anystyle 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (82) hide show
  1. checksums.yaml +7 -0
  2. data/HISTORY.md +78 -0
  3. data/LICENSE +27 -0
  4. data/README.md +103 -0
  5. data/lib/anystyle.rb +71 -0
  6. data/lib/anystyle/dictionary.rb +132 -0
  7. data/lib/anystyle/dictionary/gdbm.rb +52 -0
  8. data/lib/anystyle/dictionary/lmdb.rb +67 -0
  9. data/lib/anystyle/dictionary/marshal.rb +27 -0
  10. data/lib/anystyle/dictionary/redis.rb +55 -0
  11. data/lib/anystyle/document.rb +264 -0
  12. data/lib/anystyle/errors.rb +14 -0
  13. data/lib/anystyle/feature.rb +27 -0
  14. data/lib/anystyle/feature/affix.rb +43 -0
  15. data/lib/anystyle/feature/brackets.rb +32 -0
  16. data/lib/anystyle/feature/canonical.rb +13 -0
  17. data/lib/anystyle/feature/caps.rb +20 -0
  18. data/lib/anystyle/feature/category.rb +70 -0
  19. data/lib/anystyle/feature/dictionary.rb +16 -0
  20. data/lib/anystyle/feature/indent.rb +16 -0
  21. data/lib/anystyle/feature/keyword.rb +52 -0
  22. data/lib/anystyle/feature/line.rb +39 -0
  23. data/lib/anystyle/feature/locator.rb +18 -0
  24. data/lib/anystyle/feature/number.rb +39 -0
  25. data/lib/anystyle/feature/position.rb +28 -0
  26. data/lib/anystyle/feature/punctuation.rb +22 -0
  27. data/lib/anystyle/feature/quotes.rb +20 -0
  28. data/lib/anystyle/feature/ref.rb +21 -0
  29. data/lib/anystyle/feature/terminal.rb +19 -0
  30. data/lib/anystyle/feature/words.rb +74 -0
  31. data/lib/anystyle/finder.rb +94 -0
  32. data/lib/anystyle/format/bibtex.rb +63 -0
  33. data/lib/anystyle/format/csl.rb +28 -0
  34. data/lib/anystyle/normalizer.rb +65 -0
  35. data/lib/anystyle/normalizer/brackets.rb +13 -0
  36. data/lib/anystyle/normalizer/container.rb +13 -0
  37. data/lib/anystyle/normalizer/date.rb +109 -0
  38. data/lib/anystyle/normalizer/edition.rb +16 -0
  39. data/lib/anystyle/normalizer/journal.rb +14 -0
  40. data/lib/anystyle/normalizer/locale.rb +30 -0
  41. data/lib/anystyle/normalizer/location.rb +24 -0
  42. data/lib/anystyle/normalizer/locator.rb +22 -0
  43. data/lib/anystyle/normalizer/names.rb +88 -0
  44. data/lib/anystyle/normalizer/page.rb +29 -0
  45. data/lib/anystyle/normalizer/publisher.rb +18 -0
  46. data/lib/anystyle/normalizer/pubmed.rb +18 -0
  47. data/lib/anystyle/normalizer/punctuation.rb +23 -0
  48. data/lib/anystyle/normalizer/quotes.rb +14 -0
  49. data/lib/anystyle/normalizer/type.rb +54 -0
  50. data/lib/anystyle/normalizer/volume.rb +26 -0
  51. data/lib/anystyle/parser.rb +199 -0
  52. data/lib/anystyle/support.rb +4 -0
  53. data/lib/anystyle/support/finder.mod +3234 -0
  54. data/lib/anystyle/support/finder.txt +75 -0
  55. data/lib/anystyle/support/parser.mod +15025 -0
  56. data/lib/anystyle/support/parser.txt +75 -0
  57. data/lib/anystyle/utils.rb +70 -0
  58. data/lib/anystyle/version.rb +3 -0
  59. data/res/finder/bb132pr2055.ttx +6803 -0
  60. data/res/finder/bb550sh8053.ttx +18660 -0
  61. data/res/finder/bb599nz4341.ttx +2957 -0
  62. data/res/finder/bb725rt6501.ttx +15276 -0
  63. data/res/finder/bc605xz1554.ttx +18815 -0
  64. data/res/finder/bd040gx5718.ttx +4271 -0
  65. data/res/finder/bd413nt2715.ttx +4956 -0
  66. data/res/finder/bd466fq0394.ttx +6100 -0
  67. data/res/finder/bf668vw2021.ttx +3578 -0
  68. data/res/finder/bg495cx0468.ttx +7267 -0
  69. data/res/finder/bg599vt3743.ttx +6752 -0
  70. data/res/finder/bg608dx2253.ttx +4094 -0
  71. data/res/finder/bh410qk3771.ttx +8785 -0
  72. data/res/finder/bh989ww6442.ttx +17204 -0
  73. data/res/finder/bj581pc8202.ttx +2719 -0
  74. data/res/parser/bad.xml +5199 -0
  75. data/res/parser/core.xml +7924 -0
  76. data/res/parser/gold.xml +2707 -0
  77. data/res/parser/good.xml +34281 -0
  78. data/res/parser/stanford-books.xml +2280 -0
  79. data/res/parser/stanford-diss.xml +726 -0
  80. data/res/parser/stanford-theses.xml +4684 -0
  81. data/res/parser/ugly.xml +33246 -0
  82. metadata +195 -0
@@ -0,0 +1,2719 @@
1
+ title | COMPUTER MODELING OF MUSCLE COORDINATION STRATEGIES THAT
2
+ | DECREASE JOINT LOADS
3
+ blank |
4
+ |
5
+ text | A DISSERTATION
6
+ | SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING
7
+ | AND THE COMMITTEE ON GRADUATE STUDIES
8
+ | OF STANFORD UNIVERSITY
9
+ | IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
10
+ | FOR THE DEGREE OF
11
+ | DOCTOR OF PHILOSOPHY
12
+ blank |
13
+ |
14
+ |
15
+ |
16
+ text | By
17
+ | Matthew S. DeMers
18
+ | December 2015
19
+ | © 2015 by Matthew Stephen DeMers. All Rights Reserved.
20
+ | Re-distributed by Stanford University under license with the author.
21
+ blank |
22
+ |
23
+ |
24
+ text | This work is licensed under a Creative Commons Attribution-
25
+ | Noncommercial 3.0 United States License.
26
+ | http://creativecommons.org/licenses/by-nc/3.0/us/
27
+ blank |
28
+ |
29
+ |
30
+ |
31
+ text | This dissertation is online at: http://purl.stanford.edu/bj581pc8202
32
+ blank |
33
+ |
34
+ |
35
+ |
36
+ meta | ii
37
+ text | I certify that I have read this dissertation and that, in my opinion, it is fully adequate
38
+ | in scope and quality as a dissertation for the degree of Doctor of Philosophy.
39
+ blank |
40
+ text | Scott Delp, Primary Adviser
41
+ blank |
42
+ |
43
+ |
44
+ text | I certify that I have read this dissertation and that, in my opinion, it is fully adequate
45
+ | in scope and quality as a dissertation for the degree of Doctor of Philosophy.
46
+ blank |
47
+ text | Garry Gold
48
+ blank |
49
+ |
50
+ |
51
+ text | I certify that I have read this dissertation and that, in my opinion, it is fully adequate
52
+ | in scope and quality as a dissertation for the degree of Doctor of Philosophy.
53
+ blank |
54
+ text | Marc Levenston
55
+ blank |
56
+ |
57
+ |
58
+ |
59
+ text | Approved for the Stanford University Committee on Graduate Studies.
60
+ | Patricia J. Gumport, Vice Provost for Graduate Education
61
+ blank |
62
+ |
63
+ |
64
+ |
65
+ text | This signature page was generated electronically upon submission of this dissertation in
66
+ | electronic format. An original signed hard copy of the signature page is on file in
67
+ | University Archives.
68
+ blank |
69
+ |
70
+ |
71
+ |
72
+ meta | iii
73
+ | iv
74
+ title | Abstract
75
+ text | Musculoskeletal models allow us to study muscle coordination and joint injuries
76
+ | in ways that in vivo experiments cannot. Models and simulations can compute internal
77
+ | joint contact forces, explore unsafe conditions, and simulate injuries without risk of
78
+ | harming experimental subjects. Models also enable systematic variation of muscle
79
+ | activity to evaluate its effect on joint loading and injury. The goals of this dissertation
80
+ | were to systematically quantify the effects of varied muscle activity in three applications:
81
+ | (1) to decrease knee forces during walking, (2) to estimate increased knee forces due to
82
+ | crouch gait in subjects with cerebral palsy, and (3) to prevent ankle sprains during
83
+ | landing.
84
+ | Muscles induce large forces in the tibiofemoral joint during walking and thereby
85
+ | influence the health or degradation of tissues like articular cartilage and menisci. It is
86
+ | possible to walk with a wide variety of muscle coordination patterns, but the effect of
87
+ | varied muscle coordination on tibiofemoral contact forces remains unclear. The first goal
88
+ | of this dissertation was to determine the effect of varied muscle coordination on
89
+ | tibiofemoral contact forces. We developed a musculoskeletal model of a subject walking
90
+ | with an instrumented knee implant. Using an optimization framework, we calculated the
91
+ | tibiofemoral forces resulting from muscle coordination that reproduced the subject’s
92
+ | walking dynamics. We performed a large set of optimizations in which we systematically
93
+ | varied the coordination of muscles to determine the influence on tibiofemoral force. Peak
94
+ | tibiofemoral forces during late stance could be reduced by increasing the activation of the
95
+ | gluteus medius, uniarticular hip flexors, and soleus and by decreasing the activation of
96
+ | the gastrocnemius and rectus femoris. These results suggest that retraining of muscle
97
+ | coordination could substantially reduce tibiofemoral forces during late stance.
98
+ | Muscle coordination and the resulting tibiofemoral forces may vary dramatically
99
+ | due to changes in walking kinematics, especially for individuals with gait pathologies.
100
+ | Crouch gait, a common walking pattern in individuals with cerebral palsy, is
101
+ | characterized by excessive flexion of the hip and knee. Many subjects with crouch gait
102
+ | experience knee pain, perhaps because of elevated muscle forces and joint loading. The
103
+ | second goal of this dissertation was to examine how compressive tibiofemoral force
104
+ | change with the increasing knee flexion associated with crouch gait. Using our
105
+ blank |
106
+ meta | v
107
+ text | musculoskeletal model, muscle forces and tibiofemoral force were computed for three
108
+ | unimpaired children and nine children with cerebral palsy who walked with varying
109
+ | degrees of knee flexion. Compressive tibiofemoral force increased quadratically with
110
+ | average stance phase knee flexion (i.e., crouch severity) during the stance phase of
111
+ | walking, primarily due to concomitant increases in quadriceps forces. These results
112
+ | revealed that walking in crouch generates increased knee loading which may contribute
113
+ | to knee pain in individuals with crouch gait.
114
+ | Muscle coordination and pose are suspected causes and predictors of ankle
115
+ | inversion sprains. Interventions that retrain muscle coordination have helped rehabilitate
116
+ | injured ankles, but it is unclear which muscle coordination strategies, if any, can prevent
117
+ | ankle sprains. The third goal of this dissertation was to determine whether coordinated
118
+ | activity of the ankle muscles could prevent excessive ankle inversion during a simulated
119
+ | landing on a 30–degree incline. We used musculoskeletal simulations to evaluate two
120
+ | strategies for coordinating the ankle evertor and invertor muscles during simulated
121
+ | landing scenarios: planned co-activation and stretch reflex activation with physiologic
122
+ | latency (60-millisecond delay). Our simulations revealed that strong preparatory co-
123
+ | activation of the ankle evertors and invertors prior to ground contact prevented ankle
124
+ | inversion from exceeding injury thresholds by rapidly generating eversion moments after
125
+ | initial contact. Conversely, stretch reflexes were too slow to generate eversion moments
126
+ | before the simulations reached the threshold for inversion injury. These results suggest
127
+ | that training interventions to protect the ankle should focus on stiffening the ankle with
128
+ | muscle co-activation instead of increasing the speed or intensity of the evertor reflexes.
129
+ | This dissertation examines the effects of varied muscle coordination on two of the
130
+ | most common musculoskeletal injuries: chronic degradation of the knee and acute ankle
131
+ | inversion sprains. Our results revealed key connections between specific changes in
132
+ | muscle coordination and improved function of the knee and ankle, suggesting exciting
133
+ | future research areas for designing and testing interventions that protect knee and ankle
134
+ | function. Additionally, this dissertation provides a computational foundation for
135
+ | systematically exploring muscle coordination in musculoskeletal models, and provides
136
+ | them, free and open source, to the broader research community.
137
+ blank |
138
+ |
139
+ meta | vi
140
+ title | Acknowledgments
141
+ text | Foremost among the lessons of my PhD, I’ve learned that great research and
142
+ | training new scientists is a collaborative, community endeavor. My doctoral development
143
+ | has been far from a singular, heroic effort to do science. Instead, I owe my development
144
+ | to my gracious peers, inspiring mentors, and the exhilarating atmosphere at Stanford. I
145
+ | dedicate the work in this dissertation to everyone in the hard working community that
146
+ | continues to nurture my lifelong learning.
147
+ | Above all, I am grateful to Scott Delp, my principal advisor and mentor, for being
148
+ | the architect and visionary behind my research community. Scott has grown a laboratory
149
+ | full of driven yet nurturing peers, supported us to pursue difficult research questions, and
150
+ | compelled us to share our work and expertise with the world as often as possible. Scott,
151
+ | the storyteller, taught me to have great impact by conveying my research and expertise as
152
+ | meaningful stories, and I’ve learned much of my communication style by emulating him.
153
+ | I am most grateful to Scott for the freedom he granted me to learn what I wanted, and
154
+ | dive deep into technical virtuosity beyond the level required to publish our research.
155
+ | Sincerely, thank you.
156
+ | I am thankful for the inspiring people of the Neuromuscular Biomechanics
157
+ | Laboratory (NMBL). Through ad hoc writing clubs, practice presentations, and design
158
+ | session on the whiteboard, you provided the driving drum beat for my learning and
159
+ | research progress. Thank you to Kat Steele, Saikat Pal, and Jen Hicks for your intense
160
+ | collaboration and mentorship on our shared research. Thank you to Sam Hamner, Edith
161
+ | Arnold, Gabriel Sanches, Melinda Cromie, Chand John, Tim Dorn, James Dunne, Tom
162
+ | Uchida, Chris Dembia, Carmichael Ong, and Apoorva Rajagopal. I notice how you
163
+ | consistently stay late to offer feedback on my presentations and donate your time to
164
+ | critique and augment my work. Thank you for being selfless and supportive. Thank you
165
+ | to Carolyn Mazenko and Diane Bush for your constant attention that glues NMBL
166
+ | together.
167
+ | I have been incredibly lucky to learn from the extraordinary people of the NIH
168
+ | Center for physics-based Simulation of Biological Structures (Simbios) and the National
169
+ | Center for Simulation in Rehabilitation Research (NCSRR). These centers produce the
170
+ | highest quality of biomechanical modeling software, and give it away, so that myself and
171
+ blank |
172
+ meta | vii
173
+ text | thousands more researchers can pursue their challenging research questions. However,
174
+ | more importantly to me, I must recognize the character demonstrated by Ajay Seth,
175
+ | Ayman Habib, Michael Sherman, Jen Hick, Joy Ku, and Scott Delp. All of you
176
+ | demonstrate elite expertise yet simultaneously conduct yourselves with grace and
177
+ | patience. It is humbling and I will strive to conduct myself with the same unique blend of
178
+ | character.
179
+ | Thank you to my dissertation readers and defense committee, who were Marc
180
+ | Levenston, Garry Gold, Ellen Kuhl, and Lane Smith. I am fortunate to have your
181
+ | guidance at the end of my PhD as you review and critique my work. It was a new and fun
182
+ | experience to sit together, borrow your attention, and discuss my research. Also, thank
183
+ | you to Gary Beaupre for your support and enthusiasm for my research and serving as a
184
+ | sixth advisor in many ways. To all of you, thank you for that honor.
185
+ | Substantial data used in this dissertation were provided by the ASME Grand
186
+ | Challenge to Predict In Vivo Knee Loads, the Gillette Children’s Specialty Healthcare,
187
+ | and the Human Performance Lab at Stanford University. Thank you to B.J. Fregly, Thor
188
+ | Besier, David Lloyd, Darryl D’Lima, Michael Schwartz, Rebecca Shultz, and Amy Silder
189
+ | for providing these unique data and enabling the research I pursued.
190
+ | I was fortunate to have extensive financial support throughout my PhD. Thank
191
+ | you to the National Library of Medicine Training Grant in Biomedical Informatics, the
192
+ | Powell Foundation, and the DARPA Warrior Web for supporting my livelihood during
193
+ | my PhD and granting me numerous opportunities to travel and share my research
194
+ | worldwide.
195
+ | Finally, thank you to my family and friends for sharing your curiosity and
196
+ | passion. Thank you to my parents, Freda Sharp and Stephen DeMers, my sister and her
197
+ | husband, Rachel and Brad Rice, and all my extended family who, time and again, rally in
198
+ | support of learning and growth. Thank you to Adam, Vanessa, Saikat, Tim, Jayodita, Adi,
199
+ | Anja, Vivian, Kathy, John, Brett, Min-Sun, Jaimie, Andrew, James, Billy, Takane, Mai,
200
+ | Sully, Caroline, Kelly, Brandon, and Gentry for your unique humor and the energy you
201
+ | gift to me. Thank you Jason Inay and his eskrimadors for being the crucible. Thank you
202
+ | Stanford for being the hammer and anvil. Thank you Kate for being the water stone.
203
+ blank |
204
+ |
205
+ meta | viii
206
+ title | Table of contents
207
+ blank |
208
+ text | ABSTRACT V
209
+ blank |
210
+ text | ACKNOWLEDGMENTS VII
211
+ blank |
212
+ text | TABLE OF CONTENTS IX
213
+ blank |
214
+ text | LIST OF TABLES XI
215
+ blank |
216
+ text | LIST OF ILLUSTRATIONS XI
217
+ blank |
218
+ text | 1. INTRODUCTION 1
219
+ | 1.1. FOCUS OF THIS DISSERTATION 3
220
+ | 1.2. SIGNIFICANCE OF THIS RESEARCH 4
221
+ | 1.3. OVERVIEW OF THIS DISSERTATION 5
222
+ blank |
223
+ text | 2. CHANGES IN TIBIOFEMORAL FORCES DUE TO VARIATIONS IN
224
+ | MUSCLE ACTIVITY DURING WALKING 7
225
+ | 2.1. INTRODUCTION 7
226
+ | 2.2. METHODS 8
227
+ | 2.2.1. HUMAN SUBJECT DATA 8
228
+ | 2.2.2. OPENSIM MODEL 8
229
+ | 2.2.3. OPTIMIZATION 10
230
+ | 2.2.4. A MUSCLE COORDINATION PATTERN MINIMIZING MUSCLE ACTIVATIONS 11
231
+ | 2.2.5. A MUSCLE COORDINATION PATTERN MINIMIZING COMPRESSIVE TIBIOFEMORAL FORCE 12
232
+ | 2.2.6. CHANGES IN TIBIOFEMORAL FORCES DUE TO VARIED ACTIVATIONS OF INDIVIDUAL
233
+ | MUSCLES 12
234
+ | 2.3. RESULTS 13
235
+ | 2.4. DISCUSSION 17
236
+ | 2.5. CONCLUSION 21
237
+ blank |
238
+ text | 3. COMPRESSIVE TIBIOFEMORAL FORCES DURING CROUCH GAIT 23
239
+ | 3.1. INTRODUCTION 23
240
+ | 3.2. METHODS 24
241
+ | 3.2.1. SUBJECTS 24
242
+ | 3.2.2. MOTION ANALYSIS 25
243
+ | 3.2.3. MUSCULOSKELETAL MODELING 25
244
+ blank |
245
+ meta | ix
246
+ text | 3.3. RESULTS 30
247
+ | 3.2. DISCUSSION 32
248
+ | 3.2. CONCLUSION 36
249
+ blank |
250
+ text | 4. PREPARATORY CO-ACTIVATION OF THE ANKLE MUSCLES MAY
251
+ | PREVENT ANKLE INVERSION INJURIES 37
252
+ | 4.1. INTRODUCTION 37
253
+ | 4.2. METHODS 39
254
+ | 4.2.1. A NEW MUSCULOSKELETAL MODEL FOR SIMULATING ANKLE INVERSION INJURIES 39
255
+ | 4.2.2. GENERATING NOMINAL SIMULATIONS OF LANDING 42
256
+ | 4.2.3. INDUCING ANKLE INVERSION IN SIMULATED LANDINGS 44
257
+ | 4.2.4. QUANTIFYING THE EFFECT OF PLANNED CO-ACTIVATION 45
258
+ | 4.2.5. QUANTIFYING THE EFFECT OF ANKLE STRETCH REFLEXES 45
259
+ | 4.3. RESULTS 46
260
+ | 4.4. DISCUSSION 49
261
+ | 4.5. CONCLUSION 51
262
+ blank |
263
+ text | 5. CONCLUSION 52
264
+ | 5.1. CONTRIBUTIONS 52
265
+ | 5.1.1. SCIENTIFIC FINDINGS 52
266
+ | 5.1.2. TECHNOLOGICAL CONTRIBUTIONS TO THE RESEARCH COMMUNITY 54
267
+ | 5.2. FUTURE WORK 55
268
+ | 5.2.1. IMMEDIATE NEXT STEPS 55
269
+ | 5.2.1. NEW LINES OF RESEARCH 58
270
+ blank |
271
+ text | LIST OF REFERENCES 62
272
+ blank |
273
+ text | APPENDIX A: OPEN SOURCE RESOURCES FROM THIS DISSERTATION 74
274
+ blank |
275
+ text | APPENDIX B: CALCULATING JOINT CONTACT FORCES IN OPENSIM 75
276
+ blank |
277
+ |
278
+ |
279
+ |
280
+ meta | x
281
+ title | List of Tables
282
+ text | Table 3.1: Characteristics of unimaired mild, moderate, and sever subjects. ................... 25
283
+ | Table 4.1: Parameters of the muscle stretch feedback controllers that coordinated the
284
+ | trunk, hip, knee, and ankle plantar/dorsiflexor muscles. .......................................... 43
285
+ blank |
286
+ |
287
+ title | List of Illustrations
288
+ text | Figure 2.1: Musculoskeletal model of the human legs and torso, including a coupled
289
+ | tibiofemoral and patellofemoral mechanism. ............................................................. 9
290
+ | Figure 2.2: Stance-phase tibiofemoral forces predicted in a musculoskeletal model by
291
+ | minimize muscle activation squared or tibiofemoral forces, compared to in vivo
292
+ | measurements. .......................................................................................................... 14
293
+ | Figure 2.3: The effect of varying activation of individual muscles on predicted
294
+ | tibiofemoral forces shown for the most influential muscles. .................................... 15
295
+ | Figure 2.4: Maximum change in peak tibiofemoral force due to activation of a muscle or
296
+ | muscle group during the late stance phase of walking. ............................................ 16
297
+ | Figure 2.5: Model predicted activations of the nine most influential muscles produced by
298
+ | optimizations with varied muscle activity weights. .................................................. 18
299
+ | Figure 3.1: Tibiofemoral contact forces estimated in the computer model compared to
300
+ | tibiofemoral forces measured in vivo. ....................................................................... 28
301
+ | Figure 3.2: Comparison of EMG and muscle activations from static optimization for
302
+ | subjects with crouch gait. .......................................................................................... 29
303
+ | Figure 3.3: Average knee flexion angle, average compressive tibiofemoral force, and
304
+ | average quadriceps force expressed as multiples of body-weight (xBW) during one
305
+ | gait cycle for the subjects who walked with an unimpaired gait and mild, moderate,
306
+ | and severe crouch gait. .............................................................................................. 31
307
+ | Figure 3.4: Correlation of average knee flexion angle during stance with average
308
+ | compressive tibiofemoral force during stance, average quadriceps force during
309
+ | stance, average hamstrings force during stance, and average gastrocnemius force
310
+ | during stance. ............................................................................................................ 32
311
+ blank |
312
+ |
313
+ |
314
+ |
315
+ meta | xi
316
+ text | Figure 3.5: Average tibiofemoral contact force, quadriceps force, hamstring force, and
317
+ | gastrocnemius force during stance resulting from various objective functions. ....... 35
318
+ | Figure 4.1: Musculoskeletal model for simulating single-leg landing on level and inclined
319
+ | surfaces, which included a torso, pelvis, and the right (landing) limb as well as
320
+ | contact forces between the foot and floot. ................................................................ 40
321
+ | Figure 4.2: Load–deflection mechanics of passive ankle structures in the model compared
322
+ | to soft tissue mechanics measured in cadavers (Chen et al., 1988). ......................... 41
323
+ | Figure 4.3: Simulated hip, knee, and ankle plantar flexion kinematics after initial ground
324
+ | contact for a 0.3-meter landing onto level ground compared to kinematics measured
325
+ | from a subject executing the same landing. .............................................................. 44
326
+ | Figure 4.4: Ankle inversion trajectories immediately after impact for various levels of
327
+ | evertor and invertor muscle co-activation................................................................. 47
328
+ | Figure 4.5: Ankle inversion trajectories immediately after impact with ankle evertor and
329
+ | invertor stretch reflexes of various intensities. ......................................................... 47
330
+ | Figure 4.6: Contributions of muscles and ligaments to the protective eversion moment
331
+ | when adopting planned co-activation or strong stretch reflexes in the ankle evertor
332
+ | and invertor muscles. ................................................................................................ 48
333
+ blank |
334
+ |
335
+ |
336
+ |
337
+ meta | xii
338
+ title | 1. Introduction
339
+ text | Chronic knee degradation and acute ankle sprains occur at epidemic rates in
340
+ | humans and result in permanent deficits in function and health. Approximately 14% of
341
+ | Americans develop symptomatic osteoarthritis (OA) at the knee (Losina et al., 2013) and
342
+ | 12% experience ankle sprains during their lifetime (Doherty et al., 2014). These epidemic
343
+ | injuries are heavily influence by the loads in joint tissues and the muscle forces which
344
+ | generate them. For example, knee OA and pain have been linked to high tibiofemoral
345
+ | loads during walking (Baliunas, 2002; Schnitzer et al., 1993; Sharma et al., 1998),
346
+ | suggesting that changing the activity of muscles crossing the knee could decrease
347
+ | tibiofemoral loads and delay the onset and progression of OA. Similarly, ankle instability
348
+ | has been linked to slow or inactive ankle musculature, suggesting that increasing ankle
349
+ | muscle activity may prevent many ankle sprains (Delahunt, 2007; Konradsen and Bohsen
350
+ | Ravn, 1991; Löfvenberg et al., 1995). Therefor, delaying or even preventing chronic knee
351
+ | degradation, acute ankle sprains, and potentially many more joint tissue injuries require
352
+ | strategies for changing and optimizing muscle coordination to protect these tissues.
