (HT)(y[i] + a * x[i]);
|
516
|
+
}
|
517
|
+
|
518
|
+
static void
|
519
|
+
medianBlur_8u_O1( const Mat& _src, Mat& _dst, int ksize )
|
520
|
+
{
|
521
|
+
/**
|
522
|
+
* HOP is short for Histogram OPeration. This macro makes an operation \a op on
|
523
|
+
* histogram \a h for pixel value \a x. It takes care of handling both levels.
|
524
|
+
*/
|
525
|
+
#define HOP(h,x,op) \
|
526
|
+
h.coarse[x>>4] op, \
|
527
|
+
*((HT*)h.fine + x) op
|
528
|
+
|
529
|
+
#define COP(c,j,x,op) \
|
530
|
+
h_coarse[ 16*(n*c+j) + (x>>4) ] op, \
|
531
|
+
h_fine[ 16 * (n*(16*c+(x>>4)) + j) + (x & 0xF) ] op
|
532
|
+
|
533
|
+
int cn = _dst.channels(), m = _dst.rows, r = (ksize-1)/2;
|
534
|
+
size_t sstep = _src.step, dstep = _dst.step;
|
535
|
+
Histogram CV_DECL_ALIGNED(16) H[4];
|
536
|
+
HT CV_DECL_ALIGNED(16) luc[4][16];
|
537
|
+
|
538
|
+
int STRIPE_SIZE = std::min( _dst.cols, 512/cn );
|
539
|
+
|
540
|
+
vector<HT> _h_coarse(1 * 16 * (STRIPE_SIZE + 2*r) * cn + 16);
|
541
|
+
vector<HT> _h_fine(16 * 16 * (STRIPE_SIZE + 2*r) * cn + 16);
|
542
|
+
HT* h_coarse = alignPtr(&_h_coarse[0], 16);
|
543
|
+
HT* h_fine = alignPtr(&_h_fine[0], 16);
|
544
|
+
#if MEDIAN_HAVE_SIMD
|
545
|
+
volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE2);
|
546
|
+
#endif
|
547
|
+
|
548
|
+
for( int x = 0; x < _dst.cols; x += STRIPE_SIZE )
|
549
|
+
{
|
550
|
+
int i, j, k, c, n = std::min(_dst.cols - x, STRIPE_SIZE) + r*2;
|
551
|
+
const uchar* src = _src.data + x*cn;
|
552
|
+
uchar* dst = _dst.data + (x - r)*cn;
|
553
|
+
|
554
|
+
memset( h_coarse, 0, 16*n*cn*sizeof(h_coarse[0]) );
|
555
|
+
memset( h_fine, 0, 16*16*n*cn*sizeof(h_fine[0]) );
|
556
|
+
|
557
|
+
// First row initialization
|
558
|
+
for( c = 0; c < cn; c++ )
|
559
|
+
{
|
560
|
+
for( j = 0; j < n; j++ )
|
561
|
+
COP( c, j, src[cn*j+c], += r+2 );
|
562
|
+
|
563
|
+
for( i = 1; i < r; i++ )
|
564
|
+
{
|
565
|
+
const uchar* p = src + sstep*std::min(i, m-1);
|
566
|
+
for ( j = 0; j < n; j++ )
|
567
|
+
COP( c, j, p[cn*j+c], ++ );
|
568
|
+
}
|
569
|
+
}
|
570
|
+
|
571
|
+
for( i = 0; i < m; i++ )
|
572
|
+
{
|
573
|
+
const uchar* p0 = src + sstep * std::max( 0, i-r-1 );
|
574
|
+
const uchar* p1 = src + sstep * std::min( m-1, i+r );
|
575
|
+
|
576
|
+
memset( H, 0, cn*sizeof(H[0]) );
|
577
|
+
memset( luc, 0, cn*sizeof(luc[0]) );
|
578
|
+
for( c = 0; c < cn; c++ )
|
579
|
+
{
|
580
|
+
// Update column histograms for the entire row.
|
581
|
+
for( j = 0; j < n; j++ )
|
582
|
+
{
|
583
|
+
COP( c, j, p0[j*cn + c], -- );
|
584
|
+
COP( c, j, p1[j*cn + c], ++ );
|
585
|
+
}
|
586
|
+
|
587
|
+
// First column initialization
|
588
|
+
for( k = 0; k < 16; ++k )
|
589
|
+
histogram_muladd( 2*r+1, &h_fine[16*n*(16*c+k)], &H[c].fine[k][0] );
|
590
|
+
|
591
|
+
#if MEDIAN_HAVE_SIMD
|
592
|
+
if( useSIMD )
|
593
|
+
{
|
594
|
+
for( j = 0; j < 2*r; ++j )
|
595
|
+
histogram_add_simd( &h_coarse[16*(n*c+j)], H[c].coarse );
|
596
|
+
|
597
|
+
for( j = r; j < n-r; j++ )
|
598
|
+
{
|
599
|
+
int t = 2*r*r + 2*r, b, sum = 0;
|
600
|
+
HT* segment;
|
601
|
+
|
602
|
+
histogram_add_simd( &h_coarse[16*(n*c + std::min(j+r,n-1))], H[c].coarse );
|
603
|
+
|
604
|
+
// Find median at coarse level
|
605
|
+
for ( k = 0; k < 16 ; ++k )
|
606
|
+
{
|
607
|
+
sum += H[c].coarse[k];
|
608
|
+
if ( sum > t )
|
609
|
+
{
|
610
|
+
sum -= H[c].coarse[k];
|
611
|
+
break;
|
612
|
+
}
|
613
|
+
}
|
614
|
+
assert( k < 16 );
|
615
|
+
|
616
|
+
/* Update corresponding histogram segment */
|
617
|
+
if ( luc[c][k] <= j-r )
|
618
|
+
{
|
619
|
+
memset( &H[c].fine[k], 0, 16 * sizeof(HT) );
|
620
|
+
for ( luc[c][k] = j-r; luc[c][k] < MIN(j+r+1,n); ++luc[c][k] )
|
621
|
+
histogram_add_simd( &h_fine[16*(n*(16*c+k)+luc[c][k])], H[c].fine[k] );
|
622
|
+
|
623
|
+
if ( luc[c][k] < j+r+1 )
|
624
|
+
{
|
625
|
+
histogram_muladd( j+r+1 - n, &h_fine[16*(n*(16*c+k)+(n-1))], &H[c].fine[k][0] );
|
626
|
+
luc[c][k] = (HT)(j+r+1);
|
627
|
+
}
|
628
|
+
}
|
629
|
+
else
|
630
|
+
{
|
631
|
+
for ( ; luc[c][k] < j+r+1; ++luc[c][k] )
|
632
|
+
{
|
633
|
+
histogram_sub_simd( &h_fine[16*(n*(16*c+k)+MAX(luc[c][k]-2*r-1,0))], H[c].fine[k] );
|
634
|
+
histogram_add_simd( &h_fine[16*(n*(16*c+k)+MIN(luc[c][k],n-1))], H[c].fine[k] );
|
635
|
+
}
|
636
|
+
}
|
637
|
+
|
638
|
+
histogram_sub_simd( &h_coarse[16*(n*c+MAX(j-r,0))], H[c].coarse );
|
639
|
+
|
640
|
+
/* Find median in segment */
|
641
|
+
segment = H[c].fine[k];
|
642
|
+
for ( b = 0; b < 16 ; b++ )
|
643
|
+
{
|
644
|
+
sum += segment[b];
|
645
|
+
if ( sum > t )
|
646
|
+
{
|
647
|
+
dst[dstep*i+cn*j+c] = (uchar)(16*k + b);
|
648
|
+
break;
|
649
|
+
}
|
650
|
+
}
|
651
|
+
assert( b < 16 );
|
652
|
+
}
|
653
|
+
}
|
654
|
+
else
|
655
|
+
#endif
|
656
|
+
{
|
657
|
+
for( j = 0; j < 2*r; ++j )
|
658
|
+
