gsl 1.15.3 → 1.16.0.6

Sign up to get free protection for your applications and to get access to all the features.
Files changed (446) hide show
  1. checksums.yaml +7 -0
  2. data/.gitignore +12 -0
  3. data/.travis.yml +24 -0
  4. data/AUTHORS +10 -2
  5. data/COPYING +341 -339
  6. data/ChangeLog +612 -554
  7. data/Gemfile +4 -0
  8. data/README.md +77 -0
  9. data/Rakefile +14 -93
  10. data/THANKS +1 -1
  11. data/examples/blas/blas.rb +1 -1
  12. data/examples/bspline.rb +3 -3
  13. data/examples/complex/functions.rb +4 -4
  14. data/examples/complex/mul.rb +1 -1
  15. data/examples/const/physconst.rb +4 -4
  16. data/examples/const/travel.rb +4 -4
  17. data/examples/eigen/nonsymmv.rb +1 -1
  18. data/examples/eigen/qhoscillator.rb +3 -3
  19. data/examples/fft/radix2.rb +1 -1
  20. data/examples/fft/real-halfcomplex.rb +3 -3
  21. data/examples/fft/real-halfcomplex2.rb +3 -3
  22. data/examples/fit/expfit.rb +1 -1
  23. data/examples/fit/multifit.rb +1 -1
  24. data/examples/fit/ndlinear.rb +44 -44
  25. data/examples/fit/nonlinearfit.rb +1 -1
  26. data/examples/fit/wlinear.rb +3 -3
  27. data/examples/function/function.rb +1 -1
  28. data/examples/function/min.rb +1 -1
  29. data/examples/function/synchrotron.rb +2 -2
  30. data/examples/gallery/koch.rb +1 -1
  31. data/examples/histogram/cauchy.rb +2 -2
  32. data/examples/histogram/exponential.rb +1 -1
  33. data/examples/histogram/histo3d.rb +1 -1
  34. data/examples/histogram/histogram-pdf.rb +2 -2
  35. data/examples/histogram/xexp.rb +1 -1
  36. data/examples/integration/ahmed.rb +2 -2
  37. data/examples/integration/cosmology.rb +7 -7
  38. data/examples/integration/friedmann.rb +4 -4
  39. data/examples/integration/qng.rb +1 -1
  40. data/examples/interp/demo.rb +2 -2
  41. data/examples/linalg/LQ_solve.rb +1 -1
  42. data/examples/linalg/LU.rb +1 -1
  43. data/examples/linalg/LU2.rb +1 -1
  44. data/examples/linalg/LU_narray.rb +1 -1
  45. data/examples/linalg/PTLQ.rb +1 -1
  46. data/examples/linalg/QRPT.rb +1 -1
  47. data/examples/linalg/chol.rb +1 -1
  48. data/examples/linalg/chol_narray.rb +1 -1
  49. data/examples/linalg/complex.rb +1 -1
  50. data/examples/math/elementary.rb +1 -1
  51. data/examples/math/functions.rb +1 -1
  52. data/examples/math/inf_nan.rb +1 -1
  53. data/examples/math/minmax.rb +1 -1
  54. data/examples/math/power.rb +1 -1
  55. data/examples/math/test.rb +1 -1
  56. data/examples/min.rb +1 -1
  57. data/examples/multimin/bundle.rb +1 -1
  58. data/examples/multimin/cqp.rb +17 -17
  59. data/examples/multiroot/fsolver3.rb +1 -1
  60. data/examples/odeiv/binarysystem.rb +12 -12
  61. data/examples/odeiv/demo.rb +3 -3
  62. data/examples/odeiv/frei1.rb +7 -7
  63. data/examples/odeiv/frei2.rb +4 -4
  64. data/examples/odeiv/oscillator.rb +1 -1
  65. data/examples/odeiv/sedov.rb +3 -3
  66. data/examples/odeiv/whitedwarf.rb +11 -11
  67. data/examples/permutation/ex1.rb +2 -2
  68. data/examples/permutation/permutation.rb +1 -1
  69. data/examples/poly/demo.rb +1 -1
  70. data/examples/random/diffusion.rb +1 -1
  71. data/examples/random/generator.rb +2 -2
  72. data/examples/random/randomwalk.rb +3 -3
  73. data/examples/random/rng.rb +1 -1
  74. data/examples/roots/bisection.rb +1 -1
  75. data/examples/roots/brent.rb +1 -1
  76. data/examples/roots/demo.rb +1 -1
  77. data/examples/roots/newton.rb +2 -2
  78. data/examples/roots/recombination.gp +0 -1
  79. data/examples/sf/hyperg.rb +1 -1
  80. data/examples/sf/sphbessel.rb +1 -1
  81. data/examples/sort/sort.rb +1 -1
  82. data/examples/tamu_anova.rb +4 -4
  83. data/examples/vector/add.rb +1 -1
  84. data/examples/vector/decimate.rb +1 -1
  85. data/examples/vector/gnuplot.rb +8 -8
  86. data/examples/vector/vector.rb +2 -2
  87. data/examples/wavelet/wavelet1.rb +1 -1
  88. data/ext/{alf.c → gsl_native/alf.c} +10 -10
  89. data/ext/{array.c → gsl_native/array.c} +70 -159
  90. data/ext/{array_complex.c → gsl_native/array_complex.c} +63 -66
  91. data/ext/{blas.c → gsl_native/blas.c} +2 -3
  92. data/ext/{blas1.c → gsl_native/blas1.c} +35 -36
  93. data/ext/{blas2.c → gsl_native/blas2.c} +57 -62
  94. data/ext/{blas3.c → gsl_native/blas3.c} +57 -58
  95. data/ext/{block.c → gsl_native/block.c} +14 -18
  96. data/ext/{block_source.c → gsl_native/block_source.h} +110 -112
  97. data/ext/gsl_native/bspline.c +122 -0
  98. data/ext/{bundle.c → gsl_native/bundle.c} +0 -0
  99. data/ext/{cdf.c → gsl_native/cdf.c} +79 -93
  100. data/ext/{cheb.c → gsl_native/cheb.c} +78 -89
  101. data/ext/{combination.c → gsl_native/combination.c} +11 -19
  102. data/ext/{common.c → gsl_native/common.c} +9 -41
  103. data/ext/{complex.c → gsl_native/complex.c} +116 -118
  104. data/ext/gsl_native/const.c +331 -0
  105. data/ext/{const_additional.c → gsl_native/const_additional.c} +13 -34
  106. data/ext/gsl_native/cqp.c +283 -0
  107. data/ext/{deriv.c → gsl_native/deriv.c} +25 -33
  108. data/ext/{dht.c → gsl_native/dht.c} +23 -31
  109. data/ext/{diff.c → gsl_native/diff.c} +26 -28
  110. data/ext/{dirac.c → gsl_native/dirac.c} +45 -46
  111. data/ext/{eigen.c → gsl_native/eigen.c} +1044 -1095
  112. data/ext/{error.c → gsl_native/error.c} +18 -18
  113. data/ext/gsl_native/extconf.rb +118 -0
  114. data/ext/{fft.c → gsl_native/fft.c} +197 -204
  115. data/ext/{fit.c → gsl_native/fit.c} +17 -18
  116. data/ext/gsl_native/fresnel.c +312 -0
  117. data/ext/{function.c → gsl_native/function.c} +37 -43
  118. data/ext/{geometry.c → gsl_native/geometry.c} +16 -16
  119. data/ext/{graph.c → gsl_native/graph.c} +39 -89
  120. data/ext/{gsl.c → gsl_native/gsl.c} +12 -33