353
+ | Discovering these coordination strategies is only possible if we can safely and
354
+ | systematically control coordination and test the effect on the joints.
355
+ | In vivo measurement of muscle coordination and the resulting joint function is
356
+ | difficult, invasive, and rarely done. Directly measuring muscle tensions requires invasive
357
+ | procedures, such as severing tendons to install buckle transducers in living subjects
358
+ | (Fukashiro et al., 1993; Gregor et al., 1991). Direct measurement of joint loads requires
359
+ | implanting instrumented joint prostheses which measure the loads near the articulating
360
+ | surfaces (Graichen et al., 2007; Kirking et al., 2006). While these techniques provide
361
+ | valuable data, their invasiveness makes experiments on healthy individuals unethical,
362
+ | limiting the size and diversity of subject cohorts. For example, in vivo knee loads have
363
+ | been measured in fewer than 20 subjects, all of whom were middle aged or older and
364
+ | already experienced joint degradation and surgery (Fregly et al., 2012; Kutzner et al.,
365
+ | 2010). Similarly, systematic testing of in vivo ankle sprain mechanics is not possible
366
+ | because inducing or risking injuries in healthy subjects would be unethical. To date,
367
+ | experimental measurements of ankle mechanics are either restricted to conditions that are
368
+ | far from the thresholds of injury (Chan et al., 2008; Gutierrez et al., 2012) or are
369
+ blank |
370
+ meta | 1
371
+ text | performed on cadavers with no muscle activity (Lapointe et al., 1997; Siegler et al.,
372
+ | 1990). Therefore, systematic and comprehensive exploration of coordination strategies to
373
+ | protect joints is impractical in vivo.
374
+ | Conversely, musculoskeletal models can quantify internal muscle and joint loads
375
+ | (Delp et al., 2007; Sasaki and Neptune, 2010; Shelburne et al., 2005) and serve as a non-
376
+ | invasive environment for inducing or mitigating joint injuries. Unlike in vivo
377
+ | measurement of human subjects, computational models and simulations can explore
378
+ | unsafe conditions and experience injury without risk. Musculoskeletal models can define
379
+ | individual muscle activations and how they change throughout an activity, enabling fine
380
+ | and systematic variation of muscle coordination. Therefore, it is feasible and practical to
381
+ | use musculoskeletal models to experiment with coordination strategies and quantify the
382
+ | effect on knee and ankle function. In the work presented in this dissertation, we
383
+ | developed and used musculoskeletal models to propose and explore variations in
384
+ | coordination that might improve the function and health of the knee and ankle joints.
385
+ | Musculoskeletal models for simulating full-body motion typically capture rigid
386
+ | bone segments, joint kinematics, muscle geometry, and muscle dynamics. Researchers
387
+ | often obtain skeletal geometry by dissecting and digitizing cadavers to yield bone
388
+ | geometry (Delp et al., 1990) and the kinematics of articulating joints like the knee (Grood
389
+ | et al., 1984; Walker et al., 1988) and ankle (Isman and Inman, 1969; Siegler et al., 1988).
390
+ | Digitized cadaver geometry is also the most common source for muscle attachment
391
+ | points, moment arms, and fiber architecture (Klein Horsman et al., 2007; Ward et al.,
392
+ | 2009) used in musculoskeletal models (Arnold et al., 2010; Modenese et al., 2011). Bone,
393
+ | joint, and muscle geometry can also be quantified through medical imaging. Magnetic
394
+ | resonance imaging has been used to quantify muscle geometry and to validate and tune
395
+ | muscle moment arms (Arnold et al., 2000) and muscle volumes (Handsfield et al., 2014)
396
+ | in musculoskeletal models. Models of muscle architecture and dynamics capture the fiber
397
+ | length and velocity dependencies of muscle’s force-generating capacity (Millard et al.,
398
+ | 2013). In turn, the muscle force-generating capacity and skeletal geometry determine the
399
+ | moment-generating capacity, or strength, of the whole musculoskeletal model. The
400
+ | models described in this dissertation are based upon bone segments, joint kinematics, and
401
+ | muscle geometry derived from cadavers (Delp et al., 1990).
402
+ meta | 2
403
+ text | Full-body musculoskeletal models have been used to estimate muscle and joint
404
+ | forces during walking, but have not been used to their full capacity for varying muscle
405
+ | activations and knee forces. Muscle activations that minimize effort or metabolic
406
+ | expenditure during walking have been estimated in models and used to compute the
407
+ | resulting knee forces (Sasaki and Neptune, 2010; Shelburne et al., 2005). Similar models
408
+ | minimizing muscle activity have accurately estimated knee forces in walking subjects,
409
+ | validated by in vivo knee forces measured in instrumented prostheses in the same
410
+ | subjects (Kim et al., 2009; Walter et al., 2014). These and other previous works to date
411
+ | (Winby et al., 2009) have primarily focused on accurately estimating the muscle forces
412
+ | that occurred during measured walking experiments and analyzing the resulting knee
413
+ | forces. However, the capacity to vary muscle activations and change the resulting knee
414
+ | forces during walking remained largely unexplored until the work described in this
415
+ | dissertation.
416
+ | In contrast to models of walking, musculoskeletal models of ankle sprains are
417
+ | rare. Isolated models of the ankle have been developed to compute ankle ligament strains
418
+ | during measured motions (Wei et al., 2011b), but these models exclude muscles and
419
+ | ignore their capacity to protect the ankle (Wei et al., 2011a). Wright et al. used full-body,
420
+ | muscle-driven simulations of sidestepping to demonstrate that neutral ankle posture
421
+ | (Wright et al., 2000a) and increased passive ankle stiffness from braces or tape (Wright et
422
+ | al., 2000b) could decrease the likelihood of ankle sprains. However, these simulations
423
+ | only tested the effects of external stiffening. The effects of changes in muscle activity and
424
+ | the capacity of the intrinsic ankle muscles to prevent ankle inversion injuries remained
425
+ | unclear until the work described in this dissertation.
426
+ blank |
427
+ title | 1.1. Focus of this dissertation
428
+ text | The goal of this dissertation was to quantify and identify coordination strategies
429
+ | that might mitigate the most epidemic knee and ankle injuries by decreasing tibiofemoral
430
+ | forces during walking or resisting ankle inversion during landing. We created three-
431
+ | dimensional models of human walking and drop-landing which allowed us to probe and
432
+ | control the internal muscle forces, joint kinematics, and joint forces during walking and
433
+ | landings tasks. We used combinations of optimization and feedback control to
434
+ blank |
435
+ |
436
+ meta | 3
437
+ text | systematically vary muscle coordination strategies and task kinematics, then observed the
438
+ | effects on tibiofemoral force during walking and ankle inversion during landing. We
439
+ | found that changing the distribution of muscle forces during walking can dramatically
440
+ | alter the tibiofemoral forces while still maintaining identical walking kinematics. We
441
+ | identified the muscles with the greatest effect on increasing or decreasing the
442
+ | tibiofemoral force and found that many influential muscles do not cross the knee. Next,
443
+ | we fixed the distribution of muscle forces and systematically varied the degree of crouch
444
+ | kinematics during walking. We found that increased degree of crouch requires larger
445
+ | muscle forces and results in increased tibiofemoral forces during walking. The
446
+ | compressive tibiofemoral forces increased quadratically with the degree of knee flexion
447
+ | during stance (a measure of crouch severity), and individuals walking in severe crouch
448
+ | experienced three-times the compressive tibiofemoral force of unimpaired individuals.
449
+ | Finally, we used musculoskeletal simulations of landing under muscle feedback control
450
+ | to induce ankle inversion injuries and test whether planned co-activation or unplanned
451
+ | stretch reflexes of the ankle evertors and invertors could prevent the injury. We found
452
+ | that planned co-activation at a sub-maximal level could rapidly generate protective forces
453
+ | and prevent injury. Conversely, even the fastest known stretch reflexes (60 millisecond
454
+ | latency) were too slow to resist the ankle injuries we simulated. These analyses identify
455
+ | specific coordination strategies that change tibiofemoral forces and prevent ankle
456
+ | inversion, which serve as a foundation for developing novel interventions for decreasing
457
+ | the epidemic rates of chronic knee pain and acute ankle sprains.
458
+ blank |
459
+ title | 1.2. Significance of this research
460
+ text | The work described in this dissertation yielded valuable biomechanical
461
+ | knowledge of joint loading and injury, as well as contributed models, simulations, and
462
+ | software tools that enable new research in the biomechanics community. We created
463
+ | sophisticated musculoskeletal models and simulations to explore how muscle
464
+ | coordination and kinematics could affect the internal loads of the knee during walking
465
+ | and protect the ankle from injury during landing. Our findings identified specific
466
+ | coordination strategies —and ruled out others— that could form the basis of much
467
+ | needed clinical interventions against musculoskeletal pain and injury. We also took great
468
+ blank |
469
+ meta | 4
470
+ text | care to make our models and software tools reusable, extensible, and publicly available to
471
+ | enable and accelerate continuing work in the scientific community. The primary
472
+ | contributions of the research described in this dissertation are:
473
+ | •! Identifying the primary muscles to recruit for decreasing or increasing
474
+ | tibiofemoral forces during walking.
475
+ | •! Quantifying how severity of crouch pathology affects the tibiofemoral forces
476
+ | during walking in individuals with cerebral palsy.
477
+ | •! Quantifying whether or not planned co-activation or physiologic stretch
478
+ | reflexes of the ankle evertors and invertors can prevent ankle inversion
479
+ | injuries during landing.
480
+ | •! Designing and disseminating novel models and software to explore full-body
481
+ | musculoskeletal dynamics, muscle coordination, and joint function.
482
+ blank |
483
+ title | 1.3. Overview of this dissertation
484
+ text | This dissertation is composed of three research studies that are presented as self-
485
+ | contained articles. Much of this work was performed in collaboration with others;
486
+ | therefore, I use the pronoun “we” throughout the dissertation to refer to myself and my
487
+ | coauthors. After this general introduction, Chapter 2 describes a three-dimensional
488
+ | modeling and optimization framework for studying walking gait and an analysis
489
+ | determining the changes in tibiofemoral forces due to variations in muscle activity. This
490
+ | work was previously published in the Journal of Orthopaedic Research in collaboration
491
+ | with my coauthors Saikat Pal and Scott Delp (DeMers et al., 2014). Chapter 3 describes
492
+ | an analysis using a similar modeling and optimization framework to determine the
493
+ | changes in tibiofemoral forces due to variations in knee flexion during walking in
494
+ | unimpaired versus crouch gaits. This work was previously published in the journal Gait
495
+ | & Posture in collaboration with my coauthors Katherine Steele and Scott Delp (Steele et
496
+ | al., 2012). Chapter 4 describes a landing model with foot-floor contact, passive ankle
497
+ | moments representing ligaments, and novel muscle feedback controllers as well as a
498
+ | battery of landing simulations that test the efficacy of two ankle coordination strategies
499
+ | for preventing ankle injury. This work has been submitted for peer review in
500
+ | collaboration with my coauthors Jennifer Hicks and Scott Delp. The final chapter
501
+ blank |
502
+ |
503
+ meta | 5
504
+ text | highlights the important contributions of this dissertation to science and to the broader
505
+ | research community and outlines specific questions for future research.
506
+ blank |
507
+ |
508
+ |
509
+ |
510
+ meta | 6
511
+ title | 2. Changes in tibiofemoral forces due to variations in muscle
512
+ | activity during walking
513
+ blank |
514
+ title | 2.1. Introduction
515
+ text | The knee experiences large mechanical loads during activities of daily living.
516
+ | Walking, for example, induces forces as large as three bodyweights at the knee (Fregly et
517
+ | al., 2012; Kutzner et al., 2010). These loads affect the development, maintenance, and
518
+ | health of the joint tissues (Carter and Wong, 1988). The onset and progression of
519
+ | osteoarthritis can be associated with large loads at the knee (Baliunas, 2002; Sharma et
520
+ | al., 1998), and increased knee loads have been linked to pain in patients with
521
+ | osteoarthritis (Schnitzer et al., 1993). Since tibiofemoral loads during walking are
522
+ | produced primarily by muscle forces (Sasaki and Neptune, 2010; Shelburne et al., 2006),
523
+ | muscle coordination plays a pivotal role in determining tibiofemoral loads. Identifying
524
+ | muscle coordination patterns that alter tibiofemoral loads may assist in the design of
525
+ | rehabilitation programs to restore and maintain the health of the knee.
526
+ | Training and rehabilitation programs can reduce tibiofemoral loads during
527
+ | walking by alteration of gait kinematics. Fregly et al. demonstrated that adopting a
528
+ | “medial thrust” gait reduced medial compartment forces measured in vivo using
529
+ | instrumented knee replacements (Fregly et al., 2009). Strategies altering foot progression
530
+ | angle and medio-lateral foot placement during the stance phase of walking reduce the net
531
+ | knee adduction moment (Chang et al., 2007; Guo et al., 2007; Shull et al., 2011) and knee
532
+ | pain (Shull et al., 2013). Exaggerated trunk sway in the medio-lateral direction during
533
+ | walking can reduce net knee adduction moments (Mündermann et al., 2008a). While
534
+ | previous work demonstrates that altering gait kinematics can reduce knee loads during
535
+ | walking, the effects of altered muscle coordination on tibiofemoral loads remain unclear.
536
+ | Studying the effects of altered muscle coordination on tibiofemoral loads is
537
+ | challenging. Direct measurement of tibiofemoral loads during walking requires
538
+ | implanting instrumented knee prostheses in living subjects (D’Lima et al., 2005; Fregly et
539
+ | al., 2012; Kutzner et al., 2010). This technique provides valuable data, but is highly
540
+ | invasive, making measurement of tibiofemoral loads impractical in healthy subjects and
541
+ | limiting the number of subjects in which knee loads can be measured. An alternative to
542
+ blank |
543
+ meta | 7
544
+ text | direct measurement is calculating tibiofemoral loads using musculoskeletal modeling.
545
+ | Model-based studies have estimated tibiofemoral loads using a variety of muscle
546
+ | coordination strategies, including minimizing muscle activity (Sritharan et al., 2012;
547
+ | Steele et al., 2012), muscle stress (Glitsch and Baumann, 1997), or energy consumption
548
+ | (Shelburne et al., 2005). Previous studies have determined a single set of muscle forces
549
+ | during walking and the resulting tibiofemoral loads, but the changes in tibiofemoral loads
550
+ | arising from variations in muscle activations remains unknown.
551
+ | The purpose of this study was to determine the changes in tibiofemoral forces due
552
+ | to variations in muscle activation patterns. We first evaluated whether a commonly
553
+ | assumed muscle coordination strategy, minimizing the sum of muscle activations
554
+ | squared, Thelen et al. (2003) produced tibiofemoral forces that were consistent with in
555
+ | vivo measurements. We next determined the potential for a subject to decrease
556
+ | tibiofemoral forces during walking by adopting a muscle coordination strategy that
557
+ | minimized tibiofemoral forces. Finally, we determined the changes in tibiofemoral forces
558
+ | due to varied activations of individual muscles of the lower limb and identified the
559
+ | muscles with the greatest potential to alter tibiofemoral loading.
560
+ blank |
561
+ title | 2.2. Methods
562
+ blank |
563
+ title | 2.2.1. Human Subject Data
564
+ text | We used walking data of a subject implanted with an instrumented total knee
565
+ | replacement (TKR). These data are available from the ASME Grand Challenge
566
+ | Project(Fregly et al., 2012). The subject (83 year old male, 64 kg, 166 cm tall) had
567
+ | received bilateral TKR. The right TKR was instrumented to measure tibiofemoral forces
568
+ | normal to the tibial plateau (D’Lima et al., 2005). The data include three-dimensional
569
+ | marker positions, ground reaction forces, and tibiofemoral forces measured
570
+ | simultaneously during walking at the subject’s self-selected speed (1.3 m/s).
571
+ blank |
572
+ title | 2.2.2. OpenSim Model
573
+ text | We created a full-body gait model in OpenSim (Delp et al., 2007) to analyze knee
574
+ | loads. The 10 segment, 19 degree of freedom (dof) model (Figure 2.1 A) was adapted
575
+ | from a musculoskeletal model of the lower limb published by Delp et al. (1990) (Figure
576
+ blank |
577
+ meta | 8
578
+ text | 2.1 A). The model was driven by 92 muscle-tendon actuators (Thelen et al., 2003) that
579
+ | captured force-length-velocity properties, with muscle geometry and architecture based
580
+ | on adult cadaver data (Delp et al., 1990). A ball-and-socket joint connected the torso to
581
+ | the pelvis. The right and left lower limbs consisted of a ball-and-socket hip joint, a
582
+ | revolute ankle joint, and a coupled knee mechanism (1 dof) with translations of the tibia
583
+ | and patella prescribed by the knee flexion angle. We refined the knee mechanism of the
584
+ | generic model so that the patella articulated with the femur, and the quadriceps wrapped
585
+ | around the patella before attaching to the tibial tuberosity (Figure 2.1 B). The patella
586
+ | functioned as a frictionless pulley that redirected the quadriceps forces to act along the
587
+ | line of action of the patellar ligament. This refined knee mechanism reproduced the
588
+ | patellofemoral kinematics in Delp et al. (1990) and enabled resultant tibiofemoral forces
589
+ | to be computed.
590
+ blank |
591
+ |
592
+ |
593
+ |
594
+ text | Figure 2.1: (A) Musculoskeletal model of the human legs and torso. The tibiofemoral and patellofemoral
595
+ | joints were modeled as planar joints with translations and rotations coupled to the knee flexion angle (B).
596
+ | Forces in the quadriceps (B, dark red) were transmitted through the patella to the tibia (see Methods for
597
+ | details).
598
+ blank |
599
+ meta | 9
600
+ text | We used the full-body model to simulate 3D walking dynamics of the
601
+ | instrumented subject. All joint kinematics, muscle attachments, and the resulting muscle
602
+ | moment arms were scaled to match the segment lengths of the subject. Additionally, the
603
+ | optimal fiber length and tendon slack length of each muscle were scaled according to the
604
+ | muscle’s total change in muscle-tendon length. Other muscle parameters, including peak
605
+ | isometric forces and pennation angles, were not altered. We determined joint kinematics
606
+ | for five trials of normal walking by minimizing error between the experimentally
607
+ | measured marker positions and the corresponding markers on the model. A residual
608
+ | reduction algorithm (Delp et al., 2007) adjusted the model mass properties and joint
609
+ | kinematics for each trial to ensure that the ground reaction forces and body segment
610
+ | accelerations were dynamically consistent. After residual reduction the model segment
611
+ | masses differed by less than 2% from the scaled model, and the resulting joint kinematics
612
+ | differed by less than 2 degrees from the kinematics tracked by the residual reduction
613
+ | algorithm.
614
+ blank |
615
+ title | 2.2.3. Optimization
616
+ text | We developed a static optimization framework in OpenSim to calculate individual
617
+ | muscle forces and resulting tibiofemoral forces for each trial. This optimization
618
+ | minimized a sum of muscle activations and joint loads by combining them in a single
619
+ | objective function:
620
+ | Equation 2.1
621
+ | 6 *7
622
+ | )<=&)>, %4 7 0 0 %4 0 0
623
+ | )*+,-./,
624
+ | 69 *9
625
+ | min $ %& '& (
626
+ | $+$ $345 0 %4 0 34 $ + $ ;45 0 %4 0 ;4 $ $ $
627
+ | &01
628
+ | 4 6 *
629
+ | 0 0 %4 : 0 0 %4 :
630
+ blank |
631
+ |
632
+ |
633
+ text | subject to the constraint
634
+ | )*+,-./,
635
+ | 3& ('& ) + 3/A>/B)C. = E F F + G F, F + 3-=),>BC&)> $$$Equation$2.2
636
+ | &01
637
+ blank |
638
+ |
639
+ |
640
+ text | In the objective function, ai was the activation of the ith muscle, which could vary
641
+ | between 0 and 1. The activation weight, wi, was a weighting constant set to penalize
642
+ meta | 10
643
+ text | 6 6 6
644
+ | activation of the ith muscle. The joint force weighting constants, %4 7 , %4 9 , and %4 : were
645
+ blank |
646
+ text | set to penalize the vector components of the jth joint reaction force, 34 . Similarly, the joint
647
+ | * * *:
648
+ | moment weighting constants, %4 7 , %4 9 , and %4 were set to penalize the vector
649
+ blank |
650
+ text | components of the jth joint reaction moment,$;4 . The joint reaction forces and moments
651
+ | represented the resultant loads carried by the articulating joint structures, and were
652
+ | calculated using the JointReaction analysis in OpenSim (Steele et al., 2012).
653
+ | We constrained the optimization such that the calculated muscle forces and
654
+ | measured external forces balanced all inertial forces to reproduce the measured walking
655
+ | motion (Equation 2.2). 3& ('& ) represented the force applied by muscle i due to its
656
+ | activation, '& . The external forces included forces due to gravity and ground reactions at
657
+ | the feet. The system mass matrix, E F , was a function of the measured generalized
658
+ | coordinates, F. The velocity dependent forces, G(F, F), included centripetal and Coriolis
659
+ | forces. The kinematic constraint forces included forces due to coupling between
660
+ | patellofemoral and tibiofemoral kinematics. Equation 2.2 guaranteed that the optimized
661
+ | muscle activations reproduced the walking kinematics and ground reaction forces
662
+ | measured from the instrumented TKR subject.
