anystyle 1.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/HISTORY.md +78 -0
- data/LICENSE +27 -0
- data/README.md +103 -0
- data/lib/anystyle.rb +71 -0
- data/lib/anystyle/dictionary.rb +132 -0
- data/lib/anystyle/dictionary/gdbm.rb +52 -0
- data/lib/anystyle/dictionary/lmdb.rb +67 -0
- data/lib/anystyle/dictionary/marshal.rb +27 -0
- data/lib/anystyle/dictionary/redis.rb +55 -0
- data/lib/anystyle/document.rb +264 -0
- data/lib/anystyle/errors.rb +14 -0
- data/lib/anystyle/feature.rb +27 -0
- data/lib/anystyle/feature/affix.rb +43 -0
- data/lib/anystyle/feature/brackets.rb +32 -0
- data/lib/anystyle/feature/canonical.rb +13 -0
- data/lib/anystyle/feature/caps.rb +20 -0
- data/lib/anystyle/feature/category.rb +70 -0
- data/lib/anystyle/feature/dictionary.rb +16 -0
- data/lib/anystyle/feature/indent.rb +16 -0
- data/lib/anystyle/feature/keyword.rb +52 -0
- data/lib/anystyle/feature/line.rb +39 -0
- data/lib/anystyle/feature/locator.rb +18 -0
- data/lib/anystyle/feature/number.rb +39 -0
- data/lib/anystyle/feature/position.rb +28 -0
- data/lib/anystyle/feature/punctuation.rb +22 -0
- data/lib/anystyle/feature/quotes.rb +20 -0
- data/lib/anystyle/feature/ref.rb +21 -0
- data/lib/anystyle/feature/terminal.rb +19 -0
- data/lib/anystyle/feature/words.rb +74 -0
- data/lib/anystyle/finder.rb +94 -0
- data/lib/anystyle/format/bibtex.rb +63 -0
- data/lib/anystyle/format/csl.rb +28 -0
- data/lib/anystyle/normalizer.rb +65 -0
- data/lib/anystyle/normalizer/brackets.rb +13 -0
- data/lib/anystyle/normalizer/container.rb +13 -0
- data/lib/anystyle/normalizer/date.rb +109 -0
- data/lib/anystyle/normalizer/edition.rb +16 -0
- data/lib/anystyle/normalizer/journal.rb +14 -0
- data/lib/anystyle/normalizer/locale.rb +30 -0
- data/lib/anystyle/normalizer/location.rb +24 -0
- data/lib/anystyle/normalizer/locator.rb +22 -0
- data/lib/anystyle/normalizer/names.rb +88 -0
- data/lib/anystyle/normalizer/page.rb +29 -0
- data/lib/anystyle/normalizer/publisher.rb +18 -0
- data/lib/anystyle/normalizer/pubmed.rb +18 -0
- data/lib/anystyle/normalizer/punctuation.rb +23 -0
- data/lib/anystyle/normalizer/quotes.rb +14 -0
- data/lib/anystyle/normalizer/type.rb +54 -0
- data/lib/anystyle/normalizer/volume.rb +26 -0
- data/lib/anystyle/parser.rb +199 -0
- data/lib/anystyle/support.rb +4 -0
- data/lib/anystyle/support/finder.mod +3234 -0
- data/lib/anystyle/support/finder.txt +75 -0
- data/lib/anystyle/support/parser.mod +15025 -0
- data/lib/anystyle/support/parser.txt +75 -0
- data/lib/anystyle/utils.rb +70 -0
- data/lib/anystyle/version.rb +3 -0
- data/res/finder/bb132pr2055.ttx +6803 -0
- data/res/finder/bb550sh8053.ttx +18660 -0
- data/res/finder/bb599nz4341.ttx +2957 -0
- data/res/finder/bb725rt6501.ttx +15276 -0
- data/res/finder/bc605xz1554.ttx +18815 -0
- data/res/finder/bd040gx5718.ttx +4271 -0
- data/res/finder/bd413nt2715.ttx +4956 -0
- data/res/finder/bd466fq0394.ttx +6100 -0
- data/res/finder/bf668vw2021.ttx +3578 -0
- data/res/finder/bg495cx0468.ttx +7267 -0
- data/res/finder/bg599vt3743.ttx +6752 -0
- data/res/finder/bg608dx2253.ttx +4094 -0
- data/res/finder/bh410qk3771.ttx +8785 -0
- data/res/finder/bh989ww6442.ttx +17204 -0
- data/res/finder/bj581pc8202.ttx +2719 -0
- data/res/parser/bad.xml +5199 -0
- data/res/parser/core.xml +7924 -0
- data/res/parser/gold.xml +2707 -0
- data/res/parser/good.xml +34281 -0
- data/res/parser/stanford-books.xml +2280 -0
- data/res/parser/stanford-diss.xml +726 -0
- data/res/parser/stanford-theses.xml +4684 -0
- data/res/parser/ugly.xml +33246 -0
- metadata +195 -0
@@ -0,0 +1,2719 @@
|
|
1
|
+
title | COMPUTER MODELING OF MUSCLE COORDINATION STRATEGIES THAT
|
2
|
+
| DECREASE JOINT LOADS
|
3
|
+
blank |
|
4
|
+
|
|
5
|
+
text | A DISSERTATION
|
6
|
+
| SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING
|
7
|
+
| AND THE COMMITTEE ON GRADUATE STUDIES
|
8
|
+
| OF STANFORD UNIVERSITY
|
9
|
+
| IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
|
10
|
+
| FOR THE DEGREE OF
|
11
|
+
| DOCTOR OF PHILOSOPHY
|
12
|
+
blank |
|
13
|
+
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
text | By
|
17
|
+
| Matthew S. DeMers
|
18
|
+
| December 2015
|
19
|
+
| © 2015 by Matthew Stephen DeMers. All Rights Reserved.
|
20
|
+
| Re-distributed by Stanford University under license with the author.
|
21
|
+
blank |
|
22
|
+
|
|
23
|
+
|
|
24
|
+
text | This work is licensed under a Creative Commons Attribution-
|
25
|
+
| Noncommercial 3.0 United States License.
|
26
|
+
| http://creativecommons.org/licenses/by-nc/3.0/us/
|
27
|
+
blank |
|
28
|
+
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
text | This dissertation is online at: http://purl.stanford.edu/bj581pc8202
|
32
|
+
blank |
|
33
|
+
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
meta | ii
|
37
|
+
text | I certify that I have read this dissertation and that, in my opinion, it is fully adequate
|
38
|
+
| in scope and quality as a dissertation for the degree of Doctor of Philosophy.
|
39
|
+
blank |
|
40
|
+
text | Scott Delp, Primary Adviser
|
41
|
+
blank |
|
42
|
+
|
|
43
|
+
|
|
44
|
+
text | I certify that I have read this dissertation and that, in my opinion, it is fully adequate
|
45
|
+
| in scope and quality as a dissertation for the degree of Doctor of Philosophy.
|
46
|
+
blank |
|
47
|
+
text | Garry Gold
|
48
|
+
blank |
|
49
|
+
|
|
50
|
+
|
|
51
|
+
text | I certify that I have read this dissertation and that, in my opinion, it is fully adequate
|
52
|
+
| in scope and quality as a dissertation for the degree of Doctor of Philosophy.
|
53
|
+
blank |
|
54
|
+
text | Marc Levenston
|
55
|
+
blank |
|
56
|
+
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
text | Approved for the Stanford University Committee on Graduate Studies.
|
60
|
+
| Patricia J. Gumport, Vice Provost for Graduate Education
|
61
|
+
blank |
|
62
|
+
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
text | This signature page was generated electronically upon submission of this dissertation in
|
66
|
+
| electronic format. An original signed hard copy of the signature page is on file in
|
67
|
+
| University Archives.
|
68
|
+
blank |
|
69
|
+
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
meta | iii
|
73
|
+
| iv
|
74
|
+
title | Abstract
|
75
|
+
text | Musculoskeletal models allow us to study muscle coordination and joint injuries
|
76
|
+
| in ways that in vivo experiments cannot. Models and simulations can compute internal
|
77
|
+
| joint contact forces, explore unsafe conditions, and simulate injuries without risk of
|
78
|
+
| harming experimental subjects. Models also enable systematic variation of muscle
|
79
|
+
| activity to evaluate its effect on joint loading and injury. The goals of this dissertation
|
80
|
+
| were to systematically quantify the effects of varied muscle activity in three applications:
|
81
|
+
| (1) to decrease knee forces during walking, (2) to estimate increased knee forces due to
|
82
|
+
| crouch gait in subjects with cerebral palsy, and (3) to prevent ankle sprains during
|
83
|
+
| landing.
|
84
|
+
| Muscles induce large forces in the tibiofemoral joint during walking and thereby
|
85
|
+
| influence the health or degradation of tissues like articular cartilage and menisci. It is
|
86
|
+
| possible to walk with a wide variety of muscle coordination patterns, but the effect of
|
87
|
+
| varied muscle coordination on tibiofemoral contact forces remains unclear. The first goal
|
88
|
+
| of this dissertation was to determine the effect of varied muscle coordination on
|
89
|
+
| tibiofemoral contact forces. We developed a musculoskeletal model of a subject walking
|
90
|
+
| with an instrumented knee implant. Using an optimization framework, we calculated the
|
91
|
+
| tibiofemoral forces resulting from muscle coordination that reproduced the subject’s
|
92
|
+
| walking dynamics. We performed a large set of optimizations in which we systematically
|
93
|
+
| varied the coordination of muscles to determine the influence on tibiofemoral force. Peak
|
94
|
+
| tibiofemoral forces during late stance could be reduced by increasing the activation of the
|
95
|
+
| gluteus medius, uniarticular hip flexors, and soleus and by decreasing the activation of
|
96
|
+
| the gastrocnemius and rectus femoris. These results suggest that retraining of muscle
|
97
|
+
| coordination could substantially reduce tibiofemoral forces during late stance.
|
98
|
+
| Muscle coordination and the resulting tibiofemoral forces may vary dramatically
|
99
|
+
| due to changes in walking kinematics, especially for individuals with gait pathologies.
|
100
|
+
| Crouch gait, a common walking pattern in individuals with cerebral palsy, is
|
101
|
+
| characterized by excessive flexion of the hip and knee. Many subjects with crouch gait
|
102
|
+
| experience knee pain, perhaps because of elevated muscle forces and joint loading. The
|
103
|
+
| second goal of this dissertation was to examine how compressive tibiofemoral force
|
104
|
+
| change with the increasing knee flexion associated with crouch gait. Using our
|
105
|
+
blank |
|
106
|
+
meta | v
|
107
|
+
text | musculoskeletal model, muscle forces and tibiofemoral force were computed for three
|
108
|
+
| unimpaired children and nine children with cerebral palsy who walked with varying
|
109
|
+
| degrees of knee flexion. Compressive tibiofemoral force increased quadratically with
|
110
|
+
| average stance phase knee flexion (i.e., crouch severity) during the stance phase of
|
111
|
+
| walking, primarily due to concomitant increases in quadriceps forces. These results
|
112
|
+
| revealed that walking in crouch generates increased knee loading which may contribute
|
113
|
+
| to knee pain in individuals with crouch gait.
|
114
|
+
| Muscle coordination and pose are suspected causes and predictors of ankle
|
115
|
+
| inversion sprains. Interventions that retrain muscle coordination have helped rehabilitate
|
116
|
+
| injured ankles, but it is unclear which muscle coordination strategies, if any, can prevent
|
117
|
+
| ankle sprains. The third goal of this dissertation was to determine whether coordinated
|
118
|
+
| activity of the ankle muscles could prevent excessive ankle inversion during a simulated
|
119
|
+
| landing on a 30–degree incline. We used musculoskeletal simulations to evaluate two
|
120
|
+
| strategies for coordinating the ankle evertor and invertor muscles during simulated
|
121
|
+
| landing scenarios: planned co-activation and stretch reflex activation with physiologic
|
122
|
+
| latency (60-millisecond delay). Our simulations revealed that strong preparatory co-
|
123
|
+
| activation of the ankle evertors and invertors prior to ground contact prevented ankle
|
124
|
+
| inversion from exceeding injury thresholds by rapidly generating eversion moments after
|
125
|
+
| initial contact. Conversely, stretch reflexes were too slow to generate eversion moments
|
126
|
+
| before the simulations reached the threshold for inversion injury. These results suggest
|
127
|
+
| that training interventions to protect the ankle should focus on stiffening the ankle with
|
128
|
+
| muscle co-activation instead of increasing the speed or intensity of the evertor reflexes.
|
129
|
+
| This dissertation examines the effects of varied muscle coordination on two of the
|
130
|
+
| most common musculoskeletal injuries: chronic degradation of the knee and acute ankle
|
131
|
+
| inversion sprains. Our results revealed key connections between specific changes in
|
132
|
+
| muscle coordination and improved function of the knee and ankle, suggesting exciting
|
133
|
+
| future research areas for designing and testing interventions that protect knee and ankle
|
134
|
+
| function. Additionally, this dissertation provides a computational foundation for
|
135
|
+
| systematically exploring muscle coordination in musculoskeletal models, and provides
|
136
|
+
| them, free and open source, to the broader research community.
|
137
|
+
blank |
|
138
|
+
|
|
139
|
+
meta | vi
|
140
|
+
title | Acknowledgments
|
141
|
+
text | Foremost among the lessons of my PhD, I’ve learned that great research and
|
142
|
+
| training new scientists is a collaborative, community endeavor. My doctoral development
|
143
|
+
| has been far from a singular, heroic effort to do science. Instead, I owe my development
|
144
|
+
| to my gracious peers, inspiring mentors, and the exhilarating atmosphere at Stanford. I
|
145
|
+
| dedicate the work in this dissertation to everyone in the hard working community that
|
146
|
+
| continues to nurture my lifelong learning.
|
147
|
+
| Above all, I am grateful to Scott Delp, my principal advisor and mentor, for being
|
148
|
+
| the architect and visionary behind my research community. Scott has grown a laboratory
|
149
|
+
| full of driven yet nurturing peers, supported us to pursue difficult research questions, and
|
150
|
+
| compelled us to share our work and expertise with the world as often as possible. Scott,
|
151
|
+
| the storyteller, taught me to have great impact by conveying my research and expertise as
|
152
|
+
| meaningful stories, and I’ve learned much of my communication style by emulating him.
|
153
|
+
| I am most grateful to Scott for the freedom he granted me to learn what I wanted, and
|
154
|
+
| dive deep into technical virtuosity beyond the level required to publish our research.
|
155
|
+
| Sincerely, thank you.
|
156
|
+
| I am thankful for the inspiring people of the Neuromuscular Biomechanics
|
157
|
+
| Laboratory (NMBL). Through ad hoc writing clubs, practice presentations, and design
|
158
|
+
| session on the whiteboard, you provided the driving drum beat for my learning and
|
159
|
+
| research progress. Thank you to Kat Steele, Saikat Pal, and Jen Hicks for your intense
|
160
|
+
| collaboration and mentorship on our shared research. Thank you to Sam Hamner, Edith
|
161
|
+
| Arnold, Gabriel Sanches, Melinda Cromie, Chand John, Tim Dorn, James Dunne, Tom
|
162
|
+
| Uchida, Chris Dembia, Carmichael Ong, and Apoorva Rajagopal. I notice how you
|
163
|
+
| consistently stay late to offer feedback on my presentations and donate your time to
|
164
|
+
| critique and augment my work. Thank you for being selfless and supportive. Thank you
|
165
|
+
| to Carolyn Mazenko and Diane Bush for your constant attention that glues NMBL
|
166
|
+
| together.
|
167
|
+
| I have been incredibly lucky to learn from the extraordinary people of the NIH
|
168
|
+
| Center for physics-based Simulation of Biological Structures (Simbios) and the National
|
169
|
+
| Center for Simulation in Rehabilitation Research (NCSRR). These centers produce the
|
170
|
+
| highest quality of biomechanical modeling software, and give it away, so that myself and
|
171
|
+
blank |
|
172
|
+
meta | vii
|
173
|
+
text | thousands more researchers can pursue their challenging research questions. However,
|
174
|
+
| more importantly to me, I must recognize the character demonstrated by Ajay Seth,
|
175
|
+
| Ayman Habib, Michael Sherman, Jen Hick, Joy Ku, and Scott Delp. All of you
|
176
|
+
| demonstrate elite expertise yet simultaneously conduct yourselves with grace and
|
177
|
+
| patience. It is humbling and I will strive to conduct myself with the same unique blend of
|
178
|
+
| character.
|
179
|
+
| Thank you to my dissertation readers and defense committee, who were Marc
|
180
|
+
| Levenston, Garry Gold, Ellen Kuhl, and Lane Smith. I am fortunate to have your
|
181
|
+
| guidance at the end of my PhD as you review and critique my work. It was a new and fun
|
182
|
+
| experience to sit together, borrow your attention, and discuss my research. Also, thank
|
183
|
+
| you to Gary Beaupre for your support and enthusiasm for my research and serving as a
|
184
|
+
| sixth advisor in many ways. To all of you, thank you for that honor.
|
185
|
+
| Substantial data used in this dissertation were provided by the ASME Grand
|
186
|
+
| Challenge to Predict In Vivo Knee Loads, the Gillette Children’s Specialty Healthcare,
|
187
|
+
| and the Human Performance Lab at Stanford University. Thank you to B.J. Fregly, Thor
|
188
|
+
| Besier, David Lloyd, Darryl D’Lima, Michael Schwartz, Rebecca Shultz, and Amy Silder
|
189
|
+
| for providing these unique data and enabling the research I pursued.
|
190
|
+
| I was fortunate to have extensive financial support throughout my PhD. Thank
|
191
|
+
| you to the National Library of Medicine Training Grant in Biomedical Informatics, the
|
192
|
+
| Powell Foundation, and the DARPA Warrior Web for supporting my livelihood during
|
193
|
+
| my PhD and granting me numerous opportunities to travel and share my research
|
194
|
+
| worldwide.
|
195
|
+
| Finally, thank you to my family and friends for sharing your curiosity and
|
196
|
+
| passion. Thank you to my parents, Freda Sharp and Stephen DeMers, my sister and her
|
197
|
+
| husband, Rachel and Brad Rice, and all my extended family who, time and again, rally in
|
198
|
+
| support of learning and growth. Thank you to Adam, Vanessa, Saikat, Tim, Jayodita, Adi,
|
199
|
+
| Anja, Vivian, Kathy, John, Brett, Min-Sun, Jaimie, Andrew, James, Billy, Takane, Mai,
|
200
|
+
| Sully, Caroline, Kelly, Brandon, and Gentry for your unique humor and the energy you
|
201
|
+
| gift to me. Thank you Jason Inay and his eskrimadors for being the crucible. Thank you
|
202
|
+
| Stanford for being the hammer and anvil. Thank you Kate for being the water stone.
|
203
|
+
blank |
|
204
|
+
|
|
205
|
+
meta | viii
|
206
|
+
title | Table of contents
|
207
|
+
blank |
|
208
|
+
text | ABSTRACT V
|
209
|
+
blank |
|
210
|
+
text | ACKNOWLEDGMENTS VII
|
211
|
+
blank |
|
212
|
+
text | TABLE OF CONTENTS IX
|
213
|
+
blank |
|
214
|
+
text | LIST OF TABLES XI
|
215
|
+
blank |
|
216
|
+
text | LIST OF ILLUSTRATIONS XI
|
217
|
+
blank |
|
218
|
+
text | 1. INTRODUCTION 1
|
219
|
+
| 1.1. FOCUS OF THIS DISSERTATION 3
|
220
|
+
| 1.2. SIGNIFICANCE OF THIS RESEARCH 4
|
221
|
+
| 1.3. OVERVIEW OF THIS DISSERTATION 5
|
222
|
+
blank |
|
223
|
+
text | 2. CHANGES IN TIBIOFEMORAL FORCES DUE TO VARIATIONS IN
|
224
|
+
| MUSCLE ACTIVITY DURING WALKING 7
|
225
|
+
| 2.1. INTRODUCTION 7
|
226
|
+
| 2.2. METHODS 8
|
227
|
+
| 2.2.1. HUMAN SUBJECT DATA 8
|
228
|
+
| 2.2.2. OPENSIM MODEL 8
|
229
|
+
| 2.2.3. OPTIMIZATION 10
|
230
|
+
| 2.2.4. A MUSCLE COORDINATION PATTERN MINIMIZING MUSCLE ACTIVATIONS 11
|
231
|
+
| 2.2.5. A MUSCLE COORDINATION PATTERN MINIMIZING COMPRESSIVE TIBIOFEMORAL FORCE 12
|
232
|
+
| 2.2.6. CHANGES IN TIBIOFEMORAL FORCES DUE TO VARIED ACTIVATIONS OF INDIVIDUAL
|
233
|
+
| MUSCLES 12
|
234
|
+
| 2.3. RESULTS 13
|
235
|
+
| 2.4. DISCUSSION 17
|
236
|
+
| 2.5. CONCLUSION 21
|
237
|
+
blank |
|
238
|
+
text | 3. COMPRESSIVE TIBIOFEMORAL FORCES DURING CROUCH GAIT 23
|
239
|
+
| 3.1. INTRODUCTION 23
|
240
|
+
| 3.2. METHODS 24
|
241
|
+
| 3.2.1. SUBJECTS 24
|
242
|
+
| 3.2.2. MOTION ANALYSIS 25
|
243
|
+
| 3.2.3. MUSCULOSKELETAL MODELING 25
|
244
|
+
blank |
|
245
|
+
meta | ix
|
246
|
+
text | 3.3. RESULTS 30
|
247
|
+
| 3.2. DISCUSSION 32
|
248
|
+
| 3.2. CONCLUSION 36
|
249
|
+
blank |
|
250
|
+
text | 4. PREPARATORY CO-ACTIVATION OF THE ANKLE MUSCLES MAY
|
251
|
+
| PREVENT ANKLE INVERSION INJURIES 37
|
252
|
+
| 4.1. INTRODUCTION 37
|
253
|
+
| 4.2. METHODS 39
|
254
|
+
| 4.2.1. A NEW MUSCULOSKELETAL MODEL FOR SIMULATING ANKLE INVERSION INJURIES 39
|
255
|
+
| 4.2.2. GENERATING NOMINAL SIMULATIONS OF LANDING 42
|
256
|
+
| 4.2.3. INDUCING ANKLE INVERSION IN SIMULATED LANDINGS 44
|
257
|
+
| 4.2.4. QUANTIFYING THE EFFECT OF PLANNED CO-ACTIVATION 45
|
258
|
+
| 4.2.5. QUANTIFYING THE EFFECT OF ANKLE STRETCH REFLEXES 45
|
259
|
+
| 4.3. RESULTS 46
|
260
|
+
| 4.4. DISCUSSION 49
|
261
|
+
| 4.5. CONCLUSION 51
|
262
|
+
blank |
|
263
|
+
text | 5. CONCLUSION 52
|
264
|
+
| 5.1. CONTRIBUTIONS 52
|
265
|
+
| 5.1.1. SCIENTIFIC FINDINGS 52
|
266
|
+
| 5.1.2. TECHNOLOGICAL CONTRIBUTIONS TO THE RESEARCH COMMUNITY 54
|
267
|
+
| 5.2. FUTURE WORK 55
|
268
|
+
| 5.2.1. IMMEDIATE NEXT STEPS 55
|
269
|
+
| 5.2.1. NEW LINES OF RESEARCH 58
|
270
|
+
blank |
|
271
|
+
text | LIST OF REFERENCES 62
|
272
|
+
blank |
|
273
|
+
text | APPENDIX A: OPEN SOURCE RESOURCES FROM THIS DISSERTATION 74
|
274
|
+
blank |
|
275
|
+
text | APPENDIX B: CALCULATING JOINT CONTACT FORCES IN OPENSIM 75
|
276
|
+
blank |
|
277
|
+
|
|
278
|
+
|
|
279
|
+
|
|
280
|
+
meta | x
|
281
|
+
title | List of Tables
|
282
|
+
text | Table 3.1: Characteristics of unimaired mild, moderate, and sever subjects. ................... 25
|
283
|
+
| Table 4.1: Parameters of the muscle stretch feedback controllers that coordinated the
|
284
|
+
| trunk, hip, knee, and ankle plantar/dorsiflexor muscles. .......................................... 43
|
285
|
+
blank |
|
286
|
+
|
|
287
|
+
title | List of Illustrations
|
288
|
+
text | Figure 2.1: Musculoskeletal model of the human legs and torso, including a coupled
|
289
|
+
| tibiofemoral and patellofemoral mechanism. ............................................................. 9
|
290
|
+
| Figure 2.2: Stance-phase tibiofemoral forces predicted in a musculoskeletal model by
|
291
|
+
| minimize muscle activation squared or tibiofemoral forces, compared to in vivo
|
292
|
+
| measurements. .......................................................................................................... 14
|
293
|
+
| Figure 2.3: The effect of varying activation of individual muscles on predicted
|
294
|
+
| tibiofemoral forces shown for the most influential muscles. .................................... 15
|
295
|
+
| Figure 2.4: Maximum change in peak tibiofemoral force due to activation of a muscle or
|
296
|
+
| muscle group during the late stance phase of walking. ............................................ 16
|
297
|
+
| Figure 2.5: Model predicted activations of the nine most influential muscles produced by
|
298
|
+
| optimizations with varied muscle activity weights. .................................................. 18
|
299
|
+
| Figure 3.1: Tibiofemoral contact forces estimated in the computer model compared to
|
300
|
+
| tibiofemoral forces measured in vivo. ....................................................................... 28
|
301
|
+
| Figure 3.2: Comparison of EMG and muscle activations from static optimization for
|
302
|
+
| subjects with crouch gait. .......................................................................................... 29
|
303
|
+
| Figure 3.3: Average knee flexion angle, average compressive tibiofemoral force, and
|
304
|
+
| average quadriceps force expressed as multiples of body-weight (xBW) during one
|
305
|
+
| gait cycle for the subjects who walked with an unimpaired gait and mild, moderate,
|
306
|
+
| and severe crouch gait. .............................................................................................. 31
|
307
|
+
| Figure 3.4: Correlation of average knee flexion angle during stance with average
|
308
|
+
| compressive tibiofemoral force during stance, average quadriceps force during
|
309
|
+
| stance, average hamstrings force during stance, and average gastrocnemius force
|
310
|
+
| during stance. ............................................................................................................ 32
|
311
|
+
blank |
|
312
|
+
|
|
313
|
+
|
|
314
|
+
|
|
315
|
+
meta | xi
|
316
|
+
text | Figure 3.5: Average tibiofemoral contact force, quadriceps force, hamstring force, and
|
317
|
+
| gastrocnemius force during stance resulting from various objective functions. ....... 35
|
318
|
+
| Figure 4.1: Musculoskeletal model for simulating single-leg landing on level and inclined
|
319
|
+
| surfaces, which included a torso, pelvis, and the right (landing) limb as well as
|
320
|
+
| contact forces between the foot and floot. ................................................................ 40
|
321
|
+
| Figure 4.2: Load–deflection mechanics of passive ankle structures in the model compared
|
322
|
+
| to soft tissue mechanics measured in cadavers (Chen et al., 1988). ......................... 41
|
323
|
+
| Figure 4.3: Simulated hip, knee, and ankle plantar flexion kinematics after initial ground
|
324
|
+
| contact for a 0.3-meter landing onto level ground compared to kinematics measured
|
325
|
+
| from a subject executing the same landing. .............................................................. 44
|
326
|
+
| Figure 4.4: Ankle inversion trajectories immediately after impact for various levels of
|
327
|
+
| evertor and invertor muscle co-activation................................................................. 47
|
328
|
+
| Figure 4.5: Ankle inversion trajectories immediately after impact with ankle evertor and
|
329
|
+
| invertor stretch reflexes of various intensities. ......................................................... 47
|
330
|
+
| Figure 4.6: Contributions of muscles and ligaments to the protective eversion moment
|
331
|
+
| when adopting planned co-activation or strong stretch reflexes in the ankle evertor
|
332
|
+
| and invertor muscles. ................................................................................................ 48
|
333
|
+
blank |
|
334
|
+
|
|
335
|
+
|
|
336
|
+
|
|
337
|
+
meta | xii
|
338
|
+
title | 1. Introduction
|
339
|
+
text | Chronic knee degradation and acute ankle sprains occur at epidemic rates in
|
340
|
+
| humans and result in permanent deficits in function and health. Approximately 14% of
|
341
|
+
| Americans develop symptomatic osteoarthritis (OA) at the knee (Losina et al., 2013) and
|
342
|
+
| 12% experience ankle sprains during their lifetime (Doherty et al., 2014). These epidemic
|
343
|
+
| injuries are heavily influence by the loads in joint tissues and the muscle forces which
|
344
|
+
| generate them. For example, knee OA and pain have been linked to high tibiofemoral
|
345
|
+
| loads during walking (Baliunas, 2002; Schnitzer et al., 1993; Sharma et al., 1998),
|
346
|
+
| suggesting that changing the activity of muscles crossing the knee could decrease
|
347
|
+
| tibiofemoral loads and delay the onset and progression of OA. Similarly, ankle instability
|
348
|
+
| has been linked to slow or inactive ankle musculature, suggesting that increasing ankle
|
349
|
+
| muscle activity may prevent many ankle sprains (Delahunt, 2007; Konradsen and Bohsen
|
350
|
+
| Ravn, 1991; Löfvenberg et al., 1995). Therefor, delaying or even preventing chronic knee
|
351
|
+
| degradation, acute ankle sprains, and potentially many more joint tissue injuries require
|
352
|
+
| strategies for changing and optimizing muscle coordination to protect these tissues.