  121. data/ext/{gsl_narray.c → gsl_native/gsl_narray.c} +20 -30
  122. data/ext/{histogram.c → gsl_native/histogram.c} +133 -160
  123. data/ext/{histogram2d.c → gsl_native/histogram2d.c} +78 -104
  124. data/ext/{histogram3d.c → gsl_native/histogram3d.c} +76 -76
  125. data/ext/{histogram3d_source.c → gsl_native/histogram3d_source.c} +196 -197
  126. data/ext/{histogram_find.c → gsl_native/histogram_find.c} +32 -34
  127. data/ext/{histogram_oper.c → gsl_native/histogram_oper.c} +43 -52
  128. data/ext/{ieee.c → gsl_native/ieee.c} +9 -21
  129. data/{include → ext/gsl_native/include}/rb_gsl.h +4 -26
  130. data/{include → ext/gsl_native/include}/rb_gsl_array.h +15 -39
  131. data/{include → ext/gsl_native/include}/rb_gsl_cheb.h +0 -2
  132. data/{include → ext/gsl_native/include}/rb_gsl_common.h +61 -61
  133. data/{include → ext/gsl_native/include}/rb_gsl_complex.h +1 -1
  134. data/{include → ext/gsl_native/include}/rb_gsl_const.h +0 -6
  135. data/ext/gsl_native/include/rb_gsl_dirac.h +6 -0
  136. data/{include → ext/gsl_native/include}/rb_gsl_eigen.h +1 -1
  137. data/{include → ext/gsl_native/include}/rb_gsl_fft.h +0 -13
  138. data/{include → ext/gsl_native/include}/rb_gsl_fit.h +0 -2
  139. data/{include → ext/gsl_native/include}/rb_gsl_function.h +0 -4
  140. data/{include → ext/gsl_native/include}/rb_gsl_graph.h +2 -4
  141. data/{include → ext/gsl_native/include}/rb_gsl_histogram.h +8 -8
  142. data/{include → ext/gsl_native/include}/rb_gsl_histogram3d.h +50 -50
  143. data/{include → ext/gsl_native/include}/rb_gsl_integration.h +1 -1
  144. data/{include → ext/gsl_native/include}/rb_gsl_interp.h +0 -5
  145. data/{include → ext/gsl_native/include}/rb_gsl_linalg.h +2 -6
  146. data/{include → ext/gsl_native/include}/rb_gsl_math.h +0 -6
  147. data/{include → ext/gsl_native/include}/rb_gsl_odeiv.h +0 -3
  148. data/{include → ext/gsl_native/include}/rb_gsl_poly.h +3 -7
  149. data/{include → ext/gsl_native/include}/rb_gsl_rational.h +1 -8
  150. data/{include → ext/gsl_native/include}/rb_gsl_rng.h +0 -1
  151. data/{include → ext/gsl_native/include}/rb_gsl_root.h +1 -1
  152. data/{include → ext/gsl_native/include}/rb_gsl_sf.h +39 -48
  153. data/{include → ext/gsl_native/include}/rb_gsl_statistics.h +1 -1
  154. data/{include → ext/gsl_native/include}/rb_gsl_tensor.h +0 -2
  155. data/{include → ext/gsl_native/include}/rb_gsl_with_narray.h +3 -1
  156. data/{include → ext/gsl_native/include}/templates_off.h +0 -0
  157. data/{include → ext/gsl_native/include}/templates_on.h +1 -1
  158. data/ext/{integration.c → gsl_native/integration.c} +164 -189
  159. data/ext/{interp.c → gsl_native/interp.c} +25 -38
  160. data/ext/gsl_native/jacobi.c +733 -0
  161. data/ext/{linalg.c → gsl_native/linalg.c} +462 -589
  162. data/ext/{linalg_complex.c → gsl_native/linalg_complex.c} +93 -106
  163. data/ext/{math.c → gsl_native/math.c} +48 -67
  164. data/ext/{matrix.c → gsl_native/matrix.c} +13 -16
  165. data/ext/{matrix_complex.c → gsl_native/matrix_complex.c} +119 -123
  166. data/ext/{matrix_double.c → gsl_native/matrix_double.c} +79 -82
  167. data/ext/{matrix_int.c → gsl_native/matrix_int.c} +53 -54
  168. data/ext/{matrix_source.c → gsl_native/matrix_source.h} +292 -318
  169. data/ext/{min.c → gsl_native/min.c} +45 -76
  170. data/ext/{monte.c → gsl_native/monte.c} +50 -64
  171. data/ext/{multifit.c → gsl_native/multifit.c} +142 -151
  172. data/ext/{multimin.c → gsl_native/multimin.c} +64 -92
  173. data/ext/{multimin_fsdf.c → gsl_native/multimin_fsdf.c} +16 -16
  174. data/ext/{multiroots.c → gsl_native/multiroots.c} +73 -76
  175. data/ext/{multiset.c → gsl_native/multiset.c} +4 -8
  176. data/ext/{ndlinear.c → gsl_native/ndlinear.c} +320 -321
  177. data/ext/{nmf.c → gsl_native/nmf.c} +11 -11
  178. data/ext/{nmf_wrap.c → gsl_native/nmf_wrap.c} +1 -1
  179. data/ext/{ntuple.c → gsl_native/ntuple.c} +23 -23
  180. data/ext/{odeiv.c → gsl_native/odeiv.c} +101 -116
  181. data/ext/gsl_native/ool.c +879 -0
  182. data/ext/{permutation.c → gsl_native/permutation.c} +39 -37
  183. data/ext/{poly.c → gsl_native/poly.c} +10 -13
  184. data/ext/{poly2.c → gsl_native/poly2.c} +16 -16
  185. data/ext/{poly_source.c → gsl_native/poly_source.h} +249 -293
  186. data/ext/{qrng.c → gsl_native/qrng.c} +9 -20
  187. data/ext/{randist.c → gsl_native/randist.c} +222 -247
  188. data/ext/{rational.c → gsl_native/rational.c} +12 -12
  189. data/ext/{rng.c → gsl_native/rng.c} +30 -47
  190. data/ext/{root.c → gsl_native/root.c} +47 -48
  191. data/ext/{sf.c → gsl_native/sf.c} +196 -244
  192. data/ext/{sf_airy.c → gsl_native/sf_airy.c} +2 -2
  193. data/ext/{sf_bessel.c → gsl_native/sf_bessel.c} +7 -7
  194. data/ext/{sf_clausen.c → gsl_native/sf_clausen.c} +1 -1
  195. data/ext/{sf_coulomb.c → gsl_native/sf_coulomb.c} +40 -40
  196. data/ext/{sf_coupling.c → gsl_native/sf_coupling.c} +30 -30
  197. data/ext/{sf_dawson.c → gsl_native/sf_dawson.c} +1 -1
  198. data/ext/{sf_debye.c → gsl_native/sf_debye.c} +1 -10
  199. data/ext/{sf_dilog.c → gsl_native/sf_dilog.c} +1 -1
  200. data/ext/{sf_elementary.c → gsl_native/sf_elementary.c} +3 -3
  201. data/ext/{sf_ellint.c → gsl_native/sf_ellint.c} +43 -43
  202. data/ext/{sf_elljac.c → gsl_native/sf_elljac.c} +3 -3
  203. data/ext/{sf_erfc.c → gsl_native/sf_erfc.c} +1 -5
  204. data/ext/{sf_exp.c → gsl_native/sf_exp.c} +3 -3
  205. data/ext/{sf_expint.c → gsl_native/sf_expint.c} +2 -12
  206. data/ext/{sf_fermi_dirac.c → gsl_native/sf_fermi_dirac.c} +1 -1
  207. data/ext/{sf_gamma.c → gsl_native/sf_gamma.c} +2 -6
