anystyle 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (82) hide show
  1. checksums.yaml +7 -0
  2. data/HISTORY.md +78 -0
  3. data/LICENSE +27 -0
  4. data/README.md +103 -0
  5. data/lib/anystyle.rb +71 -0
  6. data/lib/anystyle/dictionary.rb +132 -0
  7. data/lib/anystyle/dictionary/gdbm.rb +52 -0
  8. data/lib/anystyle/dictionary/lmdb.rb +67 -0
  9. data/lib/anystyle/dictionary/marshal.rb +27 -0
  10. data/lib/anystyle/dictionary/redis.rb +55 -0
  11. data/lib/anystyle/document.rb +264 -0
  12. data/lib/anystyle/errors.rb +14 -0
  13. data/lib/anystyle/feature.rb +27 -0
  14. data/lib/anystyle/feature/affix.rb +43 -0
  15. data/lib/anystyle/feature/brackets.rb +32 -0
  16. data/lib/anystyle/feature/canonical.rb +13 -0
  17. data/lib/anystyle/feature/caps.rb +20 -0
  18. data/lib/anystyle/feature/category.rb +70 -0
  19. data/lib/anystyle/feature/dictionary.rb +16 -0
  20. data/lib/anystyle/feature/indent.rb +16 -0
  21. data/lib/anystyle/feature/keyword.rb +52 -0
  22. data/lib/anystyle/feature/line.rb +39 -0
  23. data/lib/anystyle/feature/locator.rb +18 -0
  24. data/lib/anystyle/feature/number.rb +39 -0
  25. data/lib/anystyle/feature/position.rb +28 -0
  26. data/lib/anystyle/feature/punctuation.rb +22 -0
  27. data/lib/anystyle/feature/quotes.rb +20 -0
  28. data/lib/anystyle/feature/ref.rb +21 -0
  29. data/lib/anystyle/feature/terminal.rb +19 -0
  30. data/lib/anystyle/feature/words.rb +74 -0
  31. data/lib/anystyle/finder.rb +94 -0
  32. data/lib/anystyle/format/bibtex.rb +63 -0
  33. data/lib/anystyle/format/csl.rb +28 -0
  34. data/lib/anystyle/normalizer.rb +65 -0
  35. data/lib/anystyle/normalizer/brackets.rb +13 -0
  36. data/lib/anystyle/normalizer/container.rb +13 -0
  37. data/lib/anystyle/normalizer/date.rb +109 -0
  38. data/lib/anystyle/normalizer/edition.rb +16 -0
  39. data/lib/anystyle/normalizer/journal.rb +14 -0
  40. data/lib/anystyle/normalizer/locale.rb +30 -0
  41. data/lib/anystyle/normalizer/location.rb +24 -0
  42. data/lib/anystyle/normalizer/locator.rb +22 -0
  43. data/lib/anystyle/normalizer/names.rb +88 -0
  44. data/lib/anystyle/normalizer/page.rb +29 -0
  45. data/lib/anystyle/normalizer/publisher.rb +18 -0
  46. data/lib/anystyle/normalizer/pubmed.rb +18 -0
  47. data/lib/anystyle/normalizer/punctuation.rb +23 -0
  48. data/lib/anystyle/normalizer/quotes.rb +14 -0
  49. data/lib/anystyle/normalizer/type.rb +54 -0
  50. data/lib/anystyle/normalizer/volume.rb +26 -0
  51. data/lib/anystyle/parser.rb +199 -0
  52. data/lib/anystyle/support.rb +4 -0
  53. data/lib/anystyle/support/finder.mod +3234 -0
  54. data/lib/anystyle/support/finder.txt +75 -0
  55. data/lib/anystyle/support/parser.mod +15025 -0
  56. data/lib/anystyle/support/parser.txt +75 -0
  57. data/lib/anystyle/utils.rb +70 -0
  58. data/lib/anystyle/version.rb +3 -0
  59. data/res/finder/bb132pr2055.ttx +6803 -0
  60. data/res/finder/bb550sh8053.ttx +18660 -0
  61. data/res/finder/bb599nz4341.ttx +2957 -0
  62. data/res/finder/bb725rt6501.ttx +15276 -0
  63. data/res/finder/bc605xz1554.ttx +18815 -0
