crmf 0.1.1 → 0.1.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/README.md +12 -0
- data/crmf.gemspec +105 -3
- data/ext/crlibm-1.0beta5/AUTHORS +2 -0
- data/ext/crlibm-1.0beta5/CMakeLists.txt +154 -0
- data/ext/crlibm-1.0beta5/COPYING +340 -0
- data/ext/crlibm-1.0beta5/COPYING.LIB +504 -0
- data/ext/crlibm-1.0beta5/ChangeLog +125 -0
- data/ext/crlibm-1.0beta5/Makefile.am +134 -0
- data/ext/crlibm-1.0beta5/NEWS +0 -0
- data/ext/crlibm-1.0beta5/README +31 -0
- data/ext/crlibm-1.0beta5/README.DEV +23 -0
- data/ext/crlibm-1.0beta5/README.md +5 -0
- data/ext/crlibm-1.0beta5/TODO +66 -0
- data/ext/crlibm-1.0beta5/VERSION +1 -0
- data/ext/crlibm-1.0beta5/acos-td.c +1195 -0
- data/ext/crlibm-1.0beta5/acos-td.h +629 -0
- data/ext/crlibm-1.0beta5/asin-td.c +1297 -0
- data/ext/crlibm-1.0beta5/asin-td.h +620 -0
- data/ext/crlibm-1.0beta5/asincos.c +4488 -0
- data/ext/crlibm-1.0beta5/asincos.h +575 -0
- data/ext/crlibm-1.0beta5/atan-itanium.c +846 -0
- data/ext/crlibm-1.0beta5/atan-pentium.c +280 -0
- data/ext/crlibm-1.0beta5/atan-pentium.h +343 -0
- data/ext/crlibm-1.0beta5/atan_accurate.c +341 -0
- data/ext/crlibm-1.0beta5/atan_accurate.h +198 -0
- data/ext/crlibm-1.0beta5/atan_fast.c +506 -0
- data/ext/crlibm-1.0beta5/atan_fast.h +680 -0
- data/ext/crlibm-1.0beta5/configure.ac +419 -0
- data/ext/crlibm-1.0beta5/crlibm.h +204 -0
- data/ext/crlibm-1.0beta5/crlibm.spec +42 -0
- data/ext/crlibm-1.0beta5/crlibm_private.c +397 -0
- data/ext/crlibm-1.0beta5/crlibm_private.h +1048 -0
- data/ext/crlibm-1.0beta5/csh_fast.c +721 -0
- data/ext/crlibm-1.0beta5/csh_fast.h +771 -0
- data/ext/crlibm-1.0beta5/double-extended.h +496 -0
- data/ext/crlibm-1.0beta5/exp-itanium.c +723 -0
- data/ext/crlibm-1.0beta5/exp-td-standalone.c +87 -0
- data/ext/crlibm-1.0beta5/exp-td.c +1363 -0
- data/ext/crlibm-1.0beta5/exp-td.h +685 -0
- data/ext/crlibm-1.0beta5/exp_build_coeffs/exp_fast_table.c +125 -0
- data/ext/crlibm-1.0beta5/expm1-standalone.c +119 -0
- data/ext/crlibm-1.0beta5/expm1.c +2515 -0
- data/ext/crlibm-1.0beta5/expm1.h +715 -0
- data/ext/crlibm-1.0beta5/interval.h +238 -0
- data/ext/crlibm-1.0beta5/log-de.c +480 -0
- data/ext/crlibm-1.0beta5/log-de.h +747 -0
- data/ext/crlibm-1.0beta5/log-de2.c +280 -0
- data/ext/crlibm-1.0beta5/log-de2.h +2352 -0
- data/ext/crlibm-1.0beta5/log-td.c +1158 -0
- data/ext/crlibm-1.0beta5/log-td.h +819 -0
- data/ext/crlibm-1.0beta5/log.c +2244 -0
- data/ext/crlibm-1.0beta5/log.h +1592 -0
- data/ext/crlibm-1.0beta5/log10-td.c +906 -0
- data/ext/crlibm-1.0beta5/log10-td.h +823 -0
- data/ext/crlibm-1.0beta5/log1p.c +1295 -0
- data/ext/crlibm-1.0beta5/log2-td.c +1521 -0
- data/ext/crlibm-1.0beta5/log2-td.h +821 -0
- data/ext/crlibm-1.0beta5/log2_accurate.c +330 -0
- data/ext/crlibm-1.0beta5/log2_accurate.h +261 -0
- data/ext/crlibm-1.0beta5/log_accurate.c +133 -0
- data/ext/crlibm-1.0beta5/log_accurate.h +261 -0
- data/ext/crlibm-1.0beta5/log_fast.c +360 -0
- data/ext/crlibm-1.0beta5/log_fast.h +440 -0
- data/ext/crlibm-1.0beta5/pow.c +1396 -0
- data/ext/crlibm-1.0beta5/pow.h +3101 -0
- data/ext/crlibm-1.0beta5/prepare +20 -0
- data/ext/crlibm-1.0beta5/rem_pio2_accurate.c +219 -0
- data/ext/crlibm-1.0beta5/rem_pio2_accurate.h +53 -0
- data/ext/crlibm-1.0beta5/scs_lib/AUTHORS +3 -0
- data/ext/crlibm-1.0beta5/scs_lib/COPYING +504 -0
- data/ext/crlibm-1.0beta5/scs_lib/ChangeLog +16 -0
- data/ext/crlibm-1.0beta5/scs_lib/Doxyfile.dev +939 -0
- data/ext/crlibm-1.0beta5/scs_lib/Doxyfile.user +939 -0
- data/ext/crlibm-1.0beta5/scs_lib/INSTALL +215 -0
- data/ext/crlibm-1.0beta5/scs_lib/Makefile.am +17 -0
- data/ext/crlibm-1.0beta5/scs_lib/NEWS +0 -0
- data/ext/crlibm-1.0beta5/scs_lib/README +9 -0
- data/ext/crlibm-1.0beta5/scs_lib/README.DEV +38 -0
- data/ext/crlibm-1.0beta5/scs_lib/TODO +4 -0
- data/ext/crlibm-1.0beta5/scs_lib/VERSION +1 -0
- data/ext/crlibm-1.0beta5/scs_lib/addition_scs.c +623 -0
- data/ext/crlibm-1.0beta5/scs_lib/division_scs.c +110 -0
- data/ext/crlibm-1.0beta5/scs_lib/double2scs.c +174 -0
- data/ext/crlibm-1.0beta5/scs_lib/main.dox +104 -0
- data/ext/crlibm-1.0beta5/scs_lib/multiplication_scs.c +339 -0
- data/ext/crlibm-1.0beta5/scs_lib/poly_fct.c +112 -0
- data/ext/crlibm-1.0beta5/scs_lib/print_scs.c +73 -0
- data/ext/crlibm-1.0beta5/scs_lib/rand_scs.c +63 -0
- data/ext/crlibm-1.0beta5/scs_lib/scs.h +353 -0
- data/ext/crlibm-1.0beta5/scs_lib/scs2double.c +411 -0
- data/ext/crlibm-1.0beta5/scs_lib/scs2mpf.c +58 -0
- data/ext/crlibm-1.0beta5/scs_lib/scs2mpfr.c +61 -0
- data/ext/crlibm-1.0beta5/scs_lib/scs_private.c +23 -0
- data/ext/crlibm-1.0beta5/scs_lib/scs_private.h +133 -0
- data/ext/crlibm-1.0beta5/scs_lib/wrapper_scs.h +486 -0
- data/ext/crlibm-1.0beta5/scs_lib/zero_scs.c +52 -0
- data/ext/crlibm-1.0beta5/trigo_accurate.c +501 -0
- data/ext/crlibm-1.0beta5/trigo_accurate.h +331 -0
- data/ext/crlibm-1.0beta5/trigo_fast.c +1243 -0
- data/ext/crlibm-1.0beta5/trigo_fast.h +639 -0
- data/ext/crlibm-1.0beta5/trigpi.c +1169 -0
- data/ext/crlibm-1.0beta5/trigpi.h +556 -0
- data/ext/crlibm-1.0beta5/triple-double.c +57 -0
- data/ext/crlibm-1.0beta5/triple-double.h +1380 -0
- data/ext/crmf/crmf.c +117 -20
- data/ext/crmf/extconf.rb +12 -8
- data/lib/crmf/version.rb +1 -1
- data/tests/perf.rb +100 -219
- metadata +108 -10
- data/ext/crlibm-1.0beta4.tar.gz +0 -0
@@ -0,0 +1,1158 @@
|
|
1
|
+
/*
|
2
|
+
* This function computes log, correctly rounded,
|
3
|
+
* using triple double arithmetics
|
4
|
+
|
5
|
+
*
|
6
|
+
* Author : Christoph Lauter
|
7
|
+
* christoph.lauter at ens-lyon.fr
|
8
|
+
*
|
9
|
+
|
10
|
+
*/
|
11
|
+
|
12
|
+
|
13
|
+
#include <stdio.h>
|
14
|
+
#include <stdlib.h>
|
15
|
+
#include "crlibm.h"
|
16
|
+
#include "crlibm_private.h"
|
17
|
+
#include "triple-double.h"
|
18
|
+
#include "log-td.h"
|
19
|
+
#ifdef BUILD_INTERVAL_FUNCTIONS
|
20
|
+
#include "interval.h"
|
21
|
+
#endif
|
22
|
+
|
23
|
+
|
24
|
+
#define AVOID_FMA 0
|
25
|
+
|
26
|
+
|
27
|
+
|
28
|
+
void log_td_accurate(double *logh, double *logm, double *logl, int E, double ed, int index, double zh, double zl, double logih, double logim) {
|
29
|
+
double highPoly, t1h, t1l, t2h, t2l, t3h, t3l, t4h, t4l, t5h, t5l, t6h, t6l, t7h, t7l, t8h, t8l, t9h, t9l, t10h, t10l, t11h, t11l;
|
30
|
+
double t12h, t12l, t13h, t13l, t14h, t14l, zSquareh, zSquarem, zSquarel, zCubeh, zCubem, zCubel, higherPolyMultZh, higherPolyMultZm;
|
31
|
+
double higherPolyMultZl, zSquareHalfh, zSquareHalfm, zSquareHalfl, polyWithSquareh, polyWithSquarem, polyWithSquarel;
|
32
|
+
double polyh, polym, polyl, logil, logyh, logym, logyl, loghover, logmover, loglover, log2edhover, log2edmover, log2edlover;
|
33
|
+
double log2edh, log2edm, log2edl;
|
34
|
+
|
35
|
+
|
36
|
+
#if EVAL_PERF
|
37
|
+
crlibm_second_step_taken++;
|
38
|
+
#endif
|
39
|
+
|
40
|
+
|
41
|
+
/* Accurate phase:
|
42
|
+
|
43
|
+
Argument reduction is already done.