  208. data/ext/{sf_gegenbauer.c → gsl_native/sf_gegenbauer.c} +1 -1
  209. data/ext/{sf_hyperg.c → gsl_native/sf_hyperg.c} +1 -1
  210. data/ext/{sf_laguerre.c → gsl_native/sf_laguerre.c} +4 -4
  211. data/ext/{sf_lambert.c → gsl_native/sf_lambert.c} +1 -1
  212. data/ext/{sf_legendre.c → gsl_native/sf_legendre.c} +1 -1
  213. data/ext/{sf_log.c → gsl_native/sf_log.c} +4 -4
  214. data/ext/gsl_native/sf_mathieu.c +235 -0
  215. data/ext/{sf_power.c → gsl_native/sf_power.c} +1 -1
  216. data/ext/{sf_psi.c → gsl_native/sf_psi.c} +3 -12
  217. data/ext/{sf_synchrotron.c → gsl_native/sf_synchrotron.c} +1 -1
  218. data/ext/{sf_transport.c → gsl_native/sf_transport.c} +1 -1
  219. data/ext/{sf_trigonometric.c → gsl_native/sf_trigonometric.c} +4 -4
  220. data/ext/{sf_zeta.c → gsl_native/sf_zeta.c} +1 -5
  221. data/ext/{signal.c → gsl_native/signal.c} +63 -68
  222. data/ext/{siman.c → gsl_native/siman.c} +45 -49
  223. data/ext/{sort.c → gsl_native/sort.c} +6 -7
  224. data/ext/{spline.c → gsl_native/spline.c} +28 -46
  225. data/ext/{stats.c → gsl_native/stats.c} +105 -118
  226. data/ext/{sum.c → gsl_native/sum.c} +34 -34
  227. data/ext/{tamu_anova.c → gsl_native/tamu_anova.c} +1 -1
  228. data/ext/{tensor.c → gsl_native/tensor.c} +8 -11
  229. data/ext/{tensor_source.c → gsl_native/tensor_source.h} +147 -148
  230. data/ext/{vector.c → gsl_native/vector.c} +11 -14
  231. data/ext/{vector_complex.c → gsl_native/vector_complex.c} +179 -184
  232. data/ext/{vector_double.c → gsl_native/vector_double.c} +178 -183
  233. data/ext/{vector_int.c → gsl_native/vector_int.c} +27 -29
  234. data/ext/{vector_source.c → gsl_native/vector_source.h} +428 -443
  235. data/ext/{wavelet.c → gsl_native/wavelet.c} +224 -246
  236. data/gsl.gemspec +29 -0
  237. data/lib/gsl.rb +8 -3
  238. data/lib/gsl/gnuplot.rb +3 -3
  239. data/lib/gsl/oper.rb +35 -60
  240. data/lib/gsl/version.rb +3 -0
  241. data/lib/rbgsl.rb +1 -3
  242. data/rdoc/alf.rdoc +5 -5
  243. data/rdoc/blas.rdoc +9 -9
  244. data/rdoc/bspline.rdoc +17 -17
  245. data/rdoc/changes.rdoc +4 -9
  246. data/rdoc/cheb.rdoc +25 -25
  247. data/rdoc/cholesky_complex.rdoc +21 -21
  248. data/rdoc/combi.rdoc +37 -37
  249. data/rdoc/complex.rdoc +22 -22
  250. data/rdoc/const.rdoc +47 -47
  251. data/rdoc/dht.rdoc +49 -49
  252. data/rdoc/diff.rdoc +42 -42
  253. data/rdoc/ehandling.rdoc +6 -6
  254. data/rdoc/eigen.rdoc +153 -153
  255. data/rdoc/fft.rdoc +146 -146
  256. data/rdoc/fit.rdoc +109 -109
  257. data/rdoc/function.rdoc +11 -11
  258. data/rdoc/graph.rdoc +17 -17
  259. data/rdoc/hist.rdoc +103 -103
  260. data/rdoc/hist2d.rdoc +42 -42
  261. data/rdoc/hist3d.rdoc +9 -9
  262. data/rdoc/integration.rdoc +110 -110
  263. data/rdoc/interp.rdoc +71 -71
  264. data/rdoc/intro.rdoc +8 -8
  265. data/rdoc/linalg.rdoc +188 -188
  266. data/rdoc/linalg_complex.rdoc +1 -1
  267. data/rdoc/math.rdoc +58 -58
  268. data/rdoc/matrix.rdoc +275 -275
  269. data/rdoc/min.rdoc +57 -57
  270. data/rdoc/monte.rdoc +22 -22
  271. data/rdoc/multimin.rdoc +95 -95
  272. data/rdoc/multiroot.rdoc +80 -80
  273. data/rdoc/narray.rdoc +32 -32
  274. data/rdoc/ndlinear.rdoc +54 -54
  275. data/rdoc/nonlinearfit.rdoc +100 -100
  276. data/rdoc/ntuple.rdoc +31 -31
  277. data/rdoc/odeiv.rdoc +88 -88
  278. data/rdoc/perm.rdoc +90 -90
  279. data/rdoc/poly.rdoc +66 -66
  280. data/rdoc/qrng.rdoc +21 -21
  281. data/rdoc/randist.rdoc +82 -82
  282. data/rdoc/ref.rdoc +57 -57
  283. data/rdoc/rng.rdoc +85 -85
  284. data/rdoc/roots.rdoc +57 -57
  285. data/rdoc/sf.rdoc +428 -428
  286. data/rdoc/siman.rdoc +19 -19
  287. data/rdoc/sort.rdoc +30 -30
  288. data/rdoc/start.rdoc +8 -8
  289. data/rdoc/stats.rdoc +52 -52
  290. data/rdoc/sum.rdoc +12 -12
  291. data/rdoc/tensor.rdoc +31 -31
  292. data/rdoc/tut.rdoc +1 -1
  293. data/rdoc/use.rdoc +39 -39
  294. data/rdoc/vector.rdoc +188 -188
  295. data/rdoc/vector_complex.rdoc +24 -24
  296. data/rdoc/wavelet.rdoc +46 -46
  297. data/test/gsl/blas_test.rb +79 -0
  298. data/test/gsl/bspline_test.rb +63 -0
  299. data/test/gsl/cdf_test.rb +1512 -0
  300. data/test/gsl/cheb_test.rb +80 -0
  301. data/test/gsl/combination_test.rb +100 -0
  302. data/test/gsl/complex_test.rb +20 -0
  303. data/test/gsl/const_test.rb +29 -0
  304. data/test/gsl/deriv_test.rb +62 -0
  305. data/test/gsl/dht_test.rb +79 -0
  306. data/test/gsl/diff_test.rb +53 -0
  307. data/test/gsl/eigen_test.rb +563 -0
  308. data/test/gsl/err_test.rb +23 -0
  309. data/test/gsl/fit_test.rb +101 -0
  310. data/test/gsl/histo_test.rb +14 -0
  311. data/test/gsl/index_test.rb +61 -0
  312. data/test/gsl/integration_test.rb +274 -0
  313. data/test/gsl/interp_test.rb +27 -0
  314. data/test/gsl/linalg_test.rb +463 -0
  315. data/test/gsl/matrix_nmf_test.rb +37 -0
  316. data/test/gsl/matrix_test.rb +98 -0
  317. data/test/gsl/min_test.rb +89 -0
  318. data/test/gsl/monte_test.rb +77 -0
  319. data/test/gsl/multifit_test.rb +753 -0
  320. data/test/gsl/multimin_test.rb +157 -0
  321. data/test/gsl/multiroot_test.rb +135 -0
  322. data/test/gsl/multiset_test.rb +52 -0
  323. data/test/gsl/odeiv_test.rb +275 -0
  324. data/test/gsl/oper_test.rb +98 -0
  325. data/test/gsl/poly_test.rb +338 -0
  326. data/test/gsl/qrng_test.rb +94 -0
  327. data/test/gsl/quartic_test.rb +28 -0
  328. data/test/gsl/randist_test.rb +122 -0
  329. data/test/gsl/rng_test.rb +303 -0
  330. data/test/gsl/roots_test.rb +78 -0
  331. data/test/gsl/sf_test.rb +2079 -0
  332. data/test/gsl/stats_test.rb +122 -0
  333. data/test/gsl/sum_test.rb +69 -0
  334. data/test/gsl/tensor_test.rb +396 -0