histogram_add( &h_coarse[16*(n*c+j)], H[c].coarse );
|
659
|
+
|
660
|
+
for( j = r; j < n-r; j++ )
|
661
|
+
{
|
662
|
+
int t = 2*r*r + 2*r, b, sum = 0;
|
663
|
+
HT* segment;
|
664
|
+
|
665
|
+
histogram_add( &h_coarse[16*(n*c + std::min(j+r,n-1))], H[c].coarse );
|
666
|
+
|
667
|
+
// Find median at coarse level
|
668
|
+
for ( k = 0; k < 16 ; ++k )
|
669
|
+
{
|
670
|
+
sum += H[c].coarse[k];
|
671
|
+
if ( sum > t )
|
672
|
+
{
|
673
|
+
sum -= H[c].coarse[k];
|
674
|
+
break;
|
675
|
+
}
|
676
|
+
}
|
677
|
+
assert( k < 16 );
|
678
|
+
|
679
|
+
/* Update corresponding histogram segment */
|
680
|
+
if ( luc[c][k] <= j-r )
|
681
|
+
{
|
682
|
+
memset( &H[c].fine[k], 0, 16 * sizeof(HT) );
|
683
|
+
for ( luc[c][k] = j-r; luc[c][k] < MIN(j+r+1,n); ++luc[c][k] )
|
684
|
+
histogram_add( &h_fine[16*(n*(16*c+k)+luc[c][k])], H[c].fine[k] );
|
685
|
+
|
686
|
+
if ( luc[c][k] < j+r+1 )
|
687
|
+
{
|
688
|
+
histogram_muladd( j+r+1 - n, &h_fine[16*(n*(16*c+k)+(n-1))], &H[c].fine[k][0] );
|
689
|
+
luc[c][k] = (HT)(j+r+1);
|
690
|
+
}
|
691
|
+
}
|
692
|
+
else
|
693
|
+
{
|
694
|
+
for ( ; luc[c][k] < j+r+1; ++luc[c][k] )
|
695
|
+
{
|
696
|
+
histogram_sub( &h_fine[16*(n*(16*c+k)+MAX(luc[c][k]-2*r-1,0))], H[c].fine[k] );
|
697
|
+
histogram_add( &h_fine[16*(n*(16*c+k)+MIN(luc[c][k],n-1))], H[c].fine[k] );
|
698
|
+
}
|
699
|
+
}
|
700
|
+
|
701
|
+
histogram_sub( &h_coarse[16*(n*c+MAX(j-r,0))], H[c].coarse );
|
702
|
+
|
703
|
+
/* Find median in segment */
|
704
|
+
segment = H[c].fine[k];
|
705
|
+
for ( b = 0; b < 16 ; b++ )
|
706
|
+
{
|
707
|
+
sum += segment[b];
|
708
|
+
if ( sum > t )
|
709
|
+
{
|
710
|
+
dst[dstep*i+cn*j+c] = (uchar)(16*k + b);
|
711
|
+
break;
|
712
|
+
}
|
713
|
+
}
|
714
|
+
assert( b < 16 );
|
715
|
+
}
|
716
|
+
}
|
717
|
+
}
|
718
|
+
}
|
719
|
+
}
|
720
|
+
|
721
|
+
#undef HOP
|
722
|
+
#undef COP
|
723
|
+
}
|
724
|
+
|
725
|
+
|
726
|
+
#if _MSC_VER >= 1200
|
727
|
+
#pragma warning( default: 4244 )
|
728
|
+
#endif
|
729
|
+
|
730
|
+
static void
|
731
|
+
medianBlur_8u_Om( const Mat& _src, Mat& _dst, int m )
|
732
|
+
{
|
733
|
+
#define N 16
|
734
|
+
int zone0[4][N];
|
735
|
+
int zone1[4][N*N];
|
736
|
+
int x, y;
|
737
|
+
int n2 = m*m/2;
|
738
|
+
Size size = _dst.size();
|
739
|
+
const uchar* src = _src.data;
|
740
|
+
uchar* dst = _dst.data;
|
741
|
+
int src_step = (int)_src.step, dst_step = (int)_dst.step;
|
742
|
+
int cn = _src.channels();
|
743
|
+
const uchar* src_max = src + size.height*src_step;
|
744
|
+
|
745
|
+
#define UPDATE_ACC01( pix, cn, op ) \
|
746
|
+
{ \
|
747
|
+
int p = (pix); \
|
748
|
+
zone1[cn][p] op; \
|
749
|
+
zone0[cn][p >> 4] op; \
|
750
|
+
}
|
751
|
+
|
752
|
+
//CV_Assert( size.height >= nx && size.width >= nx );
|
753
|
+
for( x = 0; x < size.width; x++, src += cn, dst += cn )
|
754
|
+
{
|
755
|
+
uchar* dst_cur = dst;
|
756
|
+
const uchar* src_top = src;
|
757
|
+
const uchar* src_bottom = src;
|
758
|
+
int k, c;
|
759
|
+
int src_step1 = src_step, dst_step1 = dst_step;
|
760
|
+
|
761
|
+
if( x % 2 != 0 )
|
762
|
+
{
|
763
|
+
src_bottom = src_top += src_step*(size.height-1);
|
764
|
+
dst_cur += dst_step*(size.height-1);
|
765
|
+
src_step1 = -src_step1;
|
766
|
+
dst_step1 = -dst_step1;
|
767
|
+
}
|
768
|
+
|
769
|
+
// init accumulator
|
770
|
+
memset( zone0, 0, sizeof(zone0[0])*cn );
|
771
|
+
memset( zone1, 0, sizeof(zone1[0])*cn );
|
772
|
+
|
773
|
+
for( y = 0; y <= m/2; y++ )
|
774
|
+
{
|
775
|
+
for( c = 0; c < cn; c++ )
|
776
|
+
{
|
777
|
+
if( y > 0 )
|
778
|
+
{
|
779
|
+
for( k = 0; k < m*cn; k += cn )
|
780
|
+
UPDATE_ACC01( src_bottom[k+c], c, ++ );
|
781
|
+
}
|
782
|
+
else
|
783
|
+
{
|
784
|
+
for( k = 0; k < m*cn; k += cn )
|
785
|
+
UPDATE_ACC01( src_bottom[k+c], c, += m/2+1 );
|
786
|
+
}
|
787
|
+
}
|
788
|
+
|
789
|
+
if( (src_step1 > 0 && y < size.height-1) ||
|
790
|
+
(src_step1 < 0 && size.height-y-1 > 0) )
|
791
|
+
src_bottom += src_step1;
|
792
|
+
}
|
793
|
+
|
794
|
+
for( y = 0; y < size.height; y++, dst_cur += dst_step1 )
|
795
|
+
{
|
796
|
+
// find median
|
797
|
+
for( c = 0; c < cn; c++ )
|
798
|
+
{
|
799
|
+
int s = 0;
|
800
|
+
for( k = 0; ; k++ )
|
801
|
+
{
|
802
|
+
int t = s + zone0[c][k];
|
803
|
+
if( t > n2 ) break;
|
804
|
+
s = t;
|
805
|
+
}
|
806
|
+
|
807
|
+
for( k *= N; ;k++ )
|
808
|
+
{
|
809
|
+
s += zone1[c][k];
|
810
|
+
if( s > n2 ) break;
|
811
|
+
}
|
812
|
+
|
813
|
+
dst_cur[c] = (uchar)k;
|
814
|
+
}
|
815
|
+
|
816
|
+
if( y+1 == size.height )
|
817
|
+
break;
|
818
|
+
|
819
|
+
if( cn == 1 )
|
820
|
+
{
|
821
|
+
for( k = 0; k < m; k++ )
|
822
|
+
{
|
823
|
+
int p = src_top[k];
|
824
|
+
int q = src_bottom[k];
|
825
|
+
zone1[0][p]--;
|
826
|
+
zone0[0][p>>4]--;
|
827
|
+
zone1[0][q]++;
|
828
|
+
zone0[0][q>>4]++;
|
829
|
+
}
|
830
|
+
}
|
831
|
+
else if( cn == 3 )