|
353
|
+
| Discovering these coordination strategies is only possible if we can safely and
|
354
|
+
| systematically control coordination and test the effect on the joints.
|
355
|
+
| In vivo measurement of muscle coordination and the resulting joint function is
|
356
|
+
| difficult, invasive, and rarely done. Directly measuring muscle tensions requires invasive
|
357
|
+
| procedures, such as severing tendons to install buckle transducers in living subjects
|
358
|
+
| (Fukashiro et al., 1993; Gregor et al., 1991). Direct measurement of joint loads requires
|
359
|
+
| implanting instrumented joint prostheses which measure the loads near the articulating
|
360
|
+
| surfaces (Graichen et al., 2007; Kirking et al., 2006). While these techniques provide
|
361
|
+
| valuable data, their invasiveness makes experiments on healthy individuals unethical,
|
362
|
+
| limiting the size and diversity of subject cohorts. For example, in vivo knee loads have
|
363
|
+
| been measured in fewer than 20 subjects, all of whom were middle aged or older and
|
364
|
+
| already experienced joint degradation and surgery (Fregly et al., 2012; Kutzner et al.,
|
365
|
+
| 2010). Similarly, systematic testing of in vivo ankle sprain mechanics is not possible
|
366
|
+
| because inducing or risking injuries in healthy subjects would be unethical. To date,
|
367
|
+
| experimental measurements of ankle mechanics are either restricted to conditions that are
|
368
|
+
| far from the thresholds of injury (Chan et al., 2008; Gutierrez et al., 2012) or are
|
369
|
+
blank |
|
370
|
+
meta | 1
|
371
|
+
text | performed on cadavers with no muscle activity (Lapointe et al., 1997; Siegler et al.,
|
372
|
+
| 1990). Therefore, systematic and comprehensive exploration of coordination strategies to
|
373
|
+
| protect joints is impractical in vivo.
|
374
|
+
| Conversely, musculoskeletal models can quantify internal muscle and joint loads
|
375
|
+
| (Delp et al., 2007; Sasaki and Neptune, 2010; Shelburne et al., 2005) and serve as a non-
|
376
|
+
| invasive environment for inducing or mitigating joint injuries. Unlike in vivo
|
377
|
+
| measurement of human subjects, computational models and simulations can explore
|
378
|
+
| unsafe conditions and experience injury without risk. Musculoskeletal models can define
|
379
|
+
| individual muscle activations and how they change throughout an activity, enabling fine
|
380
|
+
| and systematic variation of muscle coordination. Therefore, it is feasible and practical to
|
381
|
+
| use musculoskeletal models to experiment with coordination strategies and quantify the
|
382
|
+
| effect on knee and ankle function. In the work presented in this dissertation, we
|
383
|
+
| developed and used musculoskeletal models to propose and explore variations in
|
384
|
+
| coordination that might improve the function and health of the knee and ankle joints.
|
385
|
+
| Musculoskeletal models for simulating full-body motion typically capture rigid
|
386
|
+
| bone segments, joint kinematics, muscle geometry, and muscle dynamics. Researchers
|
387
|
+
| often obtain skeletal geometry by dissecting and digitizing cadavers to yield bone
|
388
|
+
| geometry (Delp et al., 1990) and the kinematics of articulating joints like the knee (Grood
|
389
|
+
| et al., 1984; Walker et al., 1988) and ankle (Isman and Inman, 1969; Siegler et al., 1988).
|
390
|
+
| Digitized cadaver geometry is also the most common source for muscle attachment
|
391
|
+
| points, moment arms, and fiber architecture (Klein Horsman et al., 2007; Ward et al.,
|
392
|
+
| 2009) used in musculoskeletal models (Arnold et al., 2010; Modenese et al., 2011). Bone,
|
393
|
+
| joint, and muscle geometry can also be quantified through medical imaging. Magnetic
|
394
|
+
| resonance imaging has been used to quantify muscle geometry and to validate and tune
|
395
|
+
| muscle moment arms (Arnold et al., 2000) and muscle volumes (Handsfield et al., 2014)
|
396
|
+
| in musculoskeletal models. Models of muscle architecture and dynamics capture the fiber
|
397
|
+
| length and velocity dependencies of muscle’s force-generating capacity (Millard et al.,
|
398
|
+
| 2013). In turn, the muscle force-generating capacity and skeletal geometry determine the
|
399
|
+
| moment-generating capacity, or strength, of the whole musculoskeletal model. The
|
400
|
+
| models described in this dissertation are based upon bone segments, joint kinematics, and
|
401
|
+
| muscle geometry derived from cadavers (Delp et al., 1990).
|
402
|
+
meta | 2
|
403
|
+
text | Full-body musculoskeletal models have been used to estimate muscle and joint
|
404
|
+
| forces during walking, but have not been used to their full capacity for varying muscle
|
405
|
+
| activations and knee forces. Muscle activations that minimize effort or metabolic
|
406
|
+
| expenditure during walking have been estimated in models and used to compute the
|
407
|
+
| resulting knee forces (Sasaki and Neptune, 2010; Shelburne et al., 2005). Similar models
|
408
|
+
| minimizing muscle activity have accurately estimated knee forces in walking subjects,
|
409
|
+
| validated by in vivo knee forces measured in instrumented prostheses in the same
|
410
|
+
| subjects (Kim et al., 2009; Walter et al., 2014). These and other previous works to date
|
411
|
+
| (Winby et al., 2009) have primarily focused on accurately estimating the muscle forces
|
412
|
+
| that occurred during measured walking experiments and analyzing the resulting knee
|
413
|
+
| forces. However, the capacity to vary muscle activations and change the resulting knee
|
414
|
+
| forces during walking remained largely unexplored until the work described in this
|
415
|
+
| dissertation.
|
416
|
+
| In contrast to models of walking, musculoskeletal models of ankle sprains are
|
417
|
+
| rare. Isolated models of the ankle have been developed to compute ankle ligament strains
|
418
|
+
| during measured motions (Wei et al., 2011b), but these models exclude muscles and
|
419
|
+
| ignore their capacity to protect the ankle (Wei et al., 2011a). Wright et al. used full-body,
|
420
|
+
| muscle-driven simulations of sidestepping to demonstrate that neutral ankle posture
|
421
|
+
| (Wright et al., 2000a) and increased passive ankle stiffness from braces or tape (Wright et
|
422
|
+
| al., 2000b) could decrease the likelihood of ankle sprains. However, these simulations
|
423
|
+
| only tested the effects of external stiffening. The effects of changes in muscle activity and
|
424
|
+
| the capacity of the intrinsic ankle muscles to prevent ankle inversion injuries remained
|
425
|
+
| unclear until the work described in this dissertation.
|
426
|
+
blank |
|
427
|
+
title | 1.1. Focus of this dissertation
|
428
|
+
text | The goal of this dissertation was to quantify and identify coordination strategies
|
429
|
+
| that might mitigate the most epidemic knee and ankle injuries by decreasing tibiofemoral
|
430
|
+
| forces during walking or resisting ankle inversion during landing. We created three-
|
431
|
+
| dimensional models of human walking and drop-landing which allowed us to probe and
|
432
|
+
| control the internal muscle forces, joint kinematics, and joint forces during walking and
|
433
|
+
| landings tasks. We used combinations of optimization and feedback control to
|
434
|
+
blank |
|
435
|
+
|
|
436
|
+
meta | 3
|
437
|
+
text | systematically vary muscle coordination strategies and task kinematics, then observed the
|
438
|
+
| effects on tibiofemoral force during walking and ankle inversion during landing. We
|
439
|
+
| found that changing the distribution of muscle forces during walking can dramatically
|
440
|
+
| alter the tibiofemoral forces while still maintaining identical walking kinematics. We
|
441
|
+
| identified the muscles with the greatest effect on increasing or decreasing the
|
442
|
+
| tibiofemoral force and found that many influential muscles do not cross the knee. Next,
|
443
|
+
| we fixed the distribution of muscle forces and systematically varied the degree of crouch
|
444
|
+
| kinematics during walking. We found that increased degree of crouch requires larger
|
445
|
+
| muscle forces and results in increased tibiofemoral forces during walking. The
|
446
|
+
| compressive tibiofemoral forces increased quadratically with the degree of knee flexion
|
447
|
+
| during stance (a measure of crouch severity), and individuals walking in severe crouch
|
448
|
+
| experienced three-times the compressive tibiofemoral force of unimpaired individuals.
|
449
|
+
| Finally, we used musculoskeletal simulations of landing under muscle feedback control
|
450
|
+
| to induce ankle inversion injuries and test whether planned co-activation or unplanned
|
451
|
+
| stretch reflexes of the ankle evertors and invertors could prevent the injury. We found
|
452
|
+
| that planned co-activation at a sub-maximal level could rapidly generate protective forces
|
453
|
+
| and prevent injury. Conversely, even the fastest known stretch reflexes (60 millisecond
|
454
|
+
| latency) were too slow to resist the ankle injuries we simulated. These analyses identify
|
455
|
+
| specific coordination strategies that change tibiofemoral forces and prevent ankle
|
456
|
+
| inversion, which serve as a foundation for developing novel interventions for decreasing
|
457
|
+
| the epidemic rates of chronic knee pain and acute ankle sprains.
|
458
|
+
blank |
|
459
|
+
title | 1.2. Significance of this research
|
460
|
+
text | The work described in this dissertation yielded valuable biomechanical
|
461
|
+
| knowledge of joint loading and injury, as well as contributed models, simulations, and
|
462
|
+
| software tools that enable new research in the biomechanics community. We created
|
463
|
+
| sophisticated musculoskeletal models and simulations to explore how muscle
|
464
|
+
| coordination and kinematics could affect the internal loads of the knee during walking
|
465
|
+
| and protect the ankle from injury during landing. Our findings identified specific
|
466
|
+
| coordination strategies —and ruled out others— that could form the basis of much
|
467
|
+
| needed clinical interventions against musculoskeletal pain and injury. We also took great
|
468
|
+
blank |
|
469
|
+
meta | 4
|
470
|
+
text | care to make our models and software tools reusable, extensible, and publicly available to
|
471
|
+
| enable and accelerate continuing work in the scientific community. The primary
|
472
|
+
| contributions of the research described in this dissertation are:
|
473
|
+
| •! Identifying the primary muscles to recruit for decreasing or increasing
|
474
|
+
| tibiofemoral forces during walking.
|
475
|
+
| •! Quantifying how severity of crouch pathology affects the tibiofemoral forces
|
476
|
+
| during walking in individuals with cerebral palsy.
|
477
|
+
| •! Quantifying whether or not planned co-activation or physiologic stretch
|
478
|
+
| reflexes of the ankle evertors and invertors can prevent ankle inversion
|
479
|
+
| injuries during landing.
|
480
|
+
| •! Designing and disseminating novel models and software to explore full-body
|
481
|
+
| musculoskeletal dynamics, muscle coordination, and joint function.
|
482
|
+
blank |
|
483
|
+
title | 1.3. Overview of this dissertation
|
484
|
+
text | This dissertation is composed of three research studies that are presented as self-
|
485
|
+
| contained articles. Much of this work was performed in collaboration with others;
|
486
|
+
| therefore, I use the pronoun “we” throughout the dissertation to refer to myself and my
|
487
|
+
| coauthors. After this general introduction, Chapter 2 describes a three-dimensional
|
488
|
+
| modeling and optimization framework for studying walking gait and an analysis
|
489
|
+
| determining the changes in tibiofemoral forces due to variations in muscle activity. This
|
490
|
+
| work was previously published in the Journal of Orthopaedic Research in collaboration
|
491
|
+
| with my coauthors Saikat Pal and Scott Delp (DeMers et al., 2014). Chapter 3 describes
|
492
|
+
| an analysis using a similar modeling and optimization framework to determine the
|
493
|
+
| changes in tibiofemoral forces due to variations in knee flexion during walking in
|
494
|
+
| unimpaired versus crouch gaits. This work was previously published in the journal Gait
|
495
|
+
| & Posture in collaboration with my coauthors Katherine Steele and Scott Delp (Steele et
|
496
|
+
| al., 2012). Chapter 4 describes a landing model with foot-floor contact, passive ankle
|
497
|
+
| moments representing ligaments, and novel muscle feedback controllers as well as a
|
498
|
+
| battery of landing simulations that test the efficacy of two ankle coordination strategies
|
499
|
+
| for preventing ankle injury. This work has been submitted for peer review in
|
500
|
+
| collaboration with my coauthors Jennifer Hicks and Scott Delp. The final chapter
|
501
|
+
blank |
|
502
|
+
|
|
503
|
+
meta | 5
|
504
|
+
text | highlights the important contributions of this dissertation to science and to the broader
|
505
|
+
| research community and outlines specific questions for future research.
|
506
|
+
blank |
|
507
|
+
|
|
508
|
+
|
|
509
|
+
|
|
510
|
+
meta | 6
|
511
|
+
title | 2. Changes in tibiofemoral forces due to variations in muscle
|
512
|
+
| activity during walking
|
513
|
+
blank |
|
514
|
+
title | 2.1. Introduction
|
515
|
+
text | The knee experiences large mechanical loads during activities of daily living.
|
516
|
+
| Walking, for example, induces forces as large as three bodyweights at the knee (Fregly et
|
517
|
+
| al., 2012; Kutzner et al., 2010). These loads affect the development, maintenance, and
|
518
|
+
| health of the joint tissues (Carter and Wong, 1988). The onset and progression of
|
519
|
+
| osteoarthritis can be associated with large loads at the knee (Baliunas, 2002; Sharma et
|
520
|
+
| al., 1998), and increased knee loads have been linked to pain in patients with
|
521
|
+
| osteoarthritis (Schnitzer et al., 1993). Since tibiofemoral loads during walking are
|
522
|
+
| produced primarily by muscle forces (Sasaki and Neptune, 2010; Shelburne et al., 2006),
|
523
|
+
| muscle coordination plays a pivotal role in determining tibiofemoral loads. Identifying
|
524
|
+
| muscle coordination patterns that alter tibiofemoral loads may assist in the design of
|
525
|
+
| rehabilitation programs to restore and maintain the health of the knee.
|
526
|
+
| Training and rehabilitation programs can reduce tibiofemoral loads during
|
527
|
+
| walking by alteration of gait kinematics. Fregly et al. demonstrated that adopting a
|
528
|
+
| “medial thrust” gait reduced medial compartment forces measured in vivo using
|
529
|
+
| instrumented knee replacements (Fregly et al., 2009). Strategies altering foot progression
|
530
|
+
| angle and medio-lateral foot placement during the stance phase of walking reduce the net
|
531
|
+
| knee adduction moment (Chang et al., 2007; Guo et al., 2007; Shull et al., 2011) and knee
|
532
|
+
| pain (Shull et al., 2013). Exaggerated trunk sway in the medio-lateral direction during
|
533
|
+
| walking can reduce net knee adduction moments (Mündermann et al., 2008a). While
|
534
|
+
| previous work demonstrates that altering gait kinematics can reduce knee loads during
|
535
|
+
| walking, the effects of altered muscle coordination on tibiofemoral loads remain unclear.
|
536
|
+
| Studying the effects of altered muscle coordination on tibiofemoral loads is
|
537
|
+
| challenging. Direct measurement of tibiofemoral loads during walking requires
|
538
|
+
| implanting instrumented knee prostheses in living subjects (D’Lima et al., 2005; Fregly et
|
539
|
+
| al., 2012; Kutzner et al., 2010). This technique provides valuable data, but is highly
|
540
|
+
| invasive, making measurement of tibiofemoral loads impractical in healthy subjects and
|
541
|
+
| limiting the number of subjects in which knee loads can be measured. An alternative to
|
542
|
+
blank |
|
543
|
+
meta | 7
|
544
|
+
text | direct measurement is calculating tibiofemoral loads using musculoskeletal modeling.
|
545
|
+
| Model-based studies have estimated tibiofemoral loads using a variety of muscle
|
546
|
+
| coordination strategies, including minimizing muscle activity (Sritharan et al., 2012;
|
547
|
+
| Steele et al., 2012), muscle stress (Glitsch and Baumann, 1997), or energy consumption
|
548
|
+
| (Shelburne et al., 2005). Previous studies have determined a single set of muscle forces
|
549
|
+
| during walking and the resulting tibiofemoral loads, but the changes in tibiofemoral loads
|
550
|
+
| arising from variations in muscle activations remains unknown.
|
551
|
+
| The purpose of this study was to determine the changes in tibiofemoral forces due
|
552
|
+
| to variations in muscle activation patterns. We first evaluated whether a commonly
|
553
|
+
| assumed muscle coordination strategy, minimizing the sum of muscle activations
|
554
|
+
| squared, Thelen et al. (2003) produced tibiofemoral forces that were consistent with in
|
555
|
+
| vivo measurements. We next determined the potential for a subject to decrease
|
556
|
+
| tibiofemoral forces during walking by adopting a muscle coordination strategy that
|
557
|
+
| minimized tibiofemoral forces. Finally, we determined the changes in tibiofemoral forces
|
558
|
+
| due to varied activations of individual muscles of the lower limb and identified the
|
559
|
+
| muscles with the greatest potential to alter tibiofemoral loading.
|
560
|
+
blank |
|
561
|
+
title | 2.2. Methods
|
562
|
+
blank |
|
563
|
+
title | 2.2.1. Human Subject Data
|
564
|
+
text | We used walking data of a subject implanted with an instrumented total knee
|
565
|
+
| replacement (TKR). These data are available from the ASME Grand Challenge
|
566
|
+
| Project(Fregly et al., 2012). The subject (83 year old male, 64 kg, 166 cm tall) had
|
567
|
+
| received bilateral TKR. The right TKR was instrumented to measure tibiofemoral forces
|
568
|
+
| normal to the tibial plateau (D’Lima et al., 2005). The data include three-dimensional
|
569
|
+
| marker positions, ground reaction forces, and tibiofemoral forces measured
|
570
|
+
| simultaneously during walking at the subject’s self-selected speed (1.3 m/s).
|
571
|
+
blank |
|
572
|
+
title | 2.2.2. OpenSim Model
|
573
|
+
text | We created a full-body gait model in OpenSim (Delp et al., 2007) to analyze knee
|
574
|
+
| loads. The 10 segment, 19 degree of freedom (dof) model (Figure 2.1 A) was adapted
|
575
|
+
| from a musculoskeletal model of the lower limb published by Delp et al. (1990) (Figure
|
576
|
+
blank |
|
577
|
+
meta | 8
|
578
|
+
text | 2.1 A). The model was driven by 92 muscle-tendon actuators (Thelen et al., 2003) that
|
579
|
+
| captured force-length-velocity properties, with muscle geometry and architecture based
|
580
|
+
| on adult cadaver data (Delp et al., 1990). A ball-and-socket joint connected the torso to
|
581
|
+
| the pelvis. The right and left lower limbs consisted of a ball-and-socket hip joint, a
|
582
|
+
| revolute ankle joint, and a coupled knee mechanism (1 dof) with translations of the tibia
|
583
|
+
| and patella prescribed by the knee flexion angle. We refined the knee mechanism of the
|
584
|
+
| generic model so that the patella articulated with the femur, and the quadriceps wrapped
|
585
|
+
| around the patella before attaching to the tibial tuberosity (Figure 2.1 B). The patella
|
586
|
+
| functioned as a frictionless pulley that redirected the quadriceps forces to act along the
|
587
|
+
| line of action of the patellar ligament. This refined knee mechanism reproduced the
|
588
|
+
| patellofemoral kinematics in Delp et al. (1990) and enabled resultant tibiofemoral forces
|
589
|
+
| to be computed.
|
590
|
+
blank |
|
591
|
+
|
|
592
|
+
|
|
593
|
+
|
|
594
|
+
text | Figure 2.1: (A) Musculoskeletal model of the human legs and torso. The tibiofemoral and patellofemoral
|
595
|
+
| joints were modeled as planar joints with translations and rotations coupled to the knee flexion angle (B).
|
596
|
+
| Forces in the quadriceps (B, dark red) were transmitted through the patella to the tibia (see Methods for
|
597
|
+
| details).
|
598
|
+
blank |
|
599
|
+
meta | 9
|
600
|
+
text | We used the full-body model to simulate 3D walking dynamics of the
|
601
|
+
| instrumented subject. All joint kinematics, muscle attachments, and the resulting muscle
|
602
|
+
| moment arms were scaled to match the segment lengths of the subject. Additionally, the
|
603
|
+
| optimal fiber length and tendon slack length of each muscle were scaled according to the
|
604
|
+
| muscle’s total change in muscle-tendon length. Other muscle parameters, including peak
|
605
|
+
| isometric forces and pennation angles, were not altered. We determined joint kinematics
|
606
|
+
| for five trials of normal walking by minimizing error between the experimentally
|
607
|
+
| measured marker positions and the corresponding markers on the model. A residual
|
608
|
+
| reduction algorithm (Delp et al., 2007) adjusted the model mass properties and joint
|
609
|
+
| kinematics for each trial to ensure that the ground reaction forces and body segment
|
610
|
+
| accelerations were dynamically consistent. After residual reduction the model segment
|
611
|
+
| masses differed by less than 2% from the scaled model, and the resulting joint kinematics
|
612
|
+
| differed by less than 2 degrees from the kinematics tracked by the residual reduction
|
613
|
+
| algorithm.
|
614
|
+
blank |
|
615
|
+
title | 2.2.3. Optimization
|
616
|
+
text | We developed a static optimization framework in OpenSim to calculate individual
|
617
|
+
| muscle forces and resulting tibiofemoral forces for each trial. This optimization
|
618
|
+
| minimized a sum of muscle activations and joint loads by combining them in a single
|
619
|
+
| objective function:
|
620
|
+
| Equation 2.1
|
621
|
+
| 6 *7
|
622
|
+
| )<=&)>, %4 7 0 0 %4 0 0
|
623
|
+
| )*+,-./,
|
624
|
+
| 69 *9
|
625
|
+
| min $ %& '& (
|
626
|
+
| $+$ $345 0 %4 0 34 $ + $ ;45 0 %4 0 ;4 $ $ $
|
627
|
+
| &01
|
628
|
+
| 4 6 *
|
629
|
+
| 0 0 %4 : 0 0 %4 :
|
630
|
+
blank |
|
631
|
+
|
|
632
|
+
|
|
633
|
+
text | subject to the constraint
|
634
|
+
| )*+,-./,
|
635
|
+
| 3& ('& ) + 3/A>/B)C. = E F F + G F, F + 3-=),>BC&)> $$$Equation$2.2
|
636
|
+
| &01
|
637
|
+
blank |
|
638
|
+
|
|
639
|
+
|
|
640
|
+
text | In the objective function, ai was the activation of the ith muscle, which could vary
|
641
|
+
| between 0 and 1. The activation weight, wi, was a weighting constant set to penalize
|
642
|
+
meta | 10
|
643
|
+
text | 6 6 6
|
644
|
+
| activation of the ith muscle. The joint force weighting constants, %4 7 , %4 9 , and %4 : were
|
645
|
+
blank |
|
646
|
+
text | set to penalize the vector components of the jth joint reaction force, 34 . Similarly, the joint
|
647
|
+
| * * *:
|
648
|
+
| moment weighting constants, %4 7 , %4 9 , and %4 were set to penalize the vector
|
649
|
+
blank |
|
650
|
+
text | components of the jth joint reaction moment,$;4 . The joint reaction forces and moments
|
651
|
+
| represented the resultant loads carried by the articulating joint structures, and were
|
652
|
+
| calculated using the JointReaction analysis in OpenSim (Steele et al., 2012).
|
653
|
+
| We constrained the optimization such that the calculated muscle forces and
|
654
|
+
| measured external forces balanced all inertial forces to reproduce the measured walking
|
655
|
+
| motion (Equation 2.2). 3& ('& ) represented the force applied by muscle i due to its
|
656
|
+
| activation, '& . The external forces included forces due to gravity and ground reactions at
|
657
|
+
| the feet. The system mass matrix, E F , was a function of the measured generalized
|
658
|
+
| coordinates, F. The velocity dependent forces, G(F, F), included centripetal and Coriolis
|
659
|
+
| forces. The kinematic constraint forces included forces due to coupling between
|
660
|
+
| patellofemoral and tibiofemoral kinematics. Equation 2.2 guaranteed that the optimized
|
661
|
+
| muscle activations reproduced the walking kinematics and ground reaction forces
|
662
|
+
| measured from the instrumented TKR subject.
|
663
|
+
blank |
|
664
|
+
title | 2.2.4. A muscle coordination pattern minimizing muscle activations
|
665
|
+
text | We simulated the five trials of normal walking with a muscle coordination pattern
|
666
|
+
| that minimized muscle activations. In this case, the generalized objective function
|
667
|
+
| (Equation 2.1) simplified to
|
668
|
+
| )*+,-./,
|
669
|
+
| (
|
670
|
+
| min $ 1×'& $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Equation$2.3$$$
|
671
|
+
| &01
|
672
|
+
blank |
|
673
|
+
text | The activation weight, w, was set to 1 for all muscles to penalize all muscle activations
|
674
|
+
| uniformly. The joint force and moment weighting constants were set to zero so that joint
|
675
|
+
| loads were not penalized. This optimization strategy was used in previous
|
676
|
+
| studies.(Anderson and Pandy, 2001; Sritharan et al., 2012)
|
677
|
+
blank |
|
678
|
+
|
|
679
|
+
|
|
680
|
+
|
|
681
|
+
meta | 11
|
682
|
+
title | 2.2.5. A muscle coordination pattern minimizing compressive tibiofemoral force
|
683
|
+
text | We simulated the five trials of normal walking with a muscle coordination pattern
|
684
|
+
| that minimized the compressive force in the tibiofemoral joint of the instrumented leg. In
|
685
|
+
| this case, the generalized objective function (Equation 2.1) simplified to
|
686
|
+
blank |
|
687
|
+
|
|
688
|
+
text | % 67 = 0 0 0
|
689
|
+
| 5
|
690
|
+
| min 356 0 69
|
691
|
+
| % =1 0 356 $$$$$$$$$$$$$$$$$$$$Equation$2.4
|
692
|
+
| 6:
|
693
|
+
| 0 0 % =0
|
694
|
+
blank |
|
695
|
+
|
|
696
|
+
text | which is equivalent to
|
697
|
+
blank |
|
698
|
+
|
|
699
|
+
text | (
|
700
|
+
| min 356,U $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Equation$2.5
|
701
|
+
blank |
|
702
|
+
|
|
703
|
+
text | The activation weight, w, was set to zero for all muscles so that muscle activations
|
704
|
+
| were not penalized. The compressive tibiofemoral force was defined as the vector
|
705
|
+
| component of the tibiofemoral force acting normal to the tibial plateau, 356,U . The
|
706
|
+
| compressive tibiofemoral force was penalized by setting its weighting constant, % 69 ,
|
707
|
+
| equal to 1; all other joint force and moment weighting constants were set to zero. This
|
708
|
+
| strategy determined the muscle coordination pattern that minimized the tibiofemoral
|
709
|
+
| forces and matched the measured walking dynamics.