  335. data/test/gsl/vector_test.rb +223 -0
  336. data/test/gsl/wavelet_test.rb +130 -0
  337. data/test/gsl_test.rb +321 -0
  338. data/test/test_helper.rb +42 -0
  339. data/uncrustify.cfg +1693 -0
  340. metadata +337 -378
  341. data/README +0 -32
  342. data/VERSION +0 -1
  343. data/ext/bspline.c +0 -130
  344. data/ext/const.c +0 -673
  345. data/ext/cqp.c +0 -283
  346. data/ext/extconf.rb +0 -295
  347. data/ext/fcmp.c +0 -66
  348. data/ext/fresnel.c +0 -312
  349. data/ext/jacobi.c +0 -739
  350. data/ext/ool.c +0 -879
  351. data/ext/oper_complex_source.c +0 -253
  352. data/ext/sf_mathieu.c +0 -238
  353. data/include/rb_gsl_config.h +0 -62
  354. data/include/rb_gsl_dirac.h +0 -13
  355. data/rdoc/index.rdoc +0 -62
  356. data/rdoc/rngextra.rdoc +0 -11
  357. data/rdoc/screenshot.rdoc +0 -40
  358. data/setup.rb +0 -1585
  359. data/tests/blas/amax.rb +0 -14
  360. data/tests/blas/asum.rb +0 -16
  361. data/tests/blas/axpy.rb +0 -25
  362. data/tests/blas/copy.rb +0 -23
  363. data/tests/blas/dot.rb +0 -23
  364. data/tests/bspline.rb +0 -53
  365. data/tests/cdf.rb +0 -1388
  366. data/tests/cheb.rb +0 -112
  367. data/tests/combination.rb +0 -123
  368. data/tests/complex.rb +0 -17
  369. data/tests/const.rb +0 -24
  370. data/tests/deriv.rb +0 -85
  371. data/tests/dht/dht1.rb +0 -17
  372. data/tests/dht/dht2.rb +0 -23
  373. data/tests/dht/dht3.rb +0 -23
  374. data/tests/dht/dht4.rb +0 -23
  375. data/tests/diff.rb +0 -78
  376. data/tests/eigen/eigen.rb +0 -220
  377. data/tests/eigen/gen.rb +0 -105
  378. data/tests/eigen/genherm.rb +0 -66
  379. data/tests/eigen/gensymm.rb +0 -68
  380. data/tests/eigen/nonsymm.rb +0 -53
  381. data/tests/eigen/nonsymmv.rb +0 -53
  382. data/tests/eigen/symm-herm.rb +0 -74
  383. data/tests/err.rb +0 -58
  384. data/tests/fit.rb +0 -124
  385. data/tests/gsl_test.rb +0 -118
  386. data/tests/gsl_test2.rb +0 -110
  387. data/tests/histo.rb +0 -12
  388. data/tests/integration/integration1.rb +0 -72
  389. data/tests/integration/integration2.rb +0 -71
  390. data/tests/integration/integration3.rb +0 -71
  391. data/tests/integration/integration4.rb +0 -71
  392. data/tests/interp.rb +0 -45
  393. data/tests/linalg/HH.rb +0 -64
  394. data/tests/linalg/LU.rb +0 -47
  395. data/tests/linalg/QR.rb +0 -77
  396. data/tests/linalg/SV.rb +0 -24
  397. data/tests/linalg/TDN.rb +0 -116
  398. data/tests/linalg/TDS.rb +0 -122
  399. data/tests/linalg/bidiag.rb +0 -73
  400. data/tests/linalg/cholesky.rb +0 -20
  401. data/tests/linalg/linalg.rb +0 -158
  402. data/tests/matrix/matrix_complex_test.rb +0 -36
  403. data/tests/matrix/matrix_nmf_test.rb +0 -39
  404. data/tests/matrix/matrix_test.rb +0 -48
  405. data/tests/min.rb +0 -99
  406. data/tests/monte/miser.rb +0 -31
  407. data/tests/monte/vegas.rb +0 -45
  408. data/tests/multifit/test_2dgauss.rb +0 -112
  409. data/tests/multifit/test_brown.rb +0 -90
  410. data/tests/multifit/test_enso.rb +0 -246
  411. data/tests/multifit/test_filip.rb +0 -155
  412. data/tests/multifit/test_gauss.rb +0 -97
  413. data/tests/multifit/test_longley.rb +0 -110
  414. data/tests/multifit/test_multifit.rb +0 -52
  415. data/tests/multimin.rb +0 -139
  416. data/tests/multiroot.rb +0 -131
  417. data/tests/multiset.rb +0 -52
  418. data/tests/narray/blas_dnrm2.rb +0 -20
  419. data/tests/odeiv.rb +0 -353
  420. data/tests/poly/poly.rb +0 -290
  421. data/tests/poly/special.rb +0 -65
  422. data/tests/qrng.rb +0 -131
  423. data/tests/quartic.rb +0 -29
  424. data/tests/randist.rb +0 -134
  425. data/tests/rng.rb +0 -305
  426. data/tests/roots.rb +0 -76
  427. data/tests/run-test.sh +0 -17
  428. data/tests/sf/gsl_test_sf.rb +0 -249
  429. data/tests/sf/test_airy.rb +0 -83
  430. data/tests/sf/test_bessel.rb +0 -306
  431. data/tests/sf/test_coulomb.rb +0 -17
  432. data/tests/sf/test_dilog.rb +0 -25
  433. data/tests/sf/test_gamma.rb +0 -209
  434. data/tests/sf/test_hyperg.rb +0 -356
  435. data/tests/sf/test_legendre.rb +0 -227
  436. data/tests/sf/test_mathieu.rb +0 -59
  437. data/tests/sf/test_mode.rb +0 -19
  438. data/tests/sf/test_sf.rb +0 -839
  439. data/tests/stats.rb +0 -174
  440. data/tests/stats_mt.rb +0 -16
  441. data/tests/sum.rb +0 -98
  442. data/tests/sys.rb +0 -323
  443. data/tests/tensor.rb +0 -419
  444. data/tests/vector/vector_complex_test.rb +0 -101
  445. data/tests/vector/vector_test.rb +0 -141
  446. data/tests/wavelet.rb +0 -142
@@ -1,92 +1,92 @@
1
1
  #
2
2
  # = Least-Squares Fitting
3
- # This chapter describes routines for performing least squares fits to
4
- # experimental data using linear combinations of functions. The data may be
5
- # weighted or unweighted, i.e. with known or unknown errors. For weighted data
6
- # the functions compute the best fit parameters and their associated covariance
7
- # matrix. For unweighted data the covariance matrix is estimated from the
8
- # scatter of the points, giving a variance-covariance matrix.
3
+ # This chapter describes routines for performing least squares fits to
4
+ # experimental data using linear combinations of functions. The data may be
5
+ # weighted or unweighted, i.e. with known or unknown errors. For weighted data
6
+ # the functions compute the best fit parameters and their associated covariance
7
+ # matrix. For unweighted data the covariance matrix is estimated from the
8
+ # scatter of the points, giving a variance-covariance matrix.
9
9
  #
10
- # The functions are divided into separate versions for simple one- or
11
- # two-parameter regression and multiple-parameter fits.