  64. data/res/finder/bd040gx5718.ttx +4271 -0
  65. data/res/finder/bd413nt2715.ttx +4956 -0
  66. data/res/finder/bd466fq0394.ttx +6100 -0
  67. data/res/finder/bf668vw2021.ttx +3578 -0
  68. data/res/finder/bg495cx0468.ttx +7267 -0
  69. data/res/finder/bg599vt3743.ttx +6752 -0
  70. data/res/finder/bg608dx2253.ttx +4094 -0
  71. data/res/finder/bh410qk3771.ttx +8785 -0
  72. data/res/finder/bh989ww6442.ttx +17204 -0
  73. data/res/finder/bj581pc8202.ttx +2719 -0
  74. data/res/parser/bad.xml +5199 -0
  75. data/res/parser/core.xml +7924 -0
  76. data/res/parser/gold.xml +2707 -0
  77. data/res/parser/good.xml +34281 -0
  78. data/res/parser/stanford-books.xml +2280 -0
  79. data/res/parser/stanford-diss.xml +726 -0
  80. data/res/parser/stanford-theses.xml +4684 -0
  81. data/res/parser/ugly.xml +33246 -0
  82. metadata +195 -0
@@ -0,0 +1,4271 @@
1
+ title | CULTIVATING THE GROWTH OF COMPLEX ENGINEERED SYSTEMS
2
+ | USING
3
+ | EMERGENT BEHAVIOURS OF ENGINEERING PROCESSES
4
+ blank |
5
+ |
6
+ |
7
+ |
8
+ text | A DISSERTATION
9
+ | SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING
10
+ | AND THE COMMITTEE ON GRADUATE STUDIES
11
+ | OF STANFORD UNIVERSITY
12
+ | IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
13
+ | FOR THE DEGREE OF
14
+ | DOCTOR OF PHILOSOPHY
15
+ | IN
16
+ | MECHANICAL ENGINEERING
17
+ blank |
18
+ |
19
+ |
20
+ |
21
+ text | Eric Alan Byler
22
+ | March 2014
23
+ | © 2014 by Eric Alan Byler. All Rights Reserved.
24
+ | Re-distributed by Stanford University under license with the author.
25
+ blank |
26
+ |
27
+ |
28
+ text | This work is licensed under a Creative Commons Attribution-
29
+ | Noncommercial 3.0 United States License.
30
+ | http://creativecommons.org/licenses/by-nc/3.0/us/
31
+ blank |
32
+ |
33
+ |
34
+ |
35
+ text | This dissertation is online at: http://purl.stanford.edu/bd040gx5718
36
+ blank |
37
+ |
38
+ |
39
+ |
40
+ meta | ii
41
+ text | I certify that I have read this dissertation and that, in my opinion, it is fully adequate
42
+ | in scope and quality as a dissertation for the degree of Doctor of Philosophy.
43
+ blank |
44
+ text | Larry Leifer, Primary Adviser
45
+ blank |
46
+ |
47
+ |
48
+ text | I certify that I have read this dissertation and that, in my opinion, it is fully adequate
49
+ | in scope and quality as a dissertation for the degree of Doctor of Philosophy.
50
+ blank |
51
+ text | Mark Cutkosky
52
+ blank |
53
+ |
54
+ |
55
+ text | I certify that I have read this dissertation and that, in my opinion, it is fully adequate
56
+ | in scope and quality as a dissertation for the degree of Doctor of Philosophy.
57
+ blank |
58
+ text | Friedrich Prinz
59
+ blank |
60
+ |
61
+ |
62
+ |
63
+ text | Approved for the Stanford University Committee on Graduate Studies.
64
+ | Patricia J. Gumport, Vice Provost for Graduate Education
65
+ blank |
66
+ |
67
+ |
68
+ |
69
+ text | This signature page was generated electronically upon submission of this dissertation in
70
+ | electronic format. An original signed hard copy of the signature page is on file in
71
+ | University Archives.