|
832
|
+
{
|
833
|
+
for( k = 0; k < m*3; k += 3 )
|
834
|
+
{
|
835
|
+
UPDATE_ACC01( src_top[k], 0, -- );
|
836
|
+
UPDATE_ACC01( src_top[k+1], 1, -- );
|
837
|
+
UPDATE_ACC01( src_top[k+2], 2, -- );
|
838
|
+
|
839
|
+
UPDATE_ACC01( src_bottom[k], 0, ++ );
|
840
|
+
UPDATE_ACC01( src_bottom[k+1], 1, ++ );
|
841
|
+
UPDATE_ACC01( src_bottom[k+2], 2, ++ );
|
842
|
+
}
|
843
|
+
}
|
844
|
+
else
|
845
|
+
{
|
846
|
+
assert( cn == 4 );
|
847
|
+
for( k = 0; k < m*4; k += 4 )
|
848
|
+
{
|
849
|
+
UPDATE_ACC01( src_top[k], 0, -- );
|
850
|
+
UPDATE_ACC01( src_top[k+1], 1, -- );
|
851
|
+
UPDATE_ACC01( src_top[k+2], 2, -- );
|
852
|
+
UPDATE_ACC01( src_top[k+3], 3, -- );
|
853
|
+
|
854
|
+
UPDATE_ACC01( src_bottom[k], 0, ++ );
|
855
|
+
UPDATE_ACC01( src_bottom[k+1], 1, ++ );
|
856
|
+
UPDATE_ACC01( src_bottom[k+2], 2, ++ );
|
857
|
+
UPDATE_ACC01( src_bottom[k+3], 3, ++ );
|
858
|
+
}
|
859
|
+
}
|
860
|
+
|
861
|
+
if( (src_step1 > 0 && src_bottom + src_step1 < src_max) ||
|
862
|
+
(src_step1 < 0 && src_bottom + src_step1 >= src) )
|
863
|
+
src_bottom += src_step1;
|
864
|
+
|
865
|
+
if( y >= m/2 )
|
866
|
+
src_top += src_step1;
|
867
|
+
}
|
868
|
+
}
|
869
|
+
#undef N
|
870
|
+
#undef UPDATE_ACC
|
871
|
+
}
|
872
|
+
|
873
|
+
|
874
|
+
struct MinMax8u
|
875
|
+
{
|
876
|
+
typedef uchar value_type;
|
877
|
+
typedef int arg_type;
|
878
|
+
enum { SIZE = 1 };
|
879
|
+
arg_type load(const uchar* ptr) { return *ptr; }
|
880
|
+
void store(uchar* ptr, arg_type val) { *ptr = (uchar)val; }
|
881
|
+
void operator()(arg_type& a, arg_type& b) const
|
882
|
+
{
|
883
|
+
int t = CV_FAST_CAST_8U(a - b);
|
884
|
+
b += t; a -= t;
|
885
|
+
}
|
886
|
+
};
|
887
|
+
|
888
|
+
struct MinMax16u
|
889
|
+
{
|
890
|
+
typedef ushort value_type;
|
891
|
+
typedef int arg_type;
|
892
|
+
enum { SIZE = 1 };
|
893
|
+
arg_type load(const ushort* ptr) { return *ptr; }
|
894
|
+
void store(ushort* ptr, arg_type val) { *ptr = (ushort)val; }
|
895
|
+
void operator()(arg_type& a, arg_type& b) const
|
896
|
+
{
|
897
|
+
arg_type t = a;
|
898
|
+
a = std::min(a, b);
|
899
|
+
b = std::max(b, t);
|
900
|
+
}
|
901
|
+
};
|
902
|
+
|
903
|
+
struct MinMax16s
|
904
|
+
{
|
905
|
+
typedef short value_type;
|
906
|
+
typedef int arg_type;
|
907
|
+
enum { SIZE = 1 };
|
908
|
+
arg_type load(const short* ptr) { return *ptr; }
|
909
|
+
void store(short* ptr, arg_type val) { *ptr = (short)val; }
|
910
|
+
void operator()(arg_type& a, arg_type& b) const
|
911
|
+
{
|
912
|
+
arg_type t = a;
|
913
|
+
a = std::min(a, b);
|
914
|
+
b = std::max(b, t);
|
915
|
+
}
|
916
|
+
};
|
917
|
+
|
918
|
+
struct MinMax32f
|
919
|
+
{
|
920
|
+
typedef float value_type;
|
921
|
+
typedef float arg_type;
|
922
|
+
enum { SIZE = 1 };
|
923
|
+
arg_type load(const float* ptr) { return *ptr; }
|
924
|
+
void store(float* ptr, arg_type val) { *ptr = val; }
|
925
|
+
void operator()(arg_type& a, arg_type& b) const
|
926
|
+
{
|
927
|
+
arg_type t = a;
|
928
|
+
a = std::min(a, b);
|
929
|
+
b = std::max(b, t);
|
930
|
+
}
|
931
|
+
};
|
932
|
+
|
933
|
+
#if CV_SSE2
|
934
|
+
|
935
|
+
struct MinMaxVec8u
|
936
|
+
{
|
937
|
+
typedef uchar value_type;
|
938
|
+
typedef __m128i arg_type;
|
939
|
+
enum { SIZE = 16 };
|
940
|
+
arg_type load(const uchar* ptr) { return _mm_loadu_si128((const __m128i*)ptr); }
|
941
|
+
void store(uchar* ptr, arg_type val) { _mm_storeu_si128((__m128i*)ptr, val); }
|
942
|
+
void operator()(arg_type& a, arg_type& b) const
|
943
|
+
{
|
944
|
+
arg_type t = a;
|
945
|
+
a = _mm_min_epu8(a, b);
|
946
|
+
b = _mm_max_epu8(b, t);
|
947
|
+
}
|
948
|
+
};
|
949
|
+
|
950
|
+
|
951
|
+
struct MinMaxVec16u
|
952
|
+
{
|
953
|
+
typedef ushort value_type;
|
954
|
+
typedef __m128i arg_type;
|
955
|
+
enum { SIZE = 8 };
|
956
|
+
arg_type load(const ushort* ptr) { return _mm_loadu_si128((const __m128i*)ptr); }
|
957
|
+
void store(ushort* ptr, arg_type val) { _mm_storeu_si128((__m128i*)ptr, val); }
|
958
|
+
void operator()(arg_type& a, arg_type& b) const
|
959
|
+
{
|
960
|
+
arg_type t = _mm_subs_epu16(a, b);
|
961
|
+
a = _mm_subs_epu16(a, t);
|
962
|
+
b = _mm_adds_epu16(b, t);
|
963
|
+
}
|
964
|
+
};
|
965
|
+
|
966
|
+
|
967
|
+
struct MinMaxVec16s
|
968
|
+
{
|
969
|
+
typedef short value_type;
|
970
|
+
typedef __m128i arg_type;
|
971
|
+
enum { SIZE = 8 };
|
972
|
+
arg_type load(const short* ptr) { return _mm_loadu_si128((const __m128i*)ptr); }
|
973
|
+
void store(short* ptr, arg_type val) { _mm_storeu_si128((__m128i*)ptr, val); }
|
974
|
+
void operator()(arg_type& a, arg_type& b) const
|
975
|
+
{
|
976
|
+
arg_type t = a;
|
977
|
+
a = _mm_min_epi16(a, b);
|
978
|
+
b = _mm_max_epi16(b, t);
|
979
|
+
}
|
980
|
+
};
|
981
|
+
|
982
|
+
|
983
|
+
struct MinMaxVec32f
|
984
|
+
{
|
985
|
+
typedef float value_type;