|
44
|
+
We must return logh, logm and logl representing the intermediate result in 118 bits precision.
|
45
|
+
|
46
|
+
We use a 14 degree polynomial, computing the first 3 (the first is 0) coefficients in triple double,
|
47
|
+
calculating the next 7 coefficients in double double arithmetics and the last in double.
|
48
|
+
|
49
|
+
We must account for zl starting with the monome of degree 4 (7^3 + 53 - 7 >> 118); so
|
50
|
+
double double calculations won't account for it.
|
51
|
+
|
52
|
+
*/
|
53
|
+
|
54
|
+
/* Start of the horner scheme */
|
55
|
+
|
56
|
+
#if defined(PROCESSOR_HAS_FMA) && !defined(AVOID_FMA)
|
57
|
+
highPoly = FMA(FMA(FMA(FMA(accPolyC14,zh,accPolyC13),zh,accPolyC12),zh,accPolyC11),zh,accPolyC10);
|
58
|
+
#else
|
59
|
+
highPoly = accPolyC10 + zh * (accPolyC11 + zh * (accPolyC12 + zh * (accPolyC13 + zh * accPolyC14)));
|
60
|
+
#endif
|
61
|
+
|
62
|
+
/* We want to write
|
63
|
+
|
64
|
+
accPolyC3 + zh * (accPoly4 + zh * (accPoly5 + zh * (accPoly6 + zh * (accPoly7 + zh * (accPoly8 + zh * (accPoly9 + zh * highPoly))))));
|
65
|
+
( t14 t13 t12 t11 t10 t9 t8 t7 t6 t5 t4 t3 t2 t1 )
|
66
|
+
|
67
|
+
with all additions and multiplications in double double arithmetics
|
68
|
+
but we will produce intermediate results labelled t1h/t1l thru t14h/t14l
|
69
|
+
*/
|
70
|
+
|
71
|
+
Mul12(&t1h, &t1l, zh, highPoly);
|
72
|
+
Add22(&t2h, &t2l, accPolyC9h, accPolyC9l, t1h, t1l);
|
73
|
+
Mul22(&t3h, &t3l, zh, zl, t2h, t2l);
|
74
|
+
Add22(&t4h, &t4l, accPolyC8h, accPolyC8l, t3h, t3l);
|
75
|
+
Mul22(&t5h, &t5l, zh, zl, t4h, t4l);
|
76
|
+
Add22(&t6h, &t6l, accPolyC7h, accPolyC7l, t5h, t5l);
|
77
|
+
Mul22(&t7h, &t7l, zh, zl, t6h, t6l);
|
78
|
+
Add22(&t8h, &t8l, accPolyC6h, accPolyC6l, t7h, t7l);
|
79
|
+
Mul22(&t9h, &t9l, zh, zl, t8h, t8l);
|
80
|
+
Add22(&t10h, &t10l, accPolyC5h, accPolyC5l, t9h, t9l);
|
81
|
+
Mul22(&t11h, &t11l, zh, zl, t10h, t10l);
|
82
|
+
Add22(&t12h, &t12l, accPolyC4h, accPolyC4l, t11h, t11l);
|
83
|
+
Mul22(&t13h, &t13l, zh, zl, t12h, t12l);
|
84
|
+
Add22(&t14h, &t14l, accPolyC3h, accPolyC3l, t13h, t13l);
|
85
|
+
|
86
|
+
/* We must now prepare (zh + zl)^2 and (zh + zl)^3 as triple doubles */
|
87
|
+
|
88
|
+
Mul23(&zSquareh, &zSquarem, &zSquarel, zh, zl, zh, zl);
|
89
|
+
Mul233(&zCubeh, &zCubem, &zCubel, zh, zl, zSquareh, zSquarem, zSquarel);
|
90
|
+
|
91
|
+
/* We can now multiplicate the middle and higher polynomial by z^3 */
|
92
|
+
|
93
|
+
Mul233(&higherPolyMultZh, &higherPolyMultZm, &higherPolyMultZl, t14h, t14l, zCubeh, zCubem, zCubel);
|
94
|
+
|
95
|
+
/* Multiply now z^2 by -1/2 (exact op) and add to middle and higher polynomial */
|
96
|
+
|
97
|
+
zSquareHalfh = zSquareh * -0.5;
|
98
|
+
zSquareHalfm = zSquarem * -0.5;
|
99
|
+
zSquareHalfl = zSquarel * -0.5;
|
100
|
+
|
101
|
+
Add33(&polyWithSquareh, &polyWithSquarem, &polyWithSquarel,
|
102
|
+
zSquareHalfh, zSquareHalfm, zSquareHalfl,
|
103
|
+
higherPolyMultZh, higherPolyMultZm, higherPolyMultZl);
|
104
|
+
|
105
|
+
/* Add now zh and zl to obtain the polynomial evaluation result */
|
106
|
+
|
107
|
+
Add233(&polyh, &polym, &polyl, zh, zl, polyWithSquareh, polyWithSquarem, polyWithSquarel);
|
108
|
+
|
109
|
+
/* Reconstruct now log(y) = log(1 + z) - log(ri) by adding logih, logim, logil
|
110
|
+
logil has not been read to the time, do this first
|
111
|
+
*/
|
112
|
+
|
113
|
+
logil = argredtable[index].logil;
|
114
|
+
|
115
|
+
Add33(&logyh, &logym, &logyl, logih, logim, logil, polyh, polym, polyl);
|
116
|
+
|
117
|
+
/* Multiply log2 with E, i.e. log2h, log2m, log2l by ed
|
118
|
+
ed is always less than 2^(12) and log2h and log2m are stored with at least 12 trailing zeros
|
119
|
+
So multiplying naively is correct (up to 134 bits at least)
|
120
|
+
|
121
|
+
The final result is thus obtained by adding log2 * E to log(y)
|
122
|
+
*/
|
123
|
+
|
124
|
+
log2edhover = log2h * ed;
|
125
|
+
log2edmover = log2m * ed;
|
126
|
+
log2edlover = log2l * ed;
|
127
|
+
|
128
|
+
/* It may be necessary to renormalize the tabulated value (multiplied by ed) before adding
|
129
|
+
the to the log(y)-result
|
130
|
+
|
131
|
+
If needed, uncomment the following Renormalize3-Statement and comment out the copies
|
132
|
+
following it.