|
710
|
+
blank |
|
711
|
+
title | 2.2.6. Changes in tibiofemoral forces due to varied activations of individual muscles
|
712
|
+
text | We determined the change in tibiofemoral forces due to varied activations of
|
713
|
+
| individual muscles of the lower limb by performing optimizations with varied activation
|
714
|
+
| weighting constants, wi, for each muscle. For these optimizations, the generalized
|
715
|
+
| objective function (Equation 2.1) was simplified:
|
716
|
+
blank |
|
717
|
+
|
|
718
|
+
text | )*+,-./,
|
719
|
+
| (
|
720
|
+
| min %& '& $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Equation$2.6
|
721
|
+
| &01
|
722
|
+
blank |
|
723
|
+
text | In Equation 6, w = 0 represented no penalty to activate a muscle during walking, while w
|
724
|
+
| = 100 prohibited activation of a muscle.
|
725
|
+
blank |
|
726
|
+
|
|
727
|
+
meta | 12
|
728
|
+
text | To investigate the change in tibiofemoral forces due to varied activation of a
|
729
|
+
| muscle, we performed two static optimizations for each trial of normal walking. First, to
|
730
|
+
| prohibit activation of a particular muscle, we performed a static optimization with w =
|
731
|
+
| 100 for that muscle while w for all other muscles was held at 1. Second, to promote
|
732
|
+
| activation of a particular muscle, we performed a static optimization with w = 0 for that
|
733
|
+
| muscle while w for all other muscles was held at 1. Performing two static optimizations
|
734
|
+
| for each muscle of the lower limb determined the range of tibiofemoral forces due to
|
735
|
+
| varying activation of that muscle. We determined the change in peak tibiofemoral force
|
736
|
+
| due to activation of a muscle by calculating the difference between peak tibiofemoral
|
737
|
+
| forces obtained from the static optimizations with w = 0 and w = 100.
|
738
|
+
| Our methods produced similar joint moments, muscle activations, and
|
739
|
+
| tibiofemoral forces for all five walking trials; thus, we have included results from one
|
740
|
+
| representative trial for clarity.
|
741
|
+
blank |
|
742
|
+
title | 2.3. Results
|
743
|
+
text | A muscle coordination strategy that minimized muscle activations produced
|
744
|
+
| greater tibiofemoral forces than forces measured in vivo (Figure 2.2). During late stance
|
745
|
+
| (33-66% gait), a muscle coordination strategy that minimized the sum of muscle
|
746
|
+
| activations squared produced a peak tibiofemoral force that was 1.7 bodyweights larger
|
747
|
+
| than the peak force measured in vivo. This difference was less pronounced during early
|
748
|
+
| stance (0-33% gait), when minimizing muscle activations squared produced a peak
|
749
|
+
| tibiofemoral force that was 0.4 bodyweights larger than the peak force measured in vivo.
|
750
|
+
| During the swing phase (not shown), differences between the model-predicted and
|
751
|
+
| measured forces were less than 0.2 bodyweights.
|
752
|
+
| A muscle coordination strategy that minimized tibiofemoral forces produced
|
753
|
+
| lower model-predicted forces than forces measured in vivo (Figure 2.2). During late
|
754
|
+
| stance, a muscle coordination strategy that minimized tibiofemoral force produced a peak
|
755
|
+
| model-predicted force that was 1.5 bodyweights lower than the peak force measured in
|
756
|
+
| vivo. During early stance, this strategy produced a peak tibiofemoral force that was
|
757
|
+
| similar to the peak force measured in vivo.
|
758
|
+
blank |
|
759
|
+
|
|
760
|
+
|
|
761
|
+
|
|
762
|
+
meta | 13
|
763
|
+
text | Figure 2.2: Stance-phase tibiofemoral forces predicted using a musculoskeletal model and muscle
|
764
|
+
| coordination strategies that minimize muscle activation squared (dashed black line) and tibiofemoral
|
765
|
+
| forces (solid grey line). The minimum tibiofemoral force represents the smallest compressive tibiofemoral
|
766
|
+
| force the model generated while still reproducing the measured walking kinematics and kinetics. Measured
|
767
|
+
| in vivo forces (solid black line) are shown.
|
768
|
+
blank |
|
769
|
+
|
|
770
|
+
|
|
771
|
+
text | Tibiofemoral forces were sensitive to activations of muscles of the lower limb,
|
772
|
+
| especially during the late stance phase of walking (Figure 2.3). Tibiofemoral forces were
|
773
|
+
| sensitive to activations of the gastrocnemius and the rectus femoris but only during late
|
774
|
+
| stance. Tibiofemoral forces were also sensitive to activations of the psoas major, iliacus,
|
775
|
+
| and soleus muscles during late stance. Tibiofemoral forces were sensitive to activations
|
776
|
+
| of the biarticular hamstrings during early stance, and were sensitive to activations of the
|
777
|
+
meta | 14
|
778
|
+
text | biceps femoris short head during late stance. Tibiofemoral forces were insensitive to
|
779
|
+
| activations of the vasti muscles; this occurred because producing the dynamics of the
|
780
|
+
| subject’s walking required activation of the vasti, even when activation of these muscles
|
781
|
+
| was penalized in the optimization. Varying activations of the gluteus medius muscle
|
782
|
+
| produced large changes in tibiofemoral forces throughout stance phase.
|
783
|
+
blank |
|
784
|
+
|
|
785
|
+
|
|
786
|
+
|
|
787
|
+
text | Figure 2.3: The effect of varying activation of individual muscles on predicted tibiofemoral forces shown
|
788
|
+
| for the most influential muscles. The shaded area represents the range of predicted tibiofemoral forces due
|
789
|
+
| to varying the activation of each muscle. For each muscle, the boundary indicated by w = 0 corresponded
|
790
|
+
| to the optimization for which the muscle activity weight of that muscle was set to zero in the objective
|
791
|
+
| function. This objective function permitted the muscle to activate without penalty. The model predictions
|
792
|
+
| that minimize uniformly weighted muscle activations squared (dashed black lines) are shown.
|
793
|
+
blank |
|
794
|
+
|
|
795
|
+
|
|
796
|
+
|
|
797
|
+
meta | 15
|
798
|
+
text | Figure 2.4: Maximum change in peak tibiofemoral force due to activation of a muscle or muscle group
|
799
|
+
| during the late stance phase of walking. The maximum change was calculated as the difference between
|
800
|
+
| peak tibiofemoral forces obtained from the static optimizations with w = 0 (promote activity) and w = 100
|
801
|
+
| (prohibit activity) for that muscle or muscle group. Note that increasing the activation of gluteus medius
|
802
|
+
| greatly decreased the tibiofemoral force, whereas increasing the activation of the gastrocnemius increased
|
803
|
+
| tibiofemoral force. The changes in peak tibiofemoral force during the late stance of walking were minimal
|
804
|
+
| for the muscles not shown.
|
805
|
+
blank |
|
806
|
+
|
|
807
|
+
|
|
808
|
+
text | Promoting activation of the gluteus medius produced the largest decrease in peak
|
809
|
+
| tibiofemoral force during late stance (Figure 2.4). Promoting activation of the psoas,
|
810
|
+
| iliacus, and soleus muscles also decreased peak tibiofemoral force during late stance.
|
811
|
+
| Promoting activation of the gastrocnemius produced the largest increase in peak
|
812
|
+
| tibiofemoral force during late stance. Promoting activation of the rectus femoris and
|
813
|
+
blank |
|
814
|
+
meta | 16
|
815
|
+
text | biceps femoris short head also increased peak tibiofemoral force during late stance. The
|
816
|
+
| vasti remained inactive after 30% of gait and had little effect on peak tibiofemoral force
|
817
|
+
| during late stance. Changing the activation of other muscles of the lower limb had little
|
818
|
+
| effect on peak tibiofemoral force during late stance.
|
819
|
+
blank |
|
820
|
+
title | 2.4. Discussion
|
821
|
+
text | Our results demonstrate that altering muscle activation patterns during walking
|
822
|
+
| can induce large changes in compressive forces at the tibiofemoral joint. Tibiofemoral
|
823
|
+
| forces were sensitive to activations of a small subset of lower limb muscles, including the
|
824
|
+
| gluteus medius, gastrocnemius, and rectus femoris, indicating that these muscles have the
|
825
|
+
| greatest potential to affect knee loading. This suggests that interventions aimed at
|
826
|
+
| retraining muscle coordination should target these muscles to reduce tibiofemoral loads.
|
827
|
+
| Our first goal was to evaluate whether a strategy minimizing the sum of muscle
|
828
|
+
| activations squared produced tibiofemoral forces that were consistent with in vivo
|
829
|
+
| measurements. When adopting this strategy, our model over-predicted tibiofemoral
|
830
|
+
| forces during the late stance phase. The discrepancy was due to over-activity of the rectus
|
831
|
+
| femoris and gastrocnemius, which were the largest contributors to the over-predicted
|
832
|
+
| tibiofemoral force. The model activated the rectus femoris during late stance, while
|
833
|
+
| electromyography (EMG) measured from the subject suggest that the rectus femoris may
|
834
|
+
| have been inactive at this time (Figure 2.5). Similarly, the strategy minimizing muscle
|
835
|
+
| activations squared activated the gastrocnemius earlier and more than the soleus;
|
836
|
+
| however, EMG data show that the subject activated the gastrocnemius and soleus
|
837
|
+
| muscles equitably during late stance. Optimization objectives that penalized activity of
|
838
|
+
| the rectus femoris and gastrocnemius produced lower tibiofemoral forces that better
|
839
|
+
| matched in vivo measurements.
|
840
|
+
| Our second goal was to determine the potential for a subject to decrease
|
841
|
+
| tibiofemoral forces during walking by altering muscle coordination. Our model achieved
|
842
|
+
| tibiofemoral forces that were lower than in vivo measurements during late stance by
|
843
|
+
| adopting different muscle activation patterns compared to the TKR subject (Figure 2.2).
|
844
|
+
| For example, the model minimized tibiofemoral forces by deactivating the gastrocnemius
|
845
|
+
| and hamstrings during late stance, whereas the TKR subject activated these muscles
|
846
|
+
blank |
|
847
|
+
|
|
848
|
+
meta | 17
|
849
|
+
text | during late stance (Fregly et al., 2012), resulting in higher tibiofemoral forces. Thus, the
|
850
|
+
| model demonstrated a lower bound for the subject’s tibiofemoral forces during late
|
851
|
+
| stance.
|
852
|
+
blank |
|
853
|
+
|
|
854
|
+
|
|
855
|
+
|
|
856
|
+
text | Figure 2.5: Model predicted activations of the nine most influential muscles produced by optimizations
|
857
|
+
| with varied muscle activity weights. For each muscle, activity ranged from 0 (no activity) to 1 (maximum
|
858
|
+
| activity). A muscle activity weight of w = 100 (dotted blue) prohibited the muscle from activating, while w
|
859
|
+
| = 0 (solid red) allowed the muscle to activate freely. The range of muscle activity used by the model (the
|
860
|
+
| area between the dotted blue and solid red lines) resulted in a corresponding variation in tibiofemoral
|
861
|
+
| forces (Figure 3). Filtered electromyography (EMG) signals, measured from the subject during the same
|
862
|
+
| trial of normal walking, are provided for comparison. EMG was not measured from the psoas major or
|
863
|
+
| iliacus muscles.
|
864
|
+
blank |
|
865
|
+
|
|
866
|
+
meta | 18
|
867
|
+
text | Increasing the activation of gluteus medius, a muscle crossing the hip, had the
|
868
|
+
| greatest potential to reduce tibiofemoral forces during walking. The gluteus medius
|
869
|
+
| produced the largest hip abduction moment throughout the stance phase of walking. In
|
870
|
+
| our simulations, increased activation of the gluteus medius resulted in a compensatory
|
871
|
+
| decrease in activation of the rectus femoris, tensor fasciae latae, and sartorius muscles to
|
872
|
+
| maintain the required hip abduction moment. The decrease in activations of the rectus
|
873
|
+
| femoris muscle in turn resulted in a compensatory decrease in activations of the
|
874
|
+
| gastrocnemius and biceps femoris short head muscles to maintain net knee moments.
|
875
|
+
| These decreased activations of the rectus femoris, gastrocnemius, and biceps femoris
|
876
|
+
| short head muscles resulted in decreased tibiofemoral forces. Conversely, decreasing
|
877
|
+
| activations of the gluteus medius muscle increased activations of the rectus femoris,
|
878
|
+
| gastrocnemius, and biceps femoris short head muscles, thereby increasing tibiofemoral
|
879
|
+
| forces. Thus, while the gluteus medius does not cross the knee, changes in activity or
|
880
|
+
| forces generated by this muscle produce substantial compensations from other muscles
|
881
|
+
| and have a potent effect on tibiofemoral forces. Our results may seem inconsistent with
|
882
|
+
| studies that have reported minimal contributions of the gluteus medius to tibiofemoral
|
883
|
+
| force (Sasaki and Neptune, 2010; Sritharan et al., 2012); however, these studies reported
|
884
|
+
| the contributions of individual muscles to tibiofemoral force based on a single muscle
|
885
|
+
| activation pattern and did not account for compensatory muscle activity. In contrast, we
|
886
|
+
| selectively changed activations of individual muscles and allowed other muscle
|
887
|
+
| activations to compensate to reproduce the walking motion.
|
888
|
+
| Increasing the activation of the gastrocnemius and rectus femoris, two biarticular
|
889
|
+
| muscles crossing the knee, had the greatest potential to increase tibiofemoral forces
|
890
|
+
| during the late stance phase of walking. In addition to generating moments about the
|
891
|
+
| knee, the gastrocnemius and rectus femoris muscles produce ankle plantarflexion and hip
|
892
|
+
| flexion moments, respectively, in preparation for swinging the leg. During late stance,
|
893
|
+
| increased activation of the gastrocnemius generated a large knee flexion moment, causing
|
894
|
+
| compensatory co-activation of the rectus femoris to balance the net knee moment.
|
895
|
+
| Conversely, increased activation of the rectus femoris generated a knee extension
|
896
|
+
| moment, causing compensatory co-activation of the gastrocnemius and biceps femoris
|
897
|
+
blank |
|
898
|
+
meta | 19
|
899
|
+
text | short head. Co-activation of the gastrocnemius, rectus femoris, and biceps femoris short
|
900
|
+
| head increased tibiofemoral forces. Previous studies have shown that the gastrocnemius
|
901
|
+
| and rectus femoris muscles contribute a higher proportion of the tibiofemoral force than
|
902
|
+
| the soleus and the uniarticular hip flexors (Sasaki and Neptune, 2010; Sritharan et al.,
|
903
|
+
| 2012). Sasaki and Neptune (2010) postulated that decreasing activations of the biarticular
|
904
|
+
| knee muscles may decrease tibiofemoral loading; our results support this idea. We also
|
905
|
+
| found that promoting activations of the soleus and uniarticular hip flexors could reduce
|
906
|
+
| tibiofemoral force. These results suggest that training to strengthen and activate the
|
907
|
+
| soleus and uniarticular hip flexors may decrease tibiofemoral forces and associated knee
|
908
|
+
| pain.
|
909
|
+
| Tibiofemoral forces were most sensitive to muscle activations during the late
|
910
|
+
| stance phase of walking. During late stance, net knee flexion-extension moments are
|
911
|
+
| small compared to early stance (Liu et al., 2008; McClelland et al., 2010). Low net knee
|
912
|
+
| flexion-extension moments during late stance allow a large range of muscle activations
|
913
|
+
| while still reproducing the measured walking motion. Since minimal muscle forces are
|
914
|
+
| required to generate the low net knee moments, the model can minimally activate
|
915
|
+
| muscles crossing the knee, especially the quadriceps (Figure 2.5). However, the model
|
916
|
+
| can also co-activate the knee muscles, using a large portion of their force-generating
|
917
|
+
| capacity to generate co-contraction. This permits substantial freedom to vary muscle
|
918
|
+
| activations and tibiofemoral forces during late stance without altering the walking
|
919
|
+
| motion. In contrast, larger knee extension moments during early stance demand larger
|
920
|
+
| activations of the knee extensors. Therefore, muscle activations that reproduce walking
|
921
|
+
| are constrained to a narrow range, allowing only small variations in tibiofemoral forces
|
922
|
+
| during early stance.
|
923
|
+
| A limitation of this study was that we used walking kinematics measured from
|
924
|
+
| one subject with bilateral TKR, and it is unclear if this dataset adequately represents a
|
925
|
+
| healthy or osteoarthritic population with intact knees. Subjects with TKR have been
|
926
|
+
| shown to walk with a straighter leg and reduced knee moments during stance (Bolanos et
|
927
|
+
| al., 1998; McClelland et al., 2010), presumably to reduce quadriceps forces and
|
928
|
+
| tibiofemoral loading. In our case, the TKR subject displayed stance phase knee moments
|
929
|
+
| that are similar to pain free subjects. Peak knee moments of from 2-5% bodyweight times
|
930
|
+
meta | 20
|
931
|
+
text | height are typically reported for pain free subjects walking at self-selected speed (Liu et
|
932
|
+
| al., 2008; McClelland et al., 2010; Pandy et al., 2010); in comparison, our TKR subject
|
933
|
+
| generated peak knee moments of 4% bodyweight times height. The knee moments were
|
934
|
+
| similar across five walking trials; hence, our reported results from a single trial are
|
935
|
+
| representative of the remaining four normal walking trials. A second limitation of this
|
936
|
+
| study was that our simplified tibiofemoral joint did not permit knee abduction-adduction
|
937
|
+
| or internal-external rotation. Including these degrees of freedom would require the knee
|
938
|
+
| muscles to balance net moments in these directions. We speculate that producing these
|
939
|
+
| moments would increase muscle activations and tibiofemoral forces reported in this
|
940
|
+
| study. Tibiofemoral forces also depend on muscle geometry and strength; therefore,
|
941
|
+
| changes in the model’s muscle attachments and architecture would affect the reported
|
942
|
+
| results as well. A fourth limitation was that we permitted all muscles to activate
|
943
|
+
| independently. This may result in compensatory muscle coordination strategies that may
|
944
|
+
| be physiologically difficult for a patient to adopt. For example, a patient may have
|
945
|
+
| difficulty activating the soleus without activating the gastrocnemius. Finally, we
|
946
|
+
| calculated muscle activations that did not cause kinematic compensations (i.e., walking
|
947
|
+
| dynamics were unchanged when muscle activations were varied). Other studies have
|
948
|
+
| demonstrated that altered walking kinematics also decrease tibiofemoral loads (Fregly et
|
949
|
+
| al., 2009; Shull et al., 2013, 2011). Permitting walking kinematics to change along with
|
950
|
+
| muscle activations will likely result in greater reductions in tibiofemoral forces than those
|
951
|
+
| reported here.
|
952
|
+
blank |
|
953
|
+
title | 2.5. Conclusion
|
954
|
+
text | This study identified muscles that substantially affect tibiofemoral forces during
|
955
|
+
| walking. Interestingly, inactivity or weakness in the muscles crossing the hip and ankle
|
956
|
+
| joints can affect the loads of the knee joint. Increased activation and force in the gluteus
|
957
|
+
| medius, psoas major, iliacus, and soleus muscles may decrease tibiofemoral forces.
|
958
|
+
| Decreased activation of the gastrocnemius and rectus femoris muscles can also decrease
|
959
|
+
| tibiofemoral forces. Training programs targeting knee rehabilitation should include
|
960
|
+
| exercises that strengthen and activate the gluteus medius, psoas, and soleus muscles. It
|
961
|
+
| may be feasible to combine kinematic gait retraining with muscle coordination and
|
962
|
+
blank |
|
963
|
+
|
|
964
|
+
meta | 21
|
965
|
+
text | strength training to design interventions that substantially decrease tibiofemoral forces
|
966
|
+
| during walking.
|
967
|
+
blank |
|
968
|
+
|
|
969
|
+
|
|
970
|
+
|
|
971
|
+
meta | 22
|
972
|
+
title | 3. Compressive tibiofemoral forces during crouch gait
|
973
|
+
blank |
|
974
|
+
title | 3.1. Introduction
|
975
|
+
text | Crouch gait is a common pathological walking pattern adopted by individuals
|
976
|
+
| with cerebral palsy that is characterized by excessive hip and knee flexion. Walking in a
|
977
|
+
| crouched posture is inefficient (Rose et al., 1989; Waters and Mulroy, 1999) and can lead
|
978
|
+
| to joint pain and compromise an individual’s walking ability (Opheim et al., 2009).
|
979
|
+
| Surgical and therapeutic treatments for crouch gait aim to produce a more upright posture
|
980
|
+
| to improve walking efficiency and prevent joint pain and deterioration.
|
981
|
+
| Altered loads on the knee can have adverse effects on joint health. Cartilage and
|
982
|
+
| bone growth and maintenance depend on the loads experienced during daily life (Carter
|
983
|
+
| and Wong, 1988; Wong and Carter, 2003), and abnormal loading can lead to joint pain,
|
984
|
+
| cartilage degeneration (Eckstein et al., 2002), and the formation of bone deformities
|
985
|
+
| (Kerr Graham and Selber, 2003). Joint pain can be a significant contributor to walking
|
986
|
+
| deterioration in adults with cerebral palsy. Jahnsen et al. (2004) found that 41% of adults
|
987
|
+
| with diplegic cerebral palsy reported significant knee pain.
|
988
|
+
| To develop successful treatment strategies for crouch gait, surgeons and therapists
|
989
|
+
| need to understand how joint loads change with increasing knee flexion during crouch
|
990
|
+
| gait and how joint loads may change with altered knee flexion. Treatments are aimed at
|
991
|
+
| reducing the excessive knee flexion associated with crouch gait, but it is unclear if
|
992
|
+
| changes in knee flexion will alter joint loads. Quantifying the relationship between knee
|
993
|
+
| flexion, muscle forces, and the compressive force on the tibia during gait could help
|
994
|
+
| clinicians determine if a more upright posture could reduce the risks caused by altered
|
995
|
+
| joint loading.
|
996
|
+
| Perry and colleagues examined knee forces in a static crouched posture using a
|
997
|
+
| cadaver model and reported increasing compressive tibiofemoral force with increasing
|
998
|
+
| knee flexion (Perry et al., 1975). In dynamic activities, such as walking, we expect larger
|
999
|
+
| joint forces than in a static posture due to the additional muscle forces required to support
|
1000
|
+
| the body weight during movement and propel the body forward (Liu et al., 2008).
|
1001
|
+
| Compressive tibiofemoral forces during unimpaired walking have been reported in the
|
1002
|
+
| range of 2-3 times body-weight (D’Lima et al., 2006; Kutzner et al., 2010; Mündermann
|
1003
|
+
blank |
|
1004
|
+
meta | 23
|
1005
|
+
text | et al., 2008b; Shelburne et al., 2005). During crouch gait, muscle forces in the stance-
|
1006
|
+
| limb are higher than during unimpaired walking (Steele et al., 2010). Since muscle forces
|
1007
|
+
| are the primary contributors to joint loading (Inman, 1947; Sasaki and Neptune, 2010),
|
1008
|
+
| we expect that compressive tibiofemoral forces are higher during crouch gait, yet the
|
1009
|
+
| relationship between crouch gait severity and the compressive tibiofemoral force remains
|
1010
|
+
| unknown.
|
1011
|
+
| The purpose of this study was to estimate the magnitude of the compressive
|
1012
|
+
| tibiofemoral force during crouch gait and examine how this force changes with crouch
|
1013
|
+
| severity. To achieve this goal we estimated the muscles forces and the compressive force
|
1014
|
+
| on the tibia in unimpaired children and children with cerebral palsy who walked in
|
1015
|
+
| varying degrees of crouch severity. We used a freely-available biomechanics software
|
1016
|
+
| package, OpenSim (Delp et al., 2007), to scale a musculoskeletal model to each
|
1017
|
+
| individual and estimate muscle joint loads based upon each individual’s gait dynamics.
|
1018
|
+
blank |
|
1019
|
+
title | 3.2. Methods
|
1020
|
+
blank |
|
1021
|
+
title | 3.2.1. Subjects
|
1022
|
+
text | The subjects for this study were selected from a database of patients treated at
|
1023
|
+
| Gillette Children’s Specialty Healthcare (St. Paul, MN; Table 3.1). Nine subjects with
|
1024
|
+
| spastic diplegic cerebral palsy were selected to cover a broad range of crouch severity
|
1025
|
+
| and were divided evenly into three groups: mild crouch gait (minimum knee flexion
|
1026
|
+
| angle of 20-35º), moderate crouch gait (minimum knee flexion angle of 35-50º), and
|
1027
|
+
| severe crouch gait (minimum knee flexion angle greater than 50º). All subjects walked
|
1028
|
+
| with excess knee and hip flexion and had at least 5º of ankle dorsiflexion during stance.
|
1029
|
+
| We excluded subjects that had greater than 30º of femoral or tibial torsion, which can
|
1030
|
+
| affect muscle moment arms and the ability of muscles to generate accelerations (Hicks et
|
1031
|
+
| al., 2008). Three unimpaired subjects were chosen who were representative of the age
|
1032
|
+
| and stature of the subjects with cerebral palsy. Additionally, a subject with an
|
1033
|
+
| instrumented total knee replacement (TKR, age: 80 years, weight: 64 kg, walking
|
1034
|
+
| speed/height: 0.74 s-1) was included to provide experimental measurements of the
|
1035
|
+
| compressive tibiofemoral force for comparison with forces estimated from the
|
1036
|
+
| musculoskeletal model. This subject was not included in subsequent comparisons
|
1037
|
+
meta | 24
|
1038
|
+
text | between unimpaired gait and crouch gait due to differences in age and stature in relation
|
1039
|
+
| to the other subjects.
|
1040
|
+
blank |
|
1041
|
+
|
|
1042
|
+
|
|
1043
|
+
title | Table 3.1: Subject characteristics
|
1044
|
+
blank |
|
1045
|
+
text | N Age Height Weight Speed/Height Minimum
|
1046
|
+
| (yrs) (cm) (kg) (s-1) KFA* (deg)
|
1047
|
+
| Unimpaired 3 10.3 ± 145 ± 16 36.3 ± 0.79 ± 0.1 1.7 ± 5.5
|
1048
|
+
| 3.4 8.8
|
1049
|
+
| Mild Crouch 3 8.8 ± 123 ± 7 24.2 ± 0.67 ± 0.1 19.1 ± 3.8
|
1050
|
+
| 0.8 3.6
|
1051
|
+
| Moderate 3 9.2 ± 123 ± 15 43.1 ± 0.63 ± 0.1 36.1 ± 4.0
|
1052
|
+
| Crouch 2.9 37
|
1053
|
+
| Severe Crouch 3 14.0 158 ± 12 40.1 ± 0.61 ± 0.1 58.6 ± 5.6
|
1054
|
+
| ±2.3 6.8
|
1055
|
+
| *KFA: knee flexion angle during walking
|
1056
|
+
blank |
|
1057
|
+
|
|
1058
|
+
title | 3.2.2. Motion Analysis
|
1059
|
+
text | Motion analysis data was collected at Gillette Children’s Specialty Healthcare (St.