663
+ blank |
664
+ title | 2.2.4. A muscle coordination pattern minimizing muscle activations
665
+ text | We simulated the five trials of normal walking with a muscle coordination pattern
666
+ | that minimized muscle activations. In this case, the generalized objective function
667
+ | (Equation 2.1) simplified to
668
+ | )*+,-./,
669
+ | (
670
+ | min $ 1×'& $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Equation$2.3$$$
671
+ | &01
672
+ blank |
673
+ text | The activation weight, w, was set to 1 for all muscles to penalize all muscle activations
674
+ | uniformly. The joint force and moment weighting constants were set to zero so that joint
675
+ | loads were not penalized. This optimization strategy was used in previous
676
+ | studies.(Anderson and Pandy, 2001; Sritharan et al., 2012)
677
+ blank |
678
+ |
679
+ |
680
+ |
681
+ meta | 11
682
+ title | 2.2.5. A muscle coordination pattern minimizing compressive tibiofemoral force
683
+ text | We simulated the five trials of normal walking with a muscle coordination pattern
684
+ | that minimized the compressive force in the tibiofemoral joint of the instrumented leg. In
685
+ | this case, the generalized objective function (Equation 2.1) simplified to
686
+ blank |
687
+ |
688
+ text | % 67 = 0 0 0
689
+ | 5
690
+ | min 356 0 69
691
+ | % =1 0 356 $$$$$$$$$$$$$$$$$$$$Equation$2.4
692
+ | 6:
693
+ | 0 0 % =0
694
+ blank |
695
+ |
696
+ text | which is equivalent to
697
+ blank |
698
+ |
699
+ text | (
700
+ | min 356,U $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Equation$2.5
701
+ blank |
702
+ |
703
+ text | The activation weight, w, was set to zero for all muscles so that muscle activations
704
+ | were not penalized. The compressive tibiofemoral force was defined as the vector
705
+ | component of the tibiofemoral force acting normal to the tibial plateau, 356,U . The
706
+ | compressive tibiofemoral force was penalized by setting its weighting constant, % 69 ,
707
+ | equal to 1; all other joint force and moment weighting constants were set to zero. This
708
+ | strategy determined the muscle coordination pattern that minimized the tibiofemoral
709
+ | forces and matched the measured walking dynamics.
710
+ blank |
711
+ title | 2.2.6. Changes in tibiofemoral forces due to varied activations of individual muscles
712
+ text | We determined the change in tibiofemoral forces due to varied activations of
713
+ | individual muscles of the lower limb by performing optimizations with varied activation
714
+ | weighting constants, wi, for each muscle. For these optimizations, the generalized
715
+ | objective function (Equation 2.1) was simplified:
716
+ blank |
717
+ |
718
+ text | )*+,-./,
719
+ | (
720
+ | min %& '& $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Equation$2.6
721
+ | &01
722
+ blank |
723
+ text | In Equation 6, w = 0 represented no penalty to activate a muscle during walking, while w
724
+ | = 100 prohibited activation of a muscle.
725
+ blank |
726
+ |
727
+ meta | 12
728
+ text | To investigate the change in tibiofemoral forces due to varied activation of a
729
+ | muscle, we performed two static optimizations for each trial of normal walking. First, to
730
+ | prohibit activation of a particular muscle, we performed a static optimization with w =
731
+ | 100 for that muscle while w for all other muscles was held at 1. Second, to promote
732
+ | activation of a particular muscle, we performed a static optimization with w = 0 for that
733
+ | muscle while w for all other muscles was held at 1. Performing two static optimizations
734
+ | for each muscle of the lower limb determined the range of tibiofemoral forces due to
735
+ | varying activation of that muscle. We determined the change in peak tibiofemoral force
736
+ | due to activation of a muscle by calculating the difference between peak tibiofemoral
737
+ | forces obtained from the static optimizations with w = 0 and w = 100.
738
+ | Our methods produced similar joint moments, muscle activations, and
739
+ | tibiofemoral forces for all five walking trials; thus, we have included results from one
740
+ | representative trial for clarity.
741
+ blank |
742
+ title | 2.3. Results
743
+ text | A muscle coordination strategy that minimized muscle activations produced
744
+ | greater tibiofemoral forces than forces measured in vivo (Figure 2.2). During late stance
745
+ | (33-66% gait), a muscle coordination strategy that minimized the sum of muscle
746
+ | activations squared produced a peak tibiofemoral force that was 1.7 bodyweights larger
747
+ | than the peak force measured in vivo. This difference was less pronounced during early
748
+ | stance (0-33% gait), when minimizing muscle activations squared produced a peak
749
+ | tibiofemoral force that was 0.4 bodyweights larger than the peak force measured in vivo.
750
+ | During the swing phase (not shown), differences between the model-predicted and
751
+ | measured forces were less than 0.2 bodyweights.
752
+ | A muscle coordination strategy that minimized tibiofemoral forces produced
753
+ | lower model-predicted forces than forces measured in vivo (Figure 2.2). During late
754
+ | stance, a muscle coordination strategy that minimized tibiofemoral force produced a peak
755
+ | model-predicted force that was 1.5 bodyweights lower than the peak force measured in
756
+ | vivo. During early stance, this strategy produced a peak tibiofemoral force that was
757
+ | similar to the peak force measured in vivo.
758
+ blank |
759
+ |
760
+ |
761
+ |
762
+ meta | 13
763
+ text | Figure 2.2: Stance-phase tibiofemoral forces predicted using a musculoskeletal model and muscle
764
+ | coordination strategies that minimize muscle activation squared (dashed black line) and tibiofemoral
765
+ | forces (solid grey line). The minimum tibiofemoral force represents the smallest compressive tibiofemoral
766
+ | force the model generated while still reproducing the measured walking kinematics and kinetics. Measured
767
+ | in vivo forces (solid black line) are shown.
768
+ blank |
769
+ |
770
+ |
771
+ text | Tibiofemoral forces were sensitive to activations of muscles of the lower limb,
772
+ | especially during the late stance phase of walking (Figure 2.3). Tibiofemoral forces were
773
+ | sensitive to activations of the gastrocnemius and the rectus femoris but only during late
774
+ | stance. Tibiofemoral forces were also sensitive to activations of the psoas major, iliacus,
775
+ | and soleus muscles during late stance. Tibiofemoral forces were sensitive to activations
776
+ | of the biarticular hamstrings during early stance, and were sensitive to activations of the
777
+ meta | 14
778
+ text | biceps femoris short head during late stance. Tibiofemoral forces were insensitive to
779
+ | activations of the vasti muscles; this occurred because producing the dynamics of the
780
+ | subject’s walking required activation of the vasti, even when activation of these muscles
781
+ | was penalized in the optimization. Varying activations of the gluteus medius muscle
782
+ | produced large changes in tibiofemoral forces throughout stance phase.
783
+ blank |
784
+ |
785
+ |
786
+ |
787
+ text | Figure 2.3: The effect of varying activation of individual muscles on predicted tibiofemoral forces shown
788
+ | for the most influential muscles. The shaded area represents the range of predicted tibiofemoral forces due
789
+ | to varying the activation of each muscle. For each muscle, the boundary indicated by w = 0 corresponded
790
+ | to the optimization for which the muscle activity weight of that muscle was set to zero in the objective
791
+ | function. This objective function permitted the muscle to activate without penalty. The model predictions
792
+ | that minimize uniformly weighted muscle activations squared (dashed black lines) are shown.
793
+ blank |
794
+ |
795
+ |
796
+ |
797
+ meta | 15
798
+ text | Figure 2.4: Maximum change in peak tibiofemoral force due to activation of a muscle or muscle group
799
+ | during the late stance phase of walking. The maximum change was calculated as the difference between
800
+ | peak tibiofemoral forces obtained from the static optimizations with w = 0 (promote activity) and w = 100
801
+ | (prohibit activity) for that muscle or muscle group. Note that increasing the activation of gluteus medius
802
+ | greatly decreased the tibiofemoral force, whereas increasing the activation of the gastrocnemius increased
803
+ | tibiofemoral force. The changes in peak tibiofemoral force during the late stance of walking were minimal
804
+ | for the muscles not shown.
805
+ blank |
806
+ |
807
+ |
808
+ text | Promoting activation of the gluteus medius produced the largest decrease in peak
809
+ | tibiofemoral force during late stance (Figure 2.4). Promoting activation of the psoas,
810
+ | iliacus, and soleus muscles also decreased peak tibiofemoral force during late stance.
811
+ | Promoting activation of the gastrocnemius produced the largest increase in peak
812
+ | tibiofemoral force during late stance. Promoting activation of the rectus femoris and
813
+ blank |
814
+ meta | 16
815
+ text | biceps femoris short head also increased peak tibiofemoral force during late stance. The
816
+ | vasti remained inactive after 30% of gait and had little effect on peak tibiofemoral force
817
+ | during late stance. Changing the activation of other muscles of the lower limb had little
818
+ | effect on peak tibiofemoral force during late stance.
819
+ blank |
820
+ title | 2.4. Discussion
821
+ text | Our results demonstrate that altering muscle activation patterns during walking
822
+ | can induce large changes in compressive forces at the tibiofemoral joint. Tibiofemoral
823
+ | forces were sensitive to activations of a small subset of lower limb muscles, including the
824
+ | gluteus medius, gastrocnemius, and rectus femoris, indicating that these muscles have the
825
+ | greatest potential to affect knee loading. This suggests that interventions aimed at
826
+ | retraining muscle coordination should target these muscles to reduce tibiofemoral loads.
827
+ | Our first goal was to evaluate whether a strategy minimizing the sum of muscle
828
+ | activations squared produced tibiofemoral forces that were consistent with in vivo
829
+ | measurements. When adopting this strategy, our model over-predicted tibiofemoral
830
+ | forces during the late stance phase. The discrepancy was due to over-activity of the rectus
831
+ | femoris and gastrocnemius, which were the largest contributors to the over-predicted
832
+ | tibiofemoral force. The model activated the rectus femoris during late stance, while
833
+ | electromyography (EMG) measured from the subject suggest that the rectus femoris may
834
+ | have been inactive at this time (Figure 2.5). Similarly, the strategy minimizing muscle
835
+ | activations squared activated the gastrocnemius earlier and more than the soleus;
836
+ | however, EMG data show that the subject activated the gastrocnemius and soleus
837
+ | muscles equitably during late stance. Optimization objectives that penalized activity of
838
+ | the rectus femoris and gastrocnemius produced lower tibiofemoral forces that better
839
+ | matched in vivo measurements.
840
+ | Our second goal was to determine the potential for a subject to decrease
841
+ | tibiofemoral forces during walking by altering muscle coordination. Our model achieved
842
+ | tibiofemoral forces that were lower than in vivo measurements during late stance by
843
+ | adopting different muscle activation patterns compared to the TKR subject (Figure 2.2).
844
+ | For example, the model minimized tibiofemoral forces by deactivating the gastrocnemius
845
+ | and hamstrings during late stance, whereas the TKR subject activated these muscles
846
+ blank |
847
+ |
848
+ meta | 17
849
+ text | during late stance (Fregly et al., 2012), resulting in higher tibiofemoral forces. Thus, the
850
+ | model demonstrated a lower bound for the subject’s tibiofemoral forces during late
851
+ | stance.
852
+ blank |
853
+ |
854
+ |
855
+ |
856
+ text | Figure 2.5: Model predicted activations of the nine most influential muscles produced by optimizations
857
+ | with varied muscle activity weights. For each muscle, activity ranged from 0 (no activity) to 1 (maximum
858
+ | activity). A muscle activity weight of w = 100 (dotted blue) prohibited the muscle from activating, while w
859
+ | = 0 (solid red) allowed the muscle to activate freely. The range of muscle activity used by the model (the
860
+ | area between the dotted blue and solid red lines) resulted in a corresponding variation in tibiofemoral
861
+ | forces (Figure 3). Filtered electromyography (EMG) signals, measured from the subject during the same
862
+ | trial of normal walking, are provided for comparison. EMG was not measured from the psoas major or
863
+ | iliacus muscles.
864
+ blank |
865
+ |
866
+ meta | 18
867
+ text | Increasing the activation of gluteus medius, a muscle crossing the hip, had the
868
+ | greatest potential to reduce tibiofemoral forces during walking. The gluteus medius
869
+ | produced the largest hip abduction moment throughout the stance phase of walking. In
870
+ | our simulations, increased activation of the gluteus medius resulted in a compensatory
871
+ | decrease in activation of the rectus femoris, tensor fasciae latae, and sartorius muscles to
872
+ | maintain the required hip abduction moment. The decrease in activations of the rectus
873
+ | femoris muscle in turn resulted in a compensatory decrease in activations of the
874
+ | gastrocnemius and biceps femoris short head muscles to maintain net knee moments.
875
+ | These decreased activations of the rectus femoris, gastrocnemius, and biceps femoris
876
+ | short head muscles resulted in decreased tibiofemoral forces. Conversely, decreasing
877
+ | activations of the gluteus medius muscle increased activations of the rectus femoris,
878
+ | gastrocnemius, and biceps femoris short head muscles, thereby increasing tibiofemoral
879
+ | forces. Thus, while the gluteus medius does not cross the knee, changes in activity or
880
+ | forces generated by this muscle produce substantial compensations from other muscles
881
+ | and have a potent effect on tibiofemoral forces. Our results may seem inconsistent with
882
+ | studies that have reported minimal contributions of the gluteus medius to tibiofemoral
883
+ | force (Sasaki and Neptune, 2010; Sritharan et al., 2012); however, these studies reported
884
+ | the contributions of individual muscles to tibiofemoral force based on a single muscle
885
+ | activation pattern and did not account for compensatory muscle activity. In contrast, we
886
+ | selectively changed activations of individual muscles and allowed other muscle
887
+ | activations to compensate to reproduce the walking motion.
888
+ | Increasing the activation of the gastrocnemius and rectus femoris, two biarticular
889
+ | muscles crossing the knee, had the greatest potential to increase tibiofemoral forces
890
+ | during the late stance phase of walking. In addition to generating moments about the
891
+ | knee, the gastrocnemius and rectus femoris muscles produce ankle plantarflexion and hip
892
+ | flexion moments, respectively, in preparation for swinging the leg. During late stance,
893
+ | increased activation of the gastrocnemius generated a large knee flexion moment, causing
894
+ | compensatory co-activation of the rectus femoris to balance the net knee moment.
895
+ | Conversely, increased activation of the rectus femoris generated a knee extension
896
+ | moment, causing compensatory co-activation of the gastrocnemius and biceps femoris
897
+ blank |
898
+ meta | 19
899
+ text | short head. Co-activation of the gastrocnemius, rectus femoris, and biceps femoris short
900
+ | head increased tibiofemoral forces. Previous studies have shown that the gastrocnemius
901
+ | and rectus femoris muscles contribute a higher proportion of the tibiofemoral force than
902
+ | the soleus and the uniarticular hip flexors (Sasaki and Neptune, 2010; Sritharan et al.,
903
+ | 2012). Sasaki and Neptune (2010) postulated that decreasing activations of the biarticular
904
+ | knee muscles may decrease tibiofemoral loading; our results support this idea. We also
905
+ | found that promoting activations of the soleus and uniarticular hip flexors could reduce
906
+ | tibiofemoral force. These results suggest that training to strengthen and activate the
907
+ | soleus and uniarticular hip flexors may decrease tibiofemoral forces and associated knee
908
+ | pain.
909
+ | Tibiofemoral forces were most sensitive to muscle activations during the late
910
+ | stance phase of walking. During late stance, net knee flexion-extension moments are
911
+ | small compared to early stance (Liu et al., 2008; McClelland et al., 2010). Low net knee
912
+ | flexion-extension moments during late stance allow a large range of muscle activations
913
+ | while still reproducing the measured walking motion. Since minimal muscle forces are
914
+ | required to generate the low net knee moments, the model can minimally activate
915
+ | muscles crossing the knee, especially the quadriceps (Figure 2.5). However, the model
916
+ | can also co-activate the knee muscles, using a large portion of their force-generating
917
+ | capacity to generate co-contraction. This permits substantial freedom to vary muscle
918
+ | activations and tibiofemoral forces during late stance without altering the walking
919
+ | motion. In contrast, larger knee extension moments during early stance demand larger
920
+ | activations of the knee extensors. Therefore, muscle activations that reproduce walking
921
+ | are constrained to a narrow range, allowing only small variations in tibiofemoral forces
922
+ | during early stance.
923
+ | A limitation of this study was that we used walking kinematics measured from
924
+ | one subject with bilateral TKR, and it is unclear if this dataset adequately represents a
925
+ | healthy or osteoarthritic population with intact knees. Subjects with TKR have been
926
+ | shown to walk with a straighter leg and reduced knee moments during stance (Bolanos et
927
+ | al., 1998; McClelland et al., 2010), presumably to reduce quadriceps forces and
928
+ | tibiofemoral loading. In our case, the TKR subject displayed stance phase knee moments
929
+ | that are similar to pain free subjects. Peak knee moments of from 2-5% bodyweight times
930
+ meta | 20
931
+ text | height are typically reported for pain free subjects walking at self-selected speed (Liu et
932
+ | al., 2008; McClelland et al., 2010; Pandy et al., 2010); in comparison, our TKR subject
933
+ | generated peak knee moments of 4% bodyweight times height. The knee moments were
934
+ | similar across five walking trials; hence, our reported results from a single trial are
935
+ | representative of the remaining four normal walking trials. A second limitation of this
936
+ | study was that our simplified tibiofemoral joint did not permit knee abduction-adduction
937
+ | or internal-external rotation. Including these degrees of freedom would require the knee
938
+ | muscles to balance net moments in these directions. We speculate that producing these
939
+ | moments would increase muscle activations and tibiofemoral forces reported in this
940
+ | study. Tibiofemoral forces also depend on muscle geometry and strength; therefore,
941
+ | changes in the model’s muscle attachments and architecture would affect the reported
942
+ | results as well. A fourth limitation was that we permitted all muscles to activate
943
+ | independently. This may result in compensatory muscle coordination strategies that may
944
+ | be physiologically difficult for a patient to adopt. For example, a patient may have
945
+ | difficulty activating the soleus without activating the gastrocnemius. Finally, we
946
+ | calculated muscle activations that did not cause kinematic compensations (i.e., walking
947
+ | dynamics were unchanged when muscle activations were varied). Other studies have
948
+ | demonstrated that altered walking kinematics also decrease tibiofemoral loads (Fregly et
949
+ | al., 2009; Shull et al., 2013, 2011). Permitting walking kinematics to change along with
950
+ | muscle activations will likely result in greater reductions in tibiofemoral forces than those
951
+ | reported here.
952
+ blank |
953
+ title | 2.5. Conclusion
954
+ text | This study identified muscles that substantially affect tibiofemoral forces during
955
+ | walking. Interestingly, inactivity or weakness in the muscles crossing the hip and ankle
956
+ | joints can affect the loads of the knee joint. Increased activation and force in the gluteus
957
+ | medius, psoas major, iliacus, and soleus muscles may decrease tibiofemoral forces.
958
+ | Decreased activation of the gastrocnemius and rectus femoris muscles can also decrease
959
+ | tibiofemoral forces. Training programs targeting knee rehabilitation should include
960
+ | exercises that strengthen and activate the gluteus medius, psoas, and soleus muscles. It
961
+ | may be feasible to combine kinematic gait retraining with muscle coordination and
962
+ blank |
963
+ |
964
+ meta | 21
965
+ text | strength training to design interventions that substantially decrease tibiofemoral forces
966
+ | during walking.
967
+ blank |
968
+ |
969
+ |
970
+ |
971
+ meta | 22
972
+ title | 3. Compressive tibiofemoral forces during crouch gait
973
+ blank |
974
+ title | 3.1. Introduction
975
+ text | Crouch gait is a common pathological walking pattern adopted by individuals
976
+ | with cerebral palsy that is characterized by excessive hip and knee flexion. Walking in a
977
+ | crouched posture is inefficient (Rose et al., 1989; Waters and Mulroy, 1999) and can lead
978
+ | to joint pain and compromise an individual’s walking ability (Opheim et al., 2009).
979
+ | Surgical and therapeutic treatments for crouch gait aim to produce a more upright posture
980
+ | to improve walking efficiency and prevent joint pain and deterioration.
981
+ | Altered loads on the knee can have adverse effects on joint health. Cartilage and
982
+ | bone growth and maintenance depend on the loads experienced during daily life (Carter
983
+ | and Wong, 1988; Wong and Carter, 2003), and abnormal loading can lead to joint pain,
984
+ | cartilage degeneration (Eckstein et al., 2002), and the formation of bone deformities
985
+ | (Kerr Graham and Selber, 2003). Joint pain can be a significant contributor to walking
986
+ | deterioration in adults with cerebral palsy. Jahnsen et al. (2004) found that 41% of adults
987
+ | with diplegic cerebral palsy reported significant knee pain.
988
+ | To develop successful treatment strategies for crouch gait, surgeons and therapists
989
+ | need to understand how joint loads change with increasing knee flexion during crouch
990
+ | gait and how joint loads may change with altered knee flexion. Treatments are aimed at
991
+ | reducing the excessive knee flexion associated with crouch gait, but it is unclear if
992
+ | changes in knee flexion will alter joint loads. Quantifying the relationship between knee
993
+ | flexion, muscle forces, and the compressive force on the tibia during gait could help
994
+ | clinicians determine if a more upright posture could reduce the risks caused by altered
995
+ | joint loading.
996
+ | Perry and colleagues examined knee forces in a static crouched posture using a
997
+ | cadaver model and reported increasing compressive tibiofemoral force with increasing
998
+ | knee flexion (Perry et al., 1975). In dynamic activities, such as walking, we expect larger
999
+ | joint forces than in a static posture due to the additional muscle forces required to support
1000
+ | the body weight during movement and propel the body forward (Liu et al., 2008).
1001
+ | Compressive tibiofemoral forces during unimpaired walking have been reported in the
1002
+ | range of 2-3 times body-weight (D’Lima et al., 2006; Kutzner et al., 2010; Mündermann
1003
+ blank |
1004
+ meta | 23
1005
+ text | et al., 2008b; Shelburne et al., 2005). During crouch gait, muscle forces in the stance-
1006
+ | limb are higher than during unimpaired walking (Steele et al., 2010). Since muscle forces
1007
+ | are the primary contributors to joint loading (Inman, 1947; Sasaki and Neptune, 2010),
1008
+ | we expect that compressive tibiofemoral forces are higher during crouch gait, yet the
1009
+ | relationship between crouch gait severity and the compressive tibiofemoral force remains
1010
+ | unknown.
1011
+ | The purpose of this study was to estimate the magnitude of the compressive
1012
+ | tibiofemoral force during crouch gait and examine how this force changes with crouch
1013
+ | severity. To achieve this goal we estimated the muscles forces and the compressive force
1014
+ | on the tibia in unimpaired children and children with cerebral palsy who walked in
1015
+ | varying degrees of crouch severity. We used a freely-available biomechanics software
1016
+ | package, OpenSim (Delp et al., 2007), to scale a musculoskeletal model to each
1017
+ | individual and estimate muscle joint loads based upon each individual’s gait dynamics.
1018
+ blank |
1019
+ title | 3.2. Methods
1020
+ blank |
1021
+ title | 3.2.1. Subjects
1022
+ text | The subjects for this study were selected from a database of patients treated at
1023
+ | Gillette Children’s Specialty Healthcare (St. Paul, MN; Table 3.1). Nine subjects with
1024
+ | spastic diplegic cerebral palsy were selected to cover a broad range of crouch severity
1025
+ | and were divided evenly into three groups: mild crouch gait (minimum knee flexion
1026
+ | angle of 20-35º), moderate crouch gait (minimum knee flexion angle of 35-50º), and
1027
+ | severe crouch gait (minimum knee flexion angle greater than 50º). All subjects walked
1028
+ | with excess knee and hip flexion and had at least 5º of ankle dorsiflexion during stance.
1029
+ | We excluded subjects that had greater than 30º of femoral or tibial torsion, which can
1030
+ | affect muscle moment arms and the ability of muscles to generate accelerations (Hicks et
1031
+ | al., 2008). Three unimpaired subjects were chosen who were representative of the age
1032
+ | and stature of the subjects with cerebral palsy. Additionally, a subject with an
1033
+ | instrumented total knee replacement (TKR, age: 80 years, weight: 64 kg, walking
1034
+ | speed/height: 0.74 s-1) was included to provide experimental measurements of the
1035
+ | compressive tibiofemoral force for comparison with forces estimated from the
1036
+ | musculoskeletal model. This subject was not included in subsequent comparisons
1037
+ meta | 24
1038
+ text | between unimpaired gait and crouch gait due to differences in age and stature in relation
1039
+ | to the other subjects.
1040
+ blank |
1041
+ |
1042
+ |
1043
+ title | Table 3.1: Subject characteristics
1044
+ blank |
1045
+ text | N Age Height Weight Speed/Height Minimum
1046
+ | (yrs) (cm) (kg) (s-1) KFA* (deg)
1047
+ | Unimpaired 3 10.3 ± 145 ± 16 36.3 ± 0.79 ± 0.1 1.7 ± 5.5
1048
+ | 3.4 8.8
1049
+ | Mild Crouch 3 8.8 ± 123 ± 7 24.2 ± 0.67 ± 0.1 19.1 ± 3.8
1050
+ | 0.8 3.6
1051
+ | Moderate 3 9.2 ± 123 ± 15 43.1 ± 0.63 ± 0.1 36.1 ± 4.0
1052
+ | Crouch 2.9 37
1053
+ | Severe Crouch 3 14.0 158 ± 12 40.1 ± 0.61 ± 0.1 58.6 ± 5.6
1054
+ | ±2.3 6.8
1055
+ | *KFA: knee flexion angle during walking
1056
+ blank |
1057
+ |
1058
+ title | 3.2.2. Motion Analysis
1059
+ text | Motion analysis data was collected at Gillette Children’s Specialty Healthcare (St.