|
133
|
+
*/
|
134
|
+
|
135
|
+
/* Renormalize3(&log2edh, &log2edm, &log2edl, log2edhover, log2edmover, log2edlover); */
|
136
|
+
|
137
|
+
log2edh = log2edhover;
|
138
|
+
log2edm = log2edmover;
|
139
|
+
log2edl = log2edlover;
|
140
|
+
|
141
|
+
Add33(&loghover, &logmover, &loglover, log2edh, log2edm, log2edl, logyh, logym, logyl);
|
142
|
+
|
143
|
+
/* Since we can not guarantee in each addition and multiplication procedure that
|
144
|
+
the results are not overlapping, we must renormalize the result before handing
|
145
|
+
it over to the final rounding
|
146
|
+
*/
|
147
|
+
|
148
|
+
Renormalize3(logh,logm,logl,loghover,logmover,loglover);
|
149
|
+
|
150
|
+
}
|
151
|
+
|
152
|
+
|
153
|
+
|
154
|
+
/*************************************************************
|
155
|
+
*************************************************************
|
156
|
+
* ROUNDED TO NEAREST *
|
157
|
+
*************************************************************
|
158
|
+
*************************************************************/
|
159
|
+
double log_rn(double x){
|
160
|
+
db_number xdb;
|
161
|
+
double y, ed, ri, logih, logim, yrih, yril, th, zh, zl;
|
162
|
+
double polyHorner, zhSquareh, zhSquarel, polyUpper, zhSquareHalfh, zhSquareHalfl;
|
163
|
+
double t1h, t1l, t2h, t2l, ph, pl, log2edh, log2edl, logTabPolyh, logTabPolyl, logh, logm, logl, roundcst;
|
164
|
+
int E, index;
|
165
|
+
|
166
|
+
E=0;
|
167
|
+
xdb.d=x;
|
168
|
+
|
169
|
+
/* Filter cases */
|
170
|
+
if (xdb.i[HI] < 0x00100000){ /* x < 2^(-1022) */
|
171
|
+
if (((xdb.i[HI] & 0x7fffffff)|xdb.i[LO])==0){
|
172
|
+
return -1.0/0.0;
|
173
|
+
} /* log(+/-0) = -Inf */
|
174
|
+
if (xdb.i[HI] < 0){
|
175
|
+
return (x-x)/0; /* log(-x) = Nan */
|
176
|
+
}
|
177
|
+
/* Subnormal number */
|
178
|
+
E = -52;
|
179
|
+
xdb.d *= two52; /* make x a normal number */
|
180
|
+
}
|
181
|
+
|
182
|
+
if (xdb.i[HI] >= 0x7ff00000){
|
183
|
+
return x+x; /* Inf or Nan */
|
184
|
+
}
|
185
|
+
|
186
|
+
|
187
|
+
/* Extract exponent and mantissa
|
188
|
+
Do range reduction,
|
189
|
+
yielding to E holding the exponent and
|
190
|
+
y the mantissa between sqrt(2)/2 and sqrt(2)
|
191
|
+
*/
|
192
|
+
E += (xdb.i[HI]>>20)-1023; /* extract the exponent */
|
193
|
+
index = (xdb.i[HI] & 0x000fffff);
|
194
|
+
xdb.i[HI] = index | 0x3ff00000; /* do exponent = 0 */
|
195
|
+
index = (index + (1<<(20-L-1))) >> (20-L);
|
196
|
+
|
197
|
+
/* reduce such that sqrt(2)/2 < xdb.d < sqrt(2) */
|
198
|
+
if (index >= MAXINDEX){ /* corresponds to xdb>sqrt(2)*/
|
199
|
+
xdb.i[HI] -= 0x00100000;
|
200
|
+
E++;
|
201
|
+
}
|
202
|
+
y = xdb.d;
|
203
|
+
index = index & INDEXMASK;
|
204
|
+
/* Cast integer E into double ed for multiplication later */
|
205
|
+
ed = (double) E;
|
206
|
+
|
207
|
+
/*
|
208
|
+
Read tables:
|
209
|
+
Read one float for ri
|
210
|
+
Read the first two doubles for -log(r_i) (out of three)
|
211
|
+
|
212
|
+
Organization of the table:
|
213
|
+
|
214
|
+
one struct entry per index, the struct entry containing
|
215
|
+
r, logih, logim and logil in this order
|
216
|
+
*/
|
217
|
+
|
218
|
+
|
219
|
+
ri = argredtable[index].ri;
|
220
|
+
/*
|
221
|
+
Actually we don't need the logarithm entries now
|
222
|
+
Move the following two lines to the eventual reconstruction
|
223
|
+
As long as we don't have any if in the following code, we can overlap
|
224
|
+
memory access with calculations
|
225
|
+
*/
|
226
|
+
logih = argredtable[index].logih;
|
227
|
+
logim = argredtable[index].logim;
|
228
|
+
|
229
|
+
/* Do range reduction:
|
230
|
+
|
231
|
+
zh + zl = y * ri - 1.0 correctly
|
232
|
+
|
233
|
+
Correctness is assured by use of Mul12 and Add12
|
234
|
+
even if we don't force ri to have its' LSBs set to zero
|
235
|
+
|
236
|
+
Discard zl for higher monome degrees
|
237
|
+
*/
|
238
|
+
|
239
|
+
Mul12(&yrih, &yril, y, ri);
|
240
|
+
th = yrih - 1.0;
|
241
|
+
Add12Cond(zh, zl, th, yril);
|
242
|
+
|
243
|
+
/*
|
244
|
+
Polynomial evaluation
|
245
|
+
|
246
|
+
Use a 7 degree polynomial
|
247
|
+
Evaluate the higher 5 terms in double precision (-7 * 3 = -21) using Horner's scheme
|
248
|
+
Evaluate the lower 3 terms (the last is 0) in double double precision accounting also for zl
|
249
|
+
using an ad hoc method
|
250
|
+
|
251
|
+
*/
|
252
|
+
|
253
|
+
|
254
|
+
|
255
|
+
#if defined(PROCESSOR_HAS_FMA) && !defined(AVOID_FMA)
|
256
|
+
polyHorner = FMA(FMA(FMA(FMA(c7,zh,c6),zh,c5),zh,c4),zh,c3);
|
257
|
+
#else
|
258
|
+
polyHorner = c3 + zh * (c4 + zh * (c5 + zh * (c6 + zh * c7)));
|
259
|
+
#endif
|
260
|
+
|
261
|
+
Mul12(&zhSquareh, &zhSquarel, zh, zh);
|
262
|
+
polyUpper = polyHorner * (zh * zhSquareh);
|
263
|
+
zhSquareHalfh = zhSquareh * -0.5;
|
264
|
+
zhSquareHalfl = zhSquarel * -0.5;
|
265
|
+
Add12(t1h, t1l, polyUpper, -1 * (zh * zl));
|
266
|
+
Add22(&t2h, &t2l, zh, zl, zhSquareHalfh, zhSquareHalfl);
|
267
|
+
Add22(&ph, &pl, t2h, t2l, t1h, t1l);
|
268
|
+
|
269
|
+
/* Reconstruction
|
270
|
+
|
271
|
+
Read logih and logim in the tables (already done)
|
272
|
+
|
273
|
+
Compute log(x) = E * log(2) + log(1+z) - log(ri)
|
274
|
+
i.e. log(x) = ed * (log2h + log2m) + (ph + pl) + (logih + logim) + delta
|
275
|
+
|
276
|
+
Carry out everything in double double precision
|
277
|
+
|
278
|
+
*/
|
279
|
+
|
280
|
+
/*
|
281
|
+
We store log2 as log2h + log2m + log2l where log2h and log2m have 12 trailing zeros
|
282
|
+
Multiplication of ed (double E) and log2h is thus correct
|
283
|
+
The overall accuracy of log2h + log2m + log2l is 53 * 3 - 24 = 135 which
|
284
|
+
is enough for the accurate phase
|
285
|
+
The accuracy suffices also for the quick phase: 53 * 2 - 24 = 82
|
286
|
+
Nevertheless the storage with trailing zeros implies an overlap of the tabulated
|
287
|
+
triple double values. We have to take it into account for the accurate phase
|
288
|
+
basic procedures for addition and multiplication
|
289
|
+
The condition on the next Add12 is verified as log2m is smaller than log2h
|
290
|
+
and both are scaled by ed
|
291
|
+
*/
|
292
|
+
|
293
|
+
Add12(log2edh, log2edl, log2h * ed, log2m * ed);
|
294
|
+
|
295
|
+
/* Add logih and logim to ph and pl
|
296
|
+
|
297
|
+
We must use conditioned Add22 as logih can move over ph
|
298
|
+
*/
|
299
|
+
|
300
|
+
Add22Cond(&logTabPolyh, &logTabPolyl, logih, logim, ph, pl);
|
301
|
+
|
302
|
+
/* Add log2edh + log2edl to logTabPolyh + logTabPolyl */
|
303
|
+
|
304
|
+
Add22Cond(&logh, &logm, log2edh, log2edl, logTabPolyh, logTabPolyl);
|
305
|
+
|
306
|
+
/* Rounding test and eventual return or call to the accurate function */
|
307
|
+
|
308
|
+
if(E==0)
|
309
|
+
roundcst = ROUNDCST1;
|
310
|
+
else
|
311
|
+
roundcst = ROUNDCST2;
|
312
|
+
|
313
|
+
|
314
|
+
if(logh == (logh + (logm * roundcst)))
|
315
|
+