72
+ blank |
73
+ |
74
+ |
75
+ |
76
+ meta | iii
77
+ title | ABSTRACT
78
+ blank |
79
+ |
80
+ text | Design, construction, and operation of very large, complex aerospace systems
81
+ | (mega-systems) is challenging, with potential cost and schedule over-runs and with
82
+ | awkward upgrade issues. These challenges are amplified when the engineering
83
+ | organization is producing multiple mega-systems in parallel. This dissertation applies
84
+ | information theory, genetic computing, and chaos theory to product development within a
85
+ | large distributed organization. The goal is design environments that efficiently produce
86
+ | mega-systems that are better able to evolve within the changing world context.
87
+ | Complex systems are composed of dynamically interacting pieces that exhibit
88
+ | emergent behaviours as a result of their growth and/or the passage of time. Modern large
89
+ | engineered systems (~10,000+ man-years of design time), such as the American Air
90
+ | Traffic Control System and International Space Station, exhibit complex behaviour over
91
+ | their life, including design, installation, operation, and growth. The desired capability of
92
+ | the systems is so complex that it is difficult and time consuming to consistently specify
93
+ | detail for what is desired. The installation and operation of the complex systems changes
94
+ | the environment in which they are installed, creating a continuously changing context for
95
+ | follow-on and adjunct system requirements. Finally, maintenance and growth
96
+ | characteristics for complex systems, including new adjunct systems, exhibit various
97
+ | levels of brittleness.
98
+ | This dissertation develops a new type of model to analyze the design and
99
+ | construction of mega-systems, based on combining an organization network-model with
100
+ | an information-transfer link-model. Analysis of previous efforts within the Design
101
+ | Research and the System Engineering communities shows three major shortcomings:
102
+ | they assume efficient network connectivity, they assume static networks, and they
103
+ | assume loss-less data transfer. A new model type is developed and exercised to examine
104
+ | methods and techniques to improve mega-system design and construction, and then
105
+ | validated in a three-year experiment implementing an enterprise product delivery process.
106
+ | Model development is based on data from US aerospace companies and programs
107
+ | spanning the last 30 years.
108
+ blank |
109
+ |
110
+ |
111
+ meta | iv
112
+ text | The design of complex systems is not a linear, mechanistic process, but rather a
113
+ | multi-dimensional, growth process that can be cultivated over and above the analytical
114
+ | disciplines of design and optimization. The duality of a complex system designing a
115
+ | complex system reduces determinism. This dissertation identifies parameters of
116
+ | information exchange activities that can be adjusted to produce an efficient, successful
117
+ | outcome, albeit a non-deterministic outcome. This adjustment or shaping is similar to
118
+ | guided genetic evolution of organizations that produce mega-systems as the product of
119
+ | their computation, but within a restricted context of specified, but evolving, goals and
120
+ | constraints.
121
+ | This new analytical framework shows how to match information flow
122
+ | characteristics to emergent engineering activities to improve the efficiency and quality of
123
+ | the design process, and to improve the efficiency and coupling of research and
124
+ | development activities within the larger organization. Information flow must not be
125
+ | confused with data transfer. Information flow parameters include information resolution,
126
+ | variability, time scale, compression, link bandwidth, connectivity maps, and more. For
127
+ | instance, simply avoiding information aliasing in chaotic channels by matching the flow
128
+ | to the information aging rate can improve design efficiency 80% and product delivery
129
+ | efficiency 50% in the overall steady state.
130
+ | The implication of these results is a radical improvement in procurement of large
131
+ | systems. However, inherent linkages to government organizations that typically fund
132
+ | these large scale projects require a dual adaptation approach similar to meta-norms in
133
+ | game theory. Otherwise, the emergent properties of efficient engineering management
134
+ | will cause a reversion to a lower level of capability per status quo. Also, in order to
135
+ | support the greater output rate, mega-system specifications will become somewhat non-
136
+ | deterministic and delivery will rely inherently on product engineering, requiring a change
137
+ | in perspective of program management. This is beneficial evolution of the organization
138
+ | to improve delivery, and the total value delivered to society will accrue at higher
139
+ | compound growth rates.