|
986
|
+
typedef __m128 arg_type;
|
987
|
+
enum { SIZE = 4 };
|
988
|
+
arg_type load(const float* ptr) { return _mm_loadu_ps(ptr); }
|
989
|
+
void store(float* ptr, arg_type val) { _mm_storeu_ps(ptr, val); }
|
990
|
+
void operator()(arg_type& a, arg_type& b) const
|
991
|
+
{
|
992
|
+
arg_type t = a;
|
993
|
+
a = _mm_min_ps(a, b);
|
994
|
+
b = _mm_max_ps(b, t);
|
995
|
+
}
|
996
|
+
};
|
997
|
+
|
998
|
+
|
999
|
+
#else
|
1000
|
+
|
1001
|
+
typedef MinMax8u MinMaxVec8u;
|
1002
|
+
typedef MinMax16u MinMaxVec16u;
|
1003
|
+
typedef MinMax16s MinMaxVec16s;
|
1004
|
+
typedef MinMax32f MinMaxVec32f;
|
1005
|
+
|
1006
|
+
#endif
|
1007
|
+
|
1008
|
+
template<class Op, class VecOp>
|
1009
|
+
static void
|
1010
|
+
medianBlur_SortNet( const Mat& _src, Mat& _dst, int m )
|
1011
|
+
{
|
1012
|
+
typedef typename Op::value_type T;
|
1013
|
+
typedef typename Op::arg_type WT;
|
1014
|
+
typedef typename VecOp::arg_type VT;
|
1015
|
+
|
1016
|
+
const T* src = (const T*)_src.data;
|
1017
|
+
T* dst = (T*)_dst.data;
|
1018
|
+
int sstep = (int)(_src.step/sizeof(T));
|
1019
|
+
int dstep = (int)(_dst.step/sizeof(T));
|
1020
|
+
Size size = _dst.size();
|
1021
|
+
int i, j, k, cn = _src.channels();
|
1022
|
+
Op op;
|
1023
|
+
VecOp vop;
|
1024
|
+
volatile bool useSIMD = checkHardwareSupport(CV_CPU_SSE2);
|
1025
|
+
|
1026
|
+
if( m == 3 )
|
1027
|
+
{
|
1028
|
+
if( size.width == 1 || size.height == 1 )
|
1029
|
+
{
|
1030
|
+
int len = size.width + size.height - 1;
|
1031
|
+
int sdelta = size.height == 1 ? cn : sstep;
|
1032
|
+
int sdelta0 = size.height == 1 ? 0 : sstep - cn;
|
1033
|
+
int ddelta = size.height == 1 ? cn : dstep;
|
1034
|
+
|
1035
|
+
for( i = 0; i < len; i++, src += sdelta0, dst += ddelta )
|
1036
|
+
for( j = 0; j < cn; j++, src++ )
|
1037
|
+
{
|
1038
|
+
WT p0 = src[i > 0 ? -sdelta : 0];
|
1039
|
+
WT p1 = src[0];
|
1040
|
+
WT p2 = src[i < len - 1 ? sdelta : 0];
|
1041
|
+
|
1042
|
+
op(p0, p1); op(p1, p2); op(p0, p1);
|
1043
|
+
dst[j] = (T)p1;
|
1044
|
+
}
|
1045
|
+
return;
|
1046
|
+
}
|
1047
|
+
|
1048
|
+
size.width *= cn;
|
1049
|
+
for( i = 0; i < size.height; i++, dst += dstep )
|
1050
|
+
{
|
1051
|
+
const T* row0 = src + std::max(i - 1, 0)*sstep;
|
1052
|
+
const T* row1 = src + i*sstep;
|
1053
|
+
const T* row2 = src + std::min(i + 1, size.height-1)*sstep;
|
1054
|
+
int limit = useSIMD ? cn : size.width;
|
1055
|
+
|
1056
|
+
for(j = 0;; )
|
1057
|
+
{
|
1058
|
+
for( ; j < limit; j++ )
|
1059
|
+
{
|
1060
|
+
int j0 = j >= cn ? j - cn : j;
|
1061
|
+
int j2 = j < size.width - cn ? j + cn : j;
|
1062
|
+
WT p0 = row0[j0], p1 = row0[j], p2 = row0[j2];
|
1063
|
+
WT p3 = row1[j0], p4 = row1[j], p5 = row1[j2];
|
1064
|
+
WT p6 = row2[j0], p7 = row2[j], p8 = row2[j2];
|
1065
|
+
|
1066
|
+
op(p1, p2); op(p4, p5); op(p7, p8); op(p0, p1);
|
1067
|
+
op(p3, p4); op(p6, p7); op(p1, p2); op(p4, p5);
|
1068
|
+
op(p7, p8); op(p0, p3); op(p5, p8); op(p4, p7);
|
1069
|
+
op(p3, p6); op(p1, p4); op(p2, p5); op(p4, p7);
|
1070
|
+
op(p4, p2); op(p6, p4); op(p4, p2);
|
1071
|
+
dst[j] = (T)p4;
|
1072
|
+
}
|
1073
|
+
|
1074
|
+
if( limit == size.width )
|
1075
|
+
break;
|
1076
|
+
|
1077
|
+
for( ; j <= size.width - VecOp::SIZE - cn; j += VecOp::SIZE )
|
1078
|
+
{
|
1079
|
+
VT p0 = vop.load(row0+j-cn), p1 = vop.load(row0+j), p2 = vop.load(row0+j+cn);
|
1080
|
+
VT p3 = vop.load(row1+j-cn), p4 = vop.load(row1+j), p5 = vop.load(row1+j+cn);
|
1081
|
+
VT p6 = vop.load(row2+j-cn), p7 = vop.load(row2+j), p8 = vop.load(row2+j+cn);
|
1082
|
+
|
1083
|
+
vop(p1, p2); vop(p4, p5); vop(p7, p8); vop(p0, p1);
|
1084
|
+
vop(p3, p4); vop(p6, p7); vop(p1, p2); vop(p4, p5);
|
1085
|
+
vop(p7, p8); vop(p0, p3); vop(p5, p8); vop(p4, p7);
|
1086
|
+
vop(p3, p6); vop(p1, p4); vop(p2, p5); vop(p4, p7);
|
1087
|
+
vop(p4, p2); vop(p6, p4); vop(p4, p2);
|
1088
|
+
vop.store(dst+j, p4);
|
1089
|
+
}
|
1090
|
+
|
1091
|
+
limit = size.width;
|
1092
|
+
}
|
1093
|
+
}
|
1094
|
+
}
|
1095
|
+
else if( m == 5 )
|
1096
|
+
{
|
1097
|
+
if( size.width == 1 || size.height == 1 )
|
1098
|
+
{
|
1099
|
+
int len = size.width + size.height - 1;
|
1100
|
+
int sdelta = size.height == 1 ? cn : sstep;
|
1101
|
+
int sdelta0 = size.height == 1 ? 0 : sstep - cn;
|
1102
|
+
int ddelta = size.height == 1 ? cn : dstep;
|
1103
|
+
|
1104
|
+
for( i = 0; i < len; i++, src += sdelta0, dst += ddelta )
|
1105
|
+
for( j = 0; j < cn; j++, src++ )
|
1106
|
+
{
|
1107
|
+
int i1 = i > 0 ? -sdelta : 0;
|
1108
|
+
int i0 = i > 1 ? -sdelta*2 : i1;
|
1109
|
+
int i3 = i < len-1 ? sdelta : 0;
|
1110
|
+
int i4 = i < len-2 ? sdelta*2 : i3;
|
1111
|
+
WT p0 = src[i0], p1 = src[i1], p2 = src[0], p3 = src[i3], p4 = src[i4];
|
1112
|
+
|
1113
|
+
op(p0, p1); op(p3, p4); op(p2, p3); op(p3, p4); op(p0, p2);
|
1114
|
+