|
1060
|
+
| Paul, MN) using a 12-camera system (Vicon Motion Systems, Lake Forest, CA), four
|
1061
|
+
| force plates (AMTI, Watertown, MA), and a standard marker protocol (Davis et al.,
|
1062
|
+
| 1991). Ground reaction forces and moments were sampled at 1080 Hz and low-pass
|
1063
|
+
| filtered at 20 Hz. Electromyography (EMG) was collected for six of the crouch gait
|
1064
|
+
| subjects from the quadriceps, hamstrings, and gastrocnemius (Motion Laboratory
|
1065
|
+
| Systems, Baton Rouge, LA). The EMG data was sampled at 1080 Hz, band-pass filtered
|
1066
|
+
| between 20 and 400 Hz, rectified, and low-pass filtered at 10 Hz. All subjects walked at
|
1067
|
+
| their self-selected speed and achieved two consecutive force plate strikes during which
|
1068
|
+
| only one foot contacted each force plate. The motion analysis data for the subject with the
|
1069
|
+
| instrumented TKR was obtained from www.simtk.org where it is freely available for
|
1070
|
+
| researchers (Zhao et al., 2007).
|
1071
|
+
blank |
|
1072
|
+
title | 3.2.3. Musculoskeletal Modeling
|
1073
|
+
text | A generic musculoskeletal model based upon adult cadaver data (Delp et al.,
|
1074
|
+
| 1990) with 19 degrees of freedom and 92 musculotendon actuators was scaled to each
|
1075
|
+
| subject according to anthropometric measurements. This musculoskeletal model has been
|
1076
|
+
blank |
|
1077
|
+
|
|
1078
|
+
meta | 25
|
1079
|
+
text | used for studies involving unimpaired children and children with cerebral palsy (Hicks et
|
1080
|
+
| al., 2008; Liu et al., 2008; Reinbolt et al., 2008). The degrees of freedom in the
|
1081
|
+
| musculoskeletal model included six degrees of freedom at the pelvis, a ball-and-socket
|
1082
|
+
| joint at the third lumbar vertebra between the pelvis and torso, a ball-and-socket joint at
|
1083
|
+
| each hip, a planar joint with coupled translations at each knee (Yamaguchi and Zajac,
|
1084
|
+
| 1989), and a revolute joint at each ankle. Joint angles during walking were calculated by
|
1085
|
+
| minimizing the error between experimental marker trajectories and markers placed on the
|
1086
|
+
| model at locations corresponding to the experimental markers.
|
1087
|
+
| Static optimization was used to calculate the muscle forces required to reproduce
|
1088
|
+
| the joint moments of each subject throughout the gait cycle. To distribute muscle forces,
|
1089
|
+
| static optimization was used to minimize the objective function:
|
1090
|
+
| \
|
1091
|
+
blank |
|
1092
|
+
text | XYZ [& '&( $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$Equation$3.1
|
1093
|
+
| &01
|
1094
|
+
blank |
|
1095
|
+
text | where N is the number of muscles in the model, a is the activation level (between zero
|
1096
|
+
| and one) of each muscle, and c is an integer weighting constant for each muscle with a
|
1097
|
+
| default value of one. The weighting constants were determined by comparing calculated
|
1098
|
+
| compressive tibiofemoral force to the experimentally measured force for the subject with
|
1099
|
+
| the instrumented TKR, as described below.
|
1100
|
+
| The compressive tibiofemoral force was calculated using the Joint Reaction
|
1101
|
+
| analysis in OpenSim. A detailed description of this analysis is provided in the
|
1102
|
+
| Supplementary Material. Briefly, the tibiofemoral force was calculated as a point load
|
1103
|
+
| acting on the tibial plateau using the Newton-Euler equation:
|
1104
|
+
blank |
|
1105
|
+
|
|
1106
|
+
text | ]^)// = ; >&_&C '>&_&C − ]C)^./ + 3a+,-./, + 3bBCc&>U Equation 3.2
|
1107
|
+
blank |
|
1108
|
+
|
|
1109
|
+
text | In Equation 3.2, ]^)// is the force from the femur on the tibia, [M]tibia is the matrix of
|
1110
|
+
| inertial properties of the tibia, '>&_&C is the six dimensional angular and linear acceleration
|
1111
|
+
| of the tibia, ]C)^./ is the force from the foot on the tibia, and 3a+,-./, and 3bBCc&>U are the
|
1112
|
+
| muscle forces and gravitational forces acting on the tibia. The compressive tibiofemoral
|
1113
|
+
blank |
|
1114
|
+
|
|
1115
|
+
meta | 26
|
1116
|
+
text | force was calculated as the component of ]^)// parallel to the longitudinal axis of the
|
1117
|
+
| tibia and used for all subsequent analyses.
|
1118
|
+
| For the subject with the instrumented TKR, we varied the static optimization
|
1119
|
+
| weighting constants for the major muscle groups that cross the knee: the hamstrings,
|
1120
|
+
| gastrocnemius, and quadriceps. The hamstrings included independent muscle models for
|
1121
|
+
| the semimembranosus, semitendinousus, biceps femoris long head, and biceps femoris
|
1122
|
+
| short head. The quadriceps included independent muscle models for the rectus femoris,
|
1123
|
+
| the vastus medialis, the vastus intermedius, and the vastus lateralis. The same weighting
|
1124
|
+
| constant was applied to all muscles in each group and the results for the muscles within
|
1125
|
+
| each group were compared and, if found to be similar, were combined to facilitate
|
1126
|
+
| analysis. The weighting constants were given integer values between one and ten. We
|
1127
|
+
| performed static optimization for all combinations of integer weighting constants and
|
1128
|
+
| calculated the resulting compressive tibiofemoral force. The peak compressive force was
|
1129
|
+
| compared to the experimentally measured force, and we selected the combination of
|
1130
|
+
| weighting constants that had the minimum average value and resulted in a difference
|
1131
|
+
| between the estimated and experimental peak compressive force of less than twenty
|
1132
|
+
| percent body-weight. The set of weighting constants that met this criterion was a weight
|
1133
|
+
| of three for the hamstrings, seven for the gastrocnemius, and one for the quadriceps. This
|
1134
|
+
| combination of weighting constants resulted in a root mean square error of 0.28 times
|
1135
|
+
| body-weight and an average error of 0.02 times body-weight over the gait cycle between
|
1136
|
+
| the estimated force and the experimental measurements (Figure 3.1). These weighting
|
1137
|
+
| constants were then used to perform static optimization for all other subjects. OpenSim’s
|
1138
|
+
| Joint Reaction analysis algorithm was used to calculate the compressive tibiofemoral
|
1139
|
+
| force for one representative gait cycle for each subject.
|
1140
|
+
blank |
|
1141
|
+
|
|
1142
|
+
|
|
1143
|
+
|
|
1144
|
+
meta | 27
|
1145
|
+
text | Figure 3.1: Tibiofemoral contact forces expressed in multiples of body weight (BW) from experimental
|
1146
|
+
| forces measured using an instrumented total knee replacement (TKR, gray) and estimated with the
|
1147
|
+
| computer model (black). The average ± 1 standard deviation is shown from four trials.
|
1148
|
+
blank |
|
1149
|
+
|
|
1150
|
+
|
|
1151
|
+
text | To evaluate whether muscle activations calculated from static optimization
|
1152
|
+
| reflected the subjects’ muscle activity we qualitatively compared the estimated muscle
|
1153
|
+
| activations to EMG recordings during stance for the six subjects for whom EMG data
|
1154
|
+
| was available (Figure 3.2). EMG and estimated muscle activations indicated that the
|
1155
|
+
| quadriceps were active during stance. Hamstring activity decreased during stance in both
|
1156
|
+
| the EMG and estimated muscle activations; however, estimated muscle activations
|
1157
|
+
| decreased earlier in stance than indicated by EMG for some of the subjects. For these
|
1158
|
+
| subjects, increased hamstring activity during stance would have increased estimates of
|
1159
|
+
| the compressive tibiofemoral contact force. The gastrocnemius muscle was active during
|
1160
|
+
| the majority of stance in both the EMG and estimated muscle activations.
|
1161
|
+
blank |
|
1162
|
+
|
|
1163
|
+
|
|
1164
|
+
|
|
1165
|
+
meta | 28
|
1166
|
+
text | Figure 3.2: Comparison of
|
1167
|
+
| EMG (gray, average ± one
|
1168
|
+
| standard deviation over all gait
|
1169
|
+
| cycles) and muscle activations
|
1170
|
+
| from static optimization (black
|
1171
|
+
| line) for the six subjects with
|
1172
|
+
| crouch gait for whom EMG
|
1173
|
+
| data was available. EMG and
|
1174
|
+
| activations were normalized
|
1175
|
+
| from zero to one for each
|
1176
|
+
| subject based upon the
|
1177
|
+
| minimum and maximum values
|
1178
|
+
| over the gait cycle. Note that
|
1179
|
+
| subject “Severe 1” did not have
|
1180
|
+
| EMG data from the
|
1181
|
+
| gastrocnemius.
|
1182
|
+
blank |
|
1183
|
+
|
|
1184
|
+
|
|
1185
|
+
|
|
1186
|
+
meta | 29
|
1187
|
+
title | 3.3. Results
|
1188
|
+
text | Compressive tibiofemoral force was higher during moderate and severe crouch
|
1189
|
+
| gait than during unimpaired gait (Figure 3.3). Subjects with a mild crouch gait had
|
1190
|
+
| similar compressive tibiofemoral forces to subjects with unimpaired gait. The maximum
|
1191
|
+
| force during mild crouch gait was 3.2 ±0.4 times body-weight compared to 3.0 ±0.5 times
|
1192
|
+
| body-weight during unimpaired gait. Maximum force during a moderate crouch gait was
|
1193
|
+
| 4.2 ±1.2 times body-weight. During a severe crouch gait maximum force was 6.5 ±0.7
|
1194
|
+
| times body-weight.
|
1195
|
+
| Compressive tibiofemoral force during stance exhibited two peaks in unimpaired
|
1196
|
+
| and crouch gait (Figure 3.3B). These two peaks in the tibiofemoral force coincided with
|
1197
|
+
| the two characteristic peaks of the ground reaction force. The largest tibiofemoral forces
|
1198
|
+
| occurred during early and late stance with smaller forces in mid-stance and swing. During
|
1199
|
+
| unimpaired gait, the primary contributors to compressive tibiofemoral force were the
|
1200
|
+
| quadriceps in early stance and the gastrocnemius during late stance. During crouch gait,
|
1201
|
+
| the quadriceps were the primary contributors to tibiofemoral force throughout stance
|
1202
|
+
| (Figure 3.3C).
|
1203
|
+
| There was a quadratic relationship between the average knee flexion angle during
|
1204
|
+
| stance and the average compressive tibiofemoral force during stance (r2 = 0.97, Figure
|
1205
|
+
| 3.4). The relationship is described by:
|
1206
|
+
| 3^)// = 0.0013d ( − 0.06d + 2.54 Equation 3.3
|
1207
|
+
| where Fknee is the average compressive tibiofemoral force during stance, and Ө is the
|
1208
|
+
| average knee flexion angle during stance with values from 15 to 70 degrees of flexion.
|
1209
|
+
| The increase in average compressive tibiofemoral force during stance with
|
1210
|
+
| increasing crouch severity was primarily due to an increase in quadriceps force. The
|
1211
|
+
| average quadriceps force during stance also increased quadratically with knee flexion
|
1212
|
+
| angle (r2=0.99, Figure 3.4) with the relationship:
|
1213
|
+
| 3e+Cf = 0.0011d ( − 0.03d + 0.7 Equation 3.4
|
1214
|
+
| The average force produced by the hamstrings during stance did not change with
|
1215
|
+
| knee flexion; however, the average force of gastrocnemius decreased with crouch
|
1216
|
+
| severity. Individuals with crouch gait had smaller ankle plantarflexor moments during
|
1217
|
+
| terminal stance.
|
1218
|
+
meta | 30
|
1219
|
+
text | Figure 3.3: (A) Average knee flexion
|
1220
|
+
| angle, (B) average compressive
|
1221
|
+
| tibiofemoral force, and (C) average
|
1222
|
+
| quadriceps force expressed as
|
1223
|
+
| multiples of body-weight (xBW)
|
1224
|
+
| during one gait cycle for the
|
1225
|
+
| subjects who walked with an
|
1226
|
+
| unimpaired gait and mild, moderate,
|
1227
|
+
| and severe crouch gait.
|
1228
|
+
blank |
|
1229
|
+
|
|
1230
|
+
|
|
1231
|
+
|
|
1232
|
+
meta | 31
|
1233
|
+
text | 5
|
1234
|
+
| R² = 0.97
|
1235
|
+
| 4 Tibiofemoral Force
|
1236
|
+
| Quadriceps Force
|
1237
|
+
| R² = 0.99
|
1238
|
+
| Force (xBW)
|
1239
|
+
blank |
|
1240
|
+
|
|
1241
|
+
|
|
1242
|
+
|
|
1243
|
+
text | 3
|
1244
|
+
blank |
|
1245
|
+
|
|
1246
|
+
text | 2
|
1247
|
+
blank |
|
1248
|
+
text | Hamstrings Force
|
1249
|
+
| 1
|
1250
|
+
| Gastrocnemius Force
|
1251
|
+
blank |
|
1252
|
+
text | 0
|
1253
|
+
| 0 20 40 60 80
|
1254
|
+
| Average Stance Knee Flexion Angle (deg)
|
1255
|
+
| Figure 3.4: Correlation of average knee flexion angle during stance with average compressive tibiofemoral
|
1256
|
+
| force during stance (black circles), average quadriceps force during stance (dark gray squares), average
|
1257
|
+
| hamstrings force during stance (light gray triangles), and average gastrocnemius force during stance
|
1258
|
+
| (black outlined diamonds). Tibiofemoral force and average quadriceps force are expressed as multiples of
|
1259
|
+
| bodyweight (xBW). A quadratic relationship described the change in both tibiofemoral force and
|
1260
|
+
| quadriceps force with increasing crouch.
|
1261
|
+
blank |
|
1262
|
+
|
|
1263
|
+
title | 3.2. Discussion
|
1264
|
+
text | Individuals who walk in a moderate or severe crouch gait experience substantially
|
1265
|
+
| greater compressive tibiofemoral forces than individuals with an unimpaired gait;
|
1266
|
+
| however, individuals who walk in a mild crouch gait have similar compressive
|
1267
|
+
| tibiofemoral forces to unimpaired gait. The increase in tibiofemoral force was primarily
|
1268
|
+
| due to the increase in quadriceps force required to support the body during crouch gait.
|
1269
|
+
| There was a quadratic increase in quadriceps force with increasing knee flexion which is
|
1270
|
+
| similar to a reported quadratic increase in EMG magnitude in static, crouch postures (Hsu
|
1271
|
+
meta | 32
|
1272
|
+
text | et al., 1993). The increase in quadriceps force with crouch severity not only contributes to
|
1273
|
+
| increased tibiofemoral load but would also increase patellofemoral load (Dhaher and
|
1274
|
+
| Kahn, 2002) and may give rise to knee pain in individuals with cerebral palsy and crouch
|
1275
|
+
| gait. To reduce the average compressive tibiofemoral force and quadriceps force during
|
1276
|
+
| stance to within one standard deviation of the average during unimpaired gait, individuals
|
1277
|
+
| with crouch gait need to achieve an average knee flexion angle less than 25 degrees
|
1278
|
+
| during stance.
|
1279
|
+
| Compressive tibiofemoral force during crouch gait reported here are slightly
|
1280
|
+
| higher than those estimated by Perry et al. (1975), who used statically loaded cadavers in
|
1281
|
+
| a crouch posture. Perry determined the compressive tibiofemoral force at 30 and 45
|
1282
|
+
| degrees of knee flexion to be 2.9 and 3.8 times body-weight, respectively, whereas we
|
1283
|
+
| found the maximum force during a crouch gait with an average knee flexion angle of 30
|
1284
|
+
| and 45 degrees to be 3.3 and 4.1 times body-weight. The static cadaver testing
|
1285
|
+
| implemented by Perry did not include contributions from the gastrocnemius or hamstring
|
1286
|
+
| muscles to compressive tibiofemoral force. The small difference in compressive
|
1287
|
+
| tibiofemoral force between standing and walking demonstrates that, although walking
|
1288
|
+
| requires additional muscle force to propel the body forward (Steele et al., 2010), the
|
1289
|
+
| increased quadriceps demand arising from a static crouched posture accounts for the
|
1290
|
+
| majority of the increased tibiofemoral force. The tibiofemoral contact force of the
|
1291
|
+
| unimpaired children included in this analysis were also similar to previously reported
|
1292
|
+
| results for adults (D’Lima et al., 2006; Kutzner et al., 2010; Mündermann et al., 2008b;
|
1293
|
+
| Shelburne et al., 2005).
|
1294
|
+
| Our calculation of compressive tibiofemoral force depends on the accuracy of
|
1295
|
+
| estimated muscle activations. The estimated muscle activations showed patterns similar
|
1296
|
+
| to EMG such as increased activity of the quadriceps; however, EMG activity was
|
1297
|
+
| available for a limited number of muscles in six of the subjects. When muscle activations
|
1298
|
+
| differed from the EMG signals the optimization tended to underestimate muscle activity
|
1299
|
+
| compared to EMG signals. This suggests that the optimization functions commonly used
|
1300
|
+
| for unimpaired walking may not be appropriate for individuals with cerebral palsy who
|
1301
|
+
| have altered motor control and muscle physiology. Muscle over-activity and excess co-
|
1302
|
+
| contraction are common in individuals with cerebral palsy. Greater muscle forces due to
|
1303
|
+
blank |
|
1304
|
+
meta | 33
|
1305
|
+
text | co-contraction would increase the estimated tibiofemoral contact forces suggesting that
|
1306
|
+
| our calculations of compressive tibiofemoral force may be low estimates.
|
1307
|
+
| We compared our calculated tibiofemoral forces to experimental forces from an
|
1308
|
+
| instrumented total knee replacement, but this did not provide a robust evaluation of knee
|
1309
|
+
| forces during crouch gait. The total knee replacement data was used to select the static
|
1310
|
+
| optimization weighting constants that reduced the error between the estimated and
|
1311
|
+
| measured compressive tibiofemoral force. Different weighting constants may be
|
1312
|
+
| appropriate for younger patients or patients with gait pathology. In this study, the
|
1313
|
+
| weighting constants penalized recruitment of the hamstrings and gastrocnemius, which
|
1314
|
+
| resulted in the recruitment of other muscles to actuate the hip and ankle without
|
1315
|
+
| increasing the compressive load on the tibia. Although the quadriceps are the major
|
1316
|
+
| contributors to compressive tibiofemoral force, increasing the quadriceps’ weighting
|
1317
|
+
| constant did not reduce the estimated tibiofemoral force since no other muscles could
|
1318
|
+
| replace the quadriceps’ function at the knee.
|
1319
|
+
| To test the sensitivity of our results to the objective function we evaluated how
|
1320
|
+
| estimated tibiofemoral contact force changed with altering the weighting constants and
|
1321
|
+
| the power of activation. The quadratic relationship between knee flexion angle and
|
1322
|
+
| tibiofemoral contact force and quadriceps force was similar in all tested objective
|
1323
|
+
| functions (Figure 3.5). Using a linear objective function resulted in an average reduction
|
1324
|
+
| in tibiofemoral contact force during stance of 7 percent while an objective function that
|
1325
|
+
| minimized activation cubed increased tibiofemoral contact force during stance by 11
|
1326
|
+
| percent. Using weighting constants of one for all muscles also increased the estimated
|
1327
|
+
| tibiofemoral contact force during stance by an average of 15 percent due primarily to a
|
1328
|
+
| ten percent average increase in gastrocnemius force during stance. Future studies that
|
1329
|
+
| measure compressive tibiofemoral force from individuals with instrumented total knee
|
1330
|
+
| replacements walking in pathologic gait patterns, such as crouch gait, could provide
|
1331
|
+
| further points of comparison for model-based estimates of compressive tibiofemoral force
|
1332
|
+
| and help to determine the optimal objective functions.
|
1333
|
+
blank |
|
1334
|
+
|
|
1335
|
+
|
|
1336
|
+
|
|
1337
|
+
meta | 34
|
1338
|
+
text | Figure 3.5: Average (A) tibiofemoral contact force, (B) quadriceps force, (C) hamstring force, and (D)
|
1339
|
+
| gastrocnemius force during stance with the objective function shown in Eqn. 1 and weighting constants,
|
1340
|
+
| minimizing activation with weighting constants, minimizing activation cubed with weighting constants, and
|
1341
|
+
| minimizing activation squared with all weighting constants equal to one.
|
1342
|
+
blank |
|
1343
|
+
meta | 35
|
1344
|
+
title | 3.2. Conclusion
|
1345
|
+
text | This study has demonstrated that walking in a moderate or severe crouch gait
|
1346
|
+
| increases the compressive tibiofemoral force, which could be contributing to joint pain
|
1347
|
+
| and cartilage degeneration. Surgeries and therapies that produce a more upright walking
|
1348
|
+
| posture will reduce forces at the knee and may help moderate the adverse effects of
|
1349
|
+
| excessive joint loading.
|
1350
|
+
blank |
|
1351
|
+
|
|
1352
|
+
|
|
1353
|
+
|
|
1354
|
+
meta | 36
|
1355
|
+
title | 4. Preparatory co-activation of the ankle muscles may prevent
|
1356
|
+
| ankle inversion injuries
|
1357
|
+
blank |
|
1358
|
+
title | 4.1. Introduction
|
1359
|
+
text | Ankle sprains are the most common of all acute musculoskeletal injuries that
|
1360
|
+
| occur during physical activity (Fong et al., 2009, 2007). Roughly 80% of acute ankle
|
1361
|
+
| injuries involve excessive inversion, with 77% resulting in sprains of the lateral ligaments
|
1362
|
+
| (Fong et al., 2009). These injuries often occur during landing, especially on irregular or
|
1363
|
+
| unexpected surfaces, such as a competitor’s foot (Bahr et al., 1997, 1994). High impact
|
1364
|
+
| forces directed medially to the subtalar joint induce rapid inversion of the foot (Fuller,
|
1365
|
+
| 1999; Wright et al., 2000a, 2000b). Injury occurs when excessive ankle inversion
|
1366
|
+
| stretches the lateral ankle ligaments that cross the talocrural and subtalar joints, causing
|
1367
|
+
| plastic strains or ligament rupture (Hertel, 2002). Such injuries result in long, incomplete
|
1368
|
+
| recoveries that leave the ankle prone to recurring injuries.
|
1369
|
+
| Load–deflection studies on cadavers have quantified the passive mechanics of the
|
1370
|
+
| ankle (Chen et al., 1988; Lapointe et al., 1997; Siegler et al., 1990). Passive ankle
|
1371
|
+
| stiffness decreases due to lateral ligament sprains, reducing resistance to excessive ankle
|
1372
|
+
| inversion (Lapointe et al., 1997; Siegler et al., 1990). Computer simulations of ankle
|
1373
|
+
| inversion scenarios predicted that decreased passive ankle stiffness could increase the
|
1374
|
+
| probability of inversion injuries (Wright et al., 2000b). Observations from large cohorts
|
1375
|
+
| of athletes corroborate this finding, showing that ankles with previous inversion injuries
|
1376
|
+
| are more susceptible to future injury than uninjured ankles (McGuine and Keene, 2006;
|
1377
|
+
| Surve et al., 1994). Athletic tape and braces can reinforce and stiffen ankles with
|
1378
|
+
| previous injuries and decrease rates of recurring injuries (Kamiya et al., 2009); however,
|
1379
|
+
| tape and braces have not been shown to decrease injury rates in uninjured ankles
|
1380
|
+
| (Calatayud et al., 2014; Verhagen and Bay, 2010).
|
1381
|
+
| Posture and muscle coordination may also affect ankle stability, but the
|
1382
|
+
| relationships between muscle activity, landing pose, and the risk of inversion injury have
|
1383
|
+
| not been adequately characterized. Landing with a plantarflexed or inverted ankle
|
1384
|
+
| increased the rate of injury in musculoskeletal simulations (Wright et al., 2000a), while
|
1385
|
+
| retraining trunk and leg posture has decreased the rate of ankle injuries in volleyball
|
1386
|
+
blank |
|
1387
|
+
meta | 37
|
1388
|
+
text | players (Bahr et al., 1997). Neuromotor interventions, which retrain muscle coordination,
|
1389
|
+
| have also been shown to protect the ankle. For example, balance board training, in which
|
1390
|
+
| the participant stands with one foot on an unstable surface, has decreased the rates of
|
1391
|
+
| recurring ankle injuries in previously injured ankles (Bahr et al., 1997; Verhagen et al.,
|
1392
|
+
| 2004). Similarly, interventions combining balance, strength, and plyometric training have
|
1393
|
+
| decreased the rates of recurring ankle injuries (Emery and Meeuwisse, 2010). However,
|
1394
|
+
| according to multiple reviews (Calatayud et al., 2014; van der Wees et al., 2006;
|
1395
|
+
| Verhagen and Bay, 2010), the majority of studies have found no effect of neuromotor
|
1396
|
+
| retraining on preventing first-time ankle sprains.
|
1397
|
+
| While studies of neuromotor retraining show promising results, outcomes are
|
1398
|
+
| mixed and the underlying mechanisms behind the protective effects are unknown, largely
|
1399
|
+
| because the role of the ankle muscles in resisting inversion sprains is an area of
|
1400
|
+
| controversy. Some hypothesize that improved ankle proprioception (Arnold et al., 2009a;
|
1401
|
+
| Hertel, 2002, 2000; Munn et al., 2010) and increased strength in the ankle evertor
|
1402
|
+
| muscles (Arnold et al., 2009b) are responsible. However, experiments exploring the
|
1403
|
+
| effects of balance interventions found that neuromuscular retraining neither targets nor
|
1404
|
+
| improves ankle proprioception (Gauffin et al., 1988; Kiers et al., 2012). Additionally,
|
1405
|
+
| patients with recurring ankle sprains (Hiller et al., 2011) or functional ankle instability
|
1406
|
+
| (Munn et al., 2003) do not demonstrate deficits in evertor strength, although patients with
|
1407
|
+
| ankle instability or recent ankle sprains may exhibit longer evertor muscle reaction times
|
1408
|
+
| (Delahunt, 2007; Konradsen and Ravn, 1990; Löfvenberg et al., 1995). These findings
|
1409
|
+
| suggest that changes in muscle coordination may be the primary protective mechanism of
|
1410
|
+
| neuromuscular retraining. However, the capacity for the ankle muscles to prevent
|
1411
|
+
| inversion injuries under various coordination strategies remains largely unexplored.
|
1412
|
+
| The purpose of this study was to determine whether coordinated activity of the
|
1413
|
+
| ankle muscles could prevent excessive ankle inversion during an inversion-inducing
|
1414
|
+
| landing scenario. We used musculoskeletal simulations to avoid the risk of injuring
|
1415
|
+
| human subjects and to allow for systematic manipulation of muscle coordination. We
|
1416
|
+
| used a musculoskeletal model (Delp et al., 1990) to which we added muscle excitation
|
1417
|
+
| controllers, a foot–floor contact model, and passive mechanics of the ankle. We tested the
|
1418
|
+
| model against experimental data and then used the model to generate muscle-driven
|
1419
|
+
meta | 38
|
1420
|
+
text | simulations of a single-leg landing under a variety of muscle control strategies. Our first
|
1421
|
+
| goal was to quantify how co-activating the ankle evertor and invertor muscles affects
|
1422
|
+
| maximum inversion angles for a range of co-activation levels. Our second goal was to
|
1423
|
+
| quantify ankle inversion when the evertor and invertor muscles were coordinated with
|
1424
|
+
| stretch reflexes. Thus, we were able to compare the efficacy of a planned ankle muscle
|
1425
|
+
| co-activation strategy to that of a purely reflexive strategy during an inversion-inducing
|
1426
|
+
| landing.