140
+ blank |
141
+ |
142
+ |
143
+ |
144
+ meta | v
145
+ title | ACKNOWLEDGEMENTS
146
+ blank |
147
+ |
148
+ |
149
+ text | I would like to thank Professor Larry Leifer for his support of this effort as
150
+ | it evolved over time, and for his enthusiasm and generosity sharing the breadth of
151
+ | the design experience.
152
+ blank |
153
+ |
154
+ text | I would like to thank Tess for her commitment, support, and enjoyment of
155
+ | the roving, rambling path to get here and beyond.
156
+ blank |
157
+ |
158
+ |
159
+ |
160
+ meta | vi
161
+ title | TABLE OF CONTENTS
162
+ text | 1 Introduction ................................................................................................................. 1
163
+ | 1.1 Problem ................................................................................................................ 1
164
+ | 1.2 Mega Design Communities and Design Organization Model ............................. 3
165
+ | 1.3 Information Transfer and Link Model ................................................................. 4
166
+ | 1.4 Results .................................................................................................................. 9
167
+ | 1.5 Conclusions ........................................................................................................ 13
168
+ | 1.5.1 Design of Individual Mega-Systems ........................................................... 13
169
+ | 1.5.2 Company and Design-Organization Implications ....................................... 14
170
+ | 1.5.3 Government and Societal Implications ....................................................... 15
171
+ | 2 Network Model Development and Mega-Organizations .......................................... 17
172
+ | 2.1 Structure of Very Large Aerospace Design Communities ................................. 17
173
+ | 2.2 Network Characteristics ..................................................................................... 21
174
+ | 2.3 Abstraction to Meta-Network Model ................................................................. 27
175
+ | 3 Link Model Development ......................................................................................... 28
176
+ | 3.1 Model Overview ................................................................................................. 28
177
+ | 3.2 Design Information ............................................................................................ 31
178
+ | 3.2.1 Information in Design Communities .......................................................... 31
179
+ | 3.2.2 Information Modeling ................................................................................. 34
180
+ | 3.2.3 Product Entropy and Information Packages ............................................... 36
181
+ | 3.2.4 Information Growth, and Product Evolution .............................................. 39
182
+ | 3.3 Task Variety ....................................................................................................... 42
183
+ | 3.3.1 Variety and Information Processing ........................................................... 42
184
+ | 3.3.2 Variety in Distributed Product Development ............................................. 44
185
+ | 3.4 Information Transfer in Chaotic Channels ......................................................... 46
186
+ | 3.4.1 Dynamical Systems and the Logistics Map ................................................ 46
187
+ | 3.4.2 Information Transfer in Chaotic Channels ................................................. 48
188
+ | 3.4.3 Multi-scale Information Transfer ................................................................ 51
189
+ | 3.4.4 Combined Varietal, Organizational, and Temporal Aliasing ..................... 57
190
+ | 3.4.5 Noise in Chaotic Channels .......................................................................... 59
191
+ | 3.4.6 Synchronization .......................................................................................... 59
192
+ blank |
193
+ meta | vii
194
+ | 4 Application of Integrated Link/Network Model ....................................................... 60
195
+ text | 4.1 Matching Scale Dispersion to Time Regimes .................................................... 60
196
+ | 4.2 Identification of Candidate Links, Nodes, and Chains....................................... 63
197
+ | 4.3 Network Improvements ...................................................................................... 66
198
+ | 4.3.1 Link Discontinuity Adjustment................................................................... 67
199
+ | 4.3.2 Link-Chain Improvement............................................................................ 69
200
+ | 4.4 Cultivated Changes and Observed Emergent Side-Effects ................................ 72
201
+ | 5 Performance Observations and Implications ............................................................ 75
202
+ | 5.1 R&D Applicability Performance ........................................................................ 75
203
+ | 5.2 Estimating the Amount of Communication you Should Afford ........................ 76
204
+ | 5.3 Expected Product Changes ................................................................................. 77
205
+ | 5.3.1 Exporting Products at Delivery Dates......................................................... 78
206
+ | 5.3.2 Incremental Technology Incorporation....................................................... 79
207