op(p2, p4); op(p1, p3); op(p1, p2);
|
1115
|
+
dst[j] = (T)p2;
|
1116
|
+
}
|
1117
|
+
return;
|
1118
|
+
}
|
1119
|
+
|
1120
|
+
size.width *= cn;
|
1121
|
+
for( i = 0; i < size.height; i++, dst += dstep )
|
1122
|
+
{
|
1123
|
+
const T* row[5];
|
1124
|
+
row[0] = src + std::max(i - 2, 0)*sstep;
|
1125
|
+
row[1] = src + std::max(i - 1, 0)*sstep;
|
1126
|
+
row[2] = src + i*sstep;
|
1127
|
+
row[3] = src + std::min(i + 1, size.height-1)*sstep;
|
1128
|
+
row[4] = src + std::min(i + 2, size.height-1)*sstep;
|
1129
|
+
int limit = useSIMD ? cn*2 : size.width;
|
1130
|
+
|
1131
|
+
for(j = 0;; )
|
1132
|
+
{
|
1133
|
+
for( ; j < limit; j++ )
|
1134
|
+
{
|
1135
|
+
WT p[25];
|
1136
|
+
int j1 = j >= cn ? j - cn : j;
|
1137
|
+
int j0 = j >= cn*2 ? j - cn*2 : j1;
|
1138
|
+
int j3 = j < size.width - cn ? j + cn : j;
|
1139
|
+
int j4 = j < size.width - cn*2 ? j + cn*2 : j3;
|
1140
|
+
for( k = 0; k < 5; k++ )
|
1141
|
+
{
|
1142
|
+
const T* rowk = row[k];
|
1143
|
+
p[k*5] = rowk[j0]; p[k*5+1] = rowk[j1];
|
1144
|
+
p[k*5+2] = rowk[j]; p[k*5+3] = rowk[j3];
|
1145
|
+
p[k*5+4] = rowk[j4];
|
1146
|
+
}
|
1147
|
+
|
1148
|
+
op(p[1], p[2]); op(p[0], p[1]); op(p[1], p[2]); op(p[4], p[5]); op(p[3], p[4]);
|
1149
|
+
op(p[4], p[5]); op(p[0], p[3]); op(p[2], p[5]); op(p[2], p[3]); op(p[1], p[4]);
|
1150
|
+
op(p[1], p[2]); op(p[3], p[4]); op(p[7], p[8]); op(p[6], p[7]); op(p[7], p[8]);
|
1151
|
+
op(p[10], p[11]); op(p[9], p[10]); op(p[10], p[11]); op(p[6], p[9]); op(p[8], p[11]);
|
1152
|
+
op(p[8], p[9]); op(p[7], p[10]); op(p[7], p[8]); op(p[9], p[10]); op(p[0], p[6]);
|
1153
|
+
op(p[4], p[10]); op(p[4], p[6]); op(p[2], p[8]); op(p[2], p[4]); op(p[6], p[8]);
|
1154
|
+
op(p[1], p[7]); op(p[5], p[11]); op(p[5], p[7]); op(p[3], p[9]); op(p[3], p[5]);
|
1155
|
+
op(p[7], p[9]); op(p[1], p[2]); op(p[3], p[4]); op(p[5], p[6]); op(p[7], p[8]);
|
1156
|
+
op(p[9], p[10]); op(p[13], p[14]); op(p[12], p[13]); op(p[13], p[14]); op(p[16], p[17]);
|
1157
|
+
op(p[15], p[16]); op(p[16], p[17]); op(p[12], p[15]); op(p[14], p[17]); op(p[14], p[15]);
|
1158
|
+
op(p[13], p[16]); op(p[13], p[14]); op(p[15], p[16]); op(p[19], p[20]); op(p[18], p[19]);
|
1159
|
+
op(p[19], p[20]); op(p[21], p[22]); op(p[23], p[24]); op(p[21], p[23]); op(p[22], p[24]);
|
1160
|
+
op(p[22], p[23]); op(p[18], p[21]); op(p[20], p[23]); op(p[20], p[21]); op(p[19], p[22]);
|
1161
|
+
op(p[22], p[24]); op(p[19], p[20]); op(p[21], p[22]); op(p[23], p[24]); op(p[12], p[18]);
|
1162
|
+
op(p[16], p[22]); op(p[16], p[18]); op(p[14], p[20]); op(p[20], p[24]); op(p[14], p[16]);
|
1163
|
+
op(p[18], p[20]); op(p[22], p[24]); op(p[13], p[19]); op(p[17], p[23]); op(p[17], p[19]);
|
1164
|
+
op(p[15], p[21]); op(p[15], p[17]); op(p[19], p[21]); op(p[13], p[14]); op(p[15], p[16]);
|
1165
|
+
op(p[17], p[18]); op(p[19], p[20]); op(p[21], p[22]); op(p[23], p[24]); op(p[0], p[12]);
|
1166
|
+
op(p[8], p[20]); op(p[8], p[12]); op(p[4], p[16]); op(p[16], p[24]); op(p[12], p[16]);
|
1167
|
+
op(p[2], p[14]); op(p[10], p[22]); op(p[10], p[14]); op(p[6], p[18]); op(p[6], p[10]);
|
1168
|
+
op(p[10], p[12]); op(p[1], p[13]); op(p[9], p[21]); op(p[9], p[13]); op(p[5], p[17]);
|
1169
|
+
op(p[13], p[17]); op(p[3], p[15]); op(p[11], p[23]); op(p[11], p[15]); op(p[7], p[19]);
|
1170
|
+
op(p[7], p[11]); op(p[11], p[13]); op(p[11], p[12]);
|
1171
|
+
dst[j] = (T)p[12];
|
1172
|
+
}
|
1173
|
+
|
1174
|
+
if( limit == size.width )
|
1175
|
+
break;
|
1176
|
+
|
1177
|
+
for( ; j <= size.width - VecOp::SIZE - cn*2; j += VecOp::SIZE )
|
1178
|
+
{
|
1179
|
+
VT p[25];
|
1180
|
+
for( k = 0; k < 5; k++ )
|
1181
|
+
{
|
1182
|
+
const T* rowk = row[k];
|
1183
|
+
p[k*5] = vop.load(rowk+j-cn*2); p[k*5+1] = vop.load(rowk+j-cn);
|
1184
|
+
p[k*5+2] = vop.load(rowk+j); p[k*5+3] = vop.load(rowk+j+cn);
|
1185
|
+
p[k*5+4] = vop.load(rowk+j+cn*2);
|
1186
|
+
}
|
1187
|
+
|
1188
|
+
vop(p[1], p[2]); vop(p[0], p[1]); vop(p[1], p[2]); vop(p[4], p[5]); vop(p[3], p[4]);
|
1189
|
+
vop(p[4], p[5]); vop(p[0], p[3]); vop(p[2], p[5]); vop(p[2], p[3]); vop(p[1], p[4]);
|
1190
|
+
vop(p[1], p[2]); vop(p[3], p[4]); vop(p[7], p[8]); vop(p[6], p[7]); vop(p[7], p[8]);
|
1191
|
+
vop(p[10], p[11]); vop(p[9], p[10]); vop(p[10], p[11]); vop(p[6], p[9]); vop(p[8], p[11]);
|
1192
|
+
vop(p[8], p[9]); vop(p[7], p[10]); vop(p[7], p[8]); vop(p[9], p[10]); vop(p[0], p[6]);
|
1193
|
+
vop(p[4], p[10]); vop(p[4], p[6]); vop(p[2], p[8]); vop(p[2], p[4]); vop(p[6], p[8]);
|
1194
|
+
vop(p[1], p[7]); vop(p[5], p[11]); vop(p[5], p[7]); vop(p[3], p[9]); vop(p[3], p[5]);
|
1195
|
+
vop(p[7], p[9]); vop(p[1], p[2]); vop(p[3], p[4]); vop(p[5], p[6]); vop(p[7], p[8]);
|
1196
|
+
vop(p[9], p[10]); vop(p[13], p[14]); vop(p[12], p[13]); vop(p[13], p[14]); vop(p[16], p[17]);
|
1197
|
+