|
1427
|
+
blank |
|
1428
|
+
|
|
1429
|
+
|
|
1430
|
+
title | 4.2. Methods
|
1431
|
+
blank |
|
1432
|
+
title | 4.2.1. A new musculoskeletal model for simulating ankle inversion injuries
|
1433
|
+
text | We developed a model (Figure 4.1) for simulating single-leg landings in OpenSim
|
1434
|
+
| (Delp et al., 2007) by augmenting a well-established full-body musculoskeletal model.
|
1435
|
+
| The model used the musculoskeletal geometry of the lower limb defined by Delp et al.
|
1436
|
+
| (1990) with an articulating patella and quadriceps (DeMers et al., 2014). The model
|
1437
|
+
| incorporated a lumped torso–head segment connected to the pelvis by a ball-and-socket
|
1438
|
+
| joint. The arms connected to the torso with ball-and-socket shoulder joints (Hamner et al.,
|
1439
|
+
| 2010). Forty-nine muscle–tendon units (muscles) actuated the legs and the lumbar joint
|
1440
|
+
| (21 degrees of freedom in total). All muscles incorporated force–length, force–velocity,
|
1441
|
+
| and activation dynamics behavior described by Thelen (2003) and implemented in
|
1442
|
+
| OpenSim by Millard et al. (2013). The ankle evertor muscles included the three peronei
|
1443
|
+
| and extensor digitorum muscles. The ankle invertor muscles included the tibialis anterior,
|
1444
|
+
| tibialis posterior, flexor digitorum, flexor hallucis, and extensor hallucis. Excitations of
|
1445
|
+
| the model’s muscles were determined either by feedforward controllers or by stretch
|
1446
|
+
| feedback controllers, as described below.
|
1447
|
+
| To represent the landing surface, the simulation included a contact plane, fixed to
|
1448
|
+
| a configurable platform, which could be set at any desired height and orientation below
|
1449
|
+
| the musculoskeletal model. This contact plane interacted with the feet, which were
|
1450
|
+
| defined by a three dimensional mesh digitized from computed tomography of a cadaver
|
1451
|
+
| foot (Erdemir et al., 2009). An elastic foundation contact model between the contact
|
1452
|
+
| plane and the foot mesh generated reaction forces between the foot and floor. Stiffness
|
1453
|
+
blank |
|
1454
|
+
meta | 39
|
1455
|
+
text | (50 MPa/m), coefficient of friction (0.9), and dissipation (5 s/m) parameters were
|
1456
|
+
| selected to represent rubber contacting rubber (Sherman et al., 2011), with a shoe sole
|
1457
|
+
| thickness of approximately 2 centimeters.
|
1458
|
+
blank |
|
1459
|
+
|
|
1460
|
+
|
|
1461
|
+
|
|
1462
|
+
text | Figure 4.1: Musculoskeletal model used to simulate single-leg landings. 49 muscles (red) actuated the
|
1463
|
+
| model’s 21 degrees of freedom in the right leg, the pelvis, and a lumped torso/head segment. The left leg
|
1464
|
+
| was locked in the flexed pose shown. The arms were fixed in a posture anterior to the chest by locking the
|
1465
|
+
| shoulder and elbow joints. Forces between the feet and floor were modeled as elastic foundation forces
|
1466
|
+
| between a mesh fixed to the foot (green) and the plane of the floor (blue). We simulated landing from a 0.3
|
1467
|
+
| meter fall onto the floor, which was tilted at 30 degrees in the coronal plane to induce rapid ankle
|
1468
|
+
| inversion.
|
1469
|
+
blank |
|
1470
|
+
|
|
1471
|
+
|
|
1472
|
+
text | The passive mechanics of the ankle have been measured in cadavers (Chen et al.,
|
1473
|
+
| 1988; Lapointe et al., 1997; Siegler et al., 1990) and were represented in the model as a
|
1474
|
+
| three-dimensional torsional bushing. The bushing acted like a set of three uncoupled,
|
1475
|
+
| nonlinear torsional springs between the distal tibia and the calcaneus, crossing the
|
1476
|
+
| talocrural and subtalar joints. We represented the nonlinear torque–deflection behavior
|
1477
|
+
meta | 40
|
1478
|
+
text | about the x, y, and z axes as uncoupled functions defined by cubic polynomials (Figure
|
1479
|
+
| 4.2). We determined the polynomial coefficients by minimizing the root-mean-squared
|
1480
|
+
| error between the cubic polynomials and the passive torque–angle behavior measured in
|
1481
|
+
| cadavers (Chen et al., 1988). The bushing captured the passive response of all ligaments
|
1482
|
+
| and soft structures that cross the ankle, excluding musculature. The root-mean-squared
|
1483
|
+
| errors between the bushing moments and the measured moments were 0.2 N-m about the
|
1484
|
+
| x-axis, 0.6 N-m about the y-axis, and 0.2 N-m about the z-axis.
|
1485
|
+
blank |
|
1486
|
+
|
|
1487
|
+
|
|
1488
|
+
|
|
1489
|
+
text | Figure 4.2: Load–deflection mechanics of passive ankle structures in the model compared to soft tissue
|
1490
|
+
| mechanics measured in cadavers (Chen et al., 1988). The model lumped all ligament and other soft tissue
|
1491
|
+
| loads—excluding the muscles—into a three-directional torsional bushing crossing the talocrural and
|
1492
|
+
| subtalar joints. Load–deflection profiles about the x, y, and z axes were modeled with uncoupled, cubic
|
1493
|
+
| polynomials and were fit to the average experimental data using least-squares error minimization.
|
1494
|
+
blank |
|
1495
|
+
|
|
1496
|
+
|
|
1497
|
+
|
|
1498
|
+
meta | 41
|
1499
|
+
title | 4.2.2. Generating nominal simulations of landing
|
1500
|
+
text | We generated a nominal simulation of single-leg landing on level ground based
|
1501
|
+
| on experimental measurements (Shultz et al., 2015). We used the three-dimensional
|
1502
|
+
| kinematics and ground reaction force data of a single subject (19 year old female, 68 kg
|
1503
|
+
| mass, 1.8 m height) performing five landing trials onto her right leg. Each trial began
|
1504
|
+
| with the subject standing on a block 0.4 meters above the ground, followed by a
|
1505
|
+
| voluntary drop onto a flat, level surface after which she landed and balanced solely on her
|
1506
|
+
| right foot.
|
1507
|
+
| We generated simulations of single-leg landing using the Forward Dynamics Tool
|
1508
|
+
| in OpenSim (Delp et al., 2007). Simulations began at the time of first foot-floor contact.
|
1509
|
+
| Initial conditions for the joint angles and velocities were determined from the average
|
1510
|
+
| values of the five experimental trials measured at the time of first foot–floor contact.
|
1511
|
+
| Excitations of the torso, hip, knee, ankle plantarflexor, and ankle dorsiflexor muscles
|
1512
|
+
| were modeled with muscle stretch feedback controllers. The stretch feedback controllers
|
1513
|
+
| excited the leg muscles prior to and during landing. Each muscle’s stretch feedback
|
1514
|
+
| controller computed the instantaneous muscle excitation, xm, according to Equation 4.1.
|
1515
|
+
blank |
|
1516
|
+
|
|
1517
|
+
text | f
|
1518
|
+
| ha i = jk la (i) − la m
|
1519
|
+
| + jc la (i) Equation 4.1
|
1520
|
+
| m
|
1521
|
+
blank |
|
1522
|
+
text | The stretch feedback controllers behave like a proportional-derivative controller
|
1523
|
+
| on the muscle’s length, where kp is the gain on normalized muscle stretch length and kv is
|
1524
|
+
| the gain on normalized muscle stretch velocity. Normalized muscle stretch was computed
|
1525
|
+
| as the difference between the current normalized muscle fiber length, la , and the desired
|
1526
|
+
| f
|
1527
|
+
| normalized muscle fiber length, la . Both were normalized by the optimal muscle fiber
|
1528
|
+
blank |
|
1529
|
+
text | length. Normalized muscle stretch velocity, la , was computed as the ratio of current
|
1530
|
+
| muscle fiber lengthening velocity, la , to the maximum contractile velocity of the muscle,
|
1531
|
+
| aCA
|
1532
|
+
| la . Only positive muscle stretch and velocity were considered, as indicated by the
|
1533
|
+
| parentheses, ( )+, in Eqn. 1. Each muscle was assigned to one of five functional groups in
|
1534
|
+
| f
|
1535
|
+
| which all controller parameters (kp, kv, la ) were the same (Table 4.1). These five groups
|
1536
|
+
| were the torso, hip, knee, ankle plantarflexor, and ankle dorsiflexor muscles.
|
1537
|
+
| Multiarticular muscles were assigned to the functional group corresponding to the largest
|
1538
|
+
meta | 42
|
1539
|
+
text | average moment arm for any joints they crossed. Excitations of the ankle evertor and
|
1540
|
+
| invertor muscles were constrained to be zero during the nominal simulation. We chose
|
1541
|
+
| stretch feedback controller parameters with an optimization that minimized the integral of
|
1542
|
+
| error between the simulated and experimentally measured kinematics. The stretch
|
1543
|
+
| feedback controller produced muscle activations that allowed the leg to flex under the
|
1544
|
+
| influence of gravity and muscles, and reproduced the experimentally measured landing
|
1545
|
+
| kinematics (Figure 4.3, average error 1.1 degrees).
|
1546
|
+
blank |
|
1547
|
+
|
|
1548
|
+
text | Desired
|
1549
|
+
| Length Velocity
|
1550
|
+
| Normalized
|
1551
|
+
| Muscle Group Muscles Gain Gain
|
1552
|
+
| Length
|
1553
|
+
| kp kv
|
1554
|
+
| npo
|
1555
|
+
| Erector Spinae, Internal Oblique,
|
1556
|
+
| Trunk Muscles 1.00 1.21 0.91
|
1557
|
+
| External Oblique
|
1558
|
+
| Gluteus Maximus, Gluteus Medius,
|
1559
|
+
| Gluteus Minimus, Tensor Fasciae
|
1560
|
+
| Latae, Iliacus, Psoas Major, Adductor
|
1561
|
+
| Brevis, Adductor Longus, Adductor
|
1562
|
+
| Hip 1.14 0.74 0.98
|
1563
|
+
| Magnus, Sartorius, Gracilis,
|
1564
|
+
| Pectineus, Piriformis, Quadratus
|
1565
|
+
| Femoris, Gemellus
|
1566
|
+
blank |
|
1567
|
+
text | Rectus Femoris, Vastus Lateralis,
|
1568
|
+
| Vastus Intermedius, Vastus Medialis,
|
1569
|
+
| Knee Biceps Femoris Long Head, Biceps 0.73 1.29 0.37
|
1570
|
+
| Femoris Short Head,
|
1571
|
+
| Semimebranosus, Semitendinosus
|
1572
|
+
| Ankle Medial Gastrocnemius, Lateral
|
1573
|
+
| 0.56 1.37 0.00
|
1574
|
+
| Plantarflexors Gastrocnemius, Soleus
|
1575
|
+
| Ankle
|
1576
|
+
| Tibialis Anterior 0.57 0.60 1.40
|
1577
|
+
| Dorsiflexors
|
1578
|
+
blank |
|
1579
|
+
|
|
1580
|
+
text | Table 4.1: Parameters of the muscle stretch feedback controllers that coordinated the trunk, hip, knee, and
|
1581
|
+
| ankle plantar/dorsiflexor muscles. Muscles were assigned to one of 5 stretch length controllers
|
1582
|
+
| corresponding to functional groups (trunk muscles, hip muscles, knee muscles, ankle plantarflexors, and
|
1583
|
+
| ankle dorsiflexors). All muscles in each group shared the same stretch length controller parameters
|
1584
|
+
| (desired normalized fiber length, normalized stretch length gain, and normalized stretch velocity gain).
|
1585
|
+
| Since the stretch controller is a function of unitless muscle fiber states, all three controller parameters are
|
1586
|
+
| unitless quantities.
|
1587
|
+
blank |
|
1588
|
+
|
|
1589
|
+
|
|
1590
|
+
|
|
1591
|
+
meta | 43
|
1592
|
+
text | Figure 4.3: Simulated hip, knee, and
|
1593
|
+
| ankle plantar flexion kinematics
|
1594
|
+
| after initial ground contact for a
|
1595
|
+
| 0.3-meter landing onto level ground
|
1596
|
+
| compared to kinematics measured
|
1597
|
+
| from a subject executing the same
|
1598
|
+
| landing. Kinematics of the model
|
1599
|
+
| (black line) evolved due to simple
|
1600
|
+
| stretch reflexes in the torso, hip,
|
1601
|
+
| knee, plantarflexor, and dorsiflexor
|
1602
|
+
| muscles of the right leg. Similarity
|
1603
|
+
| to the range of kinematics measured
|
1604
|
+
| during five landing trials (gray
|
1605
|
+
| lines) indicates that simulated
|
1606
|
+
| coordination strategy at the hip,
|
1607
|
+
| knee, and triceps surae muscles
|
1608
|
+
| mimics the behavior of the subject
|
1609
|
+
| during a nominal, level landing task.
|
1610
|
+
blank |
|
1611
|
+
|
|
1612
|
+
|
|
1613
|
+
title | 4.2.3. Inducing ankle inversion in simulated landings
|
1614
|
+
text | Quantifying the protective effects of muscle coordination strategies required a
|
1615
|
+
| landing condition that induced inversion injuries. Having generated a nominal simulation
|
1616
|
+
| of a safe landing on level ground, we perturbed the landing conditions to induce rapid
|
1617
|
+
| ankle inversion upon impact. Firstly, the subtalar joint angle and velocity at landing were
|
1618
|
+
| set to 0 degrees and 0 degrees/second. Secondly, we inclined the floor to 30 degrees in
|
1619
|
+
blank |
|
1620
|
+
meta | 44
|
1621
|
+
text | the coronal plane such that the medial aspect of the landing foot impacted first, inducing
|
1622
|
+
| a moment about the subtalar joint that rapidly inverted the ankle. This simulation scenario
|
1623
|
+
| served as the basis for exploring coordination of the ankle evertor and invertor muscles.
|
1624
|
+
blank |
|
1625
|
+
title | 4.2.4. Quantifying the effect of planned co-activation
|
1626
|
+
text | We quantified the effect of planned co-activation by varying the level of muscular
|
1627
|
+
| co-activation of muscles that cross the subtalar joint during the 30-degree incline landing
|
1628
|
+
| scenario. Co-activation was modeled as constant, feedforward activation of the opposing
|
1629
|
+
| ankle evertor and invertor muscles groups, which generated zero net subtalar moment at
|
1630
|
+
| initial ground contact (subtalar angle equal to zero). For a given co-activation level, all
|
1631
|
+
| evertor muscles received the same activation. All invertor muscles received 93% of the
|
1632
|
+
| evertor activations due to their larger moment-generating capacity. We generated eleven
|
1633
|
+
| independent simulations varying the level of constant, planned co-activation from 0% (no
|
1634
|
+
| active contraction) to 100% (maximal evertor contraction and 93% invertor contraction)
|
1635
|
+
| in 10% increments. All other parameters and inputs were held constant. The simulation
|
1636
|
+
| began when the foot impacted the inclined ground and proceeded for 150 milliseconds.
|
1637
|
+
| To quantify the effects of co-activation level on ankle inversion, we observed whether the
|
1638
|
+
| subtalar joint angle exceeded a predetermined injury threshold of 30 degrees, which was
|
1639
|
+
| chosen based on a cadaver study (Aydogan et al., 2006) which found that repaired lateral
|
1640
|
+
| ligaments of the ankle failed at inversion angles of 35±6 degrees (Figure 4.4, gray area).
|
1641
|
+
blank |
|
1642
|
+
title | 4.2.5. Quantifying the effect of ankle stretch reflexes
|
1643
|
+
text | We quantified the effect of stretch reflexes by varying the intensities of ankle
|
1644
|
+
| evertor and invertor muscular responses to stretch during the 30 degree incline landing
|
1645
|
+
| scenario. Evertor and invertor muscle stretch reflexes were modeled as muscle velocity
|
1646
|
+
| controllers with a response delay. The constant response delay captured the latency due to
|
1647
|
+
| neural transmission delay between muscle stretch and muscle excitation, which has been
|
1648
|
+
| measured experimentally as 60–120 milliseconds in the human peroneal muscles
|
1649
|
+
| (Beckman and Buchanan, 1995; Karlsson and Andreasson, 1992; Konradsen and Bohsen
|
1650
|
+
| Ravn, 1991; Vaes et al., 2002). We chose a constant response delay of 60 milliseconds to
|
1651
|
+
| test whether the fastest feasible human evertor reflex could prevent injurious ankle
|
1652
|
+
blank |
|
1653
|
+
|
|
1654
|
+
|
|
1655
|
+
meta | 45
|
1656
|
+
text | inversion angles in our simulation scenario. Each muscle’s stretch reflex controller
|
1657
|
+
| computed the instantaneous muscle excitation according to Equation 2.
|
1658
|
+
blank |
|
1659
|
+
|
|
1660
|
+
text | ha = jc la i − 0.060 Equation 4.2
|
1661
|
+
| m
|
1662
|
+
blank |
|
1663
|
+
text | The stretch reflex controller behaves like a delayed derivative controller on a muscle’s
|
1664
|
+
blank |
|
1665
|
+
text | normalized stretch velocity, la , in which kv is the gain on stretch velocity 60 milliseconds
|
1666
|
+
| in the past. To determine the effect of reflex intensity on ankle inversion, we generated
|
1667
|
+
| six independent simulations of landing on a 30 degree incline, varying only the gain, kv.
|
1668
|
+
| For the six simulations, kv was set to 0.0, 0.1, 0.5, 1, 5, and 10; results corresponding to kv
|
1669
|
+
| > 10 are not reported since simulations with kv = 10 and kv = 100 generated the same
|
1670
|
+
| kinematics. To quantify the effects of reflex intensity on ankle inversion, we observed
|
1671
|
+
| whether the subtalar angle exceeded the injury threshold of 30 degrees based on the range
|
1672
|
+
| failure angles reported by Aydogan et al. (2006)(Figure 4.5, gray region).
|
1673
|
+
blank |
|
1674
|
+
title | 4.3. Results
|
1675
|
+
text | Strong co-activation of the ankle evertors and invertors prior to landing prevented
|
1676
|
+
| ankle inversion angles from exceeding the injury threshold (Figure 4.4). Increasing co-
|
1677
|
+
| activation level from 0% (blue) to 100% (red) decreased peak inversion angle from 49
|
1678
|
+
| degrees to 17 degrees. Increasing co-activation also decreased peak inversion velocity
|
1679
|
+
| from 950 degrees/second to 550 degrees/second. Increasing simulated co-activation up to
|
1680
|
+
| 60% increased the time to exceeding the injury threshold (gray area) from 62 to 120
|
1681
|
+
| milliseconds. Co-activation levels of 62% and above prevented ankle inversion from
|
1682
|
+
| exceeding the injury threshold altogether.
|
1683
|
+
| Stretch reflexes of the evertors in response to landing failed to prevent excessive
|
1684
|
+
| ankle inversion (Figure 4.5). For all values of the reflex gain, kv, ranging from 0 (blue) to
|
1685
|
+
| 10 (red), ankle inversion angles exceeded the injury threshold (grey area). Also for all
|
1686
|
+
| values of kv, ankle inversion angle exceeded the injury threshold quickly, within 62
|
1687
|
+
| milliseconds of impact. Prior to 60 milliseconds, the ankle inversion trajectories under all
|
1688
|
+
| conditions were identical, due to the 60 millisecond reflex delay, and exhibited a peak
|
1689
|
+
| inversion velocity of 950 degrees/second.
|
1690
|
+
blank |
|
1691
|
+
meta | 46
|
1692
|
+
text | Figure 4.4: Ankle inversion trajectories
|
1693
|
+
| immediately after impact for various levels
|
1694
|
+
| of evertor and invertor muscle co-
|
1695
|
+
| activation. Each contour represents
|
1696
|
+
| excursion of the subtalar joint during a
|
1697
|
+
| single simulation in which the evertor and
|
1698
|
+
| invertor muscles generated force due to
|
1699
|
+
| constant activation. Co-activation level
|
1700
|
+
| was varied from 0% (blue) to 100% (red).
|
1701
|
+
| Impact occurs at zero milliseconds (ms).
|
1702
|
+
| An approximate injury threshold of 30 to
|
1703
|
+
| 40 degrees inversion (Aydogan et al.,
|
1704
|
+
| 2006) is shown for reference (gray area).
|
1705
|
+
blank |
|
1706
|
+
|
|
1707
|
+
|
|
1708
|
+
|
|
1709
|
+
text | Figure 4.5: Ankle inversion trajectories
|
1710
|
+
| immediately after impact with ankle
|
1711
|
+
| evertor and invertor stretch reflexes of
|
1712
|
+
| various intensities. Reflexes were modeled
|
1713
|
+
| as feedback from the muscle lengthening
|
1714
|
+
| speed to muscle excitations, with reflex
|
1715
|
+
| intensity modulated using a feedback gain.
|
1716
|
+
| Each contour represents ankle inversion
|
1717
|
+
| angle during a single simulation in which
|
1718
|
+
| the evertor and invertor muscles generated
|
1719
|
+
| force with a constant reflex gain. Reflex
|
1720
|
+
| gains were varied from 0.0 (blue) to 10
|
1721
|
+
| (red). Impact occurs at zero milliseconds
|
1722
|
+
| (ms). An approximate injury threshold of
|
1723
|
+
| 30 to 40 degrees inversion (Aydogan et al.,
|
1724
|
+
| 2006) is shown for reference (gray area).
|
1725
|
+
blank |
|
1726
|
+
|
|
1727
|
+
|
|
1728
|
+
|
|
1729
|
+
meta | 47
|
1730
|
+
text | Figure 4.6: Examples of the contributions of muscles and ligaments to the protective eversion moment
|
1731
|
+
| when adopting planned co-activation or strong stretch reflexes in the ankle evertor and invertor muscles.
|
1732
|
+
| Co-activating the evertors and invertors at the level of 70% (panel A) generated large eversion moments
|
1733
|
+
| (dark gray region, max. 29 Newton-meters) compared to all other muscles (dashed gray line) and the ankle
|
1734
|
+
| ligaments (light gray region), resulting in a net eversion moment (solid black line) throughout the landing
|
1735
|
+
| simulation. Conversely, strong reflexes in the ankle evertors and invertors (panel B, stretch velocity gain of
|
1736
|
+
| 10, delay 60 ms) failed to generate a net eversion moment until 38 ms after landing and produced less than
|
1737
|
+
| 10 N-m of eversion moment at the time of injury.
|
1738
|
+
blank |
|
1739
|
+
|
|
1740
|
+
|
|
1741
|
+
text | Co-activating the ankle evertors and invertors resulted in higher net eversion
|
1742
|
+
| moments (Figure 4.6A) compared to the moments resulting from stretch reflexes in the
|
1743
|
+
| same muscles (Figure 4.6B) during the first 150 milliseconds of landing. For both cases,
|
1744
|
+
| the soleus and gastrocnemius muscles, plantarflexors which also cross the subtalar joint,
|
1745
|
+
| generated a net inversion moment immediately after initial ground contact (Figure 4.6A
|
1746
|
+
blank |
|
1747
|
+
meta | 48
|
1748
|
+
text | and 4.6B, dashed gray lines). Co-activating the evertors and invertors at levels that
|
1749
|
+
| protected the ankle generated large eversion moments. For example, co-activation of 70%
|
1750
|
+
| resulted in a maximum moment of 29 Newton-meters (Figure 4.6A, dark gray region).
|
1751
|
+
| Passive forces from the ankle ligaments generated small eversion moments compared to
|
1752
|
+
| the muscle-generated moments (Figure 4.6A, light grey region). The superposition of
|
1753
|
+
| muscle and ligament loads resulted in net eversion moments throughout the landing
|
1754
|
+
| simulations for the co-activation case. Conversely, for the case of strong stretch reflexes
|
1755
|
+
| in the ankle evertors and invertors (Figure 4.6B), the superposition of all muscles and
|
1756
|
+
| ligaments generated net inversion moments until 38 milliseconds after initial ground
|
1757
|
+
| contact. Regardless of the gain of the stretch reflex controllers, the ankle evertors and
|
1758
|
+
| invertors produced less than 10 Newton-meter of eversion moment (Figure 4.6B, dark
|
1759
|
+
| grey area) before the time of injury.
|
1760
|
+
blank |
|
1761
|
+
|
|
1762
|
+
|
|
1763
|
+
title | 4.4. Discussion
|
1764
|
+
text | Our simulations suggest that coordinated activity of the ankle muscles can prevent
|
1765
|
+
| excessive ankle inversion during an inversion-inducing landing scenario. Co-activating
|
1766
|
+
| the evertor and invertor muscles prevented ankle inversion angles from exceeding the
|
1767
|
+
| threshold for ankle inversion sprains. Conversely, stretch reflexes of the evertor and
|
1768
|
+
| invertor muscles failed to prevent excessive ankle inversion angles because the injury
|
1769
|
+
| occurs within 62 milliseconds in our simulated landing scenario, before reflexes generate
|
1770
|
+
| stabilizing forces. This result suggests that interventions aimed at retraining muscle
|
1771
|
+
| coordination should target feedforward co-activation to prevent lateral ankle sprains.
|
1772
|
+
| Planned, feedforward co-activation of the ankle evertor and invertor muscles
|
1773
|
+
| rapidly and effectively protects the ankle from unanticipated inversion insults in our
|
1774
|
+
| simulated landing. With planned coordination of the evertors and invertors, the muscles
|
1775
|
+
| are active and generating force to stiffen the ankle in preparation for the large inversion
|
1776
|
+
| moment induced at landing. As the ankle inverts, the actively lengthening evertors and
|
1777
|
+
| shortening invertors generate a net eversion moment that immediately resists inversion.
|
1778
|
+
| This occurs because of the force–length–velocity property of muscle, which has a
|
1779
|
+
| stabilizing influence (John et al., 2013), and has been called a ‘preflex’ to refer to the pre-
|
1780
|
+
blank |
|
1781
|
+
|
|
1782
|
+
meta | 49
|
1783
|
+
text | reflex response of intrinsic muscle properties to disturbances (Loeb et al., 1999). When
|
1784
|
+
| the net active muscle moment is large enough, the passive moment due to the lateral
|
1785
|
+
| ankle ligaments is negligible. Experimental electromyography recordings show that
|
1786
|
+
| individuals co-activate the ankle muscles in midair during landing and jumping tasks
|
1787
|
+
| (Caulfield et al., 2004; Grüneberg et al., 2003), suggesting that it may be possible to
|
1788
|
+
| increase co-activation through training. Higher co-activation generated higher joint
|
1789
|
+
| stiffness and reduced the maximum inversion angles during our landing simulations.
|
1790
|
+
| Wright et al. (2000a) found that increased ankle stiffness due to passive structures, such
|
1791
|
+
| as ankle orthoses and tape, reduced the incidence of simulated inversion injuries. Our
|
1792
|
+
| simulations support the protective effect of ankle stiffening and demonstrate that the
|
1793
|
+
| evertor and invertor muscles can achieve this stiffness without assistance from orthoses
|
1794
|
+
| or tape.