return logh;
|
316
|
+
else
|
317
|
+
{
|
318
|
+
|
319
|
+
#if DEBUG
|
320
|
+
printf("Going for Accurate Phase for x=%1.50e\n",x);
|
321
|
+
#endif
|
322
|
+
|
323
|
+
log_td_accurate(&logh, &logm, &logl, E, ed, index, zh, zl, logih, logim);
|
324
|
+
|
325
|
+
ReturnRoundToNearest3(logh, logm, logl);
|
326
|
+
|
327
|
+
} /* Accurate phase launched */
|
328
|
+
}
|
329
|
+
|
330
|
+
|
331
|
+
/*************************************************************
|
332
|
+
*************************************************************
|
333
|
+
* ROUNDED UPWARDS *
|
334
|
+
*************************************************************
|
335
|
+
*************************************************************/
|
336
|
+
double log_ru(double x) {
|
337
|
+
db_number xdb;
|
338
|
+
double y, ed, ri, logih, logim, yrih, yril, th, zh, zl;
|
339
|
+
double polyHorner, zhSquareh, zhSquarel, polyUpper, zhSquareHalfh, zhSquareHalfl;
|
340
|
+
double t1h, t1l, t2h, t2l, ph, pl, log2edh, log2edl, logTabPolyh, logTabPolyl, logh, logm, logl, roundcst;
|
341
|
+
int E, index;
|
342
|
+
|
343
|
+
if (x == 1.0) return 0.0; /* This the only case in which the image under log of a double is a double. */
|
344
|
+
|
345
|
+
E=0;
|
346
|
+
xdb.d=x;
|
347
|
+
|
348
|
+
/* Filter cases */
|
349
|
+
if (xdb.i[HI] < 0x00100000){ /* x < 2^(-1022) */
|
350
|
+
if (((xdb.i[HI] & 0x7fffffff)|xdb.i[LO])==0){
|
351
|
+
return -1.0/0.0;
|
352
|
+
} /* log(+/-0) = -Inf */
|
353
|
+
if (xdb.i[HI] < 0){
|
354
|
+
return (x-x)/0; /* log(-x) = Nan */
|
355
|
+
}
|
356
|
+
/* Subnormal number */
|
357
|
+
E = -52;
|
358
|
+
xdb.d *= two52; /* make x a normal number */
|
359
|
+
}
|
360
|
+
|
361
|
+
if (xdb.i[HI] >= 0x7ff00000){
|
362
|
+
return x+x; /* Inf or Nan */
|
363
|
+
}
|
364
|
+
|
365
|
+
|
366
|
+
/* Extract exponent and mantissa
|
367
|
+
Do range reduction,
|
368
|
+
yielding to E holding the exponent and
|
369
|
+
y the mantissa between sqrt(2)/2 and sqrt(2)
|
370
|
+
*/
|
371
|
+
E += (xdb.i[HI]>>20)-1023; /* extract the exponent */
|
372
|
+
index = (xdb.i[HI] & 0x000fffff);
|
373
|
+
xdb.i[HI] = index | 0x3ff00000; /* do exponent = 0 */
|
374
|
+
index = (index + (1<<(20-L-1))) >> (20-L);
|
375
|
+
|
376
|
+
/* reduce such that sqrt(2)/2 < xdb.d < sqrt(2) */
|
377
|
+
if (index >= MAXINDEX){ /* corresponds to xdb>sqrt(2)*/
|
378
|
+
xdb.i[HI] -= 0x00100000;
|
379
|
+
E++;
|
380
|
+
}
|
381
|
+
y = xdb.d;
|
382
|
+
index = index & INDEXMASK;
|
383
|
+
/* Cast integer E into double ed for multiplication later */
|
384
|
+
ed = (double) E;
|
385
|
+
|
386
|
+
/*
|
387
|
+
Read tables:
|
388
|
+
Read one float for ri
|
389
|
+
Read the first two doubles for -log(r_i) (out of three)
|
390
|
+
|
391
|
+
Organization of the table:
|
392
|
+
|
393
|
+
one struct entry per index, the struct entry containing
|
394
|
+
r, logih, logim and logil in this order
|
395
|
+
*/
|
396
|
+
|
397
|
+
|
398
|
+
ri = argredtable[index].ri;
|
399
|
+
/*
|
400
|
+
Actually we don't need the logarithm entries now
|
401
|
+
Move the following two lines to the eventual reconstruction
|
402
|
+
As long as we don't have any if in the following code, we can overlap
|
403
|
+
memory access with calculations
|
404
|
+
*/
|
405
|
+
logih = argredtable[index].logih;
|
406
|
+
logim = argredtable[index].logim;
|
407
|
+
|
408
|
+
/* Do range reduction:
|
409
|
+
|
410
|
+
zh + zl = y * ri - 1.0 correctly
|
411
|
+
|
412
|
+
Correctness is assured by use of Mul12 and Add12
|
413
|
+
even if we don't force ri to have its' LSBs set to zero
|
414
|
+
|
415
|
+
Discard zl for higher monome degrees
|
416
|
+
*/
|
417
|
+
|
418
|
+
Mul12(&yrih, &yril, y, ri);
|
419
|
+
th = yrih - 1.0;
|
420
|
+
Add12Cond(zh, zl, th, yril);
|
421
|
+
|
422
|
+
/*
|
423
|
+
Polynomial evaluation
|
424
|
+
|
425
|
+
Use a 7 degree polynomial
|
426
|
+
Evaluate the higher 5 terms in double precision (-7 * 3 = -21) using Horner's scheme
|
427
|
+
Evaluate the lower 3 terms (the last is 0) in double double precision accounting also for zl
|
428
|
+
using an ad hoc method
|
429
|
+
|
430
|
+
*/
|
431
|
+
|
432
|
+
|
433
|
+
|
434
|
+
#if defined(PROCESSOR_HAS_FMA) && !defined(AVOID_FMA)
|
435
|
+
polyHorner = FMA(FMA(FMA(FMA(c7,zh,c6),zh,c5),zh,c4),zh,c3);
|
436
|
+
#else
|
437
|
+
polyHorner = c3 + zh * (c4 + zh * (c5 + zh * (c6 + zh * c7)));
|
438
|
+
#endif
|
439
|
+
|
440
|
+
Mul12(&zhSquareh, &zhSquarel, zh, zh);
|
441
|
+
polyUpper = polyHorner * (zh * zhSquareh);
|
442
|
+
zhSquareHalfh = zhSquareh * -0.5;
|
443
|
+
zhSquareHalfl = zhSquarel * -0.5;
|
444
|
+
Add12(t1h, t1l, polyUpper, -1 * (zh * zl));
|
445
|
+
Add22(&t2h, &t2l, zh, zl, zhSquareHalfh, zhSquareHalfl);
|
446
|
+
Add22(&ph, &pl, t2h, t2l, t1h, t1l);
|
447
|
+
|
448
|
+
/* Reconstruction
|
449
|
+
|
450
|
+
Read logih and logim in the tables (already done)
|
451
|
+
|
452
|
+
Compute log(x) = E * log(2) + log(1+z) - log(ri)
|
453
|
+
i.e. log(x) = ed * (log2h + log2m) + (ph + pl) + (logih + logim) + delta
|
454
|
+
|
455
|
+
Carry out everything in double double precision
|
456
|
+
|
457
|
+
*/
|
458
|
+
|
459
|
+
/*
|
460
|
+
We store log2 as log2h + log2m + log2l where log2h and log2m have 12 trailing zeros
|
461
|
+
Multiplication of ed (double E) and log2h is thus correct
|
462
|
+
The overall accuracy of log2h + log2m + log2l is 53 * 3 - 24 = 135 which
|
463
|
+
is enough for the accurate phase
|
464
|
+
The accuracy suffices also for the quick phase: 53 * 2 - 24 = 82
|
465
|
+
Nevertheless the storage with trailing zeros implies an overlap of the tabulated
|
466
|
+
triple double values. We have to take it into account for the accurate phase
|
467
|
+
basic procedures for addition and multiplication
|
468
|
+
The condition on the next Add12 is verified as log2m is smaller than log2h
|
469
|
+
and both are scaled by ed
|
470
|
+
*/
|
471
|
+
|
472
|
+
Add12(log2edh, log2edl, log2h * ed, log2m * ed);
|
473
|
+
|
474
|
+
/* Add logih and logim to ph and pl
|
475
|
+
|
476
|
+
We must use conditioned Add22 as logih can move over ph
|
477
|
+
*/
|
478
|
+
|
479
|
+
Add22Cond(&logTabPolyh, &logTabPolyl, logih, logim, ph, pl);
|
480
|
+
|
481
|
+
/* Add log2edh + log2edl to logTabPolyh + logTabPolyl */
|
482
|
+
|
483
|
+
Add22Cond(&logh, &logm, log2edh, log2edl, logTabPolyh, logTabPolyl);
|
484
|
+
|
485
|
+
/* Rounding test and eventual return or call to the accurate function */
|
486
|
+
|
487
|
+
if(E==0)
|
488
|
+
roundcst = RDROUNDCST1;
|
489
|
+
else
|
490
|
+
roundcst = RDROUNDCST2;
|
491
|
+
|
492
|
+
TEST_AND_RETURN_RU(logh, logm, roundcst);
|
493
|
+
|
494
|
+
#if DEBUG
|
495
|
+
printf("Going for Accurate Phase for x=%1.50e\n",x);
|
496
|
+
#endif
|
497
|
+
|
498
|
+
log_td_accurate(&logh, &logm, &logl, E, ed, index, zh, zl, logih, logim);
|
499
|
+
|
500
|
+