10
+ # The functions are divided into separate versions for simple one- or
11
+ # two-parameter regression and multiple-parameter fits.
12
12
  #
13
13
  # Contents:
14
- # 1. {Overview}[link:files/rdoc/fit_rdoc.html#1]
15
- # 1. {Linear regression}[link:files/rdoc/fit_rdoc.html#2]
16
- # 1. {Module functions for linear regression}[link:files/rdoc/fit_rdoc.html#2.1]
17
- # 1. {Linear fitting without a constant term}[link:files/rdoc/fit_rdoc.html#3]
18
- # 1. {Multi-parameter fitting}[link:files/rdoc/fit_rdoc.html#4]
19
- # 1. {GSL::MultiFit::Workspace class}[link:files/rdoc/fit_rdoc.html#4.1]
20
- # 1. {Module functions}[link:files/rdoc/fit_rdoc.html#4.2]
21
- # 1. {Higer level interface}[link:files/rdoc/fit_rdoc.html#4.3]
22
- # 1. {NDLINEAR: multi-linear, multi-parameter least squares fitting}[link:files/rdoc/ndlinear_rdoc.html] (GSL extension)
23
- # 1. {Examples}[link:files/rdoc/fit_rdoc.html#5]
24
- # 1. {Linear regression}[link:files/rdoc/fit_rdoc.html#5.1]
25
- # 1. {Exponential fitting}[link:files/rdoc/fit_rdoc.html#5.2]
26
- # 1. {Multi-parameter fitting}[link:files/rdoc/fit_rdoc.html#5.3]
27
- #
28
- # == {}[link:index.html"name="1] Overview
29
- # Least-squares fits are found by minimizing \chi^2 (chi-squared), the weighted
30
- # sum of squared residuals over n experimental datapoints (x_i, y_i) for the
14
+ # 1. {Overview}[link:rdoc/fit_rdoc.html#label-Overview]
15
+ # 1. {Linear regression}[link:rdoc/fit_rdoc.html#label-Linear+regression]
16
+ # 1. {Module functions for linear regression}[link:rdoc/fit_rdoc.html#label-Module+functions+for+linear+regression]
17
+ # 1. {Linear fitting without a constant term}[link:rdoc/fit_rdoc.html#label-Linear+fitting+without+a+constant+term]
18
+ # 1. {Multi-parameter fitting}[link:rdoc/fit_rdoc.html#label-Multi-parameter+fitting]
19
+ # 1. {GSL::MultiFit::Workspace class}[link:rdoc/fit_rdoc.html#label-Workspace+class]
20
+ # 1. {Module functions}[link:rdoc/fit_rdoc.html#label-Module+functions]
21
+ # 1. {Higer level interface}[link:rdoc/fit_rdoc.html#label-Higer+level+interface]
22
+ # 1. {NDLINEAR: multi-linear, multi-parameter least squares fitting}[link:rdoc/ndlinear_rdoc.html] (GSL extension)
23
+ # 1. {Examples}[link:rdoc/fit_rdoc.html#label-Examples]
24
+ # 1. {Linear regression}[link:rdoc/fit_rdoc.html#label-Linear+regression]
25
+ # 1. {Exponential fitting}[link:rdoc/fit_rdoc.html#label-Exponential+fitting]
26
+ # 1. {Multi-parameter fitting}[link:rdoc/fit_rdoc.html#label-Multi-parameter+fitting]
27
+ #
28
+ # == Overview
29
+ # Least-squares fits are found by minimizing \chi^2 (chi-squared), the weighted
30
+ # sum of squared residuals over n experimental datapoints (x_i, y_i) for the
31
31
  # model Y(c,x), The p parameters of the model are c = {c_0, c_1, ...}. The
32
32
  # weight factors w_i are given by w_i = 1/\sigma_i^2, where \sigma_i is the
33
33
  # experimental error on the data-point y_i. The errors are assumed to be
34
34
  # gaussian and uncorrelated. For unweighted data the chi-squared sum is
35
35
  # computed without any weight factors.
36
36
  #
37
- # The fitting routines return the best-fit parameters c and their p \times p
38
- # covariance matrix. The covariance matrix measures the statistical errors on
39
- # the best-fit parameters resulting from the errors on the data, \sigma_i, and
40
- # is defined as C_{ab} = <\delta c_a \delta c_b> where < > denotes an average
41
- # over the gaussian error distributions of the underlying datapoints.
37
+ # The fitting routines return the best-fit parameters c and their p \times p
38
+ # covariance matrix. The covariance matrix measures the statistical errors on
39
+ # the best-fit parameters resulting from the errors on the data, \sigma_i, and
40
+ # is defined as C_{ab} = <\delta c_a \delta c_b> where < > denotes an average
41
+ # over the gaussian error distributions of the underlying datapoints.
42
42
  #
43
- # The covariance matrix is calculated by error propagation from the data errors
44
- # \sigma_i. The change in a fitted parameter \delta c_a caused by a small change
43
+ # The covariance matrix is calculated by error propagation from the data errors
44
+ # \sigma_i. The change in a fitted parameter \delta c_a caused by a small change
45
45
  # in the data \delta y_i is given by allowing the covariance matrix to be written
46
- # in terms of the errors on the data, For uncorrelated data the fluctuations of
47
- # the underlying datapoints satisfy
48
- # <\delta y_i \delta y_j> = \sigma_i^2 \delta_{ij}, giving a corresponding
49
- # parameter covariance matrix of When computing the covariance matrix for
50
- # unweighted data, i.e. data with unknown errors, the weight factors w_i in this
51
- # sum are replaced by the single estimate w = 1/\sigma^2, where \sigma^2 is the
52
- # computed variance of the residuals about the
53
- # best-fit model, \sigma^2 = \sum (y_i - Y(c,x_i))^2 / (n-p).
54
- # This is referred to as the variance-covariance matrix.
55
- #
56
- # The standard deviations of the best-fit parameters are given by the square
57
- # root of the corresponding diagonal elements of the covariance matrix,
58
- # \sigma_{c_a} = \sqrt{C_{aa}}. The correlation coefficient of the fit
59
- # parameters c_a and c_b is given by \rho_{ab} = C_{ab} / \sqrt{C_{aa} C_{bb}}.
60
- #
61
- #
62
- # == {}[link:index.html"name="2] Linear regression
63
- # The functions described in this section can be used to perform least-squares
64
- # fits to a straight line model, Y = c_0 + c_1 X. For weighted data the best-fit
46
+ # in terms of the errors on the data, For uncorrelated data the fluctuations of
47
+ # the underlying datapoints satisfy
48
+ # <\delta y_i \delta y_j> = \sigma_i^2 \delta_{ij}, giving a corresponding
49
+ # parameter covariance matrix of When computing the covariance matrix for
50
+ # unweighted data, i.e. data with unknown errors, the weight factors w_i in this
51
+ # sum are replaced by the single estimate w = 1/\sigma^2, where \sigma^2 is the
52
+ # computed variance of the residuals about the
53
+ # best-fit model, \sigma^2 = \sum (y_i - Y(c,x_i))^2 / (n-p).
54
+ # This is referred to as the variance-covariance matrix.
55
+ #
56
+ # The standard deviations of the best-fit parameters are given by the square
57
+ # root of the corresponding diagonal elements of the covariance matrix,
58
+ # \sigma_{c_a} = \sqrt{C_{aa}}. The correlation coefficient of the fit
59
+ # parameters c_a and c_b is given by \rho_{ab} = C_{ab} / \sqrt{C_{aa} C_{bb}}.