|
1795
|
+
| Stretch reflexes, regardless of their intensity, show little capacity to protect the
|
1796
|
+
| ankle from unanticipated inversion insults upon landing, especially when the injuries
|
1797
|
+
| occur within approximately 60 milliseconds, as they did in our simulations. Our
|
1798
|
+
| simulations demonstrate that the fastest stretch reflexes consistently recorded in healthy
|
1799
|
+
| human evertor muscles (Calatayud et al., 2014; Vaes et al., 2002) are too slow to prevent
|
1800
|
+
| the inversion injury posed in this study. This finding contradicts research that suggests
|
1801
|
+
| improving peroneal reflex latency may prevent inversion injuries (Akhbari et al., 2007;
|
1802
|
+
| Clark and Burden, 2005; Delahunt, 2007; Osborne et al., 2001; Sheth et al., 1997). Fong
|
1803
|
+
| et al., (2013, 2012) demonstrated that a device with fast injury detection and external
|
1804
|
+
| electrical stimulation could provide artificially fast peroneal contractions in under 10
|
1805
|
+
| milliseconds. However, our findings show that, lacking advanced feedback control
|
1806
|
+
| devices such as Fong’s, interventions to reduce evertor latency are unlikely to prevent
|
1807
|
+
| rapid (< 60 milliseconds) inversion injuries.
|
1808
|
+
| Our simulation approach for exploring ankle inversion injuries is subject to
|
1809
|
+
| limitations. First, we defined an injury threshold of 30 degrees supination about the
|
1810
|
+
| subtalar joint based on an experiment on repaired lateral ligaments (Aydogan et al.,
|
1811
|
+
| 2006). We chose a conservative injury threshold of 30 degrees such that a simulated
|
1812
|
+
| injury represents the limit at which injury would likely occur in the highest-risk
|
1813
|
+
| individuals. The injury threshold could vary in non-injured ankles and between
|
1814
|
+
meta | 50
|
1815
|
+
text | individuals. Second, we lumped all 47 muscles of the landing leg and torso into only five
|
1816
|
+
| groups of stretch feedback controllers (torso, hip, knee, plantarflexor, and dorsiflexor
|
1817
|
+
| muscles). These groups did not separate hip flexors from hip extensors or knee flexors
|
1818
|
+
| from knee extensors. Supplementary to this study, we developed landing models using up
|
1819
|
+
| to nine functional groups coordinating the landing leg. Adding this complexity did not
|
1820
|
+
| affect our findings, thus we present the simplest model here. Additionally, by using the
|
1821
|
+
| same muscle controllers at the torso, hip, knee, and plantarflexion degrees of freedom in
|
1822
|
+
| all simulation conditions, we assumed that the landing model could not alter whole-body
|
1823
|
+
| coordination. This assumption corresponds to rapid injury scenarios, in which the
|
1824
|
+
| individual would not have sufficient time to change her landing posture or leg stiffness.
|
1825
|
+
| However, altering landing posture and leg stiffness may help mitigate ankle inversion
|
1826
|
+
| injuries and could be explored in future studies. Finally, while ankle inversion injuries
|
1827
|
+
| occur during landing, running, change of direction, and collision, we only simulated
|
1828
|
+
| injuries during landing on a surface inclined at 30 degrees. Other scenarios, which allow
|
1829
|
+
| more time to adjust, may allow for reflexes to make a significant contribution to
|
1830
|
+
| protecting the joint. It should be noted, however, that the mechanisms allowing co-
|
1831
|
+
| activated evertors to resist inversion moments more rapidly than evertor reflexes would
|
1832
|
+
| apply to any ankle inversion scenario, regardless of what causes the injurious inversion
|
1833
|
+
| moment.
|
1834
|
+
blank |
|
1835
|
+
title | 4.5. Conclusion
|
1836
|
+
text | Through development of a contact-based landing model and implementation of
|
1837
|
+
| novel muscle controllers, this study provides a rich platform for investigating ankle
|
1838
|
+
| injuries and strategies for mitigating them. All models, software, and data for this study
|
1839
|
+
| are publicly available online (http://simtk.org/home/ankle-sprains) along with tutorials on
|
1840
|
+
| their use. We encourage others to use these tools to explore other injury scenarios and
|
1841
|
+
| protective mechanisms.
|
1842
|
+
blank |
|
1843
|
+
|
|
1844
|
+
|
|
1845
|
+
|
|
1846
|
+
meta | 51
|
1847
|
+
title | 5. Conclusion
|
1848
|
+
text | This dissertation presents three studies conducted to advance the understanding of
|
1849
|
+
| human motor coordination and its effects on knee and ankle function. The first study
|
1850
|
+
| described a modeling and optimization framework we developed for varying muscle
|
1851
|
+
| activations and tibiofemoral forces during walking. Increased tibiofemoral forces during
|
1852
|
+
| walking have been linked to osteoarthritis and pain in the knee. Our analyses revealed
|
1853
|
+
| that activating the gluteus medius, psoas major, iliacus, and soleus muscles decreased the
|
1854
|
+
| tibiofemoral force, while activating the gastrocnemius and rectus femoris muscles
|
1855
|
+
| increased in tibiofemoral force. The second study employed a similar modeling and
|
1856
|
+
| optimization framework to estimate the tibiofemoral forces during walking in crouch gait
|
1857
|
+
| and quantify the variation in tibiofemoral forces due to varying severity of crouch. Our
|
1858
|
+
| results demonstrate that compressive tibiofemoral force increases quadratically with
|
1859
|
+
| crouch severity, which may explain why knee pain is common among individuals who
|
1860
|
+
| walk in crouch. The final study described a human landing simulator with novel muscle
|
1861
|
+
| stretch controllers for exploring muscle coordinations that may prevent lateral ankle
|
1862
|
+
| sprains. By varying the intensity to two strategies for coordinating the ankle evertors and
|
1863
|
+
| invertors at landing, we discovered that preparatory co-activation may prevent rapid
|
1864
|
+
| ankle inversion sprains while fast stretch reflexes likely would not. When regarded as a
|
1865
|
+
| body of work, these three studies make significant contributions in the form of impactful
|
1866
|
+
| scientific findings and freely available technology for the research community.
|
1867
|
+
blank |
|
1868
|
+
title | 5.1. Contributions
|
1869
|
+
blank |
|
1870
|
+
title | 5.1.1. Scientific Findings
|
1871
|
+
text | Activating the prime hip and ankle muscles, which are uniarticular and do not
|
1872
|
+
| cross the knee, decreases tibiofemoral force, while activating the gastrocnemius and
|
1873
|
+
| rectus femoris increases tibiofemoral force during walking. Our findings provide new
|
1874
|
+
| insight about how specific muscle activations might cause compensatory changes in other
|
1875
|
+
| muscles to decrease or increase tibiofemoral forces during walking. Prior to this
|
1876
|
+
| dissertation, the mathematical redundancy caused by having many more muscles than
|
1877
|
+
| joints was considered a technological challenge. Often named “the muscle redundancy
|
1878
|
+
blank |
|
1879
|
+
meta | 52
|
1880
|
+
text | problem”, this was typically “solved” using optimizations to pick one possible
|
1881
|
+
| distribution of muscle forces by expressing an objective function, such as minimizing
|
1882
|
+
| muscle force, muscle effort, or metabolic cost. Researchers studying the knee joint would
|
1883
|
+
| then use these specific distributions of muscle forces as the “solutions” and analyze
|
1884
|
+
| which muscles directly loaded the tibiofemoral joint. Conversely, we chose to use muscle
|
1885
|
+
| redundancy as a feature, leveraging it to vary the distribution of muscle forces and
|
1886
|
+
| resulting tibiofemoral forces during the same walking motion. As a result, we discovered
|
1887
|
+
| that activating muscles at the hip and ankle caused compensatory changes in activations
|
1888
|
+
| of muscles crossing the knee and altered the compressive tibiofemoral force. We
|
1889
|
+
| identified that the gluteus medius, psoas major, iliacus, and soleus, (uniarticular hip and
|
1890
|
+
| ankle muscles) had the greatest capacity to decrease tibiofemoral force during walking,
|
1891
|
+
| making them prime targets for interventions against knee OA and pain.
|
1892
|
+
| Compressive tibiofemoral forces increase quadratically with knee flexion during
|
1893
|
+
| the stance phase of walking in a crouch gait. Knee pain and even early onset
|
1894
|
+
| osteoarthritis are common among individuals who walk with a crouch gait. Our findings
|
1895
|
+
| show that walking in severe crouch gait generates tibiofemoral forces at least three-times
|
1896
|
+
| larger than those generated in unimpaired gait. This result suggests that the crouched
|
1897
|
+
| posture and elevated tibiofemoral forces could contribute to early cartilage degeneration
|
1898
|
+
| and knee pain, but also suggest that correcting crouch gait could help slow this
|
1899
|
+
| degradation or alleviate pain. However, since our results show that walking in mild
|
1900
|
+
| crouch could feasibly generate tibiofemoral forces as low as unimpaired walking,
|
1901
|
+
| interventions to correct crouch and achieve unimpaired kinematics may have diminishing
|
1902
|
+
| returns with regard to joint loading.
|
1903
|
+
| Preparatory co-activation of the ankle evertors and invertor muscles during
|
1904
|
+
| landing can provide strong and rapid resistance to ankle sprains, while stretch reflexes
|
1905
|
+
| are too slow. Our findings reveal that a co-activated, stiff ankle can generate moments in
|
1906
|
+
| equilibrium when the ankle is neutral, then rapidly generate protective moments as soon
|
1907
|
+
| as any perturbation inverts the ankle toward a sprain. Unlike reflexes which incur a
|
1908
|
+
| neuromotor delay of up to 150 milliseconds, the co-activated ankle muscles are already
|
1909
|
+
| generating force and provide a purely mechanical “preflex” response that acts instantly.
|
1910
|
+
| Prior to this dissertation, neuromotor retraining interventions to prevent ankle sprains
|
1911
|
+
blank |
|
1912
|
+
meta | 53
|
1913
|
+
text | largely focused on exercising the ankle evertor reflexes in order to decrease their delay.
|
1914
|
+
| However, even after those interventions, evertors reflexes still incur delays of 60
|
1915
|
+
| milliseconds or more. Our findings demonstrate that even the fastest reflexes with 60
|
1916
|
+
| millisecond delays are too slow to protect the ankle from sprains during common
|
1917
|
+
| scenarios. Therefore, our findings highlight that studies proposing ankle sprain
|
1918
|
+
| interventions should focus on methods for training co-activation “preflexes” at landing
|
1919
|
+
| instead of improving evertors reaction times.
|
1920
|
+
blank |
|
1921
|
+
title | 5.1.2. Technological Contributions to the Research Community
|
1922
|
+
text | Open source optimization software for simultaneously minimizing joint loads and
|
1923
|
+
| muscle activations during a motion. In Chapter 2, we used an optimization with a
|
1924
|
+
| customizable objective function (Equation 2.1) to specify different muscle coordination
|
1925
|
+
| strategies and vary muscle activations. This optimization, which allowed us to penalize
|
1926
|
+
| combinations of muscle activity and joint forces in the model, is versatile and applicable
|
1927
|
+
| to many regimes of biomechanical research. Therefore, we ensured that this optimization
|
1928
|
+
| was flexible, reusable, and available to the research community. We designed the
|
1929
|
+
| optimization software as a plugin to OpenSim (Delp et al., 2007) so that others could
|
1930
|
+
| easily download and use it within the OpenSim GUI or command line tools. The open
|
1931
|
+
| source implementation in C++ is available and documented online such that any
|
1932
|
+
| researcher may download, modify, and use the software without restriction
|
1933
|
+
| (https://simtk.org/home/jointloadopt).
|
1934
|
+
| Open source musculoskeletal model for estimating tibiofemoral and
|
1935
|
+
| patellofemoral loads during full-body, muscle-driven motion. Accurate estimates of
|
1936
|
+
| tibiofemoral forces require a knee mechanism that captures the tibiofemoral,
|
1937
|
+
| patellofemoral, and quadriceps mechanisms and the loads transferred between them. Prior
|
1938
|
+
| to this dissertation, full body models in OpenSim were designed for and excelled at
|
1939
|
+
| modeling quadriceps moment arms and tensions, but could not resolve the tibiofemoral
|
1940
|
+
| and patellofemoral contact loads. We developed (Chapter 2 and 3) a knee mechanism
|
1941
|
+
| within a full-body model which could resolve the resultant knee contact forces using a
|
1942
|
+
| coupled tibiofemoral and patellofemoral mechanism actuated by the quadriceps muscles.
|
1943
|
+
| This knee mechanism has been used in numerous scientific publications (DeMers et al.,
|
1944
|
+
blank |
|
1945
|
+
meta | 54
|
1946
|
+
text | 2014; Lerner et al., 2014; Steele et al., 2012; Wagner et al., 2013) and has served as a
|
1947
|
+
| launching point for further augmented models that resolve mediolateral distributions of
|
1948
|
+
| tibiofemoral forces (Lerner et al., 2015).
|
1949
|
+
| Open source library for muscle stretch feedback control in OpenSim. In Chapter
|
1950
|
+
| 4, we generated simulations of single-leg landing using muscle stretch feedback
|
1951
|
+
| controllers. These stretch controllers, which allowed us to define the conditions and
|
1952
|
+
| intensity of spring-like stiffness control of individual muscles, are versatile and
|
1953
|
+
| applicable to many regimes of biomechanical research. Therefore, we ensured that these
|
1954
|
+
| controllers were flexible, reusable, and available to the research community. We designed
|
1955
|
+
| the controller software as a plugin to OpenSim (Delp et al., 2007) so that others could
|
1956
|
+
| easily download and use them within the OpenSim GUI or command line tools. The open
|
1957
|
+
| source implementation in C++ is available and documented online such that any
|
1958
|
+
| researcher may download, modify, and use the software without restriction
|
1959
|
+
| (https://github.com/msdemers/opensim-reflex-controllers).
|
1960
|
+
| Library of single-leg landing models and simulations under various coordination
|
1961
|
+
| conditions. To test the effectiveness of varied ankle muscle coordination in preventing
|
1962
|
+
| sprains, we created a detailed landing model and generated landing simulations under
|
1963
|
+
| multiple control conditions. The model incorporates contact interactions between the feet
|
1964
|
+
| and the floor, nonlinear and passive ankle structures based on experiments, and muscle
|
1965
|
+
| controllers trained to land like a human. The model is a valuable tool for further research
|
1966
|
+
| on landing, ankle mechanics, full-body control. The simulations themselves are a
|
1967
|
+
| valuable launching point for further study of muscle control and injury in single-leg
|
1968
|
+
| landing. The models, simulations, and data used to generate them are freely available
|
1969
|
+
| online (https://simtk.org/home/ankle-sprains) such that other researchers to download,
|
1970
|
+
| modify, and extend them.
|
1971
|
+
blank |
|
1972
|
+
title | 5.2. Future work
|
1973
|
+
blank |
|
1974
|
+
title | 5.2.1. Immediate Next Steps
|
1975
|
+
text | Coordination strategies to decrease the independent medial and lateral
|
1976
|
+
| components of tibiofemoral force. In this dissertation, tibiofemoral forces were modeled
|
1977
|
+
| as single point-forces acting at the tibiofemoral joint center. The true human knee
|
1978
|
+
blank |
|
1979
|
+
meta | 55
|
1980
|
+
text | mechanism generates separate medial and lateral contact loads between each of two
|
1981
|
+
| femoral condyles and the tibial plateau. OA typically develops more frequently and more
|
1982
|
+
| severely in the medial compartment of the knee (Felson et al., 2008). When studying
|
1983
|
+
| medial compartment OA, researchers often use the externally applied knee adduction
|
1984
|
+
| moment as a surrogate measure of the medial knee contact force (Baliunas, 2002; Shull et
|
1985
|
+
| al., 2013; Zhao et al., 2007) because it is easy to estimate from human motion capture
|
1986
|
+
| measurements. However, the external knee adduction moment can not capture the effects
|
1987
|
+
| of muscles tensions crossing the knee and how they change the distribution of medial and
|
1988
|
+
| lateral tibiofemoral contact forces. We, in collaboration with Lerner and colleagues, have
|
1989
|
+
| augmented the knee mechanism described in this dissertation to include coupled medial
|
1990
|
+
| and lateral tibiofemoral joints which can resolve separate medial and lateral tibiofemoral
|
1991
|
+
| contact forces in a full-body human model (Lerner et al., 2015). An exciting opportunity
|
1992
|
+
| exists to combine the new human model with the optimization tools presented in this
|
1993
|
+
| dissertation and explore the effects of varied muscle coordination on the medial and
|
1994
|
+
| lateral distribution of knee forces. Thus, future research of walking in healthy and
|
1995
|
+
| pathologic populations should aim to quantify the changes in medial and lateral
|
1996
|
+
| tibiofemoral forces due to changes in muscle activity (similar to Chapter 2) and changes
|
1997
|
+
| in walking kinematics (similar to Chapter 3). Quantifying these relationships will one day
|
1998
|
+
| enable better interventions for reducing medial knee pain or slowing medial knee
|
1999
|
+
| cartilage degradation associated with walking.
|
2000
|
+
| Coordination strategies to change joint contact forces during various activities
|
2001
|
+
| of daily living. When quantifying the effects of varying muscle coordination on
|
2002
|
+
| tibiofemoral forces, this dissertation only considers walking motions. Furthermore, we
|
2003
|
+
| analyzed walking performed post surgery by individuals with total knee replacements.
|
2004
|
+
| However, the modeling and optimization tools presented in Chapters 2 and 3 could easily
|
2005
|
+
| be applied to many activities of daily living in both diseased and healthy populations.
|
2006
|
+
| Activities of daily living that significantly affect quality of life for individuals with knee
|
2007
|
+
| OA and pain include ascending and descending stairs, sit-to-stand transitions, and stand-
|
2008
|
+
| to-sit transitions because they generate large knee forces (Kutzner et al., 2010). While
|
2009
|
+
| researchers have measured tibiofemoral forces during these motions using instrumented
|
2010
|
+
| total knee replacements (D’Lima et al., 2006; Mündermann et al., 2008b), the potential to
|
2011
|
+
meta | 56
|
2012
|
+
text | vary these tibiofemoral forces by altering muscle coordination remains unclear. Unique
|
2013
|
+
| data sets (Fregly et al., 2012) publicly distribute motion capture measurements of high-
|
2014
|
+
| flexion activities similar to sit-stand transitions and stair climbing. Therefore, these
|
2015
|
+
| unique measurements combined with the open-source optimization framework presented
|
2016
|
+
| in this dissertation could quantify the variation in tibiofemoral forces due to variation of
|
2017
|
+
| muscle coordination during activities of daily living.
|
2018
|
+
| Quantify the effects of landing limb pose and stiffness on the mechanics of
|
2019
|
+
| lateral ankle sprains. While quantifying the effects of ankle muscle coordination on
|
2020
|
+
| ankle injuries, we assumed that the coordination of the remaining leg muscles and the
|
2021
|
+
| landing pose did not change. Analyses of ankle injury mechanics typically focus on the
|
2022
|
+
| ankle itself and prohibit changes in full-body coordination. For example, Wright et al.
|
2023
|
+
| analyzed ankle injuries during side-stepping maneuvers, but specifically varied only the
|
2024
|
+
| passive ankle stiffness (Wright et al., 2000b) and the ankle pose (Wright et al., 2000a) at
|
2025
|
+
| landing while specifying identical limb pose, trunk pose, and muscle activations in a feed
|
2026
|
+
| forward manner. Studies testing coaching interventions to reduce the incidence of ankle
|
2027
|
+
| sprains in sports indicate that altering landing leg pose and torso pose at landing might
|
2028
|
+
| affect the likelihood of injury (Bahr et al., 1997). However, the effects of landing pose,
|
2029
|
+
| leg stiffness, or other full-body coordination elements have not been explored in a
|
2030
|
+
| systematic or mechanistic way. The open-source landing model and muscle stretch
|
2031
|
+
| controllers we developed could be used to systematically vary torso posture, limb pose,
|
2032
|
+
| and muscle coordination of the hip, knee, and ankle during landing to quantify the effect
|
2033
|
+
| on the ankle excursion and moments. Such work could yield valuable mechanical insight
|
2034
|
+
| about ankle sprains and uncover targets for coaching interventions to prevent these ankle
|
2035
|
+
| sprains.
|
2036
|
+
| Quantify the effects of landing coordination strategies on incidence of lateral
|
2037
|
+
| ankle sprains in a diverse population of injury scenarios. The primary limitation of our
|
2038
|
+
| ankle sprain analyses is that we only considered one sprain inducing scenario. We only
|
2039
|
+
| considered lateral ankle sprains occurring during vertical landing on one foot, a common
|
2040
|
+
| injury mode in sports like basketball, volleyball, tennis, and hiking. However, ankle
|
2041
|
+
| injuries also occur during other movements, including horizontal maneuvers such as
|
2042
|
+
| running or run-to-cut, and a small proportion of ankle sprains involve injuries of the
|
2043
|
+
blank |
|
2044
|
+
meta | 57
|
2045
|
+
text | medial ligaments or the ankle syndesmosis (Doherty et al., 2014; Waterman et al., 2010).
|
2046
|
+
| Reducing the epidemic incidence of ankle injuries requires making humans more resilient
|
2047
|
+
| to many injury modes. Therefore, an appropriate next step is to quantify the effects of
|
2048
|
+
| kinematic and muscle coordination in a wide population of injury scenarios. Monte carlo
|
2049
|
+
| simulation methods would be well suited to this task, allowing researches to
|
2050
|
+
| stochastically generate many injury scenarios from a few key motions and defined
|
2051
|
+
| expectations of how the scenario conditions and injury perturbations might vary.
|
2052
|
+
| Researchers could then systematically vary and test different coordination strategies, or
|
2053
|
+
| even assistive devices, against this population of injury conditions to simulate the effect
|
2054
|
+
| on incidence of injury.
|
2055
|
+
blank |
|
2056
|
+
title | 5.2.1. New Lines of Research
|
2057
|
+
text | Simultaneous optimization of kinematic strategy, muscle coordination strategy,
|
2058
|
+
| and joint loads to predict novel walking patterns. Research into the effects of muscle
|
2059
|
+
| coordination and kinematics on internal joint forces has largely fallen into two motifs:
|
2060
|
+
| first to alter muscle coordination without controlling for walking kinematics (Brandon et
|
2061
|
+
| al., 2014; DeMers et al., 2014), and second to alter walking kinematics without
|
2062
|
+
| controlling for muscle coordination (Fregly et al., 2009; Mündermann et al., 2008a; Shull
|
2063
|
+
| et al., 2011). Our work on varying muscle coordination during walking indicates that
|
2064
|
+
| changes in muscle activity can substantially decrease tibiofemoral forces during the
|
2065
|
+
| second half the stance phase. Conversely, studies to retrain and modify walking
|
2066
|
+
| kinematics show significant decreases in tibiofemoral forces during the first half of stance
|
2067
|
+
| phase. Combined, these findings indicate that coupling muscle activity and kinematics
|
2068
|
+
| corrections could dramatically decrease tibiofemoral forces throughout the entire walking
|
2069
|
+
| gait cycle. A grand research opportunity exists to systematically explore and co-optimize
|
2070
|
+
| the muscle coordination and kinematics of walking to decrease joint contact forces in
|
2071
|
+
| simulations.
|
2072
|
+
| A new and powerful motif in musculoskeletal simulation, sometimes called
|
2073
|
+
| predictive simulation (Dorn et al., 2015), may be well suited to exploring coordination
|
2074
|
+
| and kinematics for decreasing joint contact forces. In predictive simulation, we embed
|
2075
|
+
| biologically-inspired controllers within a 3-D humanoid model to autonomously generate
|
2076
|
+
blank |
|
2077
|
+
meta | 58
|
2078
|
+
text | motions in simulations. We then define heuristics, such as penalizing metabolic energy
|
2079
|
+
| expenditure, falling, or stubbing the toe, in optimizations that learn and tune appropriate
|
2080
|
+
| parameters for the biologically-inspired controllers. This process has resulted in
|
2081
|
+
| autonomous locomotion controllers that predict realistic human walking and running
|
2082
|
+
| motions by simply specifying slow or fast over-ground speeds and without relying on
|
2083
|
+
| motion capture data (Wang et al., 2012). Furthermore, these autonomous locomotion
|
2084
|
+
| controllers have been retrained under new conditions, such as loaded or inclined walking,
|
2085
|
+
| which predicted humanlike compensations in their walking strategies (Dorn et al., 2015).
|
2086
|
+
| The predictive simulation approach enables an exciting new line of research to
|
2087
|
+
| predict novel changes in muscle activity and kinematics that decrease joint contact forces
|
2088
|
+
| during walking. Instead of posing movement heuristics that minimize metabolic
|
2089
|
+
| expenditure, future work could focus on heuristics that minimize joint contact forces or
|
2090
|
+
| other estimates of joint pain. By combining and balancing metabolic expenditure and
|
2091
|
+
| joint loading heuristics, future predictive simulations could be “pain-aware”. Perhaps
|
2092
|
+
| such simulations could generate and predict walking gait compensations that individuals
|
2093
|
+
| with knee pain typically exhibit, such as quadriceps avoidance gaits or limping. Once
|
2094
|
+
| optimized, humanlike walking controllers have been trained, further research could
|
2095
|
+
| propose specific variations in the control of individual muscles, muscle groups, or
|
2096
|
+
| antagonist muscle pairs to predict the downstream effect on the walking motion and joint
|
2097
|
+
| contact forces. This could serve as a platform for systematically proposing and testing
|
2098
|
+
| future interventions to decrease joint contact forces and mitigate joint degradation and
|
2099
|
+
| pain.
|
2100
|
+
| Design and testing of novel retraining interventions to mitigate chronic knee
|
2101
|
+
| pain or prevent acute ankle sprains. We used models to explore variations in muscle
|
2102
|
+
| coordination that could protect the knee or ankle, but it remains unclear whether living
|
2103
|
+
| humans could exercise the same variations to produce similar effects. Our models treated
|
2104
|
+
| all individual muscle activations as independent, meaning the muscle coordination
|
2105
|
+
| strategies could exercise up to 98 degrees of freedom to both meet the motion task
|
2106
|
+
| (walking or landing) and optimize the function of the knee or ankle. In living humans,
|
2107
|
+
| individual muscle activations are coupled by mechanism and limitations of the nervous
|
2108
|
+
| system. For example, principle component analysis of muscle activations during walking
|
2109
|
+
blank |
|
2110
|
+
meta | 59
|
2111
|
+
text | indicate that muscles activate together in synergies, and that fewer than 6 synergies are
|
2112
|
+
| required to reproduce human walking (Chvatal and Ting, 2013; Walter et al., 2014). We
|
2113
|
+
| aren’t aware of any studies that similarly analyzed the complexity of muscle activations
|
2114
|
+
| during landing, but it is possible that even fewer degrees of freedom are required or used.
|
2115
|
+
| This suggests that healthy individuals may not be capable of the same flexibility in
|
2116
|
+
| muscle activity that our models exhibit, meaning the most optimal muscle coordination
|
2117
|
+
| patterns could be infeasible. Individuals with gait pathologies like crouch gait exhibit
|
2118
|
+
| even fewer synergies (Steele et al., 2015), indicating that retraining muscle coordination
|
2119
|
+
| could be an even greater challenge in those populations. Therefore, future research must
|
2120
|
+
| propose interventions to promote the lower limb muscle coordination strategies found in
|
2121
|
+
| this dissertation and test their feasibility in experiments with living subjects.
|
2122
|
+
| The major challenge to proving the feasibility of such interventions is in
|
2123
|
+
| demonstrating that individuals can learn to increase or decrease activations of individual
|
2124
|
+
| muscles during walking or landing. Retraining interventions have successfully employed
|
2125
|
+
| real-time feedback to modify kinematics of walking and reduce knee loads in living
|
2126
|
+
| subjects (Shull et al., 2013, 2011). Conceivably, similar real-time feedback on muscle
|
2127
|
+
| coordination to increase gluteus medius and soleus activity while decreasing
|
2128
|
+
| gastrocnemius and rectus femoris activity may be possible, but remains largely
|
2129
|
+
| unexplored. Similarly, the capacity of individuals to modulate the level of invertor and
|
2130
|
+
| evertor co-activity during landing is unknown. Systems for real-time detection and
|
2131
|
+
| feedback of muscle electromyography (EMG) do exist for the upper extremity, and have
|
2132
|
+
| been used used with visual (Young et al., 2011) and tactile (Bloom et al., 2010; Casellato
|
2133
|
+
| et al., 2013) feedback to modify muscle activity during reaching tasks. EMG
|
2134
|
+
| measurements of the gluteus medius, soleus, gastrocnemius, and rectus femoris are
|
2135
|
+
| commonly collected during experiments of walking and other motions of the lower body.