ReturnRoundUpwards3(logh, logm, logl);
|
501
|
+
|
502
|
+
}
|
503
|
+
|
504
|
+
|
505
|
+
/*************************************************************
|
506
|
+
*************************************************************
|
507
|
+
* ROUNDED DOWNWARDS *
|
508
|
+
*************************************************************
|
509
|
+
*************************************************************/
|
510
|
+
double log_rd(double x) {
|
511
|
+
db_number xdb;
|
512
|
+
double y, ed, ri, logih, logim, yrih, yril, th, zh, zl;
|
513
|
+
double polyHorner, zhSquareh, zhSquarel, polyUpper, zhSquareHalfh, zhSquareHalfl;
|
514
|
+
double t1h, t1l, t2h, t2l, ph, pl, log2edh, log2edl, logTabPolyh, logTabPolyl, logh, logm, logl, roundcst;
|
515
|
+
int E, index;
|
516
|
+
|
517
|
+
if (x == 1.0) return 0.0; /* This the only case in which the image under log of a double is a double. */
|
518
|
+
|
519
|
+
E=0;
|
520
|
+
xdb.d=x;
|
521
|
+
|
522
|
+
/* Filter cases */
|
523
|
+
if (xdb.i[HI] < 0x00100000){ /* x < 2^(-1022) */
|
524
|
+
if (((xdb.i[HI] & 0x7fffffff)|xdb.i[LO])==0){
|
525
|
+
return -1.0/0.0;
|
526
|
+
} /* log(+/-0) = -Inf */
|
527
|
+
if (xdb.i[HI] < 0){
|
528
|
+
return (x-x)/0; /* log(-x) = Nan */
|
529
|
+
}
|
530
|
+
/* Subnormal number */
|
531
|
+
E = -52;
|
532
|
+
xdb.d *= two52; /* make x a normal number */
|
533
|
+
}
|
534
|
+
|
535
|
+
if (xdb.i[HI] >= 0x7ff00000){
|
536
|
+
return x+x; /* Inf or Nan */
|
537
|
+
}
|
538
|
+
|
539
|
+
|
540
|
+
/* Extract exponent and mantissa
|
541
|
+
Do range reduction,
|
542
|
+
yielding to E holding the exponent and
|
543
|
+
y the mantissa between sqrt(2)/2 and sqrt(2)
|
544
|
+
*/
|
545
|
+
E += (xdb.i[HI]>>20)-1023; /* extract the exponent */
|
546
|
+
index = (xdb.i[HI] & 0x000fffff);
|
547
|
+
xdb.i[HI] = index | 0x3ff00000; /* do exponent = 0 */
|
548
|
+
index = (index + (1<<(20-L-1))) >> (20-L);
|
549
|
+
|
550
|
+
/* reduce such that sqrt(2)/2 < xdb.d < sqrt(2) */
|
551
|
+
if (index >= MAXINDEX){ /* corresponds to xdb>sqrt(2)*/
|
552
|
+
xdb.i[HI] -= 0x00100000;
|
553
|
+
E++;
|
554
|
+
}
|
555
|
+
y = xdb.d;
|
556
|
+
index = index & INDEXMASK;
|
557
|
+
/* Cast integer E into double ed for multiplication later */
|
558
|
+
ed = (double) E;
|
559
|
+
|
560
|
+
/*
|
561
|
+
Read tables:
|
562
|
+
Read one float for ri
|
563
|
+
Read the first two doubles for -log(r_i) (out of three)
|
564
|
+
|
565
|
+
Organization of the table:
|
566
|
+
|
567
|
+
one struct entry per index, the struct entry containing
|
568
|
+
r, logih, logim and logil in this order
|
569
|
+
*/
|
570
|
+
|
571
|
+
|
572
|
+
ri = argredtable[index].ri;
|
573
|
+
/*
|
574
|
+
Actually we don't need the logarithm entries now
|
575
|
+
Move the following two lines to the eventual reconstruction
|
576
|
+
As long as we don't have any if in the following code, we can overlap
|
577
|
+
memory access with calculations
|
578
|
+
*/
|
579
|
+
logih = argredtable[index].logih;
|
580
|
+
logim = argredtable[index].logim;
|
581
|
+
|
582
|
+
/* Do range reduction:
|
583
|
+
|
584
|
+
zh + zl = y * ri - 1.0 correctly
|
585
|
+
|
586
|
+
Correctness is assured by use of Mul12 and Add12
|
587
|
+
even if we don't force ri to have its' LSBs set to zero
|
588
|
+
|
589
|
+
Discard zl for higher monome degrees
|
590
|
+
*/
|
591
|
+
|
592
|
+
Mul12(&yrih, &yril, y, ri);
|
593
|
+
th = yrih - 1.0;
|
594
|
+
Add12Cond(zh, zl, th, yril);
|
595
|
+
|
596
|
+
/*
|
597
|
+
Polynomial evaluation
|
598
|
+
|
599
|
+
Use a 7 degree polynomial
|
600
|
+
Evaluate the higher 5 terms in double precision (-7 * 3 = -21) using Horner's scheme
|
601
|
+
Evaluate the lower 3 terms (the last is 0) in double double precision accounting also for zl
|
602
|
+
using an ad hoc method
|
603
|
+
|
604
|
+
*/
|
605
|
+
|
606
|
+
|
607
|
+
|
608
|
+
#if defined(PROCESSOR_HAS_FMA) && !defined(AVOID_FMA)
|
609
|
+
polyHorner = FMA(FMA(FMA(FMA(c7,zh,c6),zh,c5),zh,c4),zh,c3);
|
610
|
+
#else
|
611
|
+
polyHorner = c3 + zh * (c4 + zh * (c5 + zh * (c6 + zh * c7)));
|
612
|
+
#endif
|
613
|
+
|
614
|
+
Mul12(&zhSquareh, &zhSquarel, zh, zh);
|
615
|
+
polyUpper = polyHorner * (zh * zhSquareh);
|
616
|
+
zhSquareHalfh = zhSquareh * -0.5;
|
617
|
+
zhSquareHalfl = zhSquarel * -0.5;
|
618
|
+
Add12(t1h, t1l, polyUpper, -1 * (zh * zl));
|
619
|
+
Add22(&t2h, &t2l, zh, zl, zhSquareHalfh, zhSquareHalfl);
|
620
|
+
Add22(&ph, &pl, t2h, t2l, t1h, t1l);
|
621
|
+
|
622
|
+
/* Reconstruction
|
623
|
+
|
624
|
+
Read logih and logim in the tables (already done)
|
625
|
+
|
626
|
+
Compute log(x) = E * log(2) + log(1+z) - log(ri)
|
627
|
+
i.e. log(x) = ed * (log2h + log2m) + (ph + pl) + (logih + logim) + delta
|
628
|
+
|
629
|
+
Carry out everything in double double precision
|
630
|
+
|
631
|
+
*/
|
632
|
+
|
633
|
+
/*
|
634
|
+
We store log2 as log2h + log2m + log2l where log2h and log2m have 12 trailing zeros
|
635
|
+
Multiplication of ed (double E) and log2h is thus correct
|
636
|
+
The overall accuracy of log2h + log2m + log2l is 53 * 3 - 24 = 135 which
|
637
|
+
is enough for the accurate phase
|
638
|
+
The accuracy suffices also for the quick phase: 53 * 2 - 24 = 82
|
639
|
+
Nevertheless the storage with trailing zeros implies an overlap of the tabulated
|
640
|
+
triple double values. We have to take it into account for the accurate phase
|
641
|
+
basic procedures for addition and multiplication
|
642
|
+
The condition on the next Add12 is verified as log2m is smaller than log2h
|
643
|
+
and both are scaled by ed
|
644
|
+
*/
|
645
|
+
|
646
|
+
Add12(log2edh, log2edl, log2h * ed, log2m * ed);
|
647
|
+
|
648
|
+
/* Add logih and logim to ph and pl
|
649
|
+
|
650
|
+
We must use conditioned Add22 as logih can move over ph
|
651
|
+
*/
|
652
|
+
|
653
|
+
Add22Cond(&logTabPolyh, &logTabPolyl, logih, logim, ph, pl);
|
654
|
+
|
655
|
+
/* Add log2edh + log2edl to logTabPolyh + logTabPolyl */
|
656
|
+
|
657
|
+
Add22Cond(&logh, &logm, log2edh, log2edl, logTabPolyh, logTabPolyl);
|
658
|
+
|
659
|
+
/* Rounding test and eventual return or call to the accurate function */
|
660
|
+
|
661
|
+
if(E==0)
|
662
|
+
roundcst = RDROUNDCST1;
|
663
|
+
else
|
664
|
+
roundcst = RDROUNDCST2;
|
665
|
+
|
666
|
+
TEST_AND_RETURN_RD(logh, logm, roundcst);
|
667
|
+
|
668
|
+
#if DEBUG
|
669
|
+
printf("Going for Accurate Phase for x=%1.50e\n",x);
|
670
|
+
#endif
|
671
|
+
|
672
|
+
log_td_accurate(&logh, &logm, &logl, E, ed, index, zh, zl, logih, logim);
|
673
|
+
|
674
|
+
ReturnRoundDownwards3(logh, logm, logl);
|
675
|
+
}
|
676
|
+
|
677
|
+
/*************************************************************
|
678
|
+
*************************************************************
|
679
|
+
* ROUNDED TOWARDS ZERO *
|
680
|
+
*************************************************************
|