60
+ #
61
+ #
62
+ # == Linear regression
63
+ # The functions described in this section can be used to perform least-squares
64
+ # fits to a straight line model, Y = c_0 + c_1 X. For weighted data the best-fit
65
65
  # is found by minimizing the weighted sum of squared residuals, chi^2,
66
66
  #
67
67
  # chi^2 = sum_i w_i (y_i - (c0 + c1 x_i))^2
68
68
  #
69
- # for the parameters <tt>c0, c1</tt>. For unweighted data the sum is computed with
69
+ # for the parameters <tt>c0, c1</tt>. For unweighted data the sum is computed with
70
70
  # <tt>w_i = 1</tt>.
71
71
  #
72
- # === {}[link:index.html"name="2.1] Module functions for linear regression
72
+ # === Module functions for linear regression
73
73
  # ---
74
74
  # * GSL::Fit::linear(x, y)
75
75
  #
76
- # This function computes the best-fit linear regression coefficients (c0,c1)
77
- # of the model Y = c0 + c1 X for the datasets <tt>(x, y)</tt>, two vectors of
78
- # equal length with stride 1. This returns an array of 7 elements,
76
+ # This function computes the best-fit linear regression coefficients (c0,c1)
77
+ # of the model Y = c0 + c1 X for the datasets <tt>(x, y)</tt>, two vectors of
78
+ # equal length with stride 1. This returns an array of 7 elements,
79
79
  # <tt>[c0, c1, cov00, cov01, cov11, chisq, status]</tt>, where <tt>c0, c1</tt> are the
80
- # estimated parameters, <tt>cov00, cov01, cov11</tt> are the variance-covariance
80
+ # estimated parameters, <tt>cov00, cov01, cov11</tt> are the variance-covariance
81
81
  # matrix elements, <tt>chisq</tt> is the sum of squares of the residuals, and
82
82
  # <tt>status</tt> is the return code from the GSL function <tt>gsl_fit_linear()</tt>.
83
83
  #
84
84
  # ---
85
85
  # * GSL::Fit::wlinear(x, w, y)
86
86
  #
87
- # This function computes the best-fit linear regression coefficients (c0,c1)
88
- # of the model Y = c_0 + c_1 X for the weighted datasets <tt>(x, y)</tt>.
89
- # The vector <tt>w</tt>, specifies the weight of each datapoint, which is the
87
+ # This function computes the best-fit linear regression coefficients (c0,c1)
88
+ # of the model Y = c_0 + c_1 X for the weighted datasets <tt>(x, y)</tt>.
89
+ # The vector <tt>w</tt>, specifies the weight of each datapoint, which is the
90
90
  # reciprocal of the variance for each datapoint in <tt>y</tt>. This returns an
91
91
  # array of 7 elements, same as the method <tt>linear</tt>.
92
92
  #
@@ -94,82 +94,82 @@
94
94
  # * GSL::Fit::linear_est(x, c0, c1, c00, c01, c11)
95
95
  # * GSL::Fit::linear_est(x, [c0, c1, c00, c01, c11])
96
96
  #
97
- # This function uses the best-fit linear regression coefficients <tt>c0,c1</tt> and
98
- # their estimated covariance <tt>cov00,cov01,cov11</tt> to compute the fitted function
97
+ # This function uses the best-fit linear regression coefficients <tt>c0,c1</tt> and
98
+ # their estimated covariance <tt>cov00,cov01,cov11</tt> to compute the fitted function
99
99
  # and its standard deviation for the model Y = c_0 + c_1 X at the point <tt>x</tt>.
100
100
  # The returned value is an array of <tt>[y, yerr]</tt>.
101
101
  #
102
- # == {}[link:index.html"name="3] Linear fitting without a constant term
102
+ # == Linear fitting without a constant term
103
103
  # ---
104
104
  # * GSL::Fit::mul(x, y)
105
105
  #
106
- # This function computes the best-fit linear regression coefficient <tt>c1</tt>
107
- # of the model Y = c1 X for the datasets <tt>(x, y)</tt>, two vectors of
108
- # equal length with stride 1. This returns an array of 4 elements,
106
+ # This function computes the best-fit linear regression coefficient <tt>c1</tt>
107
+ # of the model Y = c1 X for the datasets <tt>(x, y)</tt>, two vectors of
108
+ # equal length with stride 1. This returns an array of 4 elements,
109
109
  # <tt>[c1, cov11, chisq, status]</tt>.
110
110
  #
111
111
  # ---
112
112
  # * GSL::Fit::wmul(x, w, y)
113
113
  #
114
- # This function computes the best-fit linear regression coefficient <tt>c1</tt>
115
- # of the model Y = c_1 X for the weighted datasets <tt>(x, y)</tt>. The vector
116
- # <tt>w</tt> specifies the weight of each datapoint. The weight is the reciprocal
114
+ # This function computes the best-fit linear regression coefficient <tt>c1</tt>
115
+ # of the model Y = c_1 X for the weighted datasets <tt>(x, y)</tt>. The vector
116
+ # <tt>w</tt> specifies the weight of each datapoint. The weight is the reciprocal
117
117
  # of the variance for each datapoint in <tt>y</tt>.
118
118
  #
119
119
  # ---
120
120
  # * GSL::Fit::mul_est(x, c1, c11)
121
121
  # * GSL::Fit::mul_est(x, [c1, c11])
122
122
  #
123
- # This function uses the best-fit linear regression coefficient <tt>c1</tt>
124
- # and its estimated covariance <tt>cov11</tt> to compute the fitted function
125
- # <tt>y</tt> and its standard deviation <tt>y_err</tt>
126
- # for the model Y = c_1 X at the point <tt>x</tt>.
123
+ # This function uses the best-fit linear regression coefficient <tt>c1</tt>
124
+ # and its estimated covariance <tt>cov11</tt> to compute the fitted function
125
+ # <tt>y</tt> and its standard deviation <tt>y_err</tt>
126
+ # for the model Y = c_1 X at the point <tt>x</tt>.
127
127
  # The returned value is an array of <tt>[y, yerr]</tt>.
128
128
  #
129
- # == {}[link:index.html"name="4] Multi-parameter fitting
130
- # === {}[link:index.html"name="4.1] GSL::MultiFit::Workspace class
129
+ # == Multi-parameter fitting
130
+ # === Workspace class
131
131
  # ---
132
132
  # * GSL::MultiFit::Workspace.alloc(n, p)
133
133
  #
134
- # This creates a workspace for fitting a model to <tt>n</tt>
134
+ # This creates a workspace for fitting a model to <tt>n</tt>
135
135
  # observations using <tt>p</tt> parameters.
136
136
  #
137
- # === {}[link:index.html"name="4.2] Module functions
137
+ # === Module functions
138
138
  # ---
139
139
  # * GSL::MultiFit::linear(X, y, work)
140
140
  # * GSL::MultiFit::linear(X, y)
141
141
  #
142
- # This function computes the best-fit parameters <tt>c</tt> of the model <tt>y = X c</tt>
143
- # for the observations <tt>y</tt> and the matrix of predictor variables <tt>X</tt>.
144
- # The variance-covariance matrix of the model parameters <tt>cov</tt> is estimated
145
- # from the scatter of the observations about the best-fit. The sum of squares
142
+ # This function computes the best-fit parameters <tt>c</tt> of the model <tt>y = X c</tt>
143
+ # for the observations <tt>y</tt> and the matrix of predictor variables <tt>X</tt>.
144
+ # The variance-covariance matrix of the model parameters <tt>cov</tt> is estimated
145
+ # from the scatter of the observations about the best-fit. The sum of squares
146
146
  # of the residuals from the best-fit is also calculated. The returned value is
147
147
  # an array of 4 elements, <tt>[c, cov, chisq, status]</tt>, where <tt>c</tt> is a
148
- # {GSL::Vector}[link:files/rdoc/vector_rdoc.html] object which contains the best-fit parameters,
149
- # and <tt>cov</tt> is the variance-covariance matrix as a
150
- # {GSL::Matrix}[link:files/rdoc/matrix_rdoc.html] object.