|
2136
|
+
| In ankle injury research, EMG of the superficial ankle invertors and evertors are
|
2137
|
+
| commonly measured as well. Therefore, a real-time feedback system for measuring EMG
|
2138
|
+
| and suggesting changes in lower limb muscle activity is feasible, but the capacity of
|
2139
|
+
| subjects heed the suggestion and change muscle activity during walking or landing
|
2140
|
+
| remains unknown. This leaves a rich opportunity for human subject research aimed at
|
2141
|
+
blank |
|
2142
|
+
|
|
2143
|
+
meta | 60
|
2144
|
+
text | proposing coordination strategies to improve knee or ankle function, then testing the
|
2145
|
+
| propensity of individuals to adopt and retain these strategies after interventions.
|
2146
|
+
blank |
|
2147
|
+
|
|
2148
|
+
|
|
2149
|
+
|
|
2150
|
+
meta | 61
|
2151
|
+
title | List of References
|
2152
|
+
ref | Akhbari, B., Takamjani, I.E., Salavati, M., Sanjari, M.A., 2007. A 4-week biodex
|
2153
|
+
| stability exercise program improved ankle musculature onset, peak latency and
|
2154
|
+
| balance measures in functionally unstable ankles. Phys. Ther. Sport 8, 117–129.
|
2155
|
+
| doi:10.1016/j.ptsp.2007.03.004
|
2156
|
+
| Anderson, F.C., Pandy, M.G., 2001. Dynamic Optimization of Human Walking. J.
|
2157
|
+
| Biomech. Eng. 123, 381. doi:10.1115/1.1392310
|
2158
|
+
| Arnold, A.S., Salinas, S., Asakawa, D.J., Delp, S.L., 2000. Accuracy of muscle moment
|
2159
|
+
| arms estimated from MRI-based musculoskeletal models of the lower extremity.
|
2160
|
+
| Comput. Aided Surg. 5, 108–19. doi:10.1002/1097-0150(2000)5:2<108::AID-
|
2161
|
+
| IGS5>3.0.CO;2-2
|
2162
|
+
| Arnold, B.L., de la Motte, S., Linens, S., Ross, S.E., 2009a. Ankle instability is
|
2163
|
+
| associated with balance impairments: A meta-analysis. Med. Sci. Sports Exerc. 41,
|
2164
|
+
| 1048–1062. doi:10.1249/MSS.0b013e318192d044
|
2165
|
+
| Arnold, B.L., Linens, S.W., de la Motte, S.J., Ross, S.E., 2009b. Concentric evertor
|
2166
|
+
| strength differences and functional ankle instability: A meta-analysis. J. Athl. Train.
|
2167
|
+
| 44, 653–662. doi:10.4085/1062-6050-44.6.653
|
2168
|
+
| Arnold, E.M., Ward, S.R., Lieber, R.L., Delp, S.L., 2010. A model of the lower limb for
|
2169
|
+
| analysis of human movement. Ann. Biomed. Eng. 38, 269–79. doi:10.1007/s10439-
|
2170
|
+
| 009-9852-5
|
2171
|
+
| Aydogan, U., Glisson, R.R., Nunley, J.A., 2006. Extensor Retinaculum Augmentation
|
2172
|
+
| Reinforces Anterior Talofibular Ligament Repair. Clin. Orthop. Relat. Res. 442,
|
2173
|
+
| 210–215. doi:10.1097/01.blo.0000183737.43245.26
|
2174
|
+
| Bahr, R., Karlsen, R., Lian, Ø., Øvrebø, R.V., 1994. Incidence and Mechanisms of Acute
|
2175
|
+
| Ankle Inversion Injuries in Volleyball: A Retrospective Cohort Study. Am. J. Sports
|
2176
|
+
| Med. 22, 595–600. doi:10.1177/036354659402200505
|
2177
|
+
| Bahr, R., Lian, Ø., Bahr, I.A., 1997. A twofold reduction in the incidence of acute ankle
|
2178
|
+
| sprains in volleyball after the introduction of an injury prevention program: a
|
2179
|
+
| prospective cohort study. Scand. J. Med. Sci. Sports 7, 172–177.
|
2180
|
+
| Baliunas, a, 2002. Increased knee joint loads during walking are present in subjects with
|
2181
|
+
| knee osteoarthritis. Osteoarthr. Cartil. 10, 573–579. doi:10.1053/joca.2002.0797
|
2182
|
+
| Beckman, S.M., Buchanan, T.S., 1995. Ankle inversion injury and hypermobility: Effect
|
2183
|
+
| on hip and ankle muscle electromyography onset latency. Arch. Phys. Med. Rehabil.
|
2184
|
+
| 76, 1138–1143. doi:10.1016/S0003-9993(95)80123-5
|
2185
|
+
meta | 62
|
2186
|
+
ref | Bloom, R., Przekop, A., Sanger, T.D., 2010. Prolonged electromyogram biofeedback
|
2187
|
+
| improves upper extremity function in children with cerebral palsy. J. Child Neurol.
|
2188
|
+
| 25, 1480–1484. doi:10.1177/0883073810369704
|
2189
|
+
| Bolanos, A.A., Colizza, W.A., McCann, P.D., Gotlin, R.S., Wootten, M.E., Kahn, B.A.,
|
2190
|
+
| Insall, J.N., 1998. A comparison of isokinetic strength testing and gait analysis in
|
2191
|
+
| patients with posterior cruciate-retaining and substituting knee arthroplasties. J.
|
2192
|
+
| Arthroplasty 13, 906–915. doi:10.1016/S0883-5403(98)90198-X
|
2193
|
+
| Brandon, S.C.E., Miller, R.H., Thelen, D.G., Deluzio, K.J., 2014. Selective lateral muscle
|
2194
|
+
| activation in moderate medial knee osteoarthritis subjects does not unload medial
|
2195
|
+
| knee condyle. J. Biomech. 47, 1409–1415. doi:10.1016/j.jbiomech.2014.01.038
|
2196
|
+
| Calatayud, J., Borreani, S., Colado, J.C., Flandez, J., Page, P., Andersen, L.L., 2014.
|
2197
|
+
| Exercise and ankle sprain injuries: a comprehensive review. Phys. Sportsmed. 42,
|
2198
|
+
| 88–93. doi:10.3810/psm.2014.02.2051
|
2199
|
+
| Carter, D.R., Wong, M., 1988. The role of mechanical loading histories in the
|
2200
|
+
| development of diarthrodial joints. J. Orthop. Res. 6, 804–16.
|
2201
|
+
| doi:10.1002/jor.1100060604
|
2202
|
+
| Casellato, C., Pedrocchi, A., Zorzi, G., Vernisse, L., Ferrigno, G., Nardocci, N., 2013.
|
2203
|
+
| EMG-based visual-haptic biofeedback: A tool to improve motor control in children
|
2204
|
+
| with primary dystonia. IEEE Trans. Neural Syst. Rehabil. Eng. 21, 474–480.
|
2205
|
+
| doi:10.1109/TNSRE.2012.2222445
|
2206
|
+
| Caulfield, B., Crammond, T., O’Sullivan, A., Reynolds, S., Ward, T., 2004. Altered
|
2207
|
+
| ankle-muscle activation during jump landing in participants with functional
|
2208
|
+
| instability of the ankle joint. J. Sport Rehabil. 13, 189–200.
|
2209
|
+
| Chan, Y.-Y., Fong, D.T.-P., Yung, P.S.-H., Fung, K.-Y., Chan, K.-M., 2008. A
|
2210
|
+
| mechanical supination sprain simulator for studying ankle supination sprain
|
2211
|
+
| kinematics. J. Biomech. 41, 2571–4. doi:10.1016/j.jbiomech.2008.05.034
|
2212
|
+
| Chang, A., Hurwitz, D., Dunlop, D., Song, J., Cahue, S., Hayes, K., Sharma, L., 2007.
|
2213
|
+
| The relationship between toe-out angle during gait and progression of medial
|
2214
|
+
| tibiofemoral osteoarthritis. Ann. Rheum. Dis. 66, 1271–5.
|
2215
|
+
| doi:10.1136/ard.2006.062927
|
2216
|
+
| Chen, J., Siegler, S., Schneck, C.D., 1988. The three-dimensional kinematics and
|
2217
|
+
| flexibility characteristics of the human ankle and subtalar joint—Part II: Flexibility
|
2218
|
+
| characteristics. J. Biomech. Eng. 110, 374–385.
|
2219
|
+
| Chvatal, S. a, Ting, L.H., 2013. Common muscle synergies for balance and walking.
|
2220
|
+
| Front. Comput. Neurosci. 7, 48. doi:10.3389/fncom.2013.00048
|
2221
|
+
meta | 63
|
2222
|
+
ref | Clark, V.M., Burden, A.M., 2005. A 4-week wobble board exercise programme improved
|
2223
|
+
| muscle onset latency and perceived stability in individuals with a functionally
|
2224
|
+
| unstable ankle. Phys. Ther. Sport 6, 181–187. doi:10.1016/j.ptsp.2005.08.003
|
2225
|
+
| D’Lima, D.D., Patil, S., Steklov, N., Slamin, J.E., Colwell, C.W., 2006. Tibial Forces
|
2226
|
+
| Measured In Vivo After Total Knee Arthroplasty. J. Arthroplasty 21, 255–262.
|
2227
|
+
| doi:10.1016/j.arth.2005.07.011
|
2228
|
+
| D’Lima, D.D., Townsend, C.P., Arms, S.W., Morris, B. a, Colwell, C.W., 2005. An
|
2229
|
+
| implantable telemetry device to measure intra-articular tibial forces. J. Biomech. 38,
|
2230
|
+
| 299–304. doi:10.1016/j.jbiomech.2004.02.011
|
2231
|
+
| Davis, R.B., Ounpuu, S., Tyburski, D., Gage, J.R., 1991. A gait analysis data collection
|
2232
|
+
| and reduction technique. Hum. Mov. Sci. 10, 575–587. doi:10.1016/0167-
|
2233
|
+
| 9457(91)90046-Z
|
2234
|
+
| Delahunt, E., 2007. Peroneal reflex contribution to the development of functional
|
2235
|
+
| instability of the ankle joint. Phys. Ther. Sport 8, 98–104.
|
2236
|
+
| doi:10.1016/j.ptsp.2007.01.001
|
2237
|
+
| Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman,
|
2238
|
+
| E., Thelen, D.G., 2007. OpenSim: open-source software to create and analyze
|
2239
|
+
| dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54, 1940–1950.
|
2240
|
+
| doi:10.1109/TBME.2007.901024
|
2241
|
+
| Delp, S.L., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp, E.L., Rosen, J.M., 1990. An
|
2242
|
+
| interactive graphics-based model of the lower extremity to study orthopaedic
|
2243
|
+
| surgical procedures. IEEE Trans. Biomed. Eng. 37, 757–767.
|
2244
|
+
| doi:10.1109/10.102791
|
2245
|
+
| DeMers, M.S., Pal, S., Delp, S.L., 2014. Changes in tibiofemoral forces due to variations
|
2246
|
+
| in muscle activity during walking. J. Orthop. Res. 32, 769–76.
|
2247
|
+
| doi:10.1002/jor.22601
|
2248
|
+
| Dhaher, Y.Y., Kahn, L.E., 2002. The effect of vastus medialis forces on patello-femoral
|
2249
|
+
| contact: a model-based study. J Biomech Eng 124, 758–767. doi:10.1115/1.1516196
|
2250
|
+
| Doherty, C., Delahunt, E., Caulfield, B., Hertel, J., Ryan, J., Bleakley, C., 2014. The
|
2251
|
+
| incidence and prevalence of ankle sprain injury: A systematic review and meta-
|
2252
|
+
| analysis of prospective epidemiological studies. Sport. Med. 44, 123–140.
|
2253
|
+
| doi:10.1007/s40279-013-0102-5
|
2254
|
+
| Dorn, T.W., Wang, J.M., Hicks, J.L., Delp, S.L., 2015. Predictive Simulation Generates
|
2255
|
+
| Human Adaptations during Loaded and Inclined Walking. PLoS One 10, e0121407.
|
2256
|
+
blank |
|
2257
|
+
meta | 64
|
2258
|
+
ref | doi:10.1371/journal.pone.0121407
|
2259
|
+
| Eckstein, F., Faber, S., Mühlbauer, R., Hohe, J., Englmeier, K.-H., Reiser, M., Putz, R.,
|
2260
|
+
| 2002. Functional adaptation of human joints to mechanical stimuli. Osteoarthr.
|
2261
|
+
| Cartil. 10, 44–50. doi:10.1053/joca.2001.0480
|
2262
|
+
| Emery, C.A., Meeuwisse, W.H., 2010. The effectiveness of a neuromuscular prevention
|
2263
|
+
| strategy to reduce injuries in youth soccer: a cluster-randomised controlled trial. Br.
|
2264
|
+
| J. Sports Med. 44, 555–562. doi:10.1136/bjsm.2010.074377
|
2265
|
+
| Erdemir, A., Sirimamilla, P.A., Halloran, J.P., van den Bogert, A.J., 2009. An elaborate
|
2266
|
+
| data set characterizing the mechanical response of the foot. J. Biomech. Eng. 131,
|
2267
|
+
| 094502. doi:10.1115/1.3148474
|
2268
|
+
| Felson, D.T., Nevitt, M.C., Yang, M., Clancy, M., Niu, J., Torner, J.C., Lewis, C.E.,
|
2269
|
+
| Aliabadi, P., Sack, B., McCulloch, C., Zhang, Y., 2008. A new approach yields high
|
2270
|
+
| rates of radiographic progression in knee osteoarthritis. J. Rheumatol. 35, 2047–
|
2271
|
+
| 2054. doi:08/13/0920 [pii]
|
2272
|
+
| Fong, D.T.-P., Chan, Y.-Y., Mok, K.-M., Yung, P.S., Chan, K.-M., 2009. Understanding
|
2273
|
+
| acute ankle ligamentous sprain injury in sports. Sports Med. Arthrosc. Rehabil.
|
2274
|
+
| Ther. Technol. 1, 14. doi:10.1186/1758-2555-1-14
|
2275
|
+
| Fong, D.T.-P., Chu, V.W.-S., Chan, K.-M., 2012. Myoelectric stimulation on peroneal
|
2276
|
+
| muscles resists simulated ankle sprain motion. J. Biomech. 45, 2055–2057.
|
2277
|
+
| doi:10.1016/j.jbiomech.2012.04.025
|
2278
|
+
| Fong, D.T.-P., Hong, Y., Chan, L.-K., Yung, P.S.-H., Chan, K.-M., 2007. A systematic
|
2279
|
+
| review on ankle injury and ankle sprain in sports. Sports Med. 37, 73–94.
|
2280
|
+
| Fong, D.T.-P., Wang, D., Chu, V.W.-S., Chan, K.-M., 2013. Myoelectric stimulation on
|
2281
|
+
| peroneal muscles with electrodes of the muscle belly size attached to the upper
|
2282
|
+
| shank gives the best effect in resisting simulated ankle sprain motion. J. Biomech.
|
2283
|
+
| 46, 1088–1091. doi:10.1016/j.jbiomech.2013.01.019
|
2284
|
+
| Fregly, B.J., Besier, T.F., Lloyd, D.G., Delp, S.L., Banks, S. a, Pandy, M.G., D’Lima,
|
2285
|
+
| D.D., 2012. Grand challenge competition to predict in vivo knee loads. J. Orthop.
|
2286
|
+
| Res. 30, 503–13. doi:10.1002/jor.22023
|
2287
|
+
| Fregly, B.J., D’Lima, D.D., Colwell, C.W., 2009. Effective gait patterns for offloading
|
2288
|
+
| the medial compartment of the knee. J. Orthop. Res. 27, 1016–21.
|
2289
|
+
| doi:10.1002/jor.20843
|
2290
|
+
| Fukashiro, S., Komi, P. V., Jarvinen, M., Miyashita, M., 1993. Comparison between the
|
2291
|
+
| directly measured achilles tendon force and the tendon force calculated from the
|
2292
|
+
blank |
|
2293
|
+
meta | 65
|
2294
|
+
ref | ankle joint moment during vertical jumps. Clin. Biomech. 8, 25–30.
|
2295
|
+
| doi:10.1016/S0268-0033(05)80006-3
|
2296
|
+
| Fuller, E. a, 1999. Center of pressure and its theoretical relationship to foot pathology. J.
|
2297
|
+
| Am. Podiatr. Med. Assoc. 89, 278–291.
|
2298
|
+
| Gauffin, H., Tropp, H., Odenrick, P., 1988. Effect of ankle disk training on postural
|
2299
|
+
| control in patients with functional instability of the ankle joint. Int. J. Sports Med. 9,
|
2300
|
+
| 141–144. doi:10.1055/s-2007-1024996
|
2301
|
+
| Glitsch, U., Baumann, W., 1997. The three-dimensional determination of internal loads in
|
2302
|
+
| the lower extremity. J. Biomech. 30, 1123–31.
|
2303
|
+
| Graichen, F., Arnold, R., Rohlmann, A., Bergmann, G., 2007. Implantable 9-channel
|
2304
|
+
| telemetry system for in vivo load measurements with orthopedic implants. IEEE
|
2305
|
+
| Trans. Biomed. Eng. 54, 253–61. doi:10.1109/TBME.2006.886857
|
2306
|
+
| Gregor, R.J., Komi, P. V, Browning, R.C., Järvinen, M., 1991. A comparison of the
|
2307
|
+
| triceps surae and residual muscle moments at the ankle during cycling. J. Biomech.
|
2308
|
+
| 24, 287–297. doi:10.1016/0021-9290(91)90347-P
|
2309
|
+
| Grood, E.S., Suntay, W.J., Noyes, F.R., Butler, D.L., 1984. Biomechanics of the Knee-
|
2310
|
+
| Extension Exercise. J. Bone Jt. Surg. 66, 725–734.
|
2311
|
+
| Grüneberg, C., Nieuwenhuijzen, P.H.J.A., Duysens, J., 2003. Reflex responses in the
|
2312
|
+
| lower leg following landing impact on an inverting and non-inverting platform. J.
|
2313
|
+
| Physiol. 550, 985–993. doi:10.1113/jphysiol.2002.036244
|
2314
|
+
| Guo, M., Axe, M.J., Manal, K., 2007. The influence of foot progression angle on the knee
|
2315
|
+
| adduction moment during walking and stair climbing in pain free individuals with
|
2316
|
+
| knee osteoarthritis. Gait Posture 26, 436–41. doi:10.1016/j.gaitpost.2006.10.008
|
2317
|
+
| Gutierrez, G.M., Knight, C. a., Swanik, C.B., Royer, T., Manal, K., Caulfield, B.,
|
2318
|
+
| Kaminski, T.W., 2012. Examining Neuromuscular Control During Landings on a
|
2319
|
+
| Supinating Platform in Persons With and Without Ankle Instability. Am. J. Sports
|
2320
|
+
| Med. 40, 193–201. doi:10.1177/0363546511422323
|
2321
|
+
| Hamner, S.R., Seth, A., Delp, S.L., 2010. Muscle contributions to propulsion and support
|
2322
|
+
| during running. J. Biomech. 43, 2709–2716. doi:10.1016/j.jbiomech.2010.06.025
|
2323
|
+
| Handsfield, G.G., Meyer, C.H., Hart, J.M., Abel, M.F., Blemker, S.S., 2014.
|
2324
|
+
| Relationships of 35 lower limb muscles to height and body mass quantified using
|
2325
|
+
| MRI. J. Biomech. 47, 631–638. doi:10.1016/j.jbiomech.2013.12.002
|
2326
|
+
| Hertel, J., 2002. Functional Anatomy, Pathomechanics, and Pathophysiology of Lateral
|
2327
|
+
blank |
|
2328
|
+
meta | 66
|
2329
|
+
ref | Ankle Instability. J. Athl. Train. 37, 364–375.
|
2330
|
+
| Hertel, J., 2000. Functional Instability Following Lateral Ankle Sprain. Sport. Med. 29,
|
2331
|
+
| 361–371.
|
2332
|
+
| Hicks, J.L., Schwartz, M.H., Arnold, A.S., Delp, S.L., 2008. Crouched postures reduce
|
2333
|
+
| the capacity of muscles to extend the hip and knee during the single-limb stance
|
2334
|
+
| phase of gait. J. Biomech. 41, 960–967. doi:10.1016/j.jbiomech.2008.01.002
|
2335
|
+
| Hiller, C.E., Nightingale, E.J., Lin, C.-W.C., Coughlan, G.F., Caulfield, B., Delahunt, E.,
|
2336
|
+
| 2011. Characteristics of people with recurrent ankle sprains: a systematic review
|
2337
|
+
| with meta-analysis. Br. J. Sports Med. 45, 660–672. doi:10.1136/bjsm.2010.077404
|
2338
|
+
| Hsu, A.-T., Perry, J., Gronley, J.K., Hislop, H.J., 1993. Quadriceps force and myoeletric
|
2339
|
+
| activity during flexed knee stance. Clin. Orthop. Relat. Res. doi:10.1097/00003086-
|
2340
|
+
| 199303000-00032
|
2341
|
+
| Inman, V.T., 1947. Functional aspects of the abductor muscles of the hip. J. Bone Joint
|
2342
|
+
| Surg. Am. 29, 607–19.
|
2343
|
+
| Isman, R., Inman, V., 1969. Anthropometric Studies of the Human Foot and Ankle. Foot
|
2344
|
+
| Ankle 11, 97–129.
|
2345
|
+
| Jahnsen, R., Villien, L., Aamodt, G., Stanghelle, J.K., Holm, I., 2004. Musculoskeletal
|
2346
|
+
| pain in adults with cerebral palsy compared with the general population. J. Rehabil.
|
2347
|
+
| Med. 36, 78–84. doi:10.1080/16501970310018305
|
2348
|
+
| John, C.T., Anderson, F.C., Higginson, J.S., Delp, S.L., 2013. Stabilisation of walking by
|
2349
|
+
| intrinsic muscle properties revealed in a three-dimensional muscle-driven
|
2350
|
+
| simulation. Comput. Methods Biomech. Biomed. Engin. 16, 451–462.
|
2351
|
+
| doi:10.1080/10255842.2011.627560
|
2352
|
+
| Kamiya, T., Kura, H., Suzuki, D., Uchiyama, E., Fujimiya, M., Yamashita, T., 2009.
|
2353
|
+
| Mechanical stability of the subtalar joint after lateral ligament sectioning and ankle
|
2354
|
+
| brace application: a biomechanical experimental study. Am. J. Sports Med. 37,
|
2355
|
+
| 2451–2458. doi:10.1177/0363546509339578
|
2356
|
+
| Karlsson, J., Andreasson, G.O., 1992. The effect of external ankle support in chronic
|
2357
|
+
| lateral ankle joint instability. An electromyographic study. Am. J. Sports Med. 20,
|
2358
|
+
| 257–261.
|
2359
|
+
| Kerr Graham, H., Selber, P., 2003. Musculoskeletal aspects of cerebral palsy. J. Bone Jt.
|
2360
|
+
| Surg. 85, 157–166. doi:10.1302/0301-620X.85B2.14066
|
2361
|
+
| Kiers, H., Brumagne, S., van Dieën, J., van der Wees, P., Vanhees, L., 2012. Ankle
|
2362
|
+
| proprioception is not targeted by exercises on an unstable surface. Eur. J. Appl.
|
2363
|
+
blank |
|
2364
|
+
meta | 67
|
2365
|
+
ref | Physiol. 112, 1577–1585. doi:10.1007/s00421-011-2124-8
|
2366
|
+
| Kim, H.J., Fernandez, J.W., Akbarshahi, M., Walter, J.P., Fregly, B.J., Pandy, M.G.,
|
2367
|
+
| 2009. Evaluation of predicted knee-joint muscle forces during gait using an
|
2368
|
+
| instrumented knee implant. J. Orthop. Res. 27, 1326–31. doi:10.1002/jor.20876
|
2369
|
+
| Kirking, B., Krevolin, J., Townsend, C., Colwell, C.W., D’Lima, D.D., 2006. A
|
2370
|
+
| multiaxial force-sensing implantable tibial prosthesis. J. Biomech. 39, 1744–51.
|
2371
|
+
| doi:10.1016/j.jbiomech.2005.05.023
|
2372
|
+
| Klein Horsman, M.D., Koopman, H.F.J.M., van der Helm, F.C.T., Prosé, L.P., Veeger,
|
2373
|
+
| H.E.J., 2007. Morphological muscle and joint parameters for musculoskeletal
|
2374
|
+
| modelling of the lower extremity. Clin. Biomech. 22, 239–247.
|
2375
|
+
| doi:10.1016/j.clinbiomech.2006.10.003
|
2376
|
+
| Konradsen, L., Bohsen Ravn, J., 1991. Prolonged Peroneal Reaction Time in Ankle
|
2377
|
+
| Instability. Int. J. Sports Med. 12, 290–292. doi:10.1055/s-2007-1024683
|
2378
|
+
| Konradsen, L., Ravn, J., 1990. Ankle instability caused by prolonged peroneal reaction
|
2379
|
+
| time. Acta Orthop. 61, 388–390.
|
2380
|
+
| Kutzner, I., Heinlein, B., Graichen, F., Bender, a, Rohlmann, a, Halder, a, Beier, a,
|
2381
|
+
| Bergmann, G., 2010. Loading of the knee joint during activities of daily living
|
2382
|
+
| measured in vivo in five subjects. J. Biomech. 43, 2164–2173.
|
2383
|
+
| doi:10.1016/j.jbiomech.2010.03.046
|
2384
|
+
| Lapointe, S.J., Siegler, S., Hillstrom, H., Nobilini, R.R., Mlodzienski, A., Techner, L.,
|
2385
|
+
| 1997. Changes in the flexibility characteristics of the ankle complex due to damage
|
2386
|
+
| to the lateral collateral ligaments: Anin vitro andin vivo study. J. Orthop. Res. 15,
|
2387
|
+
| 331–341. doi:10.1002/jor.1100150304
|
2388
|
+
| Lerner, Z.F., DeMers, M.S., Delp, S.L., Browning, R.C., 2015. How tibiofemoral
|
2389
|
+
| alignment and contact locations affect predictions of medial and lateral tibiofemoral
|
2390
|
+
| contact forces. J. Biomech. 48, 644–650. doi:10.1016/j.jbiomech.2014.12.049
|
2391
|
+
| Lerner, Z.F., Haight, D.J., DeMers, M.S., Board, W.J., Browning, R.C., 2014. The effects
|
2392
|
+
| of walking speed on tibiofemoral loading estimated via musculoskeletal modeling. J.
|
2393
|
+
| Appl. Biomech. 30, 197–205. doi:10.1123/jab.2012-0206
|
2394
|
+
| Liu, M.Q., Anderson, F.C., Schwartz, M.H., Delp, S.L., 2008. Muscle contributions to
|
2395
|
+
| support and progression over a range of walking speeds. J. Biomech. 41, 3243–52.
|
2396
|
+
| doi:10.1016/j.jbiomech.2008.07.031
|
2397
|
+
| Loeb, G.E., Brown, I.E., Cheng, E.J., 1999. A hierarchical foundation for models of
|
2398
|
+
| sensorimotor control. Exp. Brain Res. 126, 1–18. doi:10.1007/s002210050712
|
2399
|
+
meta | 68
|
2400
|
+
ref | Löfvenberg, R., Karrholm, J., Sundelin, G., 1995. Reaction Time in Patients with Chronic
|
2401
|
+
| Lateral Instability of the Ankle Prolonged. Am J Sport. Med. 23, 414–417.