1060
+ | Paul, MN) using a 12-camera system (Vicon Motion Systems, Lake Forest, CA), four
1061
+ | force plates (AMTI, Watertown, MA), and a standard marker protocol (Davis et al.,
1062
+ | 1991). Ground reaction forces and moments were sampled at 1080 Hz and low-pass
1063
+ | filtered at 20 Hz. Electromyography (EMG) was collected for six of the crouch gait
1064
+ | subjects from the quadriceps, hamstrings, and gastrocnemius (Motion Laboratory
1065
+ | Systems, Baton Rouge, LA). The EMG data was sampled at 1080 Hz, band-pass filtered
1066
+ | between 20 and 400 Hz, rectified, and low-pass filtered at 10 Hz. All subjects walked at
1067
+ | their self-selected speed and achieved two consecutive force plate strikes during which
1068
+ | only one foot contacted each force plate. The motion analysis data for the subject with the
1069
+ | instrumented TKR was obtained from www.simtk.org where it is freely available for
1070
+ | researchers (Zhao et al., 2007).
1071
+ blank |
1072
+ title | 3.2.3. Musculoskeletal Modeling
1073
+ text | A generic musculoskeletal model based upon adult cadaver data (Delp et al.,
1074
+ | 1990) with 19 degrees of freedom and 92 musculotendon actuators was scaled to each
1075
+ | subject according to anthropometric measurements. This musculoskeletal model has been
1076
+ blank |
1077
+ |
1078
+ meta | 25
1079
+ text | used for studies involving unimpaired children and children with cerebral palsy (Hicks et
1080
+ | al., 2008; Liu et al., 2008; Reinbolt et al., 2008). The degrees of freedom in the
1081
+ | musculoskeletal model included six degrees of freedom at the pelvis, a ball-and-socket
1082
+ | joint at the third lumbar vertebra between the pelvis and torso, a ball-and-socket joint at
1083
+ | each hip, a planar joint with coupled translations at each knee (Yamaguchi and Zajac,
1084
+ | 1989), and a revolute joint at each ankle. Joint angles during walking were calculated by
1085
+ | minimizing the error between experimental marker trajectories and markers placed on the
1086
+ | model at locations corresponding to the experimental markers.
1087
+ | Static optimization was used to calculate the muscle forces required to reproduce
1088
+ | the joint moments of each subject throughout the gait cycle. To distribute muscle forces,
1089
+ | static optimization was used to minimize the objective function:
1090
+ | \
1091
+ blank |
1092
+ text | XYZ [& '&( $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Equation$3.1
1093
+ | &01
1094
+ blank |
1095
+ text | where N is the number of muscles in the model, a is the activation level (between zero
1096
+ | and one) of each muscle, and c is an integer weighting constant for each muscle with a
1097
+ | default value of one. The weighting constants were determined by comparing calculated
1098
+ | compressive tibiofemoral force to the experimentally measured force for the subject with
1099
+ | the instrumented TKR, as described below.
1100
+ | The compressive tibiofemoral force was calculated using the Joint Reaction
1101
+ | analysis in OpenSim. A detailed description of this analysis is provided in the
1102
+ | Supplementary Material. Briefly, the tibiofemoral force was calculated as a point load
1103
+ | acting on the tibial plateau using the Newton-Euler equation:
1104
+ blank |
1105
+ |
1106
+ text | ]^)// = ; >&_&C '>&_&C − ]C)^./ + 3a+,-./, + 3bBCc&>U Equation 3.2
1107
+ blank |
1108
+ |
1109
+ text | In Equation 3.2, ]^)// is the force from the femur on the tibia, [M]tibia is the matrix of
1110
+ | inertial properties of the tibia, '>&_&C is the six dimensional angular and linear acceleration
1111
+ | of the tibia, ]C)^./ is the force from the foot on the tibia, and 3a+,-./, and 3bBCc&>U are the
1112
+ | muscle forces and gravitational forces acting on the tibia. The compressive tibiofemoral
1113
+ blank |
1114
+ |
1115
+ meta | 26
1116
+ text | force was calculated as the component of ]^)// parallel to the longitudinal axis of the
1117
+ | tibia and used for all subsequent analyses.
1118
+ | For the subject with the instrumented TKR, we varied the static optimization
1119
+ | weighting constants for the major muscle groups that cross the knee: the hamstrings,
1120
+ | gastrocnemius, and quadriceps. The hamstrings included independent muscle models for
1121
+ | the semimembranosus, semitendinousus, biceps femoris long head, and biceps femoris
1122
+ | short head. The quadriceps included independent muscle models for the rectus femoris,
1123
+ | the vastus medialis, the vastus intermedius, and the vastus lateralis. The same weighting
1124
+ | constant was applied to all muscles in each group and the results for the muscles within
1125
+ | each group were compared and, if found to be similar, were combined to facilitate
1126
+ | analysis. The weighting constants were given integer values between one and ten. We
1127
+ | performed static optimization for all combinations of integer weighting constants and
1128
+ | calculated the resulting compressive tibiofemoral force. The peak compressive force was
1129
+ | compared to the experimentally measured force, and we selected the combination of
1130
+ | weighting constants that had the minimum average value and resulted in a difference
1131
+ | between the estimated and experimental peak compressive force of less than twenty
1132
+ | percent body-weight. The set of weighting constants that met this criterion was a weight
1133
+ | of three for the hamstrings, seven for the gastrocnemius, and one for the quadriceps. This
1134
+ | combination of weighting constants resulted in a root mean square error of 0.28 times
1135
+ | body-weight and an average error of 0.02 times body-weight over the gait cycle between
1136
+ | the estimated force and the experimental measurements (Figure 3.1). These weighting
1137
+ | constants were then used to perform static optimization for all other subjects. OpenSim’s
1138
+ | Joint Reaction analysis algorithm was used to calculate the compressive tibiofemoral
1139
+ | force for one representative gait cycle for each subject.
1140
+ blank |
1141
+ |
1142
+ |
1143
+ |
1144
+ meta | 27
1145
+ text | Figure 3.1: Tibiofemoral contact forces expressed in multiples of body weight (BW) from experimental
1146
+ | forces measured using an instrumented total knee replacement (TKR, gray) and estimated with the
1147
+ | computer model (black). The average ± 1 standard deviation is shown from four trials.
1148
+ blank |
1149
+ |
1150
+ |
1151
+ text | To evaluate whether muscle activations calculated from static optimization
1152
+ | reflected the subjects’ muscle activity we qualitatively compared the estimated muscle
1153
+ | activations to EMG recordings during stance for the six subjects for whom EMG data
1154
+ | was available (Figure 3.2). EMG and estimated muscle activations indicated that the
1155
+ | quadriceps were active during stance. Hamstring activity decreased during stance in both
1156
+ | the EMG and estimated muscle activations; however, estimated muscle activations
1157
+ | decreased earlier in stance than indicated by EMG for some of the subjects. For these
1158
+ | subjects, increased hamstring activity during stance would have increased estimates of
1159
+ | the compressive tibiofemoral contact force. The gastrocnemius muscle was active during
1160
+ | the majority of stance in both the EMG and estimated muscle activations.
1161
+ blank |
1162
+ |
1163
+ |
1164
+ |
1165
+ meta | 28
1166
+ text | Figure 3.2: Comparison of
1167
+ | EMG (gray, average ± one
1168
+ | standard deviation over all gait
1169
+ | cycles) and muscle activations
1170
+ | from static optimization (black
1171
+ | line) for the six subjects with
1172
+ | crouch gait for whom EMG
1173
+ | data was available. EMG and
1174
+ | activations were normalized
1175
+ | from zero to one for each
1176
+ | subject based upon the
1177
+ | minimum and maximum values
1178
+ | over the gait cycle. Note that
1179
+ | subject “Severe 1” did not have
1180
+ | EMG data from the
1181
+ | gastrocnemius.
1182
+ blank |
1183
+ |
1184
+ |
1185
+ |
1186
+ meta | 29
1187
+ title | 3.3. Results
1188
+ text | Compressive tibiofemoral force was higher during moderate and severe crouch
1189
+ | gait than during unimpaired gait (Figure 3.3). Subjects with a mild crouch gait had
1190
+ | similar compressive tibiofemoral forces to subjects with unimpaired gait. The maximum
1191
+ | force during mild crouch gait was 3.2 ±0.4 times body-weight compared to 3.0 ±0.5 times
1192
+ | body-weight during unimpaired gait. Maximum force during a moderate crouch gait was
1193
+ | 4.2 ±1.2 times body-weight. During a severe crouch gait maximum force was 6.5 ±0.7
1194
+ | times body-weight.
1195
+ | Compressive tibiofemoral force during stance exhibited two peaks in unimpaired
1196
+ | and crouch gait (Figure 3.3B). These two peaks in the tibiofemoral force coincided with
1197
+ | the two characteristic peaks of the ground reaction force. The largest tibiofemoral forces
1198
+ | occurred during early and late stance with smaller forces in mid-stance and swing. During
1199
+ | unimpaired gait, the primary contributors to compressive tibiofemoral force were the
1200
+ | quadriceps in early stance and the gastrocnemius during late stance. During crouch gait,
1201
+ | the quadriceps were the primary contributors to tibiofemoral force throughout stance
1202
+ | (Figure 3.3C).
1203
+ | There was a quadratic relationship between the average knee flexion angle during
1204
+ | stance and the average compressive tibiofemoral force during stance (r2 = 0.97, Figure
1205
+ | 3.4). The relationship is described by:
1206
+ | 3^)// = 0.0013d ( − 0.06d + 2.54 Equation 3.3
1207
+ | where Fknee is the average compressive tibiofemoral force during stance, and Ө is the
1208
+ | average knee flexion angle during stance with values from 15 to 70 degrees of flexion.
1209
+ | The increase in average compressive tibiofemoral force during stance with
1210
+ | increasing crouch severity was primarily due to an increase in quadriceps force. The
1211
+ | average quadriceps force during stance also increased quadratically with knee flexion
1212
+ | angle (r2=0.99, Figure 3.4) with the relationship:
1213
+ | 3e+Cf = 0.0011d ( − 0.03d + 0.7 Equation 3.4
1214
+ | The average force produced by the hamstrings during stance did not change with
1215
+ | knee flexion; however, the average force of gastrocnemius decreased with crouch
1216
+ | severity. Individuals with crouch gait had smaller ankle plantarflexor moments during
1217
+ | terminal stance.
1218
+ meta | 30
1219
+ text | Figure 3.3: (A) Average knee flexion
1220
+ | angle, (B) average compressive
1221
+ | tibiofemoral force, and (C) average
1222
+ | quadriceps force expressed as
1223
+ | multiples of body-weight (xBW)
1224
+ | during one gait cycle for the
1225
+ | subjects who walked with an
1226
+ | unimpaired gait and mild, moderate,
1227
+ | and severe crouch gait.
1228
+ blank |
1229
+ |
1230
+ |
1231
+ |
1232
+ meta | 31
1233
+ text | 5
1234
+ | R² = 0.97
1235
+ | 4 Tibiofemoral Force
1236
+ | Quadriceps Force
1237
+ | R² = 0.99
1238
+ | Force (xBW)
1239
+ blank |
1240
+ |
1241
+ |
1242
+ |
1243
+ text | 3
1244
+ blank |
1245
+ |
1246
+ text | 2
1247
+ blank |
1248
+ text | Hamstrings Force
1249
+ | 1
1250
+ | Gastrocnemius Force
1251
+ blank |
1252
+ text | 0
1253
+ | 0 20 40 60 80
1254
+ | Average Stance Knee Flexion Angle (deg)
1255
+ | Figure 3.4: Correlation of average knee flexion angle during stance with average compressive tibiofemoral
1256
+ | force during stance (black circles), average quadriceps force during stance (dark gray squares), average
1257
+ | hamstrings force during stance (light gray triangles), and average gastrocnemius force during stance
1258
+ | (black outlined diamonds). Tibiofemoral force and average quadriceps force are expressed as multiples of
1259
+ | bodyweight (xBW). A quadratic relationship described the change in both tibiofemoral force and
1260
+ | quadriceps force with increasing crouch.
1261
+ blank |
1262
+ |
1263
+ title | 3.2. Discussion
1264
+ text | Individuals who walk in a moderate or severe crouch gait experience substantially
1265
+ | greater compressive tibiofemoral forces than individuals with an unimpaired gait;
1266
+ | however, individuals who walk in a mild crouch gait have similar compressive
1267
+ | tibiofemoral forces to unimpaired gait. The increase in tibiofemoral force was primarily
1268
+ | due to the increase in quadriceps force required to support the body during crouch gait.
1269
+ | There was a quadratic increase in quadriceps force with increasing knee flexion which is
1270
+ | similar to a reported quadratic increase in EMG magnitude in static, crouch postures (Hsu
1271
+ meta | 32
1272
+ text | et al., 1993). The increase in quadriceps force with crouch severity not only contributes to
1273
+ | increased tibiofemoral load but would also increase patellofemoral load (Dhaher and
1274
+ | Kahn, 2002) and may give rise to knee pain in individuals with cerebral palsy and crouch
1275
+ | gait. To reduce the average compressive tibiofemoral force and quadriceps force during
1276
+ | stance to within one standard deviation of the average during unimpaired gait, individuals
1277
+ | with crouch gait need to achieve an average knee flexion angle less than 25 degrees
1278
+ | during stance.
1279
+ | Compressive tibiofemoral force during crouch gait reported here are slightly
1280
+ | higher than those estimated by Perry et al. (1975), who used statically loaded cadavers in
1281
+ | a crouch posture. Perry determined the compressive tibiofemoral force at 30 and 45
1282
+ | degrees of knee flexion to be 2.9 and 3.8 times body-weight, respectively, whereas we
1283
+ | found the maximum force during a crouch gait with an average knee flexion angle of 30
1284
+ | and 45 degrees to be 3.3 and 4.1 times body-weight. The static cadaver testing
1285
+ | implemented by Perry did not include contributions from the gastrocnemius or hamstring
1286
+ | muscles to compressive tibiofemoral force. The small difference in compressive
1287
+ | tibiofemoral force between standing and walking demonstrates that, although walking
1288
+ | requires additional muscle force to propel the body forward (Steele et al., 2010), the
1289
+ | increased quadriceps demand arising from a static crouched posture accounts for the
1290
+ | majority of the increased tibiofemoral force. The tibiofemoral contact force of the
1291
+ | unimpaired children included in this analysis were also similar to previously reported
1292
+ | results for adults (D’Lima et al., 2006; Kutzner et al., 2010; Mündermann et al., 2008b;
1293
+ | Shelburne et al., 2005).
1294
+ | Our calculation of compressive tibiofemoral force depends on the accuracy of
1295
+ | estimated muscle activations. The estimated muscle activations showed patterns similar
1296
+ | to EMG such as increased activity of the quadriceps; however, EMG activity was
1297
+ | available for a limited number of muscles in six of the subjects. When muscle activations
1298
+ | differed from the EMG signals the optimization tended to underestimate muscle activity
1299
+ | compared to EMG signals. This suggests that the optimization functions commonly used
1300
+ | for unimpaired walking may not be appropriate for individuals with cerebral palsy who
1301
+ | have altered motor control and muscle physiology. Muscle over-activity and excess co-
1302
+ | contraction are common in individuals with cerebral palsy. Greater muscle forces due to
1303
+ blank |
1304
+ meta | 33
1305
+ text | co-contraction would increase the estimated tibiofemoral contact forces suggesting that
1306
+ | our calculations of compressive tibiofemoral force may be low estimates.
1307
+ | We compared our calculated tibiofemoral forces to experimental forces from an
1308
+ | instrumented total knee replacement, but this did not provide a robust evaluation of knee
1309
+ | forces during crouch gait. The total knee replacement data was used to select the static
1310
+ | optimization weighting constants that reduced the error between the estimated and
1311
+ | measured compressive tibiofemoral force. Different weighting constants may be
1312
+ | appropriate for younger patients or patients with gait pathology. In this study, the
1313
+ | weighting constants penalized recruitment of the hamstrings and gastrocnemius, which
1314
+ | resulted in the recruitment of other muscles to actuate the hip and ankle without
1315
+ | increasing the compressive load on the tibia. Although the quadriceps are the major
1316
+ | contributors to compressive tibiofemoral force, increasing the quadriceps’ weighting
1317
+ | constant did not reduce the estimated tibiofemoral force since no other muscles could
1318
+ | replace the quadriceps’ function at the knee.
1319
+ | To test the sensitivity of our results to the objective function we evaluated how
1320
+ | estimated tibiofemoral contact force changed with altering the weighting constants and
1321
+ | the power of activation. The quadratic relationship between knee flexion angle and
1322
+ | tibiofemoral contact force and quadriceps force was similar in all tested objective
1323
+ | functions (Figure 3.5). Using a linear objective function resulted in an average reduction
1324
+ | in tibiofemoral contact force during stance of 7 percent while an objective function that
1325
+ | minimized activation cubed increased tibiofemoral contact force during stance by 11
1326
+ | percent. Using weighting constants of one for all muscles also increased the estimated
1327
+ | tibiofemoral contact force during stance by an average of 15 percent due primarily to a
1328
+ | ten percent average increase in gastrocnemius force during stance. Future studies that
1329
+ | measure compressive tibiofemoral force from individuals with instrumented total knee
1330
+ | replacements walking in pathologic gait patterns, such as crouch gait, could provide
1331
+ | further points of comparison for model-based estimates of compressive tibiofemoral force
1332
+ | and help to determine the optimal objective functions.
1333
+ blank |
1334
+ |
1335
+ |
1336
+ |
1337
+ meta | 34
1338
+ text | Figure 3.5: Average (A) tibiofemoral contact force, (B) quadriceps force, (C) hamstring force, and (D)
1339
+ | gastrocnemius force during stance with the objective function shown in Eqn. 1 and weighting constants,
1340
+ | minimizing activation with weighting constants, minimizing activation cubed with weighting constants, and
1341
+ | minimizing activation squared with all weighting constants equal to one.
1342
+ blank |
1343
+ meta | 35
1344
+ title | 3.2. Conclusion
1345
+ text | This study has demonstrated that walking in a moderate or severe crouch gait
1346
+ | increases the compressive tibiofemoral force, which could be contributing to joint pain
1347
+ | and cartilage degeneration. Surgeries and therapies that produce a more upright walking
1348
+ | posture will reduce forces at the knee and may help moderate the adverse effects of
1349
+ | excessive joint loading.
1350
+ blank |
1351
+ |
1352
+ |
1353
+ |
1354
+ meta | 36
1355
+ title | 4. Preparatory co-activation of the ankle muscles may prevent
1356
+ | ankle inversion injuries
1357
+ blank |
1358
+ title | 4.1. Introduction
1359
+ text | Ankle sprains are the most common of all acute musculoskeletal injuries that
1360
+ | occur during physical activity (Fong et al., 2009, 2007). Roughly 80% of acute ankle
1361
+ | injuries involve excessive inversion, with 77% resulting in sprains of the lateral ligaments
1362
+ | (Fong et al., 2009). These injuries often occur during landing, especially on irregular or
1363
+ | unexpected surfaces, such as a competitor’s foot (Bahr et al., 1997, 1994). High impact
1364
+ | forces directed medially to the subtalar joint induce rapid inversion of the foot (Fuller,
1365
+ | 1999; Wright et al., 2000a, 2000b). Injury occurs when excessive ankle inversion
1366
+ | stretches the lateral ankle ligaments that cross the talocrural and subtalar joints, causing
1367
+ | plastic strains or ligament rupture (Hertel, 2002). Such injuries result in long, incomplete
1368
+ | recoveries that leave the ankle prone to recurring injuries.
1369
+ | Load–deflection studies on cadavers have quantified the passive mechanics of the
1370
+ | ankle (Chen et al., 1988; Lapointe et al., 1997; Siegler et al., 1990). Passive ankle
1371
+ | stiffness decreases due to lateral ligament sprains, reducing resistance to excessive ankle
1372
+ | inversion (Lapointe et al., 1997; Siegler et al., 1990). Computer simulations of ankle
1373
+ | inversion scenarios predicted that decreased passive ankle stiffness could increase the
1374
+ | probability of inversion injuries (Wright et al., 2000b). Observations from large cohorts
1375
+ | of athletes corroborate this finding, showing that ankles with previous inversion injuries
1376
+ | are more susceptible to future injury than uninjured ankles (McGuine and Keene, 2006;
1377
+ | Surve et al., 1994). Athletic tape and braces can reinforce and stiffen ankles with
1378
+ | previous injuries and decrease rates of recurring injuries (Kamiya et al., 2009); however,
1379
+ | tape and braces have not been shown to decrease injury rates in uninjured ankles
1380
+ | (Calatayud et al., 2014; Verhagen and Bay, 2010).
1381
+ | Posture and muscle coordination may also affect ankle stability, but the
1382
+ | relationships between muscle activity, landing pose, and the risk of inversion injury have
1383
+ | not been adequately characterized. Landing with a plantarflexed or inverted ankle
1384
+ | increased the rate of injury in musculoskeletal simulations (Wright et al., 2000a), while
1385
+ | retraining trunk and leg posture has decreased the rate of ankle injuries in volleyball
1386
+ blank |
1387
+ meta | 37
1388
+ text | players (Bahr et al., 1997). Neuromotor interventions, which retrain muscle coordination,
1389
+ | have also been shown to protect the ankle. For example, balance board training, in which
1390
+ | the participant stands with one foot on an unstable surface, has decreased the rates of
1391
+ | recurring ankle injuries in previously injured ankles (Bahr et al., 1997; Verhagen et al.,
1392
+ | 2004). Similarly, interventions combining balance, strength, and plyometric training have
1393
+ | decreased the rates of recurring ankle injuries (Emery and Meeuwisse, 2010). However,
1394
+ | according to multiple reviews (Calatayud et al., 2014; van der Wees et al., 2006;
1395
+ | Verhagen and Bay, 2010), the majority of studies have found no effect of neuromotor
1396
+ | retraining on preventing first-time ankle sprains.
1397
+ | While studies of neuromotor retraining show promising results, outcomes are
1398
+ | mixed and the underlying mechanisms behind the protective effects are unknown, largely
1399
+ | because the role of the ankle muscles in resisting inversion sprains is an area of
1400
+ | controversy. Some hypothesize that improved ankle proprioception (Arnold et al., 2009a;
1401
+ | Hertel, 2002, 2000; Munn et al., 2010) and increased strength in the ankle evertor
1402
+ | muscles (Arnold et al., 2009b) are responsible. However, experiments exploring the
1403
+ | effects of balance interventions found that neuromuscular retraining neither targets nor
1404
+ | improves ankle proprioception (Gauffin et al., 1988; Kiers et al., 2012). Additionally,
1405
+ | patients with recurring ankle sprains (Hiller et al., 2011) or functional ankle instability
1406
+ | (Munn et al., 2003) do not demonstrate deficits in evertor strength, although patients with
1407
+ | ankle instability or recent ankle sprains may exhibit longer evertor muscle reaction times
1408
+ | (Delahunt, 2007; Konradsen and Ravn, 1990; Löfvenberg et al., 1995). These findings
1409
+ | suggest that changes in muscle coordination may be the primary protective mechanism of
1410
+ | neuromuscular retraining. However, the capacity for the ankle muscles to prevent
1411
+ | inversion injuries under various coordination strategies remains largely unexplored.
1412
+ | The purpose of this study was to determine whether coordinated activity of the
1413
+ | ankle muscles could prevent excessive ankle inversion during an inversion-inducing
1414
+ | landing scenario. We used musculoskeletal simulations to avoid the risk of injuring
1415
+ | human subjects and to allow for systematic manipulation of muscle coordination. We
1416
+ | used a musculoskeletal model (Delp et al., 1990) to which we added muscle excitation
1417
+ | controllers, a foot–floor contact model, and passive mechanics of the ankle. We tested the
1418
+ | model against experimental data and then used the model to generate muscle-driven
1419
+ meta | 38
1420
+ text | simulations of a single-leg landing under a variety of muscle control strategies. Our first
1421
+ | goal was to quantify how co-activating the ankle evertor and invertor muscles affects
1422
+ | maximum inversion angles for a range of co-activation levels. Our second goal was to
1423
+ | quantify ankle inversion when the evertor and invertor muscles were coordinated with
1424
+ | stretch reflexes. Thus, we were able to compare the efficacy of a planned ankle muscle
1425
+ | co-activation strategy to that of a purely reflexive strategy during an inversion-inducing
1426
+ | landing.