vop(p[15], p[16]); vop(p[16], p[17]); vop(p[12], p[15]); vop(p[14], p[17]); vop(p[14], p[15]);
|
1198
|
+
vop(p[13], p[16]); vop(p[13], p[14]); vop(p[15], p[16]); vop(p[19], p[20]); vop(p[18], p[19]);
|
1199
|
+
vop(p[19], p[20]); vop(p[21], p[22]); vop(p[23], p[24]); vop(p[21], p[23]); vop(p[22], p[24]);
|
1200
|
+
vop(p[22], p[23]); vop(p[18], p[21]); vop(p[20], p[23]); vop(p[20], p[21]); vop(p[19], p[22]);
|
1201
|
+
vop(p[22], p[24]); vop(p[19], p[20]); vop(p[21], p[22]); vop(p[23], p[24]); vop(p[12], p[18]);
|
1202
|
+
vop(p[16], p[22]); vop(p[16], p[18]); vop(p[14], p[20]); vop(p[20], p[24]); vop(p[14], p[16]);
|
1203
|
+
vop(p[18], p[20]); vop(p[22], p[24]); vop(p[13], p[19]); vop(p[17], p[23]); vop(p[17], p[19]);
|
1204
|
+
vop(p[15], p[21]); vop(p[15], p[17]); vop(p[19], p[21]); vop(p[13], p[14]); vop(p[15], p[16]);
|
1205
|
+
vop(p[17], p[18]); vop(p[19], p[20]); vop(p[21], p[22]); vop(p[23], p[24]); vop(p[0], p[12]);
|
1206
|
+
vop(p[8], p[20]); vop(p[8], p[12]); vop(p[4], p[16]); vop(p[16], p[24]); vop(p[12], p[16]);
|
1207
|
+
vop(p[2], p[14]); vop(p[10], p[22]); vop(p[10], p[14]); vop(p[6], p[18]); vop(p[6], p[10]);
|
1208
|
+
vop(p[10], p[12]); vop(p[1], p[13]); vop(p[9], p[21]); vop(p[9], p[13]); vop(p[5], p[17]);
|
1209
|
+
vop(p[13], p[17]); vop(p[3], p[15]); vop(p[11], p[23]); vop(p[11], p[15]); vop(p[7], p[19]);
|
1210
|
+
vop(p[7], p[11]); vop(p[11], p[13]); vop(p[11], p[12]);
|
1211
|
+
vop.store(dst+j, p[12]);
|
1212
|
+
}
|
1213
|
+
|
1214
|
+
limit = size.width;
|
1215
|
+
}
|
1216
|
+
}
|
1217
|
+
}
|
1218
|
+
}
|
1219
|
+
|
1220
|
+
}
|
1221
|
+
|
1222
|
+
void cv::medianBlur( InputArray _src0, OutputArray _dst, int ksize )
|
1223
|
+
{
|
1224
|
+
Mat src0 = _src0.getMat();
|
1225
|
+
_dst.create( src0.size(), src0.type() );
|
1226
|
+
Mat dst = _dst.getMat();
|
1227
|
+
|
1228
|
+
if( ksize <= 1 )
|
1229
|
+
{
|
1230
|
+
src0.copyTo(dst);
|
1231
|
+
return;
|
1232
|
+
}
|
1233
|
+
|
1234
|
+
CV_Assert( ksize % 2 == 1 );
|
1235
|
+
|
1236
|
+
Size size = src0.size();
|
1237
|
+
int cn = src0.channels();
|
1238
|
+
bool useSortNet = ksize == 3 || (ksize == 5
|
1239
|
+
#if !CV_SSE2
|
1240
|
+
&& src0.depth() > CV_8U
|
1241
|
+
#endif
|
1242
|
+
);
|
1243
|
+
|
1244
|
+
Mat src;
|
1245
|
+
if( useSortNet )
|
1246
|
+
{
|
1247
|
+
if( dst.data != src0.data )
|
1248
|
+
src = src0;
|
1249
|
+
else
|
1250
|
+
src0.copyTo(src);
|
1251
|
+
}
|
1252
|
+
else
|
1253
|
+
cv::copyMakeBorder( src0, src, 0, 0, ksize/2, ksize/2, BORDER_REPLICATE );
|
1254
|
+
|
1255
|
+
if( useSortNet )
|
1256
|
+
{
|
1257
|
+
if( src.depth() == CV_8U )
|
1258
|
+
medianBlur_SortNet<MinMax8u, MinMaxVec8u>( src, dst, ksize );
|
1259
|
+
else if( src.depth() == CV_16U )
|
1260
|
+
medianBlur_SortNet<MinMax16u, MinMaxVec16u>( src, dst, ksize );
|
1261
|
+
else if( src.depth() == CV_16S )
|
1262
|
+
medianBlur_SortNet<MinMax16s, MinMaxVec16s>( src, dst, ksize );
|
1263
|
+
else if( src.depth() == CV_32F )
|
1264
|
+
medianBlur_SortNet<MinMax32f, MinMaxVec32f>( src, dst, ksize );
|
1265
|
+
else
|
1266
|
+
CV_Error(CV_StsUnsupportedFormat, "");
|
1267
|
+
return;
|
1268
|
+
}
|
1269
|
+
|
1270
|
+
CV_Assert( src.depth() == CV_8U && (cn == 1 || cn == 3 || cn == 4) );
|
1271
|
+
|
1272
|
+
double img_size_mp = (double)(size.width*size.height)/(1 << 20);
|
1273
|
+
if( ksize <= 3 + (img_size_mp < 1 ? 12 : img_size_mp < 4 ? 6 : 2)*(MEDIAN_HAVE_SIMD && checkHardwareSupport(CV_CPU_SSE2) ? 1 : 3))
|
1274
|
+
medianBlur_8u_Om( src, dst, ksize );
|
1275
|
+
else
|
1276
|
+
medianBlur_8u_O1( src, dst, ksize );
|
1277
|
+
}
|
1278
|
+
|
1279
|
+
/****************************************************************************************\
|
1280
|
+
Bilateral Filtering
|
1281
|
+
\****************************************************************************************/
|
1282
|
+
|
1283
|
+
namespace cv
|
1284
|
+
{
|
1285
|
+
|
1286
|
+
static void
|
1287
|
+
bilateralFilter_8u( const Mat& src, Mat& dst, int d,
|
1288
|
+
double sigma_color, double sigma_space,
|
1289
|
+
int borderType )
|
1290
|
+
{
|
1291
|
+
int cn = src.channels();
|
1292
|
+
int i, j, k, maxk, radius;
|
1293
|
+
Size size = src.size();
|
1294
|
+
|
1295
|
+
CV_Assert( (src.type() == CV_8UC1 || src.type() == CV_8UC3) &&
|
1296
|
+
src.type() == dst.type() && src.size() == dst.size() &&
|
1297
|
+
src.data != dst.data );
|
1298
|
+
|
1299
|
+
if( sigma_color <= 0 )
|
1300
|
+
sigma_color = 1;
|
1301
|
+
if( sigma_space <= 0 )
|
1302
|
+
sigma_space = 1;
|
1303
|
+
|
1304
|
+
double gauss_color_coeff = -0.5/(sigma_color*sigma_color);
|
1305
|
+
double gauss_space_coeff = -0.5/(sigma_space*sigma_space);
|
1306
|
+
|
1307
|
+
if( d <= 0 )
|
1308
|
+
radius = cvRound(sigma_space*1.5);
|
1309
|
+
else
|
1310
|
+
radius = d/2;
|
1311
|
+
radius = MAX(radius, 1);
|
1312
|
+
d = radius*2 + 1;