148
+ # {GSL::Vector}[link:rdoc/vector_rdoc.html] object which contains the best-fit parameters,
149
+ # and <tt>cov</tt> is the variance-covariance matrix as a
150
+ # {GSL::Matrix}[link:rdoc/matrix_rdoc.html] object.
151
151
  #
152
- # The best-fit is found by singular value decomposition of the matrix <tt>X</tt>
152
+ # The best-fit is found by singular value decomposition of the matrix <tt>X</tt>
153
153
  # using the workspace provided in <tt>work</tt> (optional, if not given, it is allocated
154
- # internally).
155
- # The modified Golub-Reinsch SVD algorithm is used, with column scaling to improve
156
- # the accuracy of the singular values. Any components which have zero singular
154
+ # internally).
155
+ # The modified Golub-Reinsch SVD algorithm is used, with column scaling to improve
156
+ # the accuracy of the singular values. Any components which have zero singular
157
157
  # value (to machine precision) are discarded from the fit.
158
158
  #
159
159
  # ---
160
160
  # * GSL::MultiFit::wlinear(X, w, y, work)
161
161
  # * GSL::MultiFit::wlinear(X, w, y)
162
162
  #
163
- # This function computes the best-fit parameters <tt>c</tt> of the model
164
- # <tt>y = X c</tt> for the observations <tt>y</tt> and the matrix of predictor
165
- # variables <tt>X</tt>. The covariance matrix of the model parameters
163
+ # This function computes the best-fit parameters <tt>c</tt> of the model
164
+ # <tt>y = X c</tt> for the observations <tt>y</tt> and the matrix of predictor
165
+ # variables <tt>X</tt>. The covariance matrix of the model parameters
166
166
  # <tt>cov</tt> is estimated from the weighted data. The weighted sum of
167
- # squares of the residuals from the best-fit is also calculated.
168
- # The returned value is an array of 4 elements,
167
+ # squares of the residuals from the best-fit is also calculated.
168
+ # The returned value is an array of 4 elements,
169
169
  # <tt>[c: Vector, cov: Matrix, chisq: Float, status: Fixnum]</tt>.
170
- # The best-fit is found by singular value decomposition of the matrix <tt>X</tt>
171
- # using the workspace provided in <tt>work</tt> (optional). Any components
172
- # which have
170
+ # The best-fit is found by singular value decomposition of the matrix <tt>X</tt>
171
+ # using the workspace provided in <tt>work</tt> (optional). Any components
172
+ # which have
173
173
  # zero singular value (to machine precision) are discarded from the fit.
174
174
  #
175
175
  # ---
@@ -181,12 +181,12 @@
181
181
  #
182
182
  # (GSL-1.11 or later) This method computes the vector of residuals <tt>r = y - X c</tt> for the observations <tt>y</tt>, coefficients <tt>c</tt> and matrix of predictor variables <tt>X</tt>, and returns <tt>r</tt>.
183
183
  #
184
- # === {}[link:index.html"name="4.3] Higer level interface
184
+ # === Higer level interface
185
185
  #
186
186
  # ---
187
187
  # * GSL::MultiFit::polyfit(x, y, order)
188
188
  #
189
- # Finds the coefficient of a polynomial of order <tt>order</tt>
189
+ # Finds the coefficient of a polynomial of order <tt>order</tt>
190
190
  # that fits the vector data (<tt>x, y</tt>) in a least-square sense.
191
191
  #
192
192
  # Example:
@@ -196,13 +196,13 @@
196
196
  # x = Vector[1, 2, 3, 4, 5]
197
197
  # y = Vector[5.5, 43.1, 128, 290.7, 498.4]
198
198
  # # The results are stored in a polynomial "coef"
199
- # coef, err, chisq, status = MultiFit.polyfit(x, y, 3)
199
+ # coef, err, chisq, status = MultiFit.polyfit(x, y, 3)
200
200
  #
201
201
  # x2 = Vector.linspace(1, 5, 20)
202
202
  # graph([x, y], [x2, coef.eval(x2)], "-C -g 3 -S 4")
203
203
  #
204
- # == {}[link:index.html"name="5] Examples
205
- # === {}[link:index.html"name="5.1] Linear regression
204
+ # == Examples
205
+ # === Linear regression
206
206
  # #!/usr/bin/env ruby
207
207
  # require("gsl")
208
208
  # include GSL::Fit
@@ -220,11 +220,11 @@
220
220
  #
221
221
  # printf("# best fit: Y = %g + %g X\n", c0, c1);
222
222
  # printf("# covariance matrix:\n");
223
- # printf("# [ %g, %g\n# %g, %g]\n",
223
+ # printf("# [ %g, %g\n# %g, %g]\n",
224
224
  # cov00, cov01, cov01, cov11);
225
225
  # printf("# chisq = %g\n", chisq);
226
226
  #
227
- # === {}[link:index.html"name="5.2] Exponential fitting
227
+ # === Exponential fitting
228
228
  # #!/usr/bin/env ruby
229
229
  # require("gsl")
230
230
  #
@@ -245,13 +245,13 @@
245
245
  # printf("Result: a = %f, b = %f\n", A, b2)
246
246
  # graph([x, y], [x2, A*Sf::exp(b2*x2)], "-C -g 3 -S 4")
247
247
  #
248
- # === {}[link:index.html"name="5.3] Multi-parameter fitting
248
+ # === Multi-parameter fitting
249
249
  # #!/usr/bin/env ruby
250
250
  # require("gsl")
251
251
  # include GSL::MultiFit
252
252
  #
253
253
  # Rng.env_setup()
254
- #
254
+ #
255
255
  # r = GSL::Rng.alloc(Rng::DEFAULT)
256
256
  # n = 19
257
257
  # dim = 3
@@ -275,10 +275,10 @@
275
275
  #
276
276
  # c, cov, chisq, status = MultiFit.wlinear(X, w, y)
277
277
  #
278
- # {prev}[link:files/rdoc/multimin_rdoc.html]
279
- # {next}[link:files/rdoc/nonlinearfit_rdoc.html]
278
+ # {prev}[link:rdoc/multimin_rdoc.html]
279
+ # {next}[link:rdoc/nonlinearfit_rdoc.html]
280
280
  #
281
- # {Reference index}[link:files/rdoc/ref_rdoc.html]
282
- # {top}[link:files/rdoc/index_rdoc.html]
281
+ # {Reference index}[link:rdoc/ref_rdoc.html]
282
+ # {top}[link:index.html]