1427
+ blank |
1428
+ |
1429
+ |
1430
+ title | 4.2. Methods
1431
+ blank |
1432
+ title | 4.2.1. A new musculoskeletal model for simulating ankle inversion injuries
1433
+ text | We developed a model (Figure 4.1) for simulating single-leg landings in OpenSim
1434
+ | (Delp et al., 2007) by augmenting a well-established full-body musculoskeletal model.
1435
+ | The model used the musculoskeletal geometry of the lower limb defined by Delp et al.
1436
+ | (1990) with an articulating patella and quadriceps (DeMers et al., 2014). The model
1437
+ | incorporated a lumped torso–head segment connected to the pelvis by a ball-and-socket
1438
+ | joint. The arms connected to the torso with ball-and-socket shoulder joints (Hamner et al.,
1439
+ | 2010). Forty-nine muscle–tendon units (muscles) actuated the legs and the lumbar joint
1440
+ | (21 degrees of freedom in total). All muscles incorporated force–length, force–velocity,
1441
+ | and activation dynamics behavior described by Thelen (2003) and implemented in
1442
+ | OpenSim by Millard et al. (2013). The ankle evertor muscles included the three peronei
1443
+ | and extensor digitorum muscles. The ankle invertor muscles included the tibialis anterior,
1444
+ | tibialis posterior, flexor digitorum, flexor hallucis, and extensor hallucis. Excitations of
1445
+ | the model’s muscles were determined either by feedforward controllers or by stretch
1446
+ | feedback controllers, as described below.
1447
+ | To represent the landing surface, the simulation included a contact plane, fixed to
1448
+ | a configurable platform, which could be set at any desired height and orientation below
1449
+ | the musculoskeletal model. This contact plane interacted with the feet, which were
1450
+ | defined by a three dimensional mesh digitized from computed tomography of a cadaver
1451
+ | foot (Erdemir et al., 2009). An elastic foundation contact model between the contact
1452
+ | plane and the foot mesh generated reaction forces between the foot and floor. Stiffness
1453
+ blank |
1454
+ meta | 39
1455
+ text | (50 MPa/m), coefficient of friction (0.9), and dissipation (5 s/m) parameters were
1456
+ | selected to represent rubber contacting rubber (Sherman et al., 2011), with a shoe sole
1457
+ | thickness of approximately 2 centimeters.
1458
+ blank |
1459
+ |
1460
+ |
1461
+ |
1462
+ text | Figure 4.1: Musculoskeletal model used to simulate single-leg landings. 49 muscles (red) actuated the
1463
+ | model’s 21 degrees of freedom in the right leg, the pelvis, and a lumped torso/head segment. The left leg
1464
+ | was locked in the flexed pose shown. The arms were fixed in a posture anterior to the chest by locking the
1465
+ | shoulder and elbow joints. Forces between the feet and floor were modeled as elastic foundation forces
1466
+ | between a mesh fixed to the foot (green) and the plane of the floor (blue). We simulated landing from a 0.3
1467
+ | meter fall onto the floor, which was tilted at 30 degrees in the coronal plane to induce rapid ankle
1468
+ | inversion.
1469
+ blank |
1470
+ |
1471
+ |
1472
+ text | The passive mechanics of the ankle have been measured in cadavers (Chen et al.,
1473
+ | 1988; Lapointe et al., 1997; Siegler et al., 1990) and were represented in the model as a
1474
+ | three-dimensional torsional bushing. The bushing acted like a set of three uncoupled,
1475
+ | nonlinear torsional springs between the distal tibia and the calcaneus, crossing the
1476
+ | talocrural and subtalar joints. We represented the nonlinear torque–deflection behavior
1477
+ meta | 40
1478
+ text | about the x, y, and z axes as uncoupled functions defined by cubic polynomials (Figure
1479
+ | 4.2). We determined the polynomial coefficients by minimizing the root-mean-squared
1480
+ | error between the cubic polynomials and the passive torque–angle behavior measured in
1481
+ | cadavers (Chen et al., 1988). The bushing captured the passive response of all ligaments
1482
+ | and soft structures that cross the ankle, excluding musculature. The root-mean-squared
1483
+ | errors between the bushing moments and the measured moments were 0.2 N-m about the
1484
+ | x-axis, 0.6 N-m about the y-axis, and 0.2 N-m about the z-axis.
1485
+ blank |
1486
+ |
1487
+ |
1488
+ |
1489
+ text | Figure 4.2: Load–deflection mechanics of passive ankle structures in the model compared to soft tissue
1490
+ | mechanics measured in cadavers (Chen et al., 1988). The model lumped all ligament and other soft tissue
1491
+ | loads—excluding the muscles—into a three-directional torsional bushing crossing the talocrural and
1492
+ | subtalar joints. Load–deflection profiles about the x, y, and z axes were modeled with uncoupled, cubic
1493
+ | polynomials and were fit to the average experimental data using least-squares error minimization.
1494
+ blank |
1495
+ |
1496
+ |
1497
+ |
1498
+ meta | 41
1499
+ title | 4.2.2. Generating nominal simulations of landing
1500
+ text | We generated a nominal simulation of single-leg landing on level ground based
1501
+ | on experimental measurements (Shultz et al., 2015). We used the three-dimensional
1502
+ | kinematics and ground reaction force data of a single subject (19 year old female, 68 kg
1503
+ | mass, 1.8 m height) performing five landing trials onto her right leg. Each trial began
1504
+ | with the subject standing on a block 0.4 meters above the ground, followed by a
1505
+ | voluntary drop onto a flat, level surface after which she landed and balanced solely on her
1506
+ | right foot.
1507
+ | We generated simulations of single-leg landing using the Forward Dynamics Tool
1508
+ | in OpenSim (Delp et al., 2007). Simulations began at the time of first foot-floor contact.
1509
+ | Initial conditions for the joint angles and velocities were determined from the average
1510
+ | values of the five experimental trials measured at the time of first foot–floor contact.
1511
+ | Excitations of the torso, hip, knee, ankle plantarflexor, and ankle dorsiflexor muscles
1512
+ | were modeled with muscle stretch feedback controllers. The stretch feedback controllers
1513
+ | excited the leg muscles prior to and during landing. Each muscle’s stretch feedback
1514
+ | controller computed the instantaneous muscle excitation, xm, according to Equation 4.1.
1515
+ blank |
1516
+ |
1517
+ text | f
1518
+ | ha i = jk la (i) − la m
1519
+ | + jc la (i) Equation 4.1
1520
+ | m
1521
+ blank |
1522
+ text | The stretch feedback controllers behave like a proportional-derivative controller
1523
+ | on the muscle’s length, where kp is the gain on normalized muscle stretch length and kv is
1524
+ | the gain on normalized muscle stretch velocity. Normalized muscle stretch was computed
1525
+ | as the difference between the current normalized muscle fiber length, la , and the desired
1526
+ | f
1527
+ | normalized muscle fiber length, la . Both were normalized by the optimal muscle fiber
1528
+ blank |
1529
+ text | length. Normalized muscle stretch velocity, la , was computed as the ratio of current
1530
+ | muscle fiber lengthening velocity, la , to the maximum contractile velocity of the muscle,
1531
+ | aCA
1532
+ | la . Only positive muscle stretch and velocity were considered, as indicated by the
1533
+ | parentheses, ( )+, in Eqn. 1. Each muscle was assigned to one of five functional groups in
1534
+ | f
1535
+ | which all controller parameters (kp, kv, la ) were the same (Table 4.1). These five groups
1536
+ | were the torso, hip, knee, ankle plantarflexor, and ankle dorsiflexor muscles.
1537
+ | Multiarticular muscles were assigned to the functional group corresponding to the largest
1538
+ meta | 42
1539
+ text | average moment arm for any joints they crossed. Excitations of the ankle evertor and
1540
+ | invertor muscles were constrained to be zero during the nominal simulation. We chose
1541
+ | stretch feedback controller parameters with an optimization that minimized the integral of
1542
+ | error between the simulated and experimentally measured kinematics. The stretch
1543
+ | feedback controller produced muscle activations that allowed the leg to flex under the
1544
+ | influence of gravity and muscles, and reproduced the experimentally measured landing
1545
+ | kinematics (Figure 4.3, average error 1.1 degrees).
1546
+ blank |
1547
+ |
1548
+ text | Desired
1549
+ | Length Velocity
1550
+ | Normalized
1551
+ | Muscle Group Muscles Gain Gain
1552
+ | Length
1553
+ | kp kv
1554
+ | npo
1555
+ | Erector Spinae, Internal Oblique,
1556
+ | Trunk Muscles 1.00 1.21 0.91
1557
+ | External Oblique
1558
+ | Gluteus Maximus, Gluteus Medius,
1559
+ | Gluteus Minimus, Tensor Fasciae
1560
+ | Latae, Iliacus, Psoas Major, Adductor
1561
+ | Brevis, Adductor Longus, Adductor
1562
+ | Hip 1.14 0.74 0.98
1563
+ | Magnus, Sartorius, Gracilis,
1564
+ | Pectineus, Piriformis, Quadratus
1565
+ | Femoris, Gemellus
1566
+ blank |
1567
+ text | Rectus Femoris, Vastus Lateralis,
1568
+ | Vastus Intermedius, Vastus Medialis,
1569
+ | Knee Biceps Femoris Long Head, Biceps 0.73 1.29 0.37
1570
+ | Femoris Short Head,
1571
+ | Semimebranosus, Semitendinosus
1572
+ | Ankle Medial Gastrocnemius, Lateral
1573
+ | 0.56 1.37 0.00
1574
+ | Plantarflexors Gastrocnemius, Soleus
1575
+ | Ankle
1576
+ | Tibialis Anterior 0.57 0.60 1.40
1577
+ | Dorsiflexors
1578
+ blank |
1579
+ |
1580
+ text | Table 4.1: Parameters of the muscle stretch feedback controllers that coordinated the trunk, hip, knee, and
1581
+ | ankle plantar/dorsiflexor muscles. Muscles were assigned to one of 5 stretch length controllers
1582
+ | corresponding to functional groups (trunk muscles, hip muscles, knee muscles, ankle plantarflexors, and
1583
+ | ankle dorsiflexors). All muscles in each group shared the same stretch length controller parameters
1584
+ | (desired normalized fiber length, normalized stretch length gain, and normalized stretch velocity gain).
1585
+ | Since the stretch controller is a function of unitless muscle fiber states, all three controller parameters are
1586
+ | unitless quantities.
1587
+ blank |
1588
+ |
1589
+ |
1590
+ |
1591
+ meta | 43
1592
+ text | Figure 4.3: Simulated hip, knee, and
1593
+ | ankle plantar flexion kinematics
1594
+ | after initial ground contact for a
1595
+ | 0.3-meter landing onto level ground
1596
+ | compared to kinematics measured
1597
+ | from a subject executing the same
1598
+ | landing. Kinematics of the model
1599
+ | (black line) evolved due to simple
1600
+ | stretch reflexes in the torso, hip,
1601
+ | knee, plantarflexor, and dorsiflexor
1602
+ | muscles of the right leg. Similarity
1603
+ | to the range of kinematics measured
1604
+ | during five landing trials (gray
1605
+ | lines) indicates that simulated
1606
+ | coordination strategy at the hip,
1607
+ | knee, and triceps surae muscles
1608
+ | mimics the behavior of the subject
1609
+ | during a nominal, level landing task.
1610
+ blank |
1611
+ |
1612
+ |
1613
+ title | 4.2.3. Inducing ankle inversion in simulated landings
1614
+ text | Quantifying the protective effects of muscle coordination strategies required a
1615
+ | landing condition that induced inversion injuries. Having generated a nominal simulation
1616
+ | of a safe landing on level ground, we perturbed the landing conditions to induce rapid
1617
+ | ankle inversion upon impact. Firstly, the subtalar joint angle and velocity at landing were
1618
+ | set to 0 degrees and 0 degrees/second. Secondly, we inclined the floor to 30 degrees in
1619
+ blank |
1620
+ meta | 44
1621
+ text | the coronal plane such that the medial aspect of the landing foot impacted first, inducing
1622
+ | a moment about the subtalar joint that rapidly inverted the ankle. This simulation scenario
1623
+ | served as the basis for exploring coordination of the ankle evertor and invertor muscles.
1624
+ blank |
1625
+ title | 4.2.4. Quantifying the effect of planned co-activation
1626
+ text | We quantified the effect of planned co-activation by varying the level of muscular
1627
+ | co-activation of muscles that cross the subtalar joint during the 30-degree incline landing
1628
+ | scenario. Co-activation was modeled as constant, feedforward activation of the opposing
1629
+ | ankle evertor and invertor muscles groups, which generated zero net subtalar moment at
1630
+ | initial ground contact (subtalar angle equal to zero). For a given co-activation level, all
1631
+ | evertor muscles received the same activation. All invertor muscles received 93% of the
1632
+ | evertor activations due to their larger moment-generating capacity. We generated eleven
1633
+ | independent simulations varying the level of constant, planned co-activation from 0% (no
1634
+ | active contraction) to 100% (maximal evertor contraction and 93% invertor contraction)
1635
+ | in 10% increments. All other parameters and inputs were held constant. The simulation
1636
+ | began when the foot impacted the inclined ground and proceeded for 150 milliseconds.
1637
+ | To quantify the effects of co-activation level on ankle inversion, we observed whether the
1638
+ | subtalar joint angle exceeded a predetermined injury threshold of 30 degrees, which was
1639
+ | chosen based on a cadaver study (Aydogan et al., 2006) which found that repaired lateral
1640
+ | ligaments of the ankle failed at inversion angles of 35±6 degrees (Figure 4.4, gray area).
1641
+ blank |
1642
+ title | 4.2.5. Quantifying the effect of ankle stretch reflexes
1643
+ text | We quantified the effect of stretch reflexes by varying the intensities of ankle
1644
+ | evertor and invertor muscular responses to stretch during the 30 degree incline landing
1645
+ | scenario. Evertor and invertor muscle stretch reflexes were modeled as muscle velocity
1646
+ | controllers with a response delay. The constant response delay captured the latency due to
1647
+ | neural transmission delay between muscle stretch and muscle excitation, which has been
1648
+ | measured experimentally as 60–120 milliseconds in the human peroneal muscles
1649
+ | (Beckman and Buchanan, 1995; Karlsson and Andreasson, 1992; Konradsen and Bohsen
1650
+ | Ravn, 1991; Vaes et al., 2002). We chose a constant response delay of 60 milliseconds to
1651
+ | test whether the fastest feasible human evertor reflex could prevent injurious ankle
1652
+ blank |
1653
+ |
1654
+ |
1655
+ meta | 45
1656
+ text | inversion angles in our simulation scenario. Each muscle’s stretch reflex controller
1657
+ | computed the instantaneous muscle excitation according to Equation 2.
1658
+ blank |
1659
+ |
1660
+ text | ha = jc la i − 0.060 Equation 4.2
1661
+ | m
1662
+ blank |
1663
+ text | The stretch reflex controller behaves like a delayed derivative controller on a muscle’s
1664
+ blank |
1665
+ text | normalized stretch velocity, la , in which kv is the gain on stretch velocity 60 milliseconds
1666
+ | in the past. To determine the effect of reflex intensity on ankle inversion, we generated
1667
+ | six independent simulations of landing on a 30 degree incline, varying only the gain, kv.
1668
+ | For the six simulations, kv was set to 0.0, 0.1, 0.5, 1, 5, and 10; results corresponding to kv
1669
+ | > 10 are not reported since simulations with kv = 10 and kv = 100 generated the same
1670
+ | kinematics. To quantify the effects of reflex intensity on ankle inversion, we observed
1671
+ | whether the subtalar angle exceeded the injury threshold of 30 degrees based on the range
1672
+ | failure angles reported by Aydogan et al. (2006)(Figure 4.5, gray region).
1673
+ blank |
1674
+ title | 4.3. Results
1675
+ text | Strong co-activation of the ankle evertors and invertors prior to landing prevented
1676
+ | ankle inversion angles from exceeding the injury threshold (Figure 4.4). Increasing co-
1677
+ | activation level from 0% (blue) to 100% (red) decreased peak inversion angle from 49
1678
+ | degrees to 17 degrees. Increasing co-activation also decreased peak inversion velocity
1679
+ | from 950 degrees/second to 550 degrees/second. Increasing simulated co-activation up to
1680
+ | 60% increased the time to exceeding the injury threshold (gray area) from 62 to 120
1681
+ | milliseconds. Co-activation levels of 62% and above prevented ankle inversion from
1682
+ | exceeding the injury threshold altogether.
1683
+ | Stretch reflexes of the evertors in response to landing failed to prevent excessive
1684
+ | ankle inversion (Figure 4.5). For all values of the reflex gain, kv, ranging from 0 (blue) to
1685
+ | 10 (red), ankle inversion angles exceeded the injury threshold (grey area). Also for all
1686
+ | values of kv, ankle inversion angle exceeded the injury threshold quickly, within 62
1687
+ | milliseconds of impact. Prior to 60 milliseconds, the ankle inversion trajectories under all
1688
+ | conditions were identical, due to the 60 millisecond reflex delay, and exhibited a peak
1689
+ | inversion velocity of 950 degrees/second.
1690
+ blank |
1691
+ meta | 46
1692
+ text | Figure 4.4: Ankle inversion trajectories
1693
+ | immediately after impact for various levels
1694
+ | of evertor and invertor muscle co-
1695
+ | activation. Each contour represents
1696
+ | excursion of the subtalar joint during a
1697
+ | single simulation in which the evertor and
1698
+ | invertor muscles generated force due to
1699
+ | constant activation. Co-activation level
1700
+ | was varied from 0% (blue) to 100% (red).
1701
+ | Impact occurs at zero milliseconds (ms).
1702
+ | An approximate injury threshold of 30 to
1703
+ | 40 degrees inversion (Aydogan et al.,
1704
+ | 2006) is shown for reference (gray area).
1705
+ blank |
1706
+ |
1707
+ |
1708
+ |
1709
+ text | Figure 4.5: Ankle inversion trajectories
1710
+ | immediately after impact with ankle
1711
+ | evertor and invertor stretch reflexes of
1712
+ | various intensities. Reflexes were modeled
1713
+ | as feedback from the muscle lengthening
1714
+ | speed to muscle excitations, with reflex
1715
+ | intensity modulated using a feedback gain.
1716
+ | Each contour represents ankle inversion
1717
+ | angle during a single simulation in which
1718
+ | the evertor and invertor muscles generated
1719
+ | force with a constant reflex gain. Reflex
1720
+ | gains were varied from 0.0 (blue) to 10
1721
+ | (red). Impact occurs at zero milliseconds
1722
+ | (ms). An approximate injury threshold of
1723
+ | 30 to 40 degrees inversion (Aydogan et al.,
1724
+ | 2006) is shown for reference (gray area).
1725
+ blank |
1726
+ |
1727
+ |
1728
+ |
1729
+ meta | 47
1730
+ text | Figure 4.6: Examples of the contributions of muscles and ligaments to the protective eversion moment
1731
+ | when adopting planned co-activation or strong stretch reflexes in the ankle evertor and invertor muscles.
1732
+ | Co-activating the evertors and invertors at the level of 70% (panel A) generated large eversion moments
1733
+ | (dark gray region, max. 29 Newton-meters) compared to all other muscles (dashed gray line) and the ankle
1734
+ | ligaments (light gray region), resulting in a net eversion moment (solid black line) throughout the landing
1735
+ | simulation. Conversely, strong reflexes in the ankle evertors and invertors (panel B, stretch velocity gain of
1736
+ | 10, delay 60 ms) failed to generate a net eversion moment until 38 ms after landing and produced less than
1737
+ | 10 N-m of eversion moment at the time of injury.
1738
+ blank |
1739
+ |
1740
+ |
1741
+ text | Co-activating the ankle evertors and invertors resulted in higher net eversion
1742
+ | moments (Figure 4.6A) compared to the moments resulting from stretch reflexes in the
1743
+ | same muscles (Figure 4.6B) during the first 150 milliseconds of landing. For both cases,
1744
+ | the soleus and gastrocnemius muscles, plantarflexors which also cross the subtalar joint,
1745
+ | generated a net inversion moment immediately after initial ground contact (Figure 4.6A
1746
+ blank |
1747
+ meta | 48
1748
+ text | and 4.6B, dashed gray lines). Co-activating the evertors and invertors at levels that
1749
+ | protected the ankle generated large eversion moments. For example, co-activation of 70%
1750
+ | resulted in a maximum moment of 29 Newton-meters (Figure 4.6A, dark gray region).
1751
+ | Passive forces from the ankle ligaments generated small eversion moments compared to
1752
+ | the muscle-generated moments (Figure 4.6A, light grey region). The superposition of
1753
+ | muscle and ligament loads resulted in net eversion moments throughout the landing
1754
+ | simulations for the co-activation case. Conversely, for the case of strong stretch reflexes
1755
+ | in the ankle evertors and invertors (Figure 4.6B), the superposition of all muscles and
1756
+ | ligaments generated net inversion moments until 38 milliseconds after initial ground
1757
+ | contact. Regardless of the gain of the stretch reflex controllers, the ankle evertors and
1758
+ | invertors produced less than 10 Newton-meter of eversion moment (Figure 4.6B, dark
1759
+ | grey area) before the time of injury.
1760
+ blank |
1761
+ |
1762
+ |
1763
+ title | 4.4. Discussion
1764
+ text | Our simulations suggest that coordinated activity of the ankle muscles can prevent
1765
+ | excessive ankle inversion during an inversion-inducing landing scenario. Co-activating
1766
+ | the evertor and invertor muscles prevented ankle inversion angles from exceeding the
1767
+ | threshold for ankle inversion sprains. Conversely, stretch reflexes of the evertor and
1768
+ | invertor muscles failed to prevent excessive ankle inversion angles because the injury
1769
+ | occurs within 62 milliseconds in our simulated landing scenario, before reflexes generate
1770
+ | stabilizing forces. This result suggests that interventions aimed at retraining muscle
1771
+ | coordination should target feedforward co-activation to prevent lateral ankle sprains.
1772
+ | Planned, feedforward co-activation of the ankle evertor and invertor muscles
1773
+ | rapidly and effectively protects the ankle from unanticipated inversion insults in our
1774
+ | simulated landing. With planned coordination of the evertors and invertors, the muscles
1775
+ | are active and generating force to stiffen the ankle in preparation for the large inversion
1776
+ | moment induced at landing. As the ankle inverts, the actively lengthening evertors and
1777
+ | shortening invertors generate a net eversion moment that immediately resists inversion.
1778
+ | This occurs because of the force–length–velocity property of muscle, which has a
1779
+ | stabilizing influence (John et al., 2013), and has been called a ‘preflex’ to refer to the pre-
1780
+ blank |
1781
+ |
1782
+ meta | 49
1783
+ text | reflex response of intrinsic muscle properties to disturbances (Loeb et al., 1999). When
1784
+ | the net active muscle moment is large enough, the passive moment due to the lateral
1785
+ | ankle ligaments is negligible. Experimental electromyography recordings show that
1786
+ | individuals co-activate the ankle muscles in midair during landing and jumping tasks
1787
+ | (Caulfield et al., 2004; Grüneberg et al., 2003), suggesting that it may be possible to
1788
+ | increase co-activation through training. Higher co-activation generated higher joint
1789
+ | stiffness and reduced the maximum inversion angles during our landing simulations.
1790
+ | Wright et al. (2000a) found that increased ankle stiffness due to passive structures, such
1791
+ | as ankle orthoses and tape, reduced the incidence of simulated inversion injuries. Our
1792
+ | simulations support the protective effect of ankle stiffening and demonstrate that the
1793
+ | evertor and invertor muscles can achieve this stiffness without assistance from orthoses
1794
+ | or tape.
1795
+ | Stretch reflexes, regardless of their intensity, show little capacity to protect the
1796
+ | ankle from unanticipated inversion insults upon landing, especially when the injuries
1797
+ | occur within approximately 60 milliseconds, as they did in our simulations. Our
1798
+ | simulations demonstrate that the fastest stretch reflexes consistently recorded in healthy
1799
+ | human evertor muscles (Calatayud et al., 2014; Vaes et al., 2002) are too slow to prevent
1800
+ | the inversion injury posed in this study. This finding contradicts research that suggests
1801
+ | improving peroneal reflex latency may prevent inversion injuries (Akhbari et al., 2007;
1802
+ | Clark and Burden, 2005; Delahunt, 2007; Osborne et al., 2001; Sheth et al., 1997). Fong
1803
+ | et al., (2013, 2012) demonstrated that a device with fast injury detection and external
1804
+ | electrical stimulation could provide artificially fast peroneal contractions in under 10
1805
+ | milliseconds. However, our findings show that, lacking advanced feedback control
1806
+ | devices such as Fong’s, interventions to reduce evertor latency are unlikely to prevent
1807
+ | rapid (< 60 milliseconds) inversion injuries.