681
|
+
*************************************************************/
|
682
|
+
double log_rz(double x) {
|
683
|
+
db_number xdb;
|
684
|
+
double y, ed, ri, logih, logim, yrih, yril, th, zh, zl;
|
685
|
+
double polyHorner, zhSquareh, zhSquarel, polyUpper, zhSquareHalfh, zhSquareHalfl;
|
686
|
+
double t1h, t1l, t2h, t2l, ph, pl, log2edh, log2edl, logTabPolyh, logTabPolyl, logh, logm, logl, roundcst;
|
687
|
+
int E, index;
|
688
|
+
|
689
|
+
if (x == 1.0) return 0.0; /* This the only case in which the image under log of a double is a double. */
|
690
|
+
|
691
|
+
E=0;
|
692
|
+
xdb.d=x;
|
693
|
+
|
694
|
+
/* Filter cases */
|
695
|
+
if (xdb.i[HI] < 0x00100000){ /* x < 2^(-1022) */
|
696
|
+
if (((xdb.i[HI] & 0x7fffffff)|xdb.i[LO])==0){
|
697
|
+
return -1.0/0.0;
|
698
|
+
} /* log(+/-0) = -Inf */
|
699
|
+
if (xdb.i[HI] < 0){
|
700
|
+
return (x-x)/0; /* log(-x) = Nan */
|
701
|
+
}
|
702
|
+
/* Subnormal number */
|
703
|
+
E = -52;
|
704
|
+
xdb.d *= two52; /* make x a normal number */
|
705
|
+
}
|
706
|
+
|
707
|
+
if (xdb.i[HI] >= 0x7ff00000){
|
708
|
+
return x+x; /* Inf or Nan */
|
709
|
+
}
|
710
|
+
|
711
|
+
|
712
|
+
/* Extract exponent and mantissa
|
713
|
+
Do range reduction,
|
714
|
+
yielding to E holding the exponent and
|
715
|
+
y the mantissa between sqrt(2)/2 and sqrt(2)
|
716
|
+
*/
|
717
|
+
E += (xdb.i[HI]>>20)-1023; /* extract the exponent */
|
718
|
+
index = (xdb.i[HI] & 0x000fffff);
|
719
|
+
xdb.i[HI] = index | 0x3ff00000; /* do exponent = 0 */
|
720
|
+
index = (index + (1<<(20-L-1))) >> (20-L);
|
721
|
+
|
722
|
+
/* reduce such that sqrt(2)/2 < xdb.d < sqrt(2) */
|
723
|
+
if (index >= MAXINDEX){ /* corresponds to xdb>sqrt(2)*/
|
724
|
+
xdb.i[HI] -= 0x00100000;
|
725
|
+
E++;
|
726
|
+
}
|
727
|
+
y = xdb.d;
|
728
|
+
index = index & INDEXMASK;
|
729
|
+
/* Cast integer E into double ed for multiplication later */
|
730
|
+
ed = (double) E;
|
731
|
+
|
732
|
+
/*
|
733
|
+
Read tables:
|
734
|
+
Read one float for ri
|
735
|
+
Read the first two doubles for -log(r_i) (out of three)
|
736
|
+
|
737
|
+
Organization of the table:
|
738
|
+
|
739
|
+
one struct entry per index, the struct entry containing
|
740
|
+
r, logih, logim and logil in this order
|
741
|
+
*/
|
742
|
+
|
743
|
+
|
744
|
+
ri = argredtable[index].ri;
|
745
|
+
/*
|
746
|
+
Actually we don't need the logarithm entries now
|
747
|
+
Move the following two lines to the eventual reconstruction
|
748
|
+
As long as we don't have any if in the following code, we can overlap
|
749
|
+
memory access with calculations
|
750
|
+
*/
|
751
|
+
logih = argredtable[index].logih;
|
752
|
+
logim = argredtable[index].logim;
|
753
|
+
|
754
|
+
/* Do range reduction:
|
755
|
+
|
756
|
+
zh + zl = y * ri - 1.0 correctly
|
757
|
+
|
758
|
+
Correctness is assured by use of Mul12 and Add12
|
759
|
+
even if we don't force ri to have its' LSBs set to zero
|
760
|
+
|
761
|
+
Discard zl for higher monome degrees
|
762
|
+
*/
|
763
|
+
|
764
|
+
Mul12(&yrih, &yril, y, ri);
|
765
|
+
th = yrih - 1.0;
|
766
|
+
Add12Cond(zh, zl, th, yril);
|
767
|
+
|
768
|
+
/*
|
769
|
+
Polynomial evaluation
|
770
|
+
|
771
|
+
Use a 7 degree polynomial
|
772
|
+
Evaluate the higher 5 terms in double precision (-7 * 3 = -21) using Horner's scheme
|
773
|
+
Evaluate the lower 3 terms (the last is 0) in double double precision accounting also for zl
|
774
|
+
using an ad hoc method
|
775
|
+
|
776
|
+
*/
|
777
|
+
|
778
|
+
|
779
|
+
|
780
|
+
#if defined(PROCESSOR_HAS_FMA) && !defined(AVOID_FMA)
|
781
|
+
polyHorner = FMA(FMA(FMA(FMA(c7,zh,c6),zh,c5),zh,c4),zh,c3);
|
782
|
+
#else
|
783
|
+
polyHorner = c3 + zh * (c4 + zh * (c5 + zh * (c6 + zh * c7)));
|
784
|
+
#endif
|
785
|
+
|
786
|
+
Mul12(&zhSquareh, &zhSquarel, zh, zh);
|
787
|
+
polyUpper = polyHorner * (zh * zhSquareh);
|
788
|
+
zhSquareHalfh = zhSquareh * -0.5;
|
789
|
+
zhSquareHalfl = zhSquarel * -0.5;
|
790
|
+
Add12(t1h, t1l, polyUpper, -1 * (zh * zl));
|
791
|
+
Add22(&t2h, &t2l, zh, zl, zhSquareHalfh, zhSquareHalfl);
|
792
|
+
Add22(&ph, &pl, t2h, t2l, t1h, t1l);
|
793
|
+
|
794
|
+
/* Reconstruction
|
795
|
+
|
796
|
+
Read logih and logim in the tables (already done)
|
797
|
+
|
798
|
+
Compute log(x) = E * log(2) + log(1+z) - log(ri)
|
799
|
+
i.e. log(x) = ed * (log2h + log2m) + (ph + pl) + (logih + logim) + delta
|
800
|
+
|
801
|
+
Carry out everything in double double precision
|
802
|
+
|
803
|
+
*/
|
804
|
+
|
805
|
+
/*
|
806
|
+
We store log2 as log2h + log2m + log2l where log2h and log2m have 12 trailing zeros
|
807
|
+
Multiplication of ed (double E) and log2h is thus correct
|
808
|
+
The overall accuracy of log2h + log2m + log2l is 53 * 3 - 24 = 135 which
|
809
|
+
is enough for the accurate phase
|
810
|
+
The accuracy suffices also for the quick phase: 53 * 2 - 24 = 82
|
811
|
+
Nevertheless the storage with trailing zeros implies an overlap of the tabulated
|
812
|
+
triple double values. We have to take it into account for the accurate phase
|
813
|
+
basic procedures for addition and multiplication
|
814
|
+
The condition on the next Add12 is verified as log2m is smaller than log2h
|
815
|
+
and both are scaled by ed
|
816
|
+
*/
|
817
|
+
|
818
|
+
Add12(log2edh, log2edl, log2h * ed, log2m * ed);
|
819
|
+
|
820
|
+
/* Add logih and logim to ph and pl
|
821
|
+
|
822
|
+
We must use conditioned Add22 as logih can move over ph
|
823
|
+
*/
|
824
|
+
|
825
|
+
Add22Cond(&logTabPolyh, &logTabPolyl, logih, logim, ph, pl);
|
826
|
+
|
827
|
+
/* Add log2edh + log2edl to logTabPolyh + logTabPolyl */
|
828
|
+
|
829
|
+
Add22Cond(&logh, &logm, log2edh, log2edl, logTabPolyh, logTabPolyl);
|
830
|
+
|
831
|
+
/* Rounding test and eventual return or call to the accurate function */
|
832
|
+
|
833
|
+
if(E==0)
|
834
|
+
roundcst = RDROUNDCST1;
|
835
|
+
else
|
836
|
+
roundcst = RDROUNDCST2;
|
837
|
+
|
838
|
+
TEST_AND_RETURN_RZ(logh, logm, roundcst);
|
839
|
+
|
840
|
+
#if DEBUG
|
841
|
+
printf("Going for Accurate Phase for x=%1.50e\n",x);
|
842
|
+
#endif
|
843
|
+
|
844
|
+
log_td_accurate(&logh, &logm, &logl, E, ed, index, zh, zl, logih, logim);
|
845
|
+
|
846
|
+
ReturnRoundTowardsZero3(logh, logm, logl);
|
847
|
+
}
|
848
|
+
|
849
|
+
#ifdef BUILD_INTERVAL_FUNCTIONS
|
850
|
+
interval j_log(interval x)
|
851
|
+
{
|
852
|
+
interval res;
|
853
|
+
int roundable;
|
854
|
+
int cs_inf=0; int cs_sup=0;
|
855
|
+
double x_inf,x_sup;
|
856
|
+
x_inf=LOW(x);
|
857
|
+
x_sup=UP(x);
|
858
|
+
double res_inf, res_sup, res_simple_inf, res_simple_sup;
|
859
|
+
|
860
|
+
db_number xdb_sup;
|
861
|
+
double y_sup, ed_sup, ri_sup, logih_sup, logim_sup, yrih_sup, yril_sup, th_sup, zh_sup, zl_sup;
|
862
|
+
double polyHorner_sup, zhSquareh_sup, zhSquarel_sup, polyUpper_sup, zhSquareHalfh_sup, zhSquareHalfl_sup;