|
2402
|
+
| Losina, E., Weinstein, A.M., Reichmann, W.M., Burbine, S. a., Solomon, D.H., Daigle,
|
2403
|
+
| M.E., Rome, B.N., Chen, S.P., Hunter, D.J., Suter, L.G., Jordan, J.M., Katz, J.N.,
|
2404
|
+
| 2013. Lifetime risk and age at diagnosis of symptomatic knee osteoarthritis in the
|
2405
|
+
| US. Arthritis Care Res. 65, 703–711. doi:10.1002/acr.21898
|
2406
|
+
| McClelland, J. a, Webster, K.E., Feller, J. a, Menz, H.B., 2010. Knee kinetics during
|
2407
|
+
| walking at different speeds in people who have undergone total knee replacement.
|
2408
|
+
| Gait Posture 32, 205–10. doi:10.1016/j.gaitpost.2010.04.009
|
2409
|
+
| McGuine, T.A., Keene, J.S., 2006. The effect of a balance training program on the risk of
|
2410
|
+
| ankle sprains in high school athletes. Am. J. Sports Med. 34, 1103–1111.
|
2411
|
+
| doi:10.1177/0363546505284191
|
2412
|
+
| Millard, M., Uchida, T., Seth, A., Delp, S.L., 2013. Flexing computational muscle:
|
2413
|
+
| modeling and simulation of musculotendon dynamics. J. Biomech. Eng. 135,
|
2414
|
+
| 021005. doi:10.1115/1.4023390
|
2415
|
+
| Modenese, L., Phillips, a T.M., Bull, a M.J., 2011. An open source lower limb model:
|
2416
|
+
| Hip joint validation. J. Biomech. 44, 2185–93. doi:10.1016/j.jbiomech.2011.06.019
|
2417
|
+
| Mündermann, A., Asay, J.L., Mündermann, L., Andriacchi, T.P., 2008a. Implications of
|
2418
|
+
| increased medio-lateral trunk sway for ambulatory mechanics. J. Biomech. 41, 165–
|
2419
|
+
| 70. doi:10.1016/j.jbiomech.2007.07.001
|
2420
|
+
| Mündermann, A., Dyrby, C.O., D’Lima, D.D., Colwell, C.W., Andriacchi, T.P., 2008b.
|
2421
|
+
| In vivo knee loading characteristics during activities of daily living as measured by
|
2422
|
+
| an instrumented total knee replacement. J. Orthop. Res. 26, 1167–72.
|
2423
|
+
| doi:10.1002/jor.20655
|
2424
|
+
| Munn, J., Beard, D.J., Refshauge, K.M., Lee, R.Y.W., 2003. Eccentric muscle strength in
|
2425
|
+
| functional ankle instability. Med. Sci. Sports Exerc. 35, 245–250.
|
2426
|
+
| doi:10.1249/01.MSS.0000048724.74659.9F
|
2427
|
+
| Munn, J., Sullivan, S.J., Schneiders, A.G., 2010. Evidence of sensorimotor deficits in
|
2428
|
+
| functional ankle instability: A systematic review with meta-analysis. J. Sci. Med.
|
2429
|
+
| Sport 13, 2–12. doi:10.1016/j.jsams.2009.03.004
|
2430
|
+
| Opheim, A., Jahnsen, R., Olsson, E., Stanghelle, J.K., 2009. Walking function, pain, and
|
2431
|
+
| fatigue in adults with cerebral palsy: a 7-year follow-up study. Dev. Med. Child
|
2432
|
+
| Neurol. 51, 381–388. doi:10.1111/j.1469-8749.2008.03250.x
|
2433
|
+
| Osborne, M.D., Chou, L.S., Laskowski, E.R., Smith, J., Kaufman, K.R., 2001. The effect
|
2434
|
+
blank |
|
2435
|
+
meta | 69
|
2436
|
+
ref | of ankle disk training on muscle reaction time in subjects with a history of ankle
|
2437
|
+
| sprain. Am. J. Sports Med. 29, 627–632.
|
2438
|
+
| Pandy, M.G., Lin, Y.-C., Kim, H.J., 2010. Muscle coordination of mediolateral balance
|
2439
|
+
| in normal walking. J. Biomech. 43, 2055–64. doi:10.1016/j.jbiomech.2010.04.010
|
2440
|
+
| Perry, J., Antonelli, D., Ford, W., 1975. Analysis of knee-joint forces during flexed-knee
|
2441
|
+
| stance. J. Bone Joint Surg. Am. 57, 961–967.
|
2442
|
+
| Reinbolt, J. a, Fox, M.D., Arnold, A.S., Ounpuu, S., Delp, S.L., 2008. Importance of
|
2443
|
+
| preswing rectus femoris activity in stiff-knee gait. J. Biomech. 41, 2362–9.
|
2444
|
+
| doi:10.1016/j.jbiomech.2008.05.030
|
2445
|
+
| Rose, J., Gamble, J.G., Medeiros, J., Burgos, A., Haskell, W.L., 1989. Energy cost of
|
2446
|
+
| walking in normal children and in those with cerebral palsy: Comparison of Heart
|
2447
|
+
| Rate and Oxygen Uptake. J. Pediatr. Orthop. 9, 276–279.
|
2448
|
+
| Sasaki, K., Neptune, R.R., 2010. Individual muscle contributions to the axial knee joint
|
2449
|
+
| contact force during normal walking. J. Biomech. 43, 2780–4.
|
2450
|
+
| doi:10.1016/j.jbiomech.2010.06.011
|
2451
|
+
| Schnitzer, T.J., Popovich, J.M., Andersson, G.B., Andriacchi, T.P., 1993. Effect of
|
2452
|
+
| piroxicam on gait in patients with osteoarthritis of the knee. Arthritis Rheum. 36,
|
2453
|
+
| 1207–13.
|
2454
|
+
| Sharma, L., Hurwitz, D.E., Thonar, E.J., Sum, J. a, Lenz, M.E., Dunlop, D.D., Schnitzer,
|
2455
|
+
| T.J., Kirwan-Mellis, G., Andriacchi, T.P., 1998. Knee adduction moment, serum
|
2456
|
+
| hyaluronan level, and disease severity in medial tibiofemoral osteoarthritis. Arthritis
|
2457
|
+
| Rheum. 41, 1233–40. doi:10.1002/1529-0131(199807)41:7<1233::AID-
|
2458
|
+
| ART14>3.0.CO;2-L
|
2459
|
+
| Shelburne, K.B., Torry, M.R., Pandy, M.G., 2006. Contributions of muscles, ligaments,
|
2460
|
+
| and the ground-reaction force to tibiofemoral joint loading during normal gait. J.
|
2461
|
+
| Orthop. Res. 24, 1983–90. doi:10.1002/jor.20255
|
2462
|
+
| Shelburne, K.B., Torry, M.R., Pandy, M.G., 2005. Muscle, Ligament, and Joint-Contact
|
2463
|
+
| Forces at the Knee during Walking. Med. Sci. Sport. Exerc. 37, 1948–1956.
|
2464
|
+
| doi:10.1249/01.mss.0000180404.86078.ff
|
2465
|
+
| Sherman, M.A., Seth, A., Delp, S.L., 2011. Simbody: multibody dynamics for biomedical
|
2466
|
+
| research. Procedia IUTAM 2, 241–261. doi:10.1016/j.piutam.2011.04.023
|
2467
|
+
| Sheth, P., Bing Yu, Laskowski, E.R., An, K.-N., 1997. Ankle Disk Training Influences
|
2468
|
+
| Reaction Times of Selected Muscles in a Simulated Ankle Sprain. Am. J. Sports
|
2469
|
+
| Med. 25, 538–543. doi:10.1177/036354659702500418
|
2470
|
+
meta | 70
|
2471
|
+
ref | Shull, P.B., Lurie, K.L., Cutkosky, M.R., Besier, T.F., 2011. Training multi-parameter
|
2472
|
+
| gaits to reduce the knee adduction moment with data-driven models and haptic
|
2473
|
+
| feedback. J. Biomech. 44, 1605–9. doi:10.1016/j.jbiomech.2011.03.016
|
2474
|
+
| Shull, P.B., Silder, A., Shultz, R., Dragoo, J.L., Besier, T.F., Delp, S.L., Cutkosky, M.R.,
|
2475
|
+
| 2013. Six-Week Gait Retraining Program Reduces Knee Adduction Moment,
|
2476
|
+
| Reduces Pain, and Improves Function for Individuals with Medial Compartment
|
2477
|
+
| Knee Osteoarthritis. J. Orthop. Res. 1–6. doi:10.1002/jor.22340
|
2478
|
+
| Shultz, R., Silder, A., Malone, M., Braun, H.J., Dragoo, J.L., 2015. Unstable Surface
|
2479
|
+
| Improves Quadriceps:Hamstring Co-contraction for Anterior Cruciate Ligament
|
2480
|
+
| Injury Prevention Strategies. Sport. Heal. A Multidiscip. Approach 7, 166–171.
|
2481
|
+
| doi:10.1177/1941738114565088
|
2482
|
+
| Siegler, S., Chen, J., Schneck, C.D., 1990. The effect of damage to the lateral collateral
|
2483
|
+
| ligaments on the mechanical characteristics of the ankle joint--an in-vitro study. J.
|
2484
|
+
| Biomech. Eng. 112, 129–137.
|
2485
|
+
| Siegler, S., Chen, J., Schneck, C.D., 1988. The three-dimensional kinematics and
|
2486
|
+
| flexibility characteristics of the human ankle and subtalar joints—Part I: Kinematics.
|
2487
|
+
| J. Biomech. Eng. 110, 364–373.
|
2488
|
+
| Sritharan, P., Lin, Y.-C., Pandy, M.G., 2012. Muscles that do not cross the knee
|
2489
|
+
| contribute to the knee adduction moment and tibiofemoral compartment loading
|
2490
|
+
| during gait. J. Orthop. Res. 30, 1586–95. doi:10.1002/jor.22082
|
2491
|
+
| Steele, K.M., DeMers, M.S., Schwartz, M.H., Delp, S.L., 2012. Compressive
|
2492
|
+
| tibiofemoral force during crouch gait. Gait Posture 35, 556–60.
|
2493
|
+
| doi:10.1016/j.gaitpost.2011.11.023
|
2494
|
+
| Steele, K.M., Rozumalski, A., Schwartz, M.H., 2015. Muscle synergies and complexity
|
2495
|
+
| of neuromuscular control during gait in cerebral palsy. Dev. Med. Child Neurol.
|
2496
|
+
| n/a–n/a. doi:10.1111/dmcn.12826
|
2497
|
+
| Steele, K.M., Seth, A., Hicks, J.L., Schwartz, M.S., Delp, S.L., 2010. Muscle
|
2498
|
+
| contributions to support and progression during single-limb stance in crouch gait. J.
|
2499
|
+
| Biomech. 43, 2099–105. doi:10.1016/j.jbiomech.2010.04.003
|
2500
|
+
| Surve, I., Schwellnus, M.P., Noakes, T., Lombard, C., 1994. A Fivefold Reduction in the
|
2501
|
+
| Incidence of Recurrent Ankle Sprains in Soccer Players Using the Sport-Stirrup
|
2502
|
+
| Orthosis. Am. J. Sports Med. 22, 601–606. doi:10.1177/036354659402200506
|
2503
|
+
| Thelen, D.G., 2003. Adjustment of muscle mechanics model parameters to simulate
|
2504
|
+
| dynamic contractions in older adults., Journal of biomechanical engineering.
|
2505
|
+
| doi:10.1115/1.1531112
|
2506
|
+
meta | 71
|
2507
|
+
ref | Thelen, D.G., Anderson, F.C., Delp, S.L., 2003. Generating dynamic simulations of
|
2508
|
+
| movement using computed muscle control. J. Biomech. 36, 321–328.
|
2509
|
+
| doi:10.1016/S0021-9290(02)00432-3
|
2510
|
+
| Vaes, P., Duquet, W., Van Gheluwe, B., 2002. Peroneal Reaction Times and Eversion
|
2511
|
+
| Motor Response in Healthy and Unstable Ankles. J. Athl. Train. 37, 475–480.
|
2512
|
+
| van der Wees, P.J., Lenssen, A.F., Hendriks, E.J.M., Stomp, D.J., Dekker, J., de Bie, R. a,
|
2513
|
+
| 2006. Effectiveness of exercise therapy and manual mobilisation in ankle sprain and
|
2514
|
+
| functional instability: a systematic review. Aust. J. Physiother. 52, 27–37.
|
2515
|
+
| doi:10.1016/S0004-9514(06)70059-9
|
2516
|
+
| Verhagen, E., van der Beek, A., Twisk, J., Bouter, L., Bahr, R., van Mechelen, W., 2004.
|
2517
|
+
| The effect of a proprioceptive balance board training program for the prevention of
|
2518
|
+
| ankle sprains: a prospective controlled trial. Am. J. Sports Med. 32, 1385–1393.
|
2519
|
+
| doi:10.1177/0363546503262177
|
2520
|
+
| Verhagen, E.A.L.M., Bay, K., 2010. Optimising ankle sprain prevention: a critical review
|
2521
|
+
| and practical appraisal of the literature. Br. J. Sports Med. 44, 1082–88.
|
2522
|
+
| doi:10.1136/bjsm.2010.076406
|
2523
|
+
| Wagner, D.W., Stepanyan, V., Shippen, J.M., Demers, M.S., Gibbons, R.S., Andrews,
|
2524
|
+
| B.J., Creasey, G.H., Beaupre, G.S., 2013. Consistency among musculoskeletal
|
2525
|
+
| models: caveat utilitor. Ann. Biomed. Eng. 41, 1787–99. doi:10.1007/s10439-013-
|
2526
|
+
| 0843-1
|
2527
|
+
| Walker, P.S., Rovick, J.S., Robertson, D.D., 1988. The effects of knee brace hinge design
|
2528
|
+
| and placement on joint mechanics. J. Biomech. 21, 965–74.
|
2529
|
+
| Walter, J.P., Kinney, A.L., Banks, S.A., D’Lima, D.D., Besier, T.F., Lloyd, D.G., Fregly,
|
2530
|
+
| B.J., 2014. Muscle Synergies May Improve Optimization Prediction of Knee
|
2531
|
+
| Contact Forces During Walking. J. Biomech. Eng. 136, 021031.
|
2532
|
+
| doi:10.1115/1.4026428
|
2533
|
+
| Wang, J.M., Hamner, S.R., Delp, S.L., Koltun, V., 2012. Optimizing locomotion
|
2534
|
+
| controllers using biologically-based actuators and objectives. ACM Trans. Graph.
|
2535
|
+
| 31, 1–11. doi:10.1145/2185520.2335376
|
2536
|
+
| Ward, S.R., Eng, C.M., Smallwood, L.H., Lieber, R.L., 2009. Are Current Measurements
|
2537
|
+
| of Lower Extremity Muscle Architecture Accurate? Clin. Orthop. Relat. Res. 467,
|
2538
|
+
| 1074–1082. doi:10.1007/s11999-008-0594-8
|
2539
|
+
| Waterman, B.R., Belmont, P.J., Cameron, K.L., Deberardino, T.M., Owens, B.D., 2010.
|
2540
|
+
| Epidemiology of ankle sprain at the United States Military Academy. Am. J. Sports
|
2541
|
+
blank |
|
2542
|
+
meta | 72
|
2543
|
+
ref | Med. 38, 797–803. doi:10.1177/0363546509350757
|
2544
|
+
| Waters, R.L., Mulroy, S., 1999. The energy expenditure of normal and pathologic gait.
|
2545
|
+
| Gait Posture 9, 207–231. doi:10.1016/S0966-6362(99)00009-0
|
2546
|
+
| Wei, F., Braman, J.E., Weaver, B.T., Haut, R.C., 2011a. Determination of dynamic ankle
|
2547
|
+
| ligament strains from a computational model driven by motion analysis based
|
2548
|
+
| kinematic data. J. Biomech. 44, 2636–41. doi:10.1016/j.jbiomech.2011.08.010
|
2549
|
+
| Wei, F., Hunley, S.C., Powell, J.W., Haut, R.C., 2011b. Development and validation of a
|
2550
|
+
| computational model to study the effect of foot constraint on ankle injury due to
|
2551
|
+
| external rotation. Ann. Biomed. Eng. 39, 756–65. doi:10.1007/s10439-010-0234-9
|
2552
|
+
| Winby, C.R., Lloyd, D.G., Besier, T.F., Kirk, T.B., 2009. Muscle and external load
|
2553
|
+
| contribution to knee joint contact loads during normal gait. J. Biomech. 42, 2294–
|
2554
|
+
| 300. doi:10.1016/j.jbiomech.2009.06.019
|
2555
|
+
| Wong, M., Carter, D.., 2003. Articular cartilage functional histomorphology and
|
2556
|
+
| mechanobiology: a research perspective. Bone 33, 1–13. doi:10.1016/S8756-
|
2557
|
+
| 3282(03)00083-8
|
2558
|
+
| Wright, I.C., Neptune, R.R., Van Den Bogert, A.J., Nigg, B.M., 2000a. The influence of
|
2559
|
+
| foot positioning on ankle sprains. J. Biomech. 33, 513–519. doi:10.1016/S0021-
|
2560
|
+
| 9290(99)00218-3
|
2561
|
+
| Wright, I.C., Neptune, R.R., van den Bogert, A.J., Nigg, B.M., 2000b. The effects of
|
2562
|
+
| ankle compliance and flexibility on ankle sprains. Med. Sci. Sports Exerc. 32, 260–
|
2563
|
+
| 265. doi:10.1097/00005768-200002000-00002
|
2564
|
+
| Yamaguchi, G.T., Zajac, F.E., 1989. A planar model of the knee joint to characterize the
|
2565
|
+
| knee extensor mechanism. J. Biomech. 22, 1–10.
|
2566
|
+
| Young, S.J., van Doornik, J., Sanger, T.D., 2011. Visual feedback reduces co-contraction
|
2567
|
+
| in children with dystonia. J. Child Neurol. 26, 37–43.
|
2568
|
+
| doi:10.1177/0883073810371828
|
2569
|
+
| Zhao, D., Banks, S.A., Mitchell, K.H., Lima, D.D.D., Jr, C.W.C., Fregly, B.J., 2007.
|
2570
|
+
| Correlation between the Knee Adduction Torque and Medial Contact Force for a
|
2571
|
+
| Variety of Gait Patterns. J. Orthop. Res. 789–797. doi:10.1002/jor
|
2572
|
+
blank |
|
2573
|
+
|
|
2574
|
+
|
|
2575
|
+
|
|
2576
|
+
meta | 73
|
2577
|
+
title | Appendix A: Open source resources from this dissertation
|
2578
|
+
text | Resource Description Studies Content Information
|
2579
|
+
blank |
|
2580
|
+
text | Joint Reaction Calculates internal joint reaction loads Chapters Software library
|
2581
|
+
| Analysis transferred between any two 2 and 3 Documentation
|
2582
|
+
| contacting bodies in OpenSim. Joint Examples
|
2583
|
+
| reaction loads represent the resultant Test cases
|
2584
|
+
| of all forces and moments crossing the
|
2585
|
+
| joint, including muscles.
|
2586
|
+
blank |
|
2587
|
+
text | Distributed with OpenSim at http://opensim.stanford.edu/
|
2588
|
+
blank |
|
2589
|
+
text | Joint Load A free and open source plugin to Chapters Source code
|
2590
|
+
| Optimization minimize muscle activity and joint 2 and 3 Documentation
|
2591
|
+
| reaction loads simultaneously in Examples
|
2592
|
+
| OpenSim. Includes example models Test cases
|
2593
|
+
| and analyses for learning researchers.
|
2594
|
+
blank |
|
2595
|
+
text | Hosted as a SimTK project: https://simtk.org/home/jointloadopt
|
2596
|
+
blank |
|
2597
|
+
text | Stretch and A free and open source plugin to add Chapter 4 Source code
|
2598
|
+
| Reflex muscle stretch feedback controllers Documentation
|
2599
|
+
| Controllers and delayed stretch feedback Examples
|
2600
|
+
| controllers to OpenSim. Includes
|
2601
|
+
| example models and analyses for
|
2602
|
+
| learning researchers.
|
2603
|
+
blank |
|
2604
|
+
text | Hosted on GitHub: https://github.com/msdemers/opensim-reflex-controllers
|
2605
|
+
blank |
|
2606
|
+
text | Simulations of A library of human landing models Chapter 4 Documentation
|
2607
|
+
| landing injuries and simulations of ankle injuries. Data
|
2608
|
+
| Includes a generic human model with Models
|
2609
|
+
| foot-floor contact and stretch-based Simulation results
|
2610
|
+
| feedback controllers, motion capture
|
2611
|
+
| data and scaled models of measured
|
2612
|
+
| human landings, and a battery of
|
2613
|
+
| landing simulations under different
|
2614
|
+
| muscle coordination strategies.
|
2615
|
+
blank |
|
2616
|
+
text | Hosted as a SimTK project: https://simtk.org/home/ankle-sprains
|
2617
|
+
blank |
|
2618
|
+
|
|
2619
|
+
|
|
2620
|
+
|
|
2621
|
+
meta | 74
|
2622
|
+
title | Appendix B: Calculating joint contact forces in OpenSim
|
2623
|
+
text | In order to calculate tibiofemoral contact forces during walking (Chapters 2 and
|
2624
|
+
| 3), we developed a general method to calculate joint loads transferred between any two
|
2625
|
+
| contacting bodies in OpenSim. This method, called the Joint Reaction Analysis,
|
2626
|
+
| computes the resultant forces and moments that represent the internal loads carried by the
|
2627
|
+
| joint structure. For example, Chapters 2 and 3 report joint forces representing the sum of
|
2628
|
+
| contact forces between the tibial and femoral cartilage and all ligament forces crossing
|
2629
|
+
| the tibiofemoral joint
|
2630
|
+
blank |
|
2631
|
+
|
|
2632
|
+
|
|
2633
|
+
text | (A) (B) %"
|
2634
|
+
blank |
|
2635
|
+
text | Si-1 (⃑0123/)
|
2636
|
+
blank |
|
2637
|
+
text | !" #⃑"
|
2638
|
+
| !" g
|
2639
|
+
blank |
|
2640
|
+
|
|
2641
|
+
text | Si
|
2642
|
+
blank |
|
2643
|
+
text | Si+1
|
2644
|
+
blank |
|
2645
|
+
|
|
2646
|
+
text | (⃑)*+),-./ %"&'
|
2647
|
+
blank |
|
2648
|
+
|
|
2649
|
+
text | (A) Example kinematic chain of body segments that can be represented in OpenSim. The joint between body
|
2650
|
+
| segments Si and Si-1 is described by splines that represent an elliptical surface and thus need not be an
|
2651
|
+
| idealized pin joint. (B) Single-body system used to calculate ]& , the reaction load at the proximal joint of Si.
|
2652
|
+
| The calculation is in terms of Si’s inertial forces, muscle forces (black arrows), other external forces, and
|
2653
|
+
| the previously calculated reaction force at the distal joint.
|
2654
|
+
blank |
|
2655
|
+
|
|
2656
|
+
|
|
2657
|
+
|
|
2658
|
+
meta | 75
|
2659
|
+
text | OpenSim uses multibody dynamics and simulation methods from Simbody
|
2660
|
+
| (https://simtk.org/home/simbody), a free and open source library for representing rigid
|
2661
|
+
| body dynamics. Simbody constructs models as tree structures in which rigid bodies
|
2662
|
+
| connect in kinematic chains that can branch with joints or reconnect with constraints. The
|
2663
|
+
| equations of motion of the system are represented in terms of the generalized coordinates
|
2664
|
+
| and generalized forces of the model. Solving these generalized equations of motion does
|
2665
|
+
| not require calculating internal forces, such as the joint contact forces. Therefore, the
|
2666
|
+
| Joint Reaction Analysis in OpenSim incorporates a post-processing procedure that uses
|
2667
|
+
| the muscle forces and joint kinematics to calculate resultant joint loads.
|
2668
|
+
| Figure B.1.A shows an example model consisting of segments linked in a
|
2669
|
+
| kinematic chain. Joints between these segments do not need to have classical engineering
|
2670
|
+
| definitions, such as a revolute joint or spherical joint, but instead can have more
|
2671
|
+
| physiologic descriptions. For example, the motion between body segments q& and q&r1
|
2672
|
+
| may be described by splines that couple the rotations and translations of the knee. For
|
2673
|
+
| each time point in an analysis, a recursive operation begins with the most distal bodies
|
2674
|
+
| and progresses proximally to calculate the joint loads. The force at each joint is
|
2675
|
+
| calculated by performing a force balance on the body distal to the joint.
|
2676
|
+
| A single step in this recursive procedure is analogous to constructing a free body
|
2677
|
+
| diagram for each rigid body and resolving the point load that must be applied to the joint
|
2678
|
+
| to balance the forces and motions of the body. To calculate ]& , the resultant forces and
|
2679
|
+
| moments at joint i, the body distal to joint i, q& , is treated as an independent body with
|
2680
|
+
| known kinematics in a global reference frame. In the example system (Figure B.1.B), '&
|
2681
|
+
| represents the six dimensional vector of known angular and linear accelerations of q& .
|
2682
|
+
| Since these accelerations are reconstructed from Simbody’s generalized equations of
|
2683
|
+
| motion, they capture any kinematic complexity in the joint description. 3/A>/B)C. and
|
2684
|
+
| 3a+,-./ represent the previously calculated forces and moments applied by external loads
|
2685
|
+
| and musculotendon actuators respectively. ]&m1 $represents the joint reaction load applied
|
2686
|
+
| at the distal joint. ]&m1 $is known since it was calculated in the previous recursive step.
|
2687
|
+
| Using the known generalized coordinates (F) and generalized speeds (s) of the body
|
2688
|
+
blank |
|
2689
|
+
|
|
2690
|
+
|
|
2691
|
+
meta | 76
|
2692
|
+
text | segment and all other applied forces, the desired resultant force is calculated as the vector
|
2693
|
+
| sum:
|
2694
|
+
| t=
|
2695
|
+
| ]= = $ = E& F '& + 3-=),>BC&)> − ( 3/A>/B)C. + 3a+,-./, + ]&m1 ) Equation B.1
|
2696
|
+
| 3=
|
2697
|
+
| The sum requires that all terms be described in a common reference frame located
|
2698
|
+
| at the body origin, thus ]= is the joint force and moment expressed at the body origin.
|
2699
|
+
| E& F $is the six-by-six mass matrix for body segment i. 3-=),>BC&)> $represents constraint
|
2700
|
+
| forces applied to the body, if applicable. Since the all terms other than ]= result from
|
2701
|
+
| generalized coordinates and forces previously solved by Simbody, we can calculate the
|
2702
|
+
| moment and force at the body origin, t= and 3= , that are required to balance the equation.
|
2703
|
+
| Finally, ]= expressed at the body origin is shifted to an equivalent moment and force, t&
|
2704
|
+
| and 3& , at the joint center:
|
2705
|
+
| t& t= v×3=
|
2706
|
+
| ]& = $ ∶= − Equation B.2
|
2707
|
+
| 3& 3= 0
|
2708
|
+
| where v is the vector pointing from the body origin to the joint location.
|
2709
|
+
| The Joint Reaction analysis algorithm is distributed as part of OpenSim versions
|
2710
|
+
| 1.9 and later. The value of this algorithm is that it leverages the generalized coordinate
|
2711
|
+
| representation and rich set of joint definitions provided by Simbody and OpenSim and
|
2712
|
+
| provides a free tool for researchers to use to calculate joint loads for any musculoskeletal
|
2713
|
+
| structure.
|
2714
|
+
blank |
|
2715
|
+
|
|
2716
|
+
|
|
2717
|
+
|
|
2718
|
+
meta | 77
|
2719
|
+
blank |
|