283
283
  #
284
284
  #
@@ -1,13 +1,13 @@
1
1
  #
2
2
  # = GSL::Function class
3
3
  #
4
- # == {}[link:index.html"name="1] Class Methods
4
+ # == Class Methods
5
5
  #
6
6
  # ---
7
7
  # * GSL::Function.alloc
8
8
  #
9
9
  # Constructor.
10
- #
10
+ #
11
11
  # * ex:
12
12
  # require("gsl")
13
13
  # f = GSL::Function.alloc { |x| sin(x) }
@@ -18,22 +18,22 @@
18
18
  #
19
19
  # The function can have parameters of arbitrary numbers. Here is an
20
20
  # example in case of exponential function <tt>f(x; a, b) = a*exp(-b*x)</tt>.
21
- #
21
+ #
22
22
  # f = GSL::Function.alloc { |x, params| # x: a scalar, params: an array
23
23
  # a = params[0]; b = params[1]
24
24
  # a*exp(-b*x)
25
25
  # }
26
- # To evaluate the function <tt>f(x) = 2*exp(-3*x)</tt>,
26
+ # To evaluate the function <tt>f(x) = 2*exp(-3*x)</tt>,
27
27
  # f.set_params([2, 3])
28
28
  # f.eval(x)
29
29
  #
30
- # == {}[link:index.html"name="2] Methods
30
+ # == Methods
31
31
  #
32
32
  # ---
33
33
  # * GSL::Function#eval(x)
34
34
  # * GSL::Function#call(x)
35
35
  # * GSL::Function#at(x)
36
- # * GSL::Function#[x]
36
+ # * \GSL::Function#[x]
37
37
  #
38
38
  # These methods return a value of the function at <tt>x</tt>.
39
39
  # p f.eval(2.5)
@@ -57,7 +57,7 @@
57
57
  #
58
58
  # This set the constant parameters of the function.
59
59
  #
60
- # == {}[link:index.html"name="3] Graph
60
+ # == Graph
61
61
  # ---
62
62
  # * GSL::Function#graph(x[, options])
63
63
  #
@@ -70,12 +70,12 @@
70
70
  # f.graph(x, "-T X -g 3 -C -L 'sin(x)'")
71
71
  #
72
72
  #
73
- # == {}[link:index.html"name="4] Example
73
+ # == Example
74
74
  # A quadratic function, f(x) = x^2 + 2x + 3.
75
75
  #
76
76
  # >> require("gsl")
77
77
  # => true
78
- # >> f = Function.alloc { |x, param| x*x + param[0]*x + param[1] }
78
+ # >> f = Function.alloc { |x, param| x*x + param[0]*x + param[1] }
79
79
  # => #<GSL::Function:0x6e8eb0>
80
80
  # >> f.set_params(2, 3)
81
81
  # => #<GSL::Function:0x6e8eb0>
@@ -86,9 +86,9 @@
86
86
  # >> f.eval([1, 2, 3]) <--- Array
87
87
  # => [6.0, 11.0, 18.0]
88
88
  # >> f.eval(Matrix.alloc([1, 2], [3, 4])) <--- GSL::Matrix
89
- # [ 6.000e+00 1.100e+01
89
+ # [ 6.000e+00 1.100e+01
90
90
  # 1.800e+01 2.700e+01 ]
91
91
  # => #<GSL::Matrix:0x6dd1b4>
92
92
  #
93
- # {back}[link:files/rdoc/index_rdoc.html]
93
+ # {back}[link:index.html]
94
94
  #
@@ -2,18 +2,18 @@
2
2
  # = Graphics
3
3
  #
4
4
  # The GSL library itself does not include any utilities to visualize computation results.
5
- # Some examples found in the GSL manual use
6
- # {GNU graph}[http://www.gnu.org/software/plotutils/plotutils.html"target="_top]
5
+ # Some examples found in the GSL manual use
6
+ # {GNU graph}[https://gnu.org/software/plotutils/plotutils.html]
7
7
  # to show the results: the data are stored in data files, and then
8
8
  # displayed by using <tt>GNU graph</tt>.
9
9
  # Ruby/GSL provides simple interfaces to <tt>GNU graph</tt>
10
10
  # to plot vectors or histograms directly without storing them in data files.
11
- # Although the methods described below do not cover all the functionalities
12
- # of <tt>GNU graph</tt>, these are useful to check calculations and get some
11
+ # Although the methods described below do not cover all the functionalities
12
+ # of <tt>GNU graph</tt>, these are useful to check calculations and get some
13
13
  # speculations on the data.
14
14
  #
15
15
  #
16
- # == {}[link:index.html"name="1] Plotting vectors
16
+ # == Plotting vectors
17
17
  # ---
18
18
  # * Vector.graph(y[, options])
19
19
  # * Vector.graph(nil, y[, y2, y3, ..., options])
@@ -25,7 +25,7 @@
25
25
  # * GSL::graph([x1, y1], [x2, y2], ...., options)
26
26
  #
27
27
  # These methods use the <tt>GNU graph</tt> utility to plot vectors.
28
- # The options <tt>options</tt> given by a <tt>String</tt>. If <tt>nil</tt> is
28
+ # The options <tt>options</tt> given by a <tt>String</tt>. If <tt>nil</tt> is
29
29
  # given for <tt>ARGV[0]</tt>, auto-generated abscissa are used.
30
30
  #
31
31
  # Ex:
@@ -44,10 +44,10 @@
44
44
  # * GSL::Vector#graph(options)
45
45
  # * GSL::Vector#graph(x[, options])
46
46
  #
47
- # These methods plot the vector using the GNU <tt>graph</tt>
47
+ # These methods plot the vector using the GNU <tt>graph</tt>
48
48
  # command. The options for the <tt>graph</tt> command are given by a <tt>String</tt>.
49
49
  #
50
- # Ex1:
50
+ # Ex1:
51
51
  # >> x = Vector[1..5]
52
52
  # [ 1.000e+00 2.000e+00 3.000e+00 4.000e+00 5.000e+00 ]
53
53
  # >> x.graph("-m 2") # dotted line
@@ -60,13 +60,13 @@
60
60
  # >> c = Sf::cos(x)
61
61
  # >> c.graph(x, "-T X -C -g 3 -L 'cos(x)'")
62
62
  #
63
- # == {}[link:index.html"name="2] Drawing histogram
63
+ # == Drawing histogram
64
64
  # ---
65
65
  # * GSL::Histogram#graph(options)
66
66
  #
67
67
  # This method uses the GNU plotutils <tt>graph</tt> to draw a histogram.
68
68
  #
69
- # == {}[link:index.html"name="3] Plotting Functions
69
+ # == Plotting Functions
70
70
  # ---
71
71
  # * GSL::Function#graph(x[, options])
72
72
  #
@@ -78,7 +78,7 @@
78
78
  # x = Vector.linspace(0, 2*M_PI, 50)
79
79
  # f.graph(x, "-T X -g 3 -C -L 'sin(x)'")
80
80
  #
81
- # == {}[link:index.html"name="4] Other way
81
+ # == Other way
82
82
  # The code below uses <tt>GNUPLOT</tt> directly to plot vectors.
83
83
  #
84
84
  # #!/usr/bin/env ruby
@@ -101,14 +101,14 @@
101
101
  #
102
102
  # Gnuplot.open do |gp|
103
103
  # Gnuplot::Plot.new( gp ) do |plot|
104
- #
104
+ #
105
105
  # plot.xrange "[0:10]"
106
106
  # plot.yrange "[-1.5:1.5]"
107
107
  # plot.title "Sin Wave Example"
108
108
  # plot.xlabel "x"
109
109
  # plot.ylabel "sin(x)"
110
110
  # plot.pointsize 3
111
- # plot.grid
111
+ # plot.grid
112
112
  #
113
113
  # x = GSL::Vector[0..10]
114
114
  # y = GSL::Sf::sin(x)
@@ -119,7 +119,7 @@
119
119
  # ds.title = "String function"
120
120
  # ds.linewidth = 4
121
121
  # },
122
- #
122
+ #
123
123
  # Gnuplot::DataSet.new( [x, y] ) { |ds|
124
124
  # ds.with = "linespoints"
125
125
  # ds.title = "Array data"
@@ -129,9 +129,9 @@
129
129
  # end
130
130
  # end
131
131
  #
132
- # {prev}[link:files/rdoc/const_rdoc.html]
132
+ # {prev}[link:rdoc/const_rdoc.html]
133
133
  #
134
- # {Reference index}[link:files/rdoc/ref_rdoc.html]
135
- # {top}[link:files/rdoc/index_rdoc.html]
134
+ # {Reference index}[link:rdoc/ref_rdoc.html]
135
+ # {top}[link:index.html]
136
136
  #
137
137
  #