|
1313
|
+
|
1314
|
+
Mat temp;
|
1315
|
+
copyMakeBorder( src, temp, radius, radius, radius, radius, borderType );
|
1316
|
+
|
1317
|
+
vector<float> _color_weight(cn*256);
|
1318
|
+
vector<float> _space_weight(d*d);
|
1319
|
+
vector<int> _space_ofs(d*d);
|
1320
|
+
float* color_weight = &_color_weight[0];
|
1321
|
+
float* space_weight = &_space_weight[0];
|
1322
|
+
int* space_ofs = &_space_ofs[0];
|
1323
|
+
|
1324
|
+
// initialize color-related bilateral filter coefficients
|
1325
|
+
for( i = 0; i < 256*cn; i++ )
|
1326
|
+
color_weight[i] = (float)std::exp(i*i*gauss_color_coeff);
|
1327
|
+
|
1328
|
+
// initialize space-related bilateral filter coefficients
|
1329
|
+
for( i = -radius, maxk = 0; i <= radius; i++ )
|
1330
|
+
for( j = -radius; j <= radius; j++ )
|
1331
|
+
{
|
1332
|
+
double r = std::sqrt((double)i*i + (double)j*j);
|
1333
|
+
if( r > radius )
|
1334
|
+
continue;
|
1335
|
+
space_weight[maxk] = (float)std::exp(r*r*gauss_space_coeff);
|
1336
|
+
space_ofs[maxk++] = (int)(i*temp.step + j*cn);
|
1337
|
+
}
|
1338
|
+
|
1339
|
+
for( i = 0; i < size.height; i++ )
|
1340
|
+
{
|
1341
|
+
const uchar* sptr = temp.data + (i+radius)*temp.step + radius*cn;
|
1342
|
+
uchar* dptr = dst.data + i*dst.step;
|
1343
|
+
|
1344
|
+
if( cn == 1 )
|
1345
|
+
{
|
1346
|
+
for( j = 0; j < size.width; j++ )
|
1347
|
+
{
|
1348
|
+
float sum = 0, wsum = 0;
|
1349
|
+
int val0 = sptr[j];
|
1350
|
+
for( k = 0; k < maxk; k++ )
|
1351
|
+
{
|
1352
|
+
int val = sptr[j + space_ofs[k]];
|
1353
|
+
float w = space_weight[k]*color_weight[std::abs(val - val0)];
|
1354
|
+
sum += val*w;
|
1355
|
+
wsum += w;
|
1356
|
+
}
|
1357
|
+
// overflow is not possible here => there is no need to use CV_CAST_8U
|
1358
|
+
dptr[j] = (uchar)cvRound(sum/wsum);
|
1359
|
+
}
|
1360
|
+
}
|
1361
|
+
else
|
1362
|
+
{
|
1363
|
+
assert( cn == 3 );
|
1364
|
+
for( j = 0; j < size.width*3; j += 3 )
|
1365
|
+
{
|
1366
|
+
float sum_b = 0, sum_g = 0, sum_r = 0, wsum = 0;
|
1367
|
+
int b0 = sptr[j], g0 = sptr[j+1], r0 = sptr[j+2];
|
1368
|
+
for( k = 0; k < maxk; k++ )
|
1369
|
+
{
|
1370
|
+
const uchar* sptr_k = sptr + j + space_ofs[k];
|
1371
|
+
int b = sptr_k[0], g = sptr_k[1], r = sptr_k[2];
|
1372
|
+
float w = space_weight[k]*color_weight[std::abs(b - b0) +
|
1373
|
+
std::abs(g - g0) + std::abs(r - r0)];
|
1374
|
+
sum_b += b*w; sum_g += g*w; sum_r += r*w;
|
1375
|
+
wsum += w;
|
1376
|
+
}
|
1377
|
+
wsum = 1.f/wsum;
|
1378
|
+
b0 = cvRound(sum_b*wsum);
|
1379
|
+
g0 = cvRound(sum_g*wsum);
|
1380
|
+
r0 = cvRound(sum_r*wsum);
|
1381
|
+
dptr[j] = (uchar)b0; dptr[j+1] = (uchar)g0; dptr[j+2] = (uchar)r0;
|
1382
|
+
}
|
1383
|
+
}
|
1384
|
+
}
|
1385
|
+
}
|
1386
|
+
|
1387
|
+
|
1388
|
+
static void
|
1389
|
+
bilateralFilter_32f( const Mat& src, Mat& dst, int d,
|
1390
|
+
double sigma_color, double sigma_space,
|
1391
|
+
int borderType )
|
1392
|
+
{
|
1393
|
+
int cn = src.channels();
|
1394
|
+
int i, j, k, maxk, radius;
|
1395
|
+
double minValSrc=-1, maxValSrc=1;
|
1396
|
+
const int kExpNumBinsPerChannel = 1 << 12;
|
1397
|
+
int kExpNumBins = 0;
|
1398
|
+
float lastExpVal = 1.f;
|
1399
|
+
float len, scale_index;
|
1400
|
+
Size size = src.size();
|
1401
|
+
|
1402
|
+
CV_Assert( (src.type() == CV_32FC1 || src.type() == CV_32FC3) &&
|
1403
|
+
src.type() == dst.type() && src.size() == dst.size() &&
|
1404
|
+
src.data != dst.data );
|
1405
|
+
|
1406
|
+
if( sigma_color <= 0 )
|
1407
|
+
sigma_color = 1;
|
1408
|
+
if( sigma_space <= 0 )
|
1409
|
+
sigma_space = 1;
|
1410
|
+
|
1411
|
+
double gauss_color_coeff = -0.5/(sigma_color*sigma_color);
|
1412
|
+
double gauss_space_coeff = -0.5/(sigma_space*sigma_space);
|
1413
|
+
|
1414
|
+
if( d <= 0 )
|
1415
|
+
radius = cvRound(sigma_space*1.5);
|
1416
|
+
else
|
1417
|
+
radius = d/2;
|
1418
|
+
radius = MAX(radius, 1);
|
1419
|
+
d = radius*2 + 1;
|
1420
|
+
// compute the min/max range for the input image (even if multichannel)
|
1421
|
+
|
1422
|
+
minMaxLoc( src.reshape(1), &minValSrc, &maxValSrc );
|
1423
|
+
|
1424
|
+
// temporary copy of the image with borders for easy processing
|
1425
|
+
Mat temp;
|
1426
|
+
copyMakeBorder( src, temp, radius, radius, radius, radius, borderType );
|
1427
|
+
|
1428
|
+
// allocate lookup tables
|
1429
|
+
vector<float> _space_weight(d*d);
|
1430
|
+
vector<int> _space_ofs(d*d);
|
1431
|
+
float* space_weight = &_space_weight[0];
|
1432
|
+
int* space_ofs = &_space_ofs[0];
|
1433
|
+
|
1434
|
+
// assign a length which is slightly more than needed
|
1435
|
+
len = (float)(maxValSrc - minValSrc) * cn;
|
1436
|
+
kExpNumBins = kExpNumBinsPerChannel * cn;
|
1437
|
+
vector<float> _expLUT(kExpNumBins+2);
|
1438
|
+
float* expLUT = &_expLUT[0];
|
1439
|
+
|
1440
|
+
scale_index = kExpNumBins/len;
|
1441
|
+
|
1442