1808
+ | Our simulation approach for exploring ankle inversion injuries is subject to
1809
+ | limitations. First, we defined an injury threshold of 30 degrees supination about the
1810
+ | subtalar joint based on an experiment on repaired lateral ligaments (Aydogan et al.,
1811
+ | 2006). We chose a conservative injury threshold of 30 degrees such that a simulated
1812
+ | injury represents the limit at which injury would likely occur in the highest-risk
1813
+ | individuals. The injury threshold could vary in non-injured ankles and between
1814
+ meta | 50
1815
+ text | individuals. Second, we lumped all 47 muscles of the landing leg and torso into only five
1816
+ | groups of stretch feedback controllers (torso, hip, knee, plantarflexor, and dorsiflexor
1817
+ | muscles). These groups did not separate hip flexors from hip extensors or knee flexors
1818
+ | from knee extensors. Supplementary to this study, we developed landing models using up
1819
+ | to nine functional groups coordinating the landing leg. Adding this complexity did not
1820
+ | affect our findings, thus we present the simplest model here. Additionally, by using the
1821
+ | same muscle controllers at the torso, hip, knee, and plantarflexion degrees of freedom in
1822
+ | all simulation conditions, we assumed that the landing model could not alter whole-body
1823
+ | coordination. This assumption corresponds to rapid injury scenarios, in which the
1824
+ | individual would not have sufficient time to change her landing posture or leg stiffness.
1825
+ | However, altering landing posture and leg stiffness may help mitigate ankle inversion
1826
+ | injuries and could be explored in future studies. Finally, while ankle inversion injuries
1827
+ | occur during landing, running, change of direction, and collision, we only simulated
1828
+ | injuries during landing on a surface inclined at 30 degrees. Other scenarios, which allow
1829
+ | more time to adjust, may allow for reflexes to make a significant contribution to
1830
+ | protecting the joint. It should be noted, however, that the mechanisms allowing co-
1831
+ | activated evertors to resist inversion moments more rapidly than evertor reflexes would
1832
+ | apply to any ankle inversion scenario, regardless of what causes the injurious inversion
1833
+ | moment.
1834
+ blank |
1835
+ title | 4.5. Conclusion
1836
+ text | Through development of a contact-based landing model and implementation of
1837
+ | novel muscle controllers, this study provides a rich platform for investigating ankle
1838
+ | injuries and strategies for mitigating them. All models, software, and data for this study
1839
+ | are publicly available online (http://simtk.org/home/ankle-sprains) along with tutorials on
1840
+ | their use. We encourage others to use these tools to explore other injury scenarios and
1841
+ | protective mechanisms.
1842
+ blank |
1843
+ |
1844
+ |
1845
+ |
1846
+ meta | 51
1847
+ title | 5. Conclusion
1848
+ text | This dissertation presents three studies conducted to advance the understanding of
1849
+ | human motor coordination and its effects on knee and ankle function. The first study
1850
+ | described a modeling and optimization framework we developed for varying muscle
1851
+ | activations and tibiofemoral forces during walking. Increased tibiofemoral forces during
1852
+ | walking have been linked to osteoarthritis and pain in the knee. Our analyses revealed
1853
+ | that activating the gluteus medius, psoas major, iliacus, and soleus muscles decreased the
1854
+ | tibiofemoral force, while activating the gastrocnemius and rectus femoris muscles
1855
+ | increased in tibiofemoral force. The second study employed a similar modeling and
1856
+ | optimization framework to estimate the tibiofemoral forces during walking in crouch gait
1857
+ | and quantify the variation in tibiofemoral forces due to varying severity of crouch. Our
1858
+ | results demonstrate that compressive tibiofemoral force increases quadratically with
1859
+ | crouch severity, which may explain why knee pain is common among individuals who
1860
+ | walk in crouch. The final study described a human landing simulator with novel muscle
1861
+ | stretch controllers for exploring muscle coordinations that may prevent lateral ankle
1862
+ | sprains. By varying the intensity to two strategies for coordinating the ankle evertors and
1863
+ | invertors at landing, we discovered that preparatory co-activation may prevent rapid
1864
+ | ankle inversion sprains while fast stretch reflexes likely would not. When regarded as a
1865
+ | body of work, these three studies make significant contributions in the form of impactful
1866
+ | scientific findings and freely available technology for the research community.
1867
+ blank |
1868
+ title | 5.1. Contributions
1869
+ blank |
1870
+ title | 5.1.1. Scientific Findings
1871
+ text | Activating the prime hip and ankle muscles, which are uniarticular and do not
1872
+ | cross the knee, decreases tibiofemoral force, while activating the gastrocnemius and
1873
+ | rectus femoris increases tibiofemoral force during walking. Our findings provide new
1874
+ | insight about how specific muscle activations might cause compensatory changes in other
1875
+ | muscles to decrease or increase tibiofemoral forces during walking. Prior to this
1876
+ | dissertation, the mathematical redundancy caused by having many more muscles than
1877
+ | joints was considered a technological challenge. Often named “the muscle redundancy
1878
+ blank |
1879
+ meta | 52
1880
+ text | problem”, this was typically “solved” using optimizations to pick one possible
1881
+ | distribution of muscle forces by expressing an objective function, such as minimizing
1882
+ | muscle force, muscle effort, or metabolic cost. Researchers studying the knee joint would
1883
+ | then use these specific distributions of muscle forces as the “solutions” and analyze
1884
+ | which muscles directly loaded the tibiofemoral joint. Conversely, we chose to use muscle
1885
+ | redundancy as a feature, leveraging it to vary the distribution of muscle forces and
1886
+ | resulting tibiofemoral forces during the same walking motion. As a result, we discovered
1887
+ | that activating muscles at the hip and ankle caused compensatory changes in activations
1888
+ | of muscles crossing the knee and altered the compressive tibiofemoral force. We
1889
+ | identified that the gluteus medius, psoas major, iliacus, and soleus, (uniarticular hip and
1890
+ | ankle muscles) had the greatest capacity to decrease tibiofemoral force during walking,
1891
+ | making them prime targets for interventions against knee OA and pain.
1892
+ | Compressive tibiofemoral forces increase quadratically with knee flexion during
1893
+ | the stance phase of walking in a crouch gait. Knee pain and even early onset
1894
+ | osteoarthritis are common among individuals who walk with a crouch gait. Our findings
1895
+ | show that walking in severe crouch gait generates tibiofemoral forces at least three-times
1896
+ | larger than those generated in unimpaired gait. This result suggests that the crouched
1897
+ | posture and elevated tibiofemoral forces could contribute to early cartilage degeneration
1898
+ | and knee pain, but also suggest that correcting crouch gait could help slow this
1899
+ | degradation or alleviate pain. However, since our results show that walking in mild
1900
+ | crouch could feasibly generate tibiofemoral forces as low as unimpaired walking,
1901
+ | interventions to correct crouch and achieve unimpaired kinematics may have diminishing
1902
+ | returns with regard to joint loading.
1903
+ | Preparatory co-activation of the ankle evertors and invertor muscles during
1904
+ | landing can provide strong and rapid resistance to ankle sprains, while stretch reflexes
1905
+ | are too slow. Our findings reveal that a co-activated, stiff ankle can generate moments in
1906
+ | equilibrium when the ankle is neutral, then rapidly generate protective moments as soon
1907
+ | as any perturbation inverts the ankle toward a sprain. Unlike reflexes which incur a
1908
+ | neuromotor delay of up to 150 milliseconds, the co-activated ankle muscles are already
1909
+ | generating force and provide a purely mechanical “preflex” response that acts instantly.
1910
+ | Prior to this dissertation, neuromotor retraining interventions to prevent ankle sprains
1911
+ blank |
1912
+ meta | 53
1913
+ text | largely focused on exercising the ankle evertor reflexes in order to decrease their delay.
1914
+ | However, even after those interventions, evertors reflexes still incur delays of 60
1915
+ | milliseconds or more. Our findings demonstrate that even the fastest reflexes with 60
1916
+ | millisecond delays are too slow to protect the ankle from sprains during common
1917
+ | scenarios. Therefore, our findings highlight that studies proposing ankle sprain
1918
+ | interventions should focus on methods for training co-activation “preflexes” at landing
1919
+ | instead of improving evertors reaction times.
1920
+ blank |
1921
+ title | 5.1.2. Technological Contributions to the Research Community
1922
+ text | Open source optimization software for simultaneously minimizing joint loads and
1923
+ | muscle activations during a motion. In Chapter 2, we used an optimization with a
1924
+ | customizable objective function (Equation 2.1) to specify different muscle coordination
1925
+ | strategies and vary muscle activations. This optimization, which allowed us to penalize
1926
+ | combinations of muscle activity and joint forces in the model, is versatile and applicable
1927
+ | to many regimes of biomechanical research. Therefore, we ensured that this optimization
1928
+ | was flexible, reusable, and available to the research community. We designed the
1929
+ | optimization software as a plugin to OpenSim (Delp et al., 2007) so that others could
1930
+ | easily download and use it within the OpenSim GUI or command line tools. The open
1931
+ | source implementation in C++ is available and documented online such that any
1932
+ | researcher may download, modify, and use the software without restriction
1933
+ | (https://simtk.org/home/jointloadopt).
1934
+ | Open source musculoskeletal model for estimating tibiofemoral and
1935
+ | patellofemoral loads during full-body, muscle-driven motion. Accurate estimates of
1936
+ | tibiofemoral forces require a knee mechanism that captures the tibiofemoral,
1937
+ | patellofemoral, and quadriceps mechanisms and the loads transferred between them. Prior
1938
+ | to this dissertation, full body models in OpenSim were designed for and excelled at
1939
+ | modeling quadriceps moment arms and tensions, but could not resolve the tibiofemoral
1940
+ | and patellofemoral contact loads. We developed (Chapter 2 and 3) a knee mechanism
1941
+ | within a full-body model which could resolve the resultant knee contact forces using a
1942
+ | coupled tibiofemoral and patellofemoral mechanism actuated by the quadriceps muscles.
1943
+ | This knee mechanism has been used in numerous scientific publications (DeMers et al.,
1944
+ blank |
1945
+ meta | 54
1946
+ text | 2014; Lerner et al., 2014; Steele et al., 2012; Wagner et al., 2013) and has served as a
1947
+ | launching point for further augmented models that resolve mediolateral distributions of
1948
+ | tibiofemoral forces (Lerner et al., 2015).
1949
+ | Open source library for muscle stretch feedback control in OpenSim. In Chapter
1950
+ | 4, we generated simulations of single-leg landing using muscle stretch feedback
1951
+ | controllers. These stretch controllers, which allowed us to define the conditions and
1952
+ | intensity of spring-like stiffness control of individual muscles, are versatile and
1953
+ | applicable to many regimes of biomechanical research. Therefore, we ensured that these
1954
+ | controllers were flexible, reusable, and available to the research community. We designed
1955
+ | the controller software as a plugin to OpenSim (Delp et al., 2007) so that others could
1956
+ | easily download and use them within the OpenSim GUI or command line tools. The open
1957
+ | source implementation in C++ is available and documented online such that any
1958
+ | researcher may download, modify, and use the software without restriction
1959
+ | (https://github.com/msdemers/opensim-reflex-controllers).
1960
+ | Library of single-leg landing models and simulations under various coordination
1961
+ | conditions. To test the effectiveness of varied ankle muscle coordination in preventing
1962
+ | sprains, we created a detailed landing model and generated landing simulations under
1963
+ | multiple control conditions. The model incorporates contact interactions between the feet
1964
+ | and the floor, nonlinear and passive ankle structures based on experiments, and muscle
1965
+ | controllers trained to land like a human. The model is a valuable tool for further research
1966
+ | on landing, ankle mechanics, full-body control. The simulations themselves are a
1967
+ | valuable launching point for further study of muscle control and injury in single-leg
1968
+ | landing. The models, simulations, and data used to generate them are freely available
1969
+ | online (https://simtk.org/home/ankle-sprains) such that other researchers to download,
1970
+ | modify, and extend them.
1971
+ blank |
1972
+ title | 5.2. Future work
1973
+ blank |
1974
+ title | 5.2.1. Immediate Next Steps
1975
+ text | Coordination strategies to decrease the independent medial and lateral
1976
+ | components of tibiofemoral force. In this dissertation, tibiofemoral forces were modeled
1977
+ | as single point-forces acting at the tibiofemoral joint center. The true human knee
1978
+ blank |
1979
+ meta | 55
1980
+ text | mechanism generates separate medial and lateral contact loads between each of two
1981
+ | femoral condyles and the tibial plateau. OA typically develops more frequently and more
1982
+ | severely in the medial compartment of the knee (Felson et al., 2008). When studying
1983
+ | medial compartment OA, researchers often use the externally applied knee adduction
1984
+ | moment as a surrogate measure of the medial knee contact force (Baliunas, 2002; Shull et
1985
+ | al., 2013; Zhao et al., 2007) because it is easy to estimate from human motion capture
1986
+ | measurements. However, the external knee adduction moment can not capture the effects
1987
+ | of muscles tensions crossing the knee and how they change the distribution of medial and
1988
+ | lateral tibiofemoral contact forces. We, in collaboration with Lerner and colleagues, have
1989
+ | augmented the knee mechanism described in this dissertation to include coupled medial
1990
+ | and lateral tibiofemoral joints which can resolve separate medial and lateral tibiofemoral
1991
+ | contact forces in a full-body human model (Lerner et al., 2015). An exciting opportunity
1992
+ | exists to combine the new human model with the optimization tools presented in this
1993
+ | dissertation and explore the effects of varied muscle coordination on the medial and
1994
+ | lateral distribution of knee forces. Thus, future research of walking in healthy and
1995
+ | pathologic populations should aim to quantify the changes in medial and lateral
1996
+ | tibiofemoral forces due to changes in muscle activity (similar to Chapter 2) and changes
1997
+ | in walking kinematics (similar to Chapter 3). Quantifying these relationships will one day
1998
+ | enable better interventions for reducing medial knee pain or slowing medial knee
1999
+ | cartilage degradation associated with walking.
2000
+ | Coordination strategies to change joint contact forces during various activities
2001
+ | of daily living. When quantifying the effects of varying muscle coordination on
2002
+ | tibiofemoral forces, this dissertation only considers walking motions. Furthermore, we
2003
+ | analyzed walking performed post surgery by individuals with total knee replacements.
2004
+ | However, the modeling and optimization tools presented in Chapters 2 and 3 could easily
2005
+ | be applied to many activities of daily living in both diseased and healthy populations.
2006
+ | Activities of daily living that significantly affect quality of life for individuals with knee
2007
+ | OA and pain include ascending and descending stairs, sit-to-stand transitions, and stand-
2008
+ | to-sit transitions because they generate large knee forces (Kutzner et al., 2010). While
2009
+ | researchers have measured tibiofemoral forces during these motions using instrumented
2010
+ | total knee replacements (D’Lima et al., 2006; Mündermann et al., 2008b), the potential to
2011
+ meta | 56
2012
+ text | vary these tibiofemoral forces by altering muscle coordination remains unclear. Unique
2013
+ | data sets (Fregly et al., 2012) publicly distribute motion capture measurements of high-
2014
+ | flexion activities similar to sit-stand transitions and stair climbing. Therefore, these
2015
+ | unique measurements combined with the open-source optimization framework presented
2016
+ | in this dissertation could quantify the variation in tibiofemoral forces due to variation of
2017
+ | muscle coordination during activities of daily living.
2018
+ | Quantify the effects of landing limb pose and stiffness on the mechanics of
2019
+ | lateral ankle sprains. While quantifying the effects of ankle muscle coordination on
2020
+ | ankle injuries, we assumed that the coordination of the remaining leg muscles and the
2021
+ | landing pose did not change. Analyses of ankle injury mechanics typically focus on the
2022
+ | ankle itself and prohibit changes in full-body coordination. For example, Wright et al.
2023
+ | analyzed ankle injuries during side-stepping maneuvers, but specifically varied only the
2024
+ | passive ankle stiffness (Wright et al., 2000b) and the ankle pose (Wright et al., 2000a) at
2025
+ | landing while specifying identical limb pose, trunk pose, and muscle activations in a feed
2026
+ | forward manner. Studies testing coaching interventions to reduce the incidence of ankle
2027
+ | sprains in sports indicate that altering landing leg pose and torso pose at landing might
2028
+ | affect the likelihood of injury (Bahr et al., 1997). However, the effects of landing pose,
2029
+ | leg stiffness, or other full-body coordination elements have not been explored in a
2030
+ | systematic or mechanistic way. The open-source landing model and muscle stretch
2031
+ | controllers we developed could be used to systematically vary torso posture, limb pose,
2032
+ | and muscle coordination of the hip, knee, and ankle during landing to quantify the effect
2033
+ | on the ankle excursion and moments. Such work could yield valuable mechanical insight
2034
+ | about ankle sprains and uncover targets for coaching interventions to prevent these ankle
2035
+ | sprains.
2036
+ | Quantify the effects of landing coordination strategies on incidence of lateral
2037
+ | ankle sprains in a diverse population of injury scenarios. The primary limitation of our
2038
+ | ankle sprain analyses is that we only considered one sprain inducing scenario. We only
2039
+ | considered lateral ankle sprains occurring during vertical landing on one foot, a common
2040
+ | injury mode in sports like basketball, volleyball, tennis, and hiking. However, ankle
2041
+ | injuries also occur during other movements, including horizontal maneuvers such as
2042
+ | running or run-to-cut, and a small proportion of ankle sprains involve injuries of the
2043
+ blank |
2044
+ meta | 57
2045
+ text | medial ligaments or the ankle syndesmosis (Doherty et al., 2014; Waterman et al., 2010).
2046
+ | Reducing the epidemic incidence of ankle injuries requires making humans more resilient
2047
+ | to many injury modes. Therefore, an appropriate next step is to quantify the effects of
2048
+ | kinematic and muscle coordination in a wide population of injury scenarios. Monte carlo
2049
+ | simulation methods would be well suited to this task, allowing researches to
2050
+ | stochastically generate many injury scenarios from a few key motions and defined
2051
+ | expectations of how the scenario conditions and injury perturbations might vary.
2052
+ | Researchers could then systematically vary and test different coordination strategies, or
2053
+ | even assistive devices, against this population of injury conditions to simulate the effect
2054
+ | on incidence of injury.
2055
+ blank |
2056
+ title | 5.2.1. New Lines of Research
2057
+ text | Simultaneous optimization of kinematic strategy, muscle coordination strategy,
2058
+ | and joint loads to predict novel walking patterns. Research into the effects of muscle
2059
+ | coordination and kinematics on internal joint forces has largely fallen into two motifs:
2060
+ | first to alter muscle coordination without controlling for walking kinematics (Brandon et
2061
+ | al., 2014; DeMers et al., 2014), and second to alter walking kinematics without
2062
+ | controlling for muscle coordination (Fregly et al., 2009; Mündermann et al., 2008a; Shull
2063
+ | et al., 2011). Our work on varying muscle coordination during walking indicates that
2064
+ | changes in muscle activity can substantially decrease tibiofemoral forces during the
2065
+ | second half the stance phase. Conversely, studies to retrain and modify walking
2066
+ | kinematics show significant decreases in tibiofemoral forces during the first half of stance
2067
+ | phase. Combined, these findings indicate that coupling muscle activity and kinematics
2068
+ | corrections could dramatically decrease tibiofemoral forces throughout the entire walking
2069
+ | gait cycle. A grand research opportunity exists to systematically explore and co-optimize
2070
+ | the muscle coordination and kinematics of walking to decrease joint contact forces in
2071
+ | simulations.
2072
+ | A new and powerful motif in musculoskeletal simulation, sometimes called
2073
+ | predictive simulation (Dorn et al., 2015), may be well suited to exploring coordination
2074
+ | and kinematics for decreasing joint contact forces. In predictive simulation, we embed
2075
+ | biologically-inspired controllers within a 3-D humanoid model to autonomously generate
2076
+ blank |
2077
+ meta | 58
2078
+ text | motions in simulations. We then define heuristics, such as penalizing metabolic energy
2079
+ | expenditure, falling, or stubbing the toe, in optimizations that learn and tune appropriate
2080
+ | parameters for the biologically-inspired controllers. This process has resulted in
2081
+ | autonomous locomotion controllers that predict realistic human walking and running
2082
+ | motions by simply specifying slow or fast over-ground speeds and without relying on
2083
+ | motion capture data (Wang et al., 2012). Furthermore, these autonomous locomotion
2084
+ | controllers have been retrained under new conditions, such as loaded or inclined walking,
2085
+ | which predicted humanlike compensations in their walking strategies (Dorn et al., 2015).
2086
+ | The predictive simulation approach enables an exciting new line of research to
2087
+ | predict novel changes in muscle activity and kinematics that decrease joint contact forces
2088
+ | during walking. Instead of posing movement heuristics that minimize metabolic
2089
+ | expenditure, future work could focus on heuristics that minimize joint contact forces or
2090
+ | other estimates of joint pain. By combining and balancing metabolic expenditure and
2091
+ | joint loading heuristics, future predictive simulations could be “pain-aware”. Perhaps
2092
+ | such simulations could generate and predict walking gait compensations that individuals
2093
+ | with knee pain typically exhibit, such as quadriceps avoidance gaits or limping. Once
2094
+ | optimized, humanlike walking controllers have been trained, further research could
2095
+ | propose specific variations in the control of individual muscles, muscle groups, or
2096
+ | antagonist muscle pairs to predict the downstream effect on the walking motion and joint
2097
+ | contact forces. This could serve as a platform for systematically proposing and testing
2098
+ | future interventions to decrease joint contact forces and mitigate joint degradation and
2099
+ | pain.
2100
+ | Design and testing of novel retraining interventions to mitigate chronic knee
2101
+ | pain or prevent acute ankle sprains. We used models to explore variations in muscle
2102
+ | coordination that could protect the knee or ankle, but it remains unclear whether living
2103
+ | humans could exercise the same variations to produce similar effects. Our models treated
2104
+ | all individual muscle activations as independent, meaning the muscle coordination
2105
+ | strategies could exercise up to 98 degrees of freedom to both meet the motion task
2106
+ | (walking or landing) and optimize the function of the knee or ankle. In living humans,
2107
+ | individual muscle activations are coupled by mechanism and limitations of the nervous
2108
+ | system. For example, principle component analysis of muscle activations during walking
2109
+ blank |
2110
+ meta | 59
2111
+ text | indicate that muscles activate together in synergies, and that fewer than 6 synergies are
2112
+ | required to reproduce human walking (Chvatal and Ting, 2013; Walter et al., 2014). We
2113
+ | aren’t aware of any studies that similarly analyzed the complexity of muscle activations
2114
+ | during landing, but it is possible that even fewer degrees of freedom are required or used.
2115
+ | This suggests that healthy individuals may not be capable of the same flexibility in
2116
+ | muscle activity that our models exhibit, meaning the most optimal muscle coordination
2117
+ | patterns could be infeasible. Individuals with gait pathologies like crouch gait exhibit
2118
+ | even fewer synergies (Steele et al., 2015), indicating that retraining muscle coordination
2119
+ | could be an even greater challenge in those populations. Therefore, future research must
2120
+ | propose interventions to promote the lower limb muscle coordination strategies found in
2121
+ | this dissertation and test their feasibility in experiments with living subjects.
2122
+ | The major challenge to proving the feasibility of such interventions is in
2123
+ | demonstrating that individuals can learn to increase or decrease activations of individual
2124
+ | muscles during walking or landing. Retraining interventions have successfully employed
2125
+ | real-time feedback to modify kinematics of walking and reduce knee loads in living
2126
+ | subjects (Shull et al., 2013, 2011). Conceivably, similar real-time feedback on muscle
2127
+ | coordination to increase gluteus medius and soleus activity while decreasing
2128
+ | gastrocnemius and rectus femoris activity may be possible, but remains largely
2129
+ | unexplored. Similarly, the capacity of individuals to modulate the level of invertor and
2130
+ | evertor co-activity during landing is unknown. Systems for real-time detection and
2131
+ | feedback of muscle electromyography (EMG) do exist for the upper extremity, and have
2132
+ | been used used with visual (Young et al., 2011) and tactile (Bloom et al., 2010; Casellato
2133
+ | et al., 2013) feedback to modify muscle activity during reaching tasks. EMG
2134
+ | measurements of the gluteus medius, soleus, gastrocnemius, and rectus femoris are
2135
+ | commonly collected during experiments of walking and other motions of the lower body.