|
863
|
+
double t1h_sup, t1l_sup, t2h_sup, t2l_sup, ph_sup, pl_sup, log2edh_sup, log2edl_sup, logTabPolyh_sup, logTabPolyl_sup, logh_sup, logm_sup, logl_sup, roundcst;
|
864
|
+
int E_sup, index_sup;
|
865
|
+
|
866
|
+
|
867
|
+
db_number xdb_inf;
|
868
|
+
double y_inf, ed_inf, ri_inf, logih_inf, logim_inf, yrih_inf, yril_inf, th_inf, zh_inf, zl_inf;
|
869
|
+
double polyHorner_inf, zhSquareh_inf, zhSquarel_inf, polyUpper_inf, zhSquareHalfh_inf, zhSquareHalfl_inf;
|
870
|
+
double t1h_inf, t1l_inf, t2h_inf, t2l_inf, ph_inf, pl_inf, log2edh_inf, log2edl_inf, logTabPolyh_inf, logTabPolyl_inf, logh_inf, logm_inf, logl_inf;
|
871
|
+
int E_inf, index_inf;
|
872
|
+
|
873
|
+
E_inf=0;
|
874
|
+
xdb_inf.d=x_inf;
|
875
|
+
E_sup=0;
|
876
|
+
xdb_sup.d=x_sup;
|
877
|
+
|
878
|
+
if (__builtin_expect(
|
879
|
+
(x_inf == 1.0) || (!(x_inf<=x_sup)) || (xdb_sup.i[HI] < 0)
|
880
|
+
|| (xdb_inf.i[HI] < 0x00100000) || (((xdb_inf.i[HI] & 0x7fffffff)|xdb_inf.i[LO])==0)
|
881
|
+
|| (xdb_inf.i[HI] < 0)
|
882
|
+
|| (xdb_inf.i[HI] >= 0x7ff00000)
|
883
|
+
|| (x_sup == 1.0)
|
884
|
+
|| (xdb_sup.i[HI] < 0x00100000)
|
885
|
+
|| (((xdb_sup.i[HI] & 0x7fffffff)|xdb_sup.i[LO])==0)
|
886
|
+
|| (xdb_sup.i[HI] < 0)
|
887
|
+
|| (xdb_sup.i[HI] >= 0x7ff00000)
|
888
|
+
|| ((xdb_inf.d<00) && (xdb_sup.d>0) )
|
889
|
+
,FALSE))
|
890
|
+
{
|
891
|
+
if (!(x_inf<=x_sup)) RETURN_EMPTY_INTERVAL;
|
892
|
+
if (xdb_sup.i[HI] < 0) RETURN_EMPTY_INTERVAL;
|
893
|
+
if ((xdb_inf.d<00) && (xdb_sup.d>0) )
|
894
|
+
{
|
895
|
+
ASSIGN_LOW(res,-1.0/0.0);
|
896
|
+
ASSIGN_UP(res,log_ru(UP(x)));
|
897
|
+
return res;
|
898
|
+
}
|
899
|
+
ASSIGN_LOW(res,log_rd(LOW(x)));
|
900
|
+
ASSIGN_UP(res,log_ru(UP(x)));
|
901
|
+
return res;
|
902
|
+
}
|
903
|
+
/* Extract exponent and mantissa
|
904
|
+
Do range reduction,
|
905
|
+
yielding to E holding the exponent and
|
906
|
+
y the mantissa between sqrt(2)/2 and sqrt(2)
|
907
|
+
*/
|
908
|
+
E_inf += (xdb_inf.i[HI]>>20)-1023; /* extract the exponent */
|
909
|
+
E_sup += (xdb_sup.i[HI]>>20)-1023; /* extract the exponent */
|
910
|
+
index_inf = (xdb_inf.i[HI] & 0x000fffff);
|
911
|
+
index_sup = (xdb_sup.i[HI] & 0x000fffff);
|
912
|
+
xdb_inf.i[HI] = index_inf | 0x3ff00000; /* do exponent = 0 */
|
913
|
+
xdb_sup.i[HI] = index_sup | 0x3ff00000; /* do exponent = 0 */
|
914
|
+
index_inf = (index_inf + (1<<(20-L-1))) >> (20-L);
|
915
|
+
index_sup = (index_sup + (1<<(20-L-1))) >> (20-L);
|
916
|
+
/* reduce such that sqrt(2)/2 < xdb.d < sqrt(2) */
|
917
|
+
if (index_inf >= MAXINDEX){ /* corresponds to xdb>sqrt(2)*/
|
918
|
+
xdb_inf.i[HI] -= 0x00100000;
|
919
|
+
E_inf++;
|
920
|
+
}
|
921
|
+
/* reduce such that sqrt(2)/2 < xdb.d < sqrt(2) */
|
922
|
+
if (index_sup >= MAXINDEX){ /* corresponds to xdb>sqrt(2)*/
|
923
|
+
xdb_sup.i[HI] -= 0x00100000;
|
924
|
+
E_sup++;
|
925
|
+
}
|
926
|
+
y_inf = xdb_inf.d;
|
927
|
+
y_sup = xdb_sup.d;
|
928
|
+
index_inf = index_inf & INDEXMASK;
|
929
|
+
index_sup = index_sup & INDEXMASK;
|
930
|
+
/* Cast integer E into double ed for multiplication later */
|
931
|
+
ed_inf = (double) E_inf;
|
932
|
+
ed_sup = (double) E_sup;
|
933
|
+
/*
|
934
|
+
Read tables:
|
935
|
+
Read one float for ri
|
936
|
+
Read the first two doubles for -log(r_i) (out of three)
|
937
|
+
Organization of the table:
|
938
|
+
one struct entry per index, the struct entry containing
|
939
|
+
r, logih, logim and logil in this order
|
940
|
+
*/
|
941
|
+
ri_inf = argredtable[index_inf].ri;
|
942
|
+
ri_sup = argredtable[index_sup].ri;
|
943
|
+
/*
|
944
|
+
Actually we don't need the logarithm entries now
|
945
|
+
Move the following two lines to the eventual reconstruction
|
946
|
+
As long as we don't have any if in the following code, we can overlap
|
947
|
+
memory access with calculations
|
948
|
+
*/
|
949
|
+
logih_inf = argredtable[index_inf].logih;
|
950
|
+
logih_sup = argredtable[index_sup].logih;
|
951
|
+
logim_inf = argredtable[index_inf].logim;
|
952
|
+
logim_sup = argredtable[index_sup].logim;
|
953
|
+
/* Do range reduction:
|
954
|
+
zh + zl = y * ri - 1.0 correctly
|
955
|
+
Correctness is assured by use of Mul12 and Add12
|
956
|
+
even if we don't force ri to have its' LSBs set to zero
|
957
|
+
Discard zl for higher monome degrees
|
958
|
+
*/
|
959
|
+
|
960
|
+
Mul12(&yrih_inf, &yril_inf, y_inf, ri_inf);
|
961
|
+
Mul12(&yrih_sup, &yril_sup, y_sup, ri_sup);
|
962
|
+
th_inf = yrih_inf - 1.0;
|
963
|
+
th_sup = yrih_sup - 1.0;
|
964
|
+
/* Do range reduction:
|
965
|
+
zh + zl = y * ri - 1.0 correctly
|
966
|
+
Correctness is assured by use of Mul12 and Add12
|
967
|
+
even if we don't force ri to have its' LSBs set to zero
|
968
|
+
Discard zl for higher monome degrees
|
969
|
+
*/
|
970
|
+
|
971
|
+
|
972
|
+
Add12Cond(zh_inf, zl_inf, th_inf, yril_inf);
|
973
|
+
Add12Cond(zh_sup, zl_sup, th_sup, yril_sup);
|
974
|
+
/*
|
975
|
+
Polynomial evaluation
|
976
|
+
Use a 7 degree polynomial
|
977
|
+
Evaluate the higher 5 terms in double precision (-7 * 3 = -21) using Horner's scheme
|
978
|
+
Evaluate the lower 3 terms (the last is 0) in double double precision accounting also for zl
|
979
|
+
using an ad hoc method
|
980
|
+
*/
|
981
|
+
|
982
|
+
|
983
|
+
|
984
|
+
#if defined(PROCESSOR_HAS_FMA) && !defined(AVOID_FMA)
|
985
|
+
polyHorner_inf = FMA(FMA(FMA(FMA(c7,zh_inf,c6),zh_inf,c5),zh_inf,c4),zh_inf,c3);
|
986
|
+
polyHorner_sup = FMA(FMA(FMA(FMA(c7,zh_sup,c6),zh_sup,c5),zh_sup,c4),zh_sup,c3);
|
987
|
+
#else
|
988
|
+
polyHorner_inf = c3 + zh_inf * (c4 + zh_inf * (c5 + zh_inf * (c6 + zh_inf * c7)));
|
989
|
+
polyHorner_sup = c3 + zh_sup * (c4 + zh_sup * (c5 + zh_sup * (c6 + zh_sup * c7)));
|
990
|
+
#endif
|
991
|
+
|
992
|
+
Mul12(&zhSquareh_inf, &zhSquarel_inf, zh_inf, zh_inf);
|
993
|
+
Mul12(&zhSquareh_sup, &zhSquarel_sup, zh_sup, zh_sup);
|
994
|
+
polyUpper_inf = polyHorner_inf * (zh_inf * zhSquareh_inf);
|
995
|
+
polyUpper_sup = polyHorner_sup * (zh_sup * zhSquareh_sup);
|
996
|
+
zhSquareHalfh_inf = zhSquareh_inf * -0.5;
|
997
|
+
zhSquareHalfh_sup = zhSquareh_sup * -0.5;
|
998
|
+
zhSquareHalfl_inf = zhSquarel_inf * -0.5;
|
999
|
+
zhSquareHalfl_sup = zhSquarel_sup * -0.5;
|
1000
|
+
Add12(t1h_inf, t1l_inf, polyUpper_inf, -1 * (zh_inf * zl_inf));
|
1001
|
+
Add12(t1h_sup, t1l_sup, polyUpper_sup, -1 * (zh_sup * zl_sup));
|
1002
|
+
Add22(&t2h_inf, &t2l_inf, zh_inf, zl_inf, zhSquareHalfh_inf, zhSquareHalfl_inf);
|
1003
|
+
Add22(&t2h_sup, &t2l_sup, zh_sup, zl_sup, zhSquareHalfh_sup, zhSquareHalfl_sup);
|
1004
|
+
Add22(&ph_inf, &pl_inf, t2h_inf, t2l_inf, t1h_inf, t1l_inf);
|
1005
|
+
Add22(&ph_sup, &pl_sup, t2h_sup, t2l_sup, t1h_sup, t1l_sup);
|
1006
|
+
/* Reconstruction
|
1007
|
+
|
1008
|
+
Read logih and logim in the tables (already done)
|
1009