|
+
// initialize the exp LUT
|
1443
|
+
for( i = 0; i < kExpNumBins+2; i++ )
|
1444
|
+
{
|
1445
|
+
if( lastExpVal > 0.f )
|
1446
|
+
{
|
1447
|
+
double val = i / scale_index;
|
1448
|
+
expLUT[i] = (float)std::exp(val * val * gauss_color_coeff);
|
1449
|
+
lastExpVal = expLUT[i];
|
1450
|
+
}
|
1451
|
+
else
|
1452
|
+
expLUT[i] = 0.f;
|
1453
|
+
}
|
1454
|
+
|
1455
|
+
// initialize space-related bilateral filter coefficients
|
1456
|
+
for( i = -radius, maxk = 0; i <= radius; i++ )
|
1457
|
+
for( j = -radius; j <= radius; j++ )
|
1458
|
+
{
|
1459
|
+
double r = std::sqrt((double)i*i + (double)j*j);
|
1460
|
+
if( r > radius )
|
1461
|
+
continue;
|
1462
|
+
space_weight[maxk] = (float)std::exp(r*r*gauss_space_coeff);
|
1463
|
+
space_ofs[maxk++] = (int)(i*(temp.step/sizeof(float)) + j*cn);
|
1464
|
+
}
|
1465
|
+
|
1466
|
+
for( i = 0; i < size.height; i++ )
|
1467
|
+
{
|
1468
|
+
const float* sptr = (const float*)(temp.data + (i+radius)*temp.step) + radius*cn;
|
1469
|
+
float* dptr = (float*)(dst.data + i*dst.step);
|
1470
|
+
|
1471
|
+
if( cn == 1 )
|
1472
|
+
{
|
1473
|
+
for( j = 0; j < size.width; j++ )
|
1474
|
+
{
|
1475
|
+
float sum = 0, wsum = 0;
|
1476
|
+
float val0 = sptr[j];
|
1477
|
+
for( k = 0; k < maxk; k++ )
|
1478
|
+
{
|
1479
|
+
float val = sptr[j + space_ofs[k]];
|
1480
|
+
float alpha = (float)(std::abs(val - val0)*scale_index);
|
1481
|
+
int idx = cvFloor(alpha);
|
1482
|
+
alpha -= idx;
|
1483
|
+
float w = space_weight[k]*(expLUT[idx] + alpha*(expLUT[idx+1] - expLUT[idx]));
|
1484
|
+
sum += val*w;
|
1485
|
+
wsum += w;
|
1486
|
+
}
|
1487
|
+
dptr[j] = (float)(sum/wsum);
|
1488
|
+
}
|
1489
|
+
}
|
1490
|
+
else
|
1491
|
+
{
|
1492
|
+
assert( cn == 3 );
|
1493
|
+
for( j = 0; j < size.width*3; j += 3 )
|
1494
|
+
{
|
1495
|
+
float sum_b = 0, sum_g = 0, sum_r = 0, wsum = 0;
|
1496
|
+
float b0 = sptr[j], g0 = sptr[j+1], r0 = sptr[j+2];
|
1497
|
+
for( k = 0; k < maxk; k++ )
|
1498
|
+
{
|
1499
|
+
const float* sptr_k = sptr + j + space_ofs[k];
|
1500
|
+
float b = sptr_k[0], g = sptr_k[1], r = sptr_k[2];
|
1501
|
+
float alpha = (float)((std::abs(b - b0) +
|
1502
|
+
std::abs(g - g0) + std::abs(r - r0))*scale_index);
|
1503
|
+
int idx = cvFloor(alpha);
|
1504
|
+
alpha -= idx;
|
1505
|
+
float w = space_weight[k]*(expLUT[idx] + alpha*(expLUT[idx+1] - expLUT[idx]));
|
1506
|
+
sum_b += b*w; sum_g += g*w; sum_r += r*w;
|
1507
|
+
wsum += w;
|
1508
|
+
}
|
1509
|
+
wsum = 1.f/wsum;
|
1510
|
+
b0 = sum_b*wsum;
|
1511
|
+
g0 = sum_g*wsum;
|
1512
|
+
r0 = sum_r*wsum;
|
1513
|
+
dptr[j] = b0; dptr[j+1] = g0; dptr[j+2] = r0;
|
1514
|
+
}
|
1515
|
+
}
|
1516
|
+
}
|
1517
|
+
}
|
1518
|
+
|
1519
|
+
}
|
1520
|
+
|
1521
|
+
void cv::bilateralFilter( InputArray _src, OutputArray _dst, int d,
|
1522
|
+
double sigmaColor, double sigmaSpace,
|
1523
|
+
int borderType )
|
1524
|
+
{
|
1525
|
+
Mat src = _src.getMat();
|
1526
|
+
_dst.create( src.size(), src.type() );
|
1527
|
+
Mat dst = _dst.getMat();
|
1528
|
+
|
1529
|
+
if( src.depth() == CV_8U )
|
1530
|
+
bilateralFilter_8u( src, dst, d, sigmaColor, sigmaSpace, borderType );
|
1531
|
+
else if( src.depth() == CV_32F )
|
1532
|
+
bilateralFilter_32f( src, dst, d, sigmaColor, sigmaSpace, borderType );
|
1533
|
+
else
|
1534
|
+
CV_Error( CV_StsUnsupportedFormat,
|
1535
|
+
"Bilateral filtering is only implemented for 8u and 32f images" );
|
1536
|
+
}
|
1537
|
+
|
1538
|
+
//////////////////////////////////////////////////////////////////////////////////////////
|
1539
|
+
|
1540
|
+
CV_IMPL void
|
1541
|
+
cvSmooth( const void* srcarr, void* dstarr, int smooth_type,
|
1542
|
+
int param1, int param2, double param3, double param4 )
|
1543
|
+
{
|
1544
|
+
cv::Mat src = cv::cvarrToMat(srcarr), dst0 = cv::cvarrToMat(dstarr), dst = dst0;
|
1545
|
+
|
1546
|
+
CV_Assert( dst.size() == src.size() &&
|
1547
|
+
(smooth_type == CV_BLUR_NO_SCALE || dst.type() == src.type()) );
|
1548
|
+
|
1549
|
+
if( param2 <= 0 )
|
1550
|
+
param2 = param1;
|
1551
|
+
|
1552
|
+
if( smooth_type == CV_BLUR || smooth_type == CV_BLUR_NO_SCALE )
|
1553
|
+
cv::boxFilter( src, dst, dst.depth(), cv::Size(param1, param2), cv::Point(-1,-1),
|
1554
|
+
smooth_type == CV_BLUR, cv::BORDER_REPLICATE );
|
1555
|
+
else if( smooth_type == CV_GAUSSIAN )
|
1556
|
+
cv::GaussianBlur( src, dst, cv::Size(param1, param2), param3, param4, cv::BORDER_REPLICATE );
|
1557
|
+
else if( smooth_type == CV_MEDIAN )
|
1558
|
+
cv::medianBlur( src, dst, param1 );
|
1559
|
+
else
|
1560
|
+
cv::bilateralFilter( src, dst, param1, param3, param4, cv::BORDER_REPLICATE );
|
1561
|
+
|
1562
|
+
if( dst.data != dst0.data )
|
1563
|
+
CV_Error( CV_StsUnmatchedFormats, "The destination image does not have the proper type" );
|
1564
|
+
}
|
1565
|
+
|
1566
|
+
/* End of file. */
|