2136
+ | In ankle injury research, EMG of the superficial ankle invertors and evertors are
2137
+ | commonly measured as well. Therefore, a real-time feedback system for measuring EMG
2138
+ | and suggesting changes in lower limb muscle activity is feasible, but the capacity of
2139
+ | subjects heed the suggestion and change muscle activity during walking or landing
2140
+ | remains unknown. This leaves a rich opportunity for human subject research aimed at
2141
+ blank |
2142
+ |
2143
+ meta | 60
2144
+ text | proposing coordination strategies to improve knee or ankle function, then testing the
2145
+ | propensity of individuals to adopt and retain these strategies after interventions.
2146
+ blank |
2147
+ |
2148
+ |
2149
+ |
2150
+ meta | 61
2151
+ title | List of References
2152
+ ref | Akhbari, B., Takamjani, I.E., Salavati, M., Sanjari, M.A., 2007. A 4-week biodex
2153
+ | stability exercise program improved ankle musculature onset, peak latency and
2154
+ | balance measures in functionally unstable ankles. Phys. Ther. Sport 8, 117–129.
2155
+ | doi:10.1016/j.ptsp.2007.03.004
2156
+ | Anderson, F.C., Pandy, M.G., 2001. Dynamic Optimization of Human Walking. J.
2157
+ | Biomech. Eng. 123, 381. doi:10.1115/1.1392310
2158
+ | Arnold, A.S., Salinas, S., Asakawa, D.J., Delp, S.L., 2000. Accuracy of muscle moment
2159
+ | arms estimated from MRI-based musculoskeletal models of the lower extremity.
2160
+ | Comput. Aided Surg. 5, 108–19. doi:10.1002/1097-0150(2000)5:2<108::AID-
2161
+ | IGS5>3.0.CO;2-2
2162
+ | Arnold, B.L., de la Motte, S., Linens, S., Ross, S.E., 2009a. Ankle instability is
2163
+ | associated with balance impairments: A meta-analysis. Med. Sci. Sports Exerc. 41,
2164
+ | 1048–1062. doi:10.1249/MSS.0b013e318192d044
2165
+ | Arnold, B.L., Linens, S.W., de la Motte, S.J., Ross, S.E., 2009b. Concentric evertor
2166
+ | strength differences and functional ankle instability: A meta-analysis. J. Athl. Train.
2167
+ | 44, 653–662. doi:10.4085/1062-6050-44.6.653
2168
+ | Arnold, E.M., Ward, S.R., Lieber, R.L., Delp, S.L., 2010. A model of the lower limb for
2169
+ | analysis of human movement. Ann. Biomed. Eng. 38, 269–79. doi:10.1007/s10439-
2170
+ | 009-9852-5
2171
+ | Aydogan, U., Glisson, R.R., Nunley, J.A., 2006. Extensor Retinaculum Augmentation
2172
+ | Reinforces Anterior Talofibular Ligament Repair. Clin. Orthop. Relat. Res. 442,
2173
+ | 210–215. doi:10.1097/01.blo.0000183737.43245.26
2174
+ | Bahr, R., Karlsen, R., Lian, Ø., Øvrebø, R.V., 1994. Incidence and Mechanisms of Acute
2175
+ | Ankle Inversion Injuries in Volleyball: A Retrospective Cohort Study. Am. J. Sports
2176
+ | Med. 22, 595–600. doi:10.1177/036354659402200505
2177
+ | Bahr, R., Lian, Ø., Bahr, I.A., 1997. A twofold reduction in the incidence of acute ankle
2178
+ | sprains in volleyball after the introduction of an injury prevention program: a
2179
+ | prospective cohort study. Scand. J. Med. Sci. Sports 7, 172–177.
2180
+ | Baliunas, a, 2002. Increased knee joint loads during walking are present in subjects with
2181
+ | knee osteoarthritis. Osteoarthr. Cartil. 10, 573–579. doi:10.1053/joca.2002.0797
2182
+ | Beckman, S.M., Buchanan, T.S., 1995. Ankle inversion injury and hypermobility: Effect
2183
+ | on hip and ankle muscle electromyography onset latency. Arch. Phys. Med. Rehabil.
2184
+ | 76, 1138–1143. doi:10.1016/S0003-9993(95)80123-5
2185
+ meta | 62
2186
+ ref | Bloom, R., Przekop, A., Sanger, T.D., 2010. Prolonged electromyogram biofeedback
2187
+ | improves upper extremity function in children with cerebral palsy. J. Child Neurol.
2188
+ | 25, 1480–1484. doi:10.1177/0883073810369704
2189
+ | Bolanos, A.A., Colizza, W.A., McCann, P.D., Gotlin, R.S., Wootten, M.E., Kahn, B.A.,
2190
+ | Insall, J.N., 1998. A comparison of isokinetic strength testing and gait analysis in
2191
+ | patients with posterior cruciate-retaining and substituting knee arthroplasties. J.
2192
+ | Arthroplasty 13, 906–915. doi:10.1016/S0883-5403(98)90198-X
2193
+ | Brandon, S.C.E., Miller, R.H., Thelen, D.G., Deluzio, K.J., 2014. Selective lateral muscle
2194
+ | activation in moderate medial knee osteoarthritis subjects does not unload medial
2195
+ | knee condyle. J. Biomech. 47, 1409–1415. doi:10.1016/j.jbiomech.2014.01.038
2196
+ | Calatayud, J., Borreani, S., Colado, J.C., Flandez, J., Page, P., Andersen, L.L., 2014.
2197
+ | Exercise and ankle sprain injuries: a comprehensive review. Phys. Sportsmed. 42,
2198
+ | 88–93. doi:10.3810/psm.2014.02.2051
2199
+ | Carter, D.R., Wong, M., 1988. The role of mechanical loading histories in the
2200
+ | development of diarthrodial joints. J. Orthop. Res. 6, 804–16.
2201
+ | doi:10.1002/jor.1100060604
2202
+ | Casellato, C., Pedrocchi, A., Zorzi, G., Vernisse, L., Ferrigno, G., Nardocci, N., 2013.
2203
+ | EMG-based visual-haptic biofeedback: A tool to improve motor control in children
2204
+ | with primary dystonia. IEEE Trans. Neural Syst. Rehabil. Eng. 21, 474–480.
2205
+ | doi:10.1109/TNSRE.2012.2222445
2206
+ | Caulfield, B., Crammond, T., O’Sullivan, A., Reynolds, S., Ward, T., 2004. Altered
2207
+ | ankle-muscle activation during jump landing in participants with functional
2208
+ | instability of the ankle joint. J. Sport Rehabil. 13, 189–200.
2209
+ | Chan, Y.-Y., Fong, D.T.-P., Yung, P.S.-H., Fung, K.-Y., Chan, K.-M., 2008. A
2210
+ | mechanical supination sprain simulator for studying ankle supination sprain
2211
+ | kinematics. J. Biomech. 41, 2571–4. doi:10.1016/j.jbiomech.2008.05.034
2212
+ | Chang, A., Hurwitz, D., Dunlop, D., Song, J., Cahue, S., Hayes, K., Sharma, L., 2007.
2213
+ | The relationship between toe-out angle during gait and progression of medial
2214
+ | tibiofemoral osteoarthritis. Ann. Rheum. Dis. 66, 1271–5.
2215
+ | doi:10.1136/ard.2006.062927
2216
+ | Chen, J., Siegler, S., Schneck, C.D., 1988. The three-dimensional kinematics and
2217
+ | flexibility characteristics of the human ankle and subtalar joint—Part II: Flexibility
2218
+ | characteristics. J. Biomech. Eng. 110, 374–385.
2219
+ | Chvatal, S. a, Ting, L.H., 2013. Common muscle synergies for balance and walking.
2220
+ | Front. Comput. Neurosci. 7, 48. doi:10.3389/fncom.2013.00048
2221
+ meta | 63
2222
+ ref | Clark, V.M., Burden, A.M., 2005. A 4-week wobble board exercise programme improved
2223
+ | muscle onset latency and perceived stability in individuals with a functionally
2224
+ | unstable ankle. Phys. Ther. Sport 6, 181–187. doi:10.1016/j.ptsp.2005.08.003
2225
+ | D’Lima, D.D., Patil, S., Steklov, N., Slamin, J.E., Colwell, C.W., 2006. Tibial Forces
2226
+ | Measured In Vivo After Total Knee Arthroplasty. J. Arthroplasty 21, 255–262.
2227
+ | doi:10.1016/j.arth.2005.07.011
2228
+ | D’Lima, D.D., Townsend, C.P., Arms, S.W., Morris, B. a, Colwell, C.W., 2005. An
2229
+ | implantable telemetry device to measure intra-articular tibial forces. J. Biomech. 38,
2230
+ | 299–304. doi:10.1016/j.jbiomech.2004.02.011
2231
+ | Davis, R.B., Ounpuu, S., Tyburski, D., Gage, J.R., 1991. A gait analysis data collection
2232
+ | and reduction technique. Hum. Mov. Sci. 10, 575–587. doi:10.1016/0167-
2233
+ | 9457(91)90046-Z
2234
+ | Delahunt, E., 2007. Peroneal reflex contribution to the development of functional
2235
+ | instability of the ankle joint. Phys. Ther. Sport 8, 98–104.
2236
+ | doi:10.1016/j.ptsp.2007.01.001
2237
+ | Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman,
2238
+ | E., Thelen, D.G., 2007. OpenSim: open-source software to create and analyze
2239
+ | dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54, 1940–1950.
2240
+ | doi:10.1109/TBME.2007.901024
2241
+ | Delp, S.L., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp, E.L., Rosen, J.M., 1990. An
2242
+ | interactive graphics-based model of the lower extremity to study orthopaedic
2243
+ | surgical procedures. IEEE Trans. Biomed. Eng. 37, 757–767.
2244
+ | doi:10.1109/10.102791
2245
+ | DeMers, M.S., Pal, S., Delp, S.L., 2014. Changes in tibiofemoral forces due to variations
2246
+ | in muscle activity during walking. J. Orthop. Res. 32, 769–76.
2247
+ | doi:10.1002/jor.22601
2248
+ | Dhaher, Y.Y., Kahn, L.E., 2002. The effect of vastus medialis forces on patello-femoral
2249
+ | contact: a model-based study. J Biomech Eng 124, 758–767. doi:10.1115/1.1516196
2250
+ | Doherty, C., Delahunt, E., Caulfield, B., Hertel, J., Ryan, J., Bleakley, C., 2014. The
2251
+ | incidence and prevalence of ankle sprain injury: A systematic review and meta-
2252
+ | analysis of prospective epidemiological studies. Sport. Med. 44, 123–140.
2253
+ | doi:10.1007/s40279-013-0102-5
2254
+ | Dorn, T.W., Wang, J.M., Hicks, J.L., Delp, S.L., 2015. Predictive Simulation Generates
2255
+ | Human Adaptations during Loaded and Inclined Walking. PLoS One 10, e0121407.
2256
+ blank |
2257
+ meta | 64
2258
+ ref | doi:10.1371/journal.pone.0121407
2259
+ | Eckstein, F., Faber, S., Mühlbauer, R., Hohe, J., Englmeier, K.-H., Reiser, M., Putz, R.,
2260
+ | 2002. Functional adaptation of human joints to mechanical stimuli. Osteoarthr.
2261
+ | Cartil. 10, 44–50. doi:10.1053/joca.2001.0480
2262
+ | Emery, C.A., Meeuwisse, W.H., 2010. The effectiveness of a neuromuscular prevention
2263
+ | strategy to reduce injuries in youth soccer: a cluster-randomised controlled trial. Br.
2264
+ | J. Sports Med. 44, 555–562. doi:10.1136/bjsm.2010.074377
2265
+ | Erdemir, A., Sirimamilla, P.A., Halloran, J.P., van den Bogert, A.J., 2009. An elaborate
2266
+ | data set characterizing the mechanical response of the foot. J. Biomech. Eng. 131,
2267
+ | 094502. doi:10.1115/1.3148474
2268
+ | Felson, D.T., Nevitt, M.C., Yang, M., Clancy, M., Niu, J., Torner, J.C., Lewis, C.E.,
2269
+ | Aliabadi, P., Sack, B., McCulloch, C., Zhang, Y., 2008. A new approach yields high
2270
+ | rates of radiographic progression in knee osteoarthritis. J. Rheumatol. 35, 2047–
2271
+ | 2054. doi:08/13/0920 [pii]
2272
+ | Fong, D.T.-P., Chan, Y.-Y., Mok, K.-M., Yung, P.S., Chan, K.-M., 2009. Understanding
2273
+ | acute ankle ligamentous sprain injury in sports. Sports Med. Arthrosc. Rehabil.
2274
+ | Ther. Technol. 1, 14. doi:10.1186/1758-2555-1-14
2275
+ | Fong, D.T.-P., Chu, V.W.-S., Chan, K.-M., 2012. Myoelectric stimulation on peroneal
2276
+ | muscles resists simulated ankle sprain motion. J. Biomech. 45, 2055–2057.
2277
+ | doi:10.1016/j.jbiomech.2012.04.025
2278
+ | Fong, D.T.-P., Hong, Y., Chan, L.-K., Yung, P.S.-H., Chan, K.-M., 2007. A systematic
2279
+ | review on ankle injury and ankle sprain in sports. Sports Med. 37, 73–94.
2280
+ | Fong, D.T.-P., Wang, D., Chu, V.W.-S., Chan, K.-M., 2013. Myoelectric stimulation on
2281
+ | peroneal muscles with electrodes of the muscle belly size attached to the upper
2282
+ | shank gives the best effect in resisting simulated ankle sprain motion. J. Biomech.
2283
+ | 46, 1088–1091. doi:10.1016/j.jbiomech.2013.01.019
2284
+ | Fregly, B.J., Besier, T.F., Lloyd, D.G., Delp, S.L., Banks, S. a, Pandy, M.G., D’Lima,
2285
+ | D.D., 2012. Grand challenge competition to predict in vivo knee loads. J. Orthop.
2286
+ | Res. 30, 503–13. doi:10.1002/jor.22023
2287
+ | Fregly, B.J., D’Lima, D.D., Colwell, C.W., 2009. Effective gait patterns for offloading
2288
+ | the medial compartment of the knee. J. Orthop. Res. 27, 1016–21.
2289
+ | doi:10.1002/jor.20843
2290
+ | Fukashiro, S., Komi, P. V., Jarvinen, M., Miyashita, M., 1993. Comparison between the
2291
+ | directly measured achilles tendon force and the tendon force calculated from the
2292
+ blank |
2293
+ meta | 65
2294
+ ref | ankle joint moment during vertical jumps. Clin. Biomech. 8, 25–30.
2295
+ | doi:10.1016/S0268-0033(05)80006-3
2296
+ | Fuller, E. a, 1999. Center of pressure and its theoretical relationship to foot pathology. J.
2297
+ | Am. Podiatr. Med. Assoc. 89, 278–291.
2298
+ | Gauffin, H., Tropp, H., Odenrick, P., 1988. Effect of ankle disk training on postural
2299
+ | control in patients with functional instability of the ankle joint. Int. J. Sports Med. 9,
2300
+ | 141–144. doi:10.1055/s-2007-1024996
2301
+ | Glitsch, U., Baumann, W., 1997. The three-dimensional determination of internal loads in
2302
+ | the lower extremity. J. Biomech. 30, 1123–31.
2303
+ | Graichen, F., Arnold, R., Rohlmann, A., Bergmann, G., 2007. Implantable 9-channel
2304
+ | telemetry system for in vivo load measurements with orthopedic implants. IEEE
2305
+ | Trans. Biomed. Eng. 54, 253–61. doi:10.1109/TBME.2006.886857
2306
+ | Gregor, R.J., Komi, P. V, Browning, R.C., Järvinen, M., 1991. A comparison of the
2307
+ | triceps surae and residual muscle moments at the ankle during cycling. J. Biomech.
2308
+ | 24, 287–297. doi:10.1016/0021-9290(91)90347-P
2309
+ | Grood, E.S., Suntay, W.J., Noyes, F.R., Butler, D.L., 1984. Biomechanics of the Knee-
2310
+ | Extension Exercise. J. Bone Jt. Surg. 66, 725–734.
2311
+ | Grüneberg, C., Nieuwenhuijzen, P.H.J.A., Duysens, J., 2003. Reflex responses in the
2312
+ | lower leg following landing impact on an inverting and non-inverting platform. J.
2313
+ | Physiol. 550, 985–993. doi:10.1113/jphysiol.2002.036244
2314
+ | Guo, M., Axe, M.J., Manal, K., 2007. The influence of foot progression angle on the knee
2315
+ | adduction moment during walking and stair climbing in pain free individuals with
2316
+ | knee osteoarthritis. Gait Posture 26, 436–41. doi:10.1016/j.gaitpost.2006.10.008
2317
+ | Gutierrez, G.M., Knight, C. a., Swanik, C.B., Royer, T., Manal, K., Caulfield, B.,
2318
+ | Kaminski, T.W., 2012. Examining Neuromuscular Control During Landings on a
2319
+ | Supinating Platform in Persons With and Without Ankle Instability. Am. J. Sports
2320
+ | Med. 40, 193–201. doi:10.1177/0363546511422323
2321
+ | Hamner, S.R., Seth, A., Delp, S.L., 2010. Muscle contributions to propulsion and support
2322
+ | during running. J. Biomech. 43, 2709–2716. doi:10.1016/j.jbiomech.2010.06.025
2323
+ | Handsfield, G.G., Meyer, C.H., Hart, J.M., Abel, M.F., Blemker, S.S., 2014.
2324
+ | Relationships of 35 lower limb muscles to height and body mass quantified using
2325
+ | MRI. J. Biomech. 47, 631–638. doi:10.1016/j.jbiomech.2013.12.002
2326
+ | Hertel, J., 2002. Functional Anatomy, Pathomechanics, and Pathophysiology of Lateral
2327
+ blank |
2328
+ meta | 66
2329
+ ref | Ankle Instability. J. Athl. Train. 37, 364–375.
2330
+ | Hertel, J., 2000. Functional Instability Following Lateral Ankle Sprain. Sport. Med. 29,
2331
+ | 361–371.
2332
+ | Hicks, J.L., Schwartz, M.H., Arnold, A.S., Delp, S.L., 2008. Crouched postures reduce
2333
+ | the capacity of muscles to extend the hip and knee during the single-limb stance
2334
+ | phase of gait. J. Biomech. 41, 960–967. doi:10.1016/j.jbiomech.2008.01.002
2335
+ | Hiller, C.E., Nightingale, E.J., Lin, C.-W.C., Coughlan, G.F., Caulfield, B., Delahunt, E.,
2336
+ | 2011. Characteristics of people with recurrent ankle sprains: a systematic review
2337
+ | with meta-analysis. Br. J. Sports Med. 45, 660–672. doi:10.1136/bjsm.2010.077404
2338
+ | Hsu, A.-T., Perry, J., Gronley, J.K., Hislop, H.J., 1993. Quadriceps force and myoeletric
2339
+ | activity during flexed knee stance. Clin. Orthop. Relat. Res. doi:10.1097/00003086-
2340
+ | 199303000-00032
2341
+ | Inman, V.T., 1947. Functional aspects of the abductor muscles of the hip. J. Bone Joint
2342
+ | Surg. Am. 29, 607–19.
2343
+ | Isman, R., Inman, V., 1969. Anthropometric Studies of the Human Foot and Ankle. Foot
2344
+ | Ankle 11, 97–129.
2345
+ | Jahnsen, R., Villien, L., Aamodt, G., Stanghelle, J.K., Holm, I., 2004. Musculoskeletal
2346
+ | pain in adults with cerebral palsy compared with the general population. J. Rehabil.
2347
+ | Med. 36, 78–84. doi:10.1080/16501970310018305
2348
+ | John, C.T., Anderson, F.C., Higginson, J.S., Delp, S.L., 2013. Stabilisation of walking by
2349
+ | intrinsic muscle properties revealed in a three-dimensional muscle-driven
2350
+ | simulation. Comput. Methods Biomech. Biomed. Engin. 16, 451–462.
2351
+ | doi:10.1080/10255842.2011.627560
2352
+ | Kamiya, T., Kura, H., Suzuki, D., Uchiyama, E., Fujimiya, M., Yamashita, T., 2009.
2353
+ | Mechanical stability of the subtalar joint after lateral ligament sectioning and ankle
2354
+ | brace application: a biomechanical experimental study. Am. J. Sports Med. 37,
2355
+ | 2451–2458. doi:10.1177/0363546509339578
2356
+ | Karlsson, J., Andreasson, G.O., 1992. The effect of external ankle support in chronic
2357
+ | lateral ankle joint instability. An electromyographic study. Am. J. Sports Med. 20,
2358
+ | 257–261.
2359
+ | Kerr Graham, H., Selber, P., 2003. Musculoskeletal aspects of cerebral palsy. J. Bone Jt.
2360
+ | Surg. 85, 157–166. doi:10.1302/0301-620X.85B2.14066
2361
+ | Kiers, H., Brumagne, S., van Dieën, J., van der Wees, P., Vanhees, L., 2012. Ankle
2362
+ | proprioception is not targeted by exercises on an unstable surface. Eur. J. Appl.
2363
+ blank |
2364
+ meta | 67
2365
+ ref | Physiol. 112, 1577–1585. doi:10.1007/s00421-011-2124-8
2366
+ | Kim, H.J., Fernandez, J.W., Akbarshahi, M., Walter, J.P., Fregly, B.J., Pandy, M.G.,
2367
+ | 2009. Evaluation of predicted knee-joint muscle forces during gait using an
2368
+ | instrumented knee implant. J. Orthop. Res. 27, 1326–31. doi:10.1002/jor.20876
2369
+ | Kirking, B., Krevolin, J., Townsend, C., Colwell, C.W., D’Lima, D.D., 2006. A
2370
+ | multiaxial force-sensing implantable tibial prosthesis. J. Biomech. 39, 1744–51.
2371
+ | doi:10.1016/j.jbiomech.2005.05.023
2372
+ | Klein Horsman, M.D., Koopman, H.F.J.M., van der Helm, F.C.T., Prosé, L.P., Veeger,
2373
+ | H.E.J., 2007. Morphological muscle and joint parameters for musculoskeletal
2374
+ | modelling of the lower extremity. Clin. Biomech. 22, 239–247.
2375
+ | doi:10.1016/j.clinbiomech.2006.10.003
2376
+ | Konradsen, L., Bohsen Ravn, J., 1991. Prolonged Peroneal Reaction Time in Ankle
2377
+ | Instability. Int. J. Sports Med. 12, 290–292. doi:10.1055/s-2007-1024683
2378
+ | Konradsen, L., Ravn, J., 1990. Ankle instability caused by prolonged peroneal reaction
2379
+ | time. Acta Orthop. 61, 388–390.
2380
+ | Kutzner, I., Heinlein, B., Graichen, F., Bender, a, Rohlmann, a, Halder, a, Beier, a,
2381
+ | Bergmann, G., 2010. Loading of the knee joint during activities of daily living
2382
+ | measured in vivo in five subjects. J. Biomech. 43, 2164–2173.
2383
+ | doi:10.1016/j.jbiomech.2010.03.046
2384
+ | Lapointe, S.J., Siegler, S., Hillstrom, H., Nobilini, R.R., Mlodzienski, A., Techner, L.,
2385
+ | 1997. Changes in the flexibility characteristics of the ankle complex due to damage
2386
+ | to the lateral collateral ligaments: Anin vitro andin vivo study. J. Orthop. Res. 15,
2387
+ | 331–341. doi:10.1002/jor.1100150304
2388
+ | Lerner, Z.F., DeMers, M.S., Delp, S.L., Browning, R.C., 2015. How tibiofemoral
2389
+ | alignment and contact locations affect predictions of medial and lateral tibiofemoral
2390
+ | contact forces. J. Biomech. 48, 644–650. doi:10.1016/j.jbiomech.2014.12.049
2391
+ | Lerner, Z.F., Haight, D.J., DeMers, M.S., Board, W.J., Browning, R.C., 2014. The effects
2392
+ | of walking speed on tibiofemoral loading estimated via musculoskeletal modeling. J.
2393
+ | Appl. Biomech. 30, 197–205. doi:10.1123/jab.2012-0206
2394
+ | Liu, M.Q., Anderson, F.C., Schwartz, M.H., Delp, S.L., 2008. Muscle contributions to
2395
+ | support and progression over a range of walking speeds. J. Biomech. 41, 3243–52.
2396
+ | doi:10.1016/j.jbiomech.2008.07.031
2397
+ | Loeb, G.E., Brown, I.E., Cheng, E.J., 1999. A hierarchical foundation for models of
2398
+ | sensorimotor control. Exp. Brain Res. 126, 1–18. doi:10.1007/s002210050712
2399
+ meta | 68
2400
+ ref | Löfvenberg, R., Karrholm, J., Sundelin, G., 1995. Reaction Time in Patients with Chronic
2401
+ | Lateral Instability of the Ankle Prolonged. Am J Sport. Med. 23, 414–417.