|
+
|
1010
|
+
Compute log(x) = E * log(2) + log(1+z) - log(ri)
|
1011
|
+
i.e. log(x) = ed * (log2h + log2m) + (ph + pl) + (logih + logim) + delta
|
1012
|
+
|
1013
|
+
Carry out everything in double double precision
|
1014
|
+
|
1015
|
+
*/
|
1016
|
+
|
1017
|
+
/*
|
1018
|
+
We store log2 as log2h + log2m + log2l where log2h and log2m have 12 trailing zeros
|
1019
|
+
Multiplication of ed (double E) and log2h is thus correct
|
1020
|
+
The overall accuracy of log2h + log2m + log2l is 53 * 3 - 24 = 135 which
|
1021
|
+
is enough for the accurate phase
|
1022
|
+
The accuracy suffices also for the quick phase: 53 * 2 - 24 = 82
|
1023
|
+
Nevertheless the storage with trailing zeros implies an overlap of the tabulated
|
1024
|
+
triple double values. We have to take it into account for the accurate phase
|
1025
|
+
basic procedures for addition and multiplication
|
1026
|
+
The condition on the next Add12 is verified as log2m is smaller than log2h
|
1027
|
+
and both are scaled by ed
|
1028
|
+
*/
|
1029
|
+
|
1030
|
+
Add12(log2edh_inf, log2edl_inf, log2h * ed_inf, log2m * ed_inf);
|
1031
|
+
|
1032
|
+
/*
|
1033
|
+
We store log2 as log2h + log2m + log2l where log2h and log2m have 12 trailing zeros
|
1034
|
+
Multiplication of ed (double E) and log2h is thus correct
|
1035
|
+
The overall accuracy of log2h + log2m + log2l is 53 * 3 - 24 = 135 which
|
1036
|
+
is enough for the accurate phase
|
1037
|
+
The accuracy suffices also for the quick phase: 53 * 2 - 24 = 82
|
1038
|
+
Nevertheless the storage with trailing zeros implies an overlap of the tabulated
|
1039
|
+
triple double values. We have to take it into account for the accurate phase
|
1040
|
+
basic procedures for addition and multiplication
|
1041
|
+
The condition on the next Add12 is verified as log2m is smaller than log2h
|
1042
|
+
and both are scaled by ed
|
1043
|
+
*/
|
1044
|
+
|
1045
|
+
Add12(log2edh_sup, log2edl_sup, log2h * ed_sup, log2m * ed_sup);
|
1046
|
+
|
1047
|
+
|
1048
|
+
/* Add logih and logim to ph and pl
|
1049
|
+
|
1050
|
+
We must use conditioned Add22 as logih can move over ph
|
1051
|
+
*/
|
1052
|
+
|
1053
|
+
Add22Cond(&logTabPolyh_inf, &logTabPolyl_inf, logih_inf, logim_inf, ph_inf, pl_inf);
|
1054
|
+
|
1055
|
+
/* Add log2edh + log2edl to logTabPolyh + logTabPolyl */
|
1056
|
+
|
1057
|
+
Add22Cond(&logh_inf, &logm_inf, log2edh_inf, log2edl_inf, logTabPolyh_inf, logTabPolyl_inf);
|
1058
|
+
|
1059
|
+
/* Add logih and logim to ph and pl
|
1060
|
+
|
1061
|
+
We must use conditioned Add22 as logih can move over ph
|
1062
|
+
*/
|
1063
|
+
|
1064
|
+
Add22Cond(&logTabPolyh_sup, &logTabPolyl_sup, logih_sup, logim_sup, ph_sup, pl_sup);
|
1065
|
+
|
1066
|
+
/* Add log2edh + log2edl to logTabPolyh + logTabPolyl */
|
1067
|
+
|
1068
|
+
Add22Cond(&logh_sup, &logm_sup, log2edh_sup, log2edl_sup, logTabPolyh_sup, logTabPolyl_sup);
|
1069
|
+
|
1070
|
+
|
1071
|
+
/* Rounding test and eventual return or call to the accurate function */
|
1072
|
+
|
1073
|
+
roundcst = RDROUNDCST1;
|
1074
|
+
|
1075
|
+
if(cs_inf) { res_inf=res_simple_inf; }
|
1076
|
+
if(cs_sup) { res_sup=res_simple_sup; }
|
1077
|
+
//TEST_AND_COPY_RDRU_LOG(roundable,res_inf,logh_inf,logm_inf,res_sup,logh_sup,logm_sup,roundcst);
|
1078
|
+
|
1079
|
+
//#define TEST_AND_COPY_RDRU_LOG(__cond__, __res_inf__, __yh_inf__, __yl_inf__, __res_sup__, __yh_sup__, __yl_sup__, __eps__)
|
1080
|
+
|
1081
|
+
db_number yh_inf, yl_inf, u53_inf, yh_sup, yl_sup, u53_sup;
|
1082
|
+
int yh_inf_neg, yl_inf_neg, yh_sup_neg, yl_sup_neg;
|
1083
|
+
int rd_ok, ru_ok;
|
1084
|
+
double save_res_inf=res_inf;
|
1085
|
+
yh_inf.d = logh_inf; yl_inf.d = logm_inf;
|
1086
|
+
yh_inf_neg = (yh_inf.i[HI] & 0x80000000);
|
1087
|
+
yl_inf_neg = (yl_inf.i[HI] & 0x80000000);
|
1088
|
+
yh_inf.l = yh_inf.l & 0x7fffffffffffffffLL; /* compute the absolute value*/
|
1089
|
+
yl_inf.l = yl_inf.l & 0x7fffffffffffffffLL; /* compute the absolute value*/
|
1090
|
+
u53_inf.l = (yh_inf.l & ULL(7ff0000000000000)) + ULL(0010000000000000);
|
1091
|
+
yh_sup.d = logh_sup; yl_sup.d = logm_sup;
|
1092
|
+
yh_sup_neg = (yh_sup.i[HI] & 0x80000000);
|
1093
|
+
yl_sup_neg = (yl_sup.i[HI] & 0x80000000);
|
1094
|
+
yh_sup.l = yh_sup.l & 0x7fffffffffffffffLL; /* compute the absolute value*/
|
1095
|
+
yl_sup.l = yl_sup.l & 0x7fffffffffffffffLL; /* compute the absolute value*/
|
1096
|
+
u53_sup.l = (yh_sup.l & ULL(7ff0000000000000)) + ULL(0010000000000000);
|
1097
|
+
roundable = 0;
|
1098
|
+
rd_ok=(yl_inf.d > roundcst * u53_inf.d);
|
1099
|
+
ru_ok=(yl_sup.d > roundcst * u53_sup.d);
|
1100
|
+
if(yl_inf_neg) { /* The case yl==0 is filtered by the above test*/
|
1101
|
+
/* return next down */
|
1102
|
+
yh_inf.d = logh_inf;
|
1103
|
+
if(yh_inf_neg) yh_inf.l++; else yh_inf.l--; /* Beware: fails for zero */
|
1104
|
+
res_inf = yh_inf.d ;
|
1105
|
+
}
|
1106
|
+
else {
|
1107
|
+
res_inf = logh_inf;
|
1108
|
+
}
|
1109
|
+
if(!yl_sup_neg) { /* The case yl==0 is filtered by the above test*/
|
1110
|
+
/* return next up */
|
1111
|
+
yh_sup.d = logh_sup;
|
1112
|
+
if(yh_sup_neg) yh_sup.l--; else yh_sup.l++; /* Beware: fails for zero */
|
1113
|
+
res_sup = yh_sup.d ;
|
1114
|
+
}
|
1115
|
+
else {
|
1116
|
+
res_sup = logh_sup;
|
1117
|
+
}
|
1118
|
+
if(save_res_inf==-1.0/0.0) res_inf=-1.0/0.0;
|
1119
|
+
if(rd_ok && ru_ok){
|
1120
|
+
ASSIGN_LOW(res,res_inf);
|
1121
|
+
ASSIGN_UP(res,res_sup);
|
1122
|
+
return(res);
|
1123
|
+
}
|
1124
|
+
else if (rd_ok){
|
1125
|
+
roundable=1;
|
1126
|
+
}
|
1127
|
+
else if (ru_ok){
|
1128
|
+
roundable=2;
|
1129
|
+
}
|
1130
|
+
|
1131
|
+
|
1132
|
+
#if DEBUG
|
1133
|
+
printf("Going for Accurate Phase for x=%1.50e\n",x);
|
1134
|
+
#endif
|
1135
|
+
if (roundable==1)
|
1136
|
+
{
|
1137
|
+
log_td_accurate(&logh_sup, &logm_sup, &logl_sup, E_sup, ed_sup, index_sup, zh_sup, zl_sup, logih_sup, logim_sup);
|
1138
|
+
RoundUpwards3(&res_sup, logh_sup, logm_sup, logl_sup);
|
1139
|
+
}
|
1140
|
+
|
1141
|
+
if (roundable==2)
|
1142
|
+
{
|
1143
|
+
log_td_accurate(&logh_inf, &logm_inf, &logl_inf, E_inf, ed_inf, index_inf, zh_inf, zl_inf, logih_inf, logim_inf);
|
1144
|
+
RoundDownwards3(&res_inf, logh_inf, logm_inf, logl_inf);
|
1145
|
+
}
|
1146
|
+
if (roundable==0)
|
1147
|
+
{
|
1148
|
+
log_td_accurate(&logh_inf, &logm_inf, &logl_inf, E_inf, ed_inf, index_inf, zh_inf, zl_inf, logih_inf, logim_inf);
|
1149
|
+
RoundDownwards3(&res_inf, logh_inf, logm_inf, logl_inf);
|
1150
|
+
log_td_accurate(&logh_sup, &logm_sup, &logl_sup, E_sup, ed_sup, index_sup, zh_sup, zl_sup, logih_sup, logim_sup);
|
1151
|
+
RoundUpwards3(&res_sup, logh_sup, logm_sup, logl_sup);
|
1152
|
+
}
|
1153
|
+
ASSIGN_LOW(res,res_inf);
|
1154
|
+
ASSIGN_UP(res,res_sup);
|
1155
|
+
return res;
|
1156
|
+
}
|
1157
|
+
#endif
|
1158
|
+
|