2402
+ | Losina, E., Weinstein, A.M., Reichmann, W.M., Burbine, S. a., Solomon, D.H., Daigle,
2403
+ | M.E., Rome, B.N., Chen, S.P., Hunter, D.J., Suter, L.G., Jordan, J.M., Katz, J.N.,
2404
+ | 2013. Lifetime risk and age at diagnosis of symptomatic knee osteoarthritis in the
2405
+ | US. Arthritis Care Res. 65, 703–711. doi:10.1002/acr.21898
2406
+ | McClelland, J. a, Webster, K.E., Feller, J. a, Menz, H.B., 2010. Knee kinetics during
2407
+ | walking at different speeds in people who have undergone total knee replacement.
2408
+ | Gait Posture 32, 205–10. doi:10.1016/j.gaitpost.2010.04.009
2409
+ | McGuine, T.A., Keene, J.S., 2006. The effect of a balance training program on the risk of
2410
+ | ankle sprains in high school athletes. Am. J. Sports Med. 34, 1103–1111.
2411
+ | doi:10.1177/0363546505284191
2412
+ | Millard, M., Uchida, T., Seth, A., Delp, S.L., 2013. Flexing computational muscle:
2413
+ | modeling and simulation of musculotendon dynamics. J. Biomech. Eng. 135,
2414
+ | 021005. doi:10.1115/1.4023390
2415
+ | Modenese, L., Phillips, a T.M., Bull, a M.J., 2011. An open source lower limb model:
2416
+ | Hip joint validation. J. Biomech. 44, 2185–93. doi:10.1016/j.jbiomech.2011.06.019
2417
+ | Mündermann, A., Asay, J.L., Mündermann, L., Andriacchi, T.P., 2008a. Implications of
2418
+ | increased medio-lateral trunk sway for ambulatory mechanics. J. Biomech. 41, 165–
2419
+ | 70. doi:10.1016/j.jbiomech.2007.07.001
2420
+ | Mündermann, A., Dyrby, C.O., D’Lima, D.D., Colwell, C.W., Andriacchi, T.P., 2008b.
2421
+ | In vivo knee loading characteristics during activities of daily living as measured by
2422
+ | an instrumented total knee replacement. J. Orthop. Res. 26, 1167–72.
2423
+ | doi:10.1002/jor.20655
2424
+ | Munn, J., Beard, D.J., Refshauge, K.M., Lee, R.Y.W., 2003. Eccentric muscle strength in
2425
+ | functional ankle instability. Med. Sci. Sports Exerc. 35, 245–250.
2426
+ | doi:10.1249/01.MSS.0000048724.74659.9F
2427
+ | Munn, J., Sullivan, S.J., Schneiders, A.G., 2010. Evidence of sensorimotor deficits in
2428
+ | functional ankle instability: A systematic review with meta-analysis. J. Sci. Med.
2429
+ | Sport 13, 2–12. doi:10.1016/j.jsams.2009.03.004
2430
+ | Opheim, A., Jahnsen, R., Olsson, E., Stanghelle, J.K., 2009. Walking function, pain, and
2431
+ | fatigue in adults with cerebral palsy: a 7-year follow-up study. Dev. Med. Child
2432
+ | Neurol. 51, 381–388. doi:10.1111/j.1469-8749.2008.03250.x
2433
+ | Osborne, M.D., Chou, L.S., Laskowski, E.R., Smith, J., Kaufman, K.R., 2001. The effect
2434
+ blank |
2435
+ meta | 69
2436
+ ref | of ankle disk training on muscle reaction time in subjects with a history of ankle
2437
+ | sprain. Am. J. Sports Med. 29, 627–632.
2438
+ | Pandy, M.G., Lin, Y.-C., Kim, H.J., 2010. Muscle coordination of mediolateral balance
2439
+ | in normal walking. J. Biomech. 43, 2055–64. doi:10.1016/j.jbiomech.2010.04.010
2440
+ | Perry, J., Antonelli, D., Ford, W., 1975. Analysis of knee-joint forces during flexed-knee
2441
+ | stance. J. Bone Joint Surg. Am. 57, 961–967.
2442
+ | Reinbolt, J. a, Fox, M.D., Arnold, A.S., Ounpuu, S., Delp, S.L., 2008. Importance of
2443
+ | preswing rectus femoris activity in stiff-knee gait. J. Biomech. 41, 2362–9.
2444
+ | doi:10.1016/j.jbiomech.2008.05.030
2445
+ | Rose, J., Gamble, J.G., Medeiros, J., Burgos, A., Haskell, W.L., 1989. Energy cost of
2446
+ | walking in normal children and in those with cerebral palsy: Comparison of Heart
2447
+ | Rate and Oxygen Uptake. J. Pediatr. Orthop. 9, 276–279.
2448
+ | Sasaki, K., Neptune, R.R., 2010. Individual muscle contributions to the axial knee joint
2449
+ | contact force during normal walking. J. Biomech. 43, 2780–4.
2450
+ | doi:10.1016/j.jbiomech.2010.06.011
2451
+ | Schnitzer, T.J., Popovich, J.M., Andersson, G.B., Andriacchi, T.P., 1993. Effect of
2452
+ | piroxicam on gait in patients with osteoarthritis of the knee. Arthritis Rheum. 36,
2453
+ | 1207–13.
2454
+ | Sharma, L., Hurwitz, D.E., Thonar, E.J., Sum, J. a, Lenz, M.E., Dunlop, D.D., Schnitzer,
2455
+ | T.J., Kirwan-Mellis, G., Andriacchi, T.P., 1998. Knee adduction moment, serum
2456
+ | hyaluronan level, and disease severity in medial tibiofemoral osteoarthritis. Arthritis
2457
+ | Rheum. 41, 1233–40. doi:10.1002/1529-0131(199807)41:7<1233::AID-
2458
+ | ART14>3.0.CO;2-L
2459
+ | Shelburne, K.B., Torry, M.R., Pandy, M.G., 2006. Contributions of muscles, ligaments,
2460
+ | and the ground-reaction force to tibiofemoral joint loading during normal gait. J.
2461
+ | Orthop. Res. 24, 1983–90. doi:10.1002/jor.20255
2462
+ | Shelburne, K.B., Torry, M.R., Pandy, M.G., 2005. Muscle, Ligament, and Joint-Contact
2463
+ | Forces at the Knee during Walking. Med. Sci. Sport. Exerc. 37, 1948–1956.
2464
+ | doi:10.1249/01.mss.0000180404.86078.ff
2465
+ | Sherman, M.A., Seth, A., Delp, S.L., 2011. Simbody: multibody dynamics for biomedical
2466
+ | research. Procedia IUTAM 2, 241–261. doi:10.1016/j.piutam.2011.04.023
2467
+ | Sheth, P., Bing Yu, Laskowski, E.R., An, K.-N., 1997. Ankle Disk Training Influences
2468
+ | Reaction Times of Selected Muscles in a Simulated Ankle Sprain. Am. J. Sports
2469
+ | Med. 25, 538–543. doi:10.1177/036354659702500418
2470
+ meta | 70
2471
+ ref | Shull, P.B., Lurie, K.L., Cutkosky, M.R., Besier, T.F., 2011. Training multi-parameter
2472
+ | gaits to reduce the knee adduction moment with data-driven models and haptic
2473
+ | feedback. J. Biomech. 44, 1605–9. doi:10.1016/j.jbiomech.2011.03.016
2474
+ | Shull, P.B., Silder, A., Shultz, R., Dragoo, J.L., Besier, T.F., Delp, S.L., Cutkosky, M.R.,
2475
+ | 2013. Six-Week Gait Retraining Program Reduces Knee Adduction Moment,
2476
+ | Reduces Pain, and Improves Function for Individuals with Medial Compartment
2477
+ | Knee Osteoarthritis. J. Orthop. Res. 1–6. doi:10.1002/jor.22340
2478
+ | Shultz, R., Silder, A., Malone, M., Braun, H.J., Dragoo, J.L., 2015. Unstable Surface
2479
+ | Improves Quadriceps:Hamstring Co-contraction for Anterior Cruciate Ligament
2480
+ | Injury Prevention Strategies. Sport. Heal. A Multidiscip. Approach 7, 166–171.
2481
+ | doi:10.1177/1941738114565088
2482
+ | Siegler, S., Chen, J., Schneck, C.D., 1990. The effect of damage to the lateral collateral
2483
+ | ligaments on the mechanical characteristics of the ankle joint--an in-vitro study. J.
2484
+ | Biomech. Eng. 112, 129–137.
2485
+ | Siegler, S., Chen, J., Schneck, C.D., 1988. The three-dimensional kinematics and
2486
+ | flexibility characteristics of the human ankle and subtalar joints—Part I: Kinematics.
2487
+ | J. Biomech. Eng. 110, 364–373.
2488
+ | Sritharan, P., Lin, Y.-C., Pandy, M.G., 2012. Muscles that do not cross the knee
2489
+ | contribute to the knee adduction moment and tibiofemoral compartment loading
2490
+ | during gait. J. Orthop. Res. 30, 1586–95. doi:10.1002/jor.22082
2491
+ | Steele, K.M., DeMers, M.S., Schwartz, M.H., Delp, S.L., 2012. Compressive
2492
+ | tibiofemoral force during crouch gait. Gait Posture 35, 556–60.
2493
+ | doi:10.1016/j.gaitpost.2011.11.023
2494
+ | Steele, K.M., Rozumalski, A., Schwartz, M.H., 2015. Muscle synergies and complexity
2495
+ | of neuromuscular control during gait in cerebral palsy. Dev. Med. Child Neurol.
2496
+ | n/a–n/a. doi:10.1111/dmcn.12826
2497
+ | Steele, K.M., Seth, A., Hicks, J.L., Schwartz, M.S., Delp, S.L., 2010. Muscle
2498
+ | contributions to support and progression during single-limb stance in crouch gait. J.
2499
+ | Biomech. 43, 2099–105. doi:10.1016/j.jbiomech.2010.04.003
2500
+ | Surve, I., Schwellnus, M.P., Noakes, T., Lombard, C., 1994. A Fivefold Reduction in the
2501
+ | Incidence of Recurrent Ankle Sprains in Soccer Players Using the Sport-Stirrup
2502
+ | Orthosis. Am. J. Sports Med. 22, 601–606. doi:10.1177/036354659402200506
2503
+ | Thelen, D.G., 2003. Adjustment of muscle mechanics model parameters to simulate
2504
+ | dynamic contractions in older adults., Journal of biomechanical engineering.
2505
+ | doi:10.1115/1.1531112
2506
+ meta | 71
2507
+ ref | Thelen, D.G., Anderson, F.C., Delp, S.L., 2003. Generating dynamic simulations of
2508
+ | movement using computed muscle control. J. Biomech. 36, 321–328.
2509
+ | doi:10.1016/S0021-9290(02)00432-3
2510
+ | Vaes, P., Duquet, W., Van Gheluwe, B., 2002. Peroneal Reaction Times and Eversion
2511
+ | Motor Response in Healthy and Unstable Ankles. J. Athl. Train. 37, 475–480.
2512
+ | van der Wees, P.J., Lenssen, A.F., Hendriks, E.J.M., Stomp, D.J., Dekker, J., de Bie, R. a,
2513
+ | 2006. Effectiveness of exercise therapy and manual mobilisation in ankle sprain and
2514
+ | functional instability: a systematic review. Aust. J. Physiother. 52, 27–37.
2515
+ | doi:10.1016/S0004-9514(06)70059-9
2516
+ | Verhagen, E., van der Beek, A., Twisk, J., Bouter, L., Bahr, R., van Mechelen, W., 2004.
2517
+ | The effect of a proprioceptive balance board training program for the prevention of
2518
+ | ankle sprains: a prospective controlled trial. Am. J. Sports Med. 32, 1385–1393.
2519
+ | doi:10.1177/0363546503262177
2520
+ | Verhagen, E.A.L.M., Bay, K., 2010. Optimising ankle sprain prevention: a critical review
2521
+ | and practical appraisal of the literature. Br. J. Sports Med. 44, 1082–88.
2522
+ | doi:10.1136/bjsm.2010.076406
2523
+ | Wagner, D.W., Stepanyan, V., Shippen, J.M., Demers, M.S., Gibbons, R.S., Andrews,
2524
+ | B.J., Creasey, G.H., Beaupre, G.S., 2013. Consistency among musculoskeletal
2525
+ | models: caveat utilitor. Ann. Biomed. Eng. 41, 1787–99. doi:10.1007/s10439-013-
2526
+ | 0843-1
2527
+ | Walker, P.S., Rovick, J.S., Robertson, D.D., 1988. The effects of knee brace hinge design
2528
+ | and placement on joint mechanics. J. Biomech. 21, 965–74.
2529
+ | Walter, J.P., Kinney, A.L., Banks, S.A., D’Lima, D.D., Besier, T.F., Lloyd, D.G., Fregly,
2530
+ | B.J., 2014. Muscle Synergies May Improve Optimization Prediction of Knee
2531
+ | Contact Forces During Walking. J. Biomech. Eng. 136, 021031.
2532
+ | doi:10.1115/1.4026428
2533
+ | Wang, J.M., Hamner, S.R., Delp, S.L., Koltun, V., 2012. Optimizing locomotion
2534
+ | controllers using biologically-based actuators and objectives. ACM Trans. Graph.
2535
+ | 31, 1–11. doi:10.1145/2185520.2335376
2536
+ | Ward, S.R., Eng, C.M., Smallwood, L.H., Lieber, R.L., 2009. Are Current Measurements
2537
+ | of Lower Extremity Muscle Architecture Accurate? Clin. Orthop. Relat. Res. 467,
2538
+ | 1074–1082. doi:10.1007/s11999-008-0594-8
2539
+ | Waterman, B.R., Belmont, P.J., Cameron, K.L., Deberardino, T.M., Owens, B.D., 2010.
2540
+ | Epidemiology of ankle sprain at the United States Military Academy. Am. J. Sports
2541
+ blank |
2542
+ meta | 72
2543
+ ref | Med. 38, 797–803. doi:10.1177/0363546509350757
2544
+ | Waters, R.L., Mulroy, S., 1999. The energy expenditure of normal and pathologic gait.
2545
+ | Gait Posture 9, 207–231. doi:10.1016/S0966-6362(99)00009-0
2546
+ | Wei, F., Braman, J.E., Weaver, B.T., Haut, R.C., 2011a. Determination of dynamic ankle
2547
+ | ligament strains from a computational model driven by motion analysis based
2548
+ | kinematic data. J. Biomech. 44, 2636–41. doi:10.1016/j.jbiomech.2011.08.010
2549
+ | Wei, F., Hunley, S.C., Powell, J.W., Haut, R.C., 2011b. Development and validation of a
2550
+ | computational model to study the effect of foot constraint on ankle injury due to
2551
+ | external rotation. Ann. Biomed. Eng. 39, 756–65. doi:10.1007/s10439-010-0234-9
2552
+ | Winby, C.R., Lloyd, D.G., Besier, T.F., Kirk, T.B., 2009. Muscle and external load
2553
+ | contribution to knee joint contact loads during normal gait. J. Biomech. 42, 2294–
2554
+ | 300. doi:10.1016/j.jbiomech.2009.06.019
2555
+ | Wong, M., Carter, D.., 2003. Articular cartilage functional histomorphology and
2556
+ | mechanobiology: a research perspective. Bone 33, 1–13. doi:10.1016/S8756-
2557
+ | 3282(03)00083-8
2558
+ | Wright, I.C., Neptune, R.R., Van Den Bogert, A.J., Nigg, B.M., 2000a. The influence of
2559
+ | foot positioning on ankle sprains. J. Biomech. 33, 513–519. doi:10.1016/S0021-
2560
+ | 9290(99)00218-3
2561
+ | Wright, I.C., Neptune, R.R., van den Bogert, A.J., Nigg, B.M., 2000b. The effects of
2562
+ | ankle compliance and flexibility on ankle sprains. Med. Sci. Sports Exerc. 32, 260–
2563
+ | 265. doi:10.1097/00005768-200002000-00002
2564
+ | Yamaguchi, G.T., Zajac, F.E., 1989. A planar model of the knee joint to characterize the
2565
+ | knee extensor mechanism. J. Biomech. 22, 1–10.
2566
+ | Young, S.J., van Doornik, J., Sanger, T.D., 2011. Visual feedback reduces co-contraction
2567
+ | in children with dystonia. J. Child Neurol. 26, 37–43.
2568
+ | doi:10.1177/0883073810371828
2569
+ | Zhao, D., Banks, S.A., Mitchell, K.H., Lima, D.D.D., Jr, C.W.C., Fregly, B.J., 2007.
2570
+ | Correlation between the Knee Adduction Torque and Medial Contact Force for a
2571
+ | Variety of Gait Patterns. J. Orthop. Res. 789–797. doi:10.1002/jor
2572
+ blank |
2573
+ |
2574
+ |
2575
+ |
2576
+ meta | 73
2577
+ title | Appendix A: Open source resources from this dissertation
2578
+ text | Resource Description Studies Content Information
2579
+ blank |
2580
+ text | Joint Reaction Calculates internal joint reaction loads Chapters Software library
2581
+ | Analysis transferred between any two 2 and 3 Documentation
2582
+ | contacting bodies in OpenSim. Joint Examples
2583
+ | reaction loads represent the resultant Test cases
2584
+ | of all forces and moments crossing the
2585
+ | joint, including muscles.
2586
+ blank |
2587
+ text | Distributed with OpenSim at http://opensim.stanford.edu/
2588
+ blank |
2589
+ text | Joint Load A free and open source plugin to Chapters Source code
2590
+ | Optimization minimize muscle activity and joint 2 and 3 Documentation
2591
+ | reaction loads simultaneously in Examples
2592
+ | OpenSim. Includes example models Test cases
2593
+ | and analyses for learning researchers.
2594
+ blank |
2595
+ text | Hosted as a SimTK project: https://simtk.org/home/jointloadopt
2596
+ blank |
2597
+ text | Stretch and A free and open source plugin to add Chapter 4 Source code
2598
+ | Reflex muscle stretch feedback controllers Documentation
2599
+ | Controllers and delayed stretch feedback Examples
2600
+ | controllers to OpenSim. Includes
2601
+ | example models and analyses for
2602
+ | learning researchers.
2603
+ blank |
2604
+ text | Hosted on GitHub: https://github.com/msdemers/opensim-reflex-controllers
2605
+ blank |
2606
+ text | Simulations of A library of human landing models Chapter 4 Documentation
2607
+ | landing injuries and simulations of ankle injuries. Data
2608
+ | Includes a generic human model with Models
2609
+ | foot-floor contact and stretch-based Simulation results
2610
+ | feedback controllers, motion capture
2611
+ | data and scaled models of measured
2612
+ | human landings, and a battery of
2613
+ | landing simulations under different
2614
+ | muscle coordination strategies.
2615
+ blank |
2616
+ text | Hosted as a SimTK project: https://simtk.org/home/ankle-sprains
2617
+ blank |
2618
+ |
2619
+ |
2620
+ |
2621
+ meta | 74
2622
+ title | Appendix B: Calculating joint contact forces in OpenSim
2623
+ text | In order to calculate tibiofemoral contact forces during walking (Chapters 2 and
2624
+ | 3), we developed a general method to calculate joint loads transferred between any two
2625
+ | contacting bodies in OpenSim. This method, called the Joint Reaction Analysis,
2626
+ | computes the resultant forces and moments that represent the internal loads carried by the
2627
+ | joint structure. For example, Chapters 2 and 3 report joint forces representing the sum of
2628
+ | contact forces between the tibial and femoral cartilage and all ligament forces crossing
2629
+ | the tibiofemoral joint
2630
+ blank |
2631
+ |
2632
+ |
2633
+ text | (A) (B) %"
2634
+ blank |
2635
+ text | Si-1 (⃑0123/)
2636
+ blank |
2637
+ text | !" #⃑"
2638
+ | !" g
2639
+ blank |
2640
+ |
2641
+ text | Si
2642
+ blank |
2643
+ text | Si+1
2644
+ blank |
2645
+ |
2646
+ text | (⃑)*+),-./ %"&'
2647
+ blank |
2648
+ |
2649
+ text | (A) Example kinematic chain of body segments that can be represented in OpenSim. The joint between body
2650
+ | segments Si and Si-1 is described by splines that represent an elliptical surface and thus need not be an
2651
+ | idealized pin joint. (B) Single-body system used to calculate ]& , the reaction load at the proximal joint of Si.
2652
+ | The calculation is in terms of Si’s inertial forces, muscle forces (black arrows), other external forces, and
2653
+ | the previously calculated reaction force at the distal joint.
2654
+ blank |
2655
+ |
2656
+ |
2657
+ |
2658
+ meta | 75
2659
+ text | OpenSim uses multibody dynamics and simulation methods from Simbody
2660
+ | (https://simtk.org/home/simbody), a free and open source library for representing rigid
2661
+ | body dynamics. Simbody constructs models as tree structures in which rigid bodies
2662
+ | connect in kinematic chains that can branch with joints or reconnect with constraints. The
2663
+ | equations of motion of the system are represented in terms of the generalized coordinates
2664
+ | and generalized forces of the model. Solving these generalized equations of motion does
2665
+ | not require calculating internal forces, such as the joint contact forces. Therefore, the
2666
+ | Joint Reaction Analysis in OpenSim incorporates a post-processing procedure that uses
2667
+ | the muscle forces and joint kinematics to calculate resultant joint loads.
2668
+ | Figure B.1.A shows an example model consisting of segments linked in a
2669
+ | kinematic chain. Joints between these segments do not need to have classical engineering
2670
+ | definitions, such as a revolute joint or spherical joint, but instead can have more
2671
+ | physiologic descriptions. For example, the motion between body segments q& and q&r1
2672
+ | may be described by splines that couple the rotations and translations of the knee. For
2673
+ | each time point in an analysis, a recursive operation begins with the most distal bodies
2674
+ | and progresses proximally to calculate the joint loads. The force at each joint is
2675
+ | calculated by performing a force balance on the body distal to the joint.
2676
+ | A single step in this recursive procedure is analogous to constructing a free body
2677
+ | diagram for each rigid body and resolving the point load that must be applied to the joint
2678
+ | to balance the forces and motions of the body. To calculate ]& , the resultant forces and
2679
+ | moments at joint i, the body distal to joint i, q& , is treated as an independent body with
2680
+ | known kinematics in a global reference frame. In the example system (Figure B.1.B), '&
2681
+ | represents the six dimensional vector of known angular and linear accelerations of q& .
2682
+ | Since these accelerations are reconstructed from Simbody’s generalized equations of
2683
+ | motion, they capture any kinematic complexity in the joint description. 3/A>/B)C. and
2684
+ | 3a+,-./ represent the previously calculated forces and moments applied by external loads
2685
+ | and musculotendon actuators respectively. ]&m1 $represents the joint reaction load applied
2686
+ | at the distal joint. ]&m1 $is known since it was calculated in the previous recursive step.
2687
+ | Using the known generalized coordinates (F) and generalized speeds (s) of the body
2688
+ blank |
2689
+ |
2690
+ |
2691
+ meta | 76
2692
+ text | segment and all other applied forces, the desired resultant force is calculated as the vector
2693
+ | sum:
2694
+ | t=
2695
+ | ]= = $ = E& F '& + 3-=),>BC&)> − ( 3/A>/B)C. + 3a+,-./, + ]&m1 ) Equation B.1
2696
+ | 3=
2697
+ | The sum requires that all terms be described in a common reference frame located
2698
+ | at the body origin, thus ]= is the joint force and moment expressed at the body origin.
2699
+ | E& F $is the six-by-six mass matrix for body segment i. 3-=),>BC&)> $represents constraint
2700
+ | forces applied to the body, if applicable. Since the all terms other than ]= result from
2701
+ | generalized coordinates and forces previously solved by Simbody, we can calculate the
2702
+ | moment and force at the body origin, t= and 3= , that are required to balance the equation.
2703
+ | Finally, ]= expressed at the body origin is shifted to an equivalent moment and force, t&
2704
+ | and 3& , at the joint center:
2705
+ | t& t= v×3=
2706
+ | ]& = $ ∶= − Equation B.2
2707
+ | 3& 3= 0
2708
+ | where v is the vector pointing from the body origin to the joint location.
2709
+ | The Joint Reaction analysis algorithm is distributed as part of OpenSim versions
2710
+ | 1.9 and later. The value of this algorithm is that it leverages the generalized coordinate
2711
+ | representation and rich set of joint definitions provided by Simbody and OpenSim and
2712
+ | provides a free tool for researchers to use to calculate joint loads for any musculoskeletal
2713
+ | structure.
2714
+ blank |
2715
+ |
2716
+ |
2717
+ |
2718
+ meta | 77
2719
+ blank |