+ | 5.3.3 Coupled Efficiency ..................................................................................... 80
208
+ | 5.3.4 Company and Product Goals ...................................................................... 80
209
+ | 5.4 Limits to Change ................................................................................................ 81
210
+ | 5.5 Applicability ....................................................................................................... 82
211
+ | 6 Conclusions ............................................................................................................... 85
212
+ | 6.1 More Efficient Design of Mega-Systems ........................................................... 85
213
+ | 6.2 Relying on Emergence and Organizational Computation .................................. 86
214
+ | 6.3 Government Aerospace, Low-Price Procurement, and Overhead Rates ........... 87
215
+ | 6.4 Additional Research Vectors .............................................................................. 89
216
+ | 6.4.1 Organizational Memory .............................................................................. 89
217
+ | 6.4.2 Engineering Tools ....................................................................................... 89
218
+ | 6.4.3 Long-Scale Neural Training of Sub-Networks ........................................... 89
219
+ | 7 Appendix A – Research Background........................................................................ 90
220
+ | 7.1 Evolutionary Design ........................................................................................... 90
221
+ | 7.2 Engineering Systems .......................................................................................... 91
222
+ | 7.3 Flow-Service-Quality Engineering .................................................................... 92
223
+ | 7.4 Engineering Tools .............................................................................................. 93
224
+ | 8 References ................................................................................................................. 95
225
+ blank |
226
+ meta | viii
227
+ title | LIST OF FIGURES
228
+ blank |
229
+ |
230
+ text | Figure 1-1 Examples of Mega-Systems ............................................................................. 2
231
+ | Figure 1-2 Development of Abstracted Design Organization Model ................................ 3
232
+ | Figure 1-3 Link Information Transfer Model underpins all node connections ................. 5
233
+ | Figure 1-4 Link Information Transfer Model .................................................................... 6
234
+ | Figure 1-5 Information Exchange Resonances .................................................................. 8
235
+ | Figure 1-6 Information Transfer Regimes and Amplification Factors .............................. 9
236
+ | Figure 1-7 Set of Consistent Guides to Repair Discontinuity ......................................... 10
237
+ | Figure 1-8 Link-chain Paths of Interest ........................................................................... 12
238
+ blank |
239
+ |
240
+ text | Figure 2-1 Geographic Distribution ................................................................................. 18
241
+ | Figure 2-2 Conceptual Organizational Structure, Staffing Levels, and Characteristics .. 19
242
+ | Figure 2-3 Organizational Size Characteristics ............................................................... 20
243
+ | Figure 2-4 Overlapping Hierarchies ................................................................................ 21
244
+ | Figure 2-5 Typical Hierarchical Organization ................................................................. 22
245
+ | Figure 2-6 Control Stability for Various Organizations .................................................. 23
246
+ | Figure 2-7 Organizational Performance........................................................................... 23
247
+ | Figure 2-8 Typical and Combined Network Characteristics ........................................... 24
248
+ | Figure 2-9 Abstracted Organizational Model .................................................................. 27
249
+ blank |
250
+ |
251
+ text | Figure 3-1 Parameters of Link Transfer Model ............................................................... 29
252
+ | Figure 3-2 Organizations, Information Products, and Time Epochs ............................... 32
253
+ | Figure 3-3 Product Entropy Flexibility for Related Designs ........................................... 36
254
+ | Figure 3-4 Product Entropy Levels for different rates of Growth ................................... 38
255
+ | Figure 3-5 Mutual and Conditional Information ............................................................. 39
256
+ | Figure 3-6 Design Process Models and Networks ........................................................... 44
257
+ | Figure 3-7 Meta-Performance Measures of Distributed Product Development .............. 45
258
+ | Figure 3-8 Bifurcation Diagram....................................................................................... 47
259
+ | Figure 3-9 Conditional, mutual, and total information for two and three time steps ...... 49
260
+ | Figure 3-10 Mutual information for larger iterations of time .......................................... 50
261
+ blank |
262
+ meta | ix
263
+ text | Figure 3-11 Values for Combined Organization (OAF) and Variety (VAF) Aliasing .... 55
264
+ | Figure 3-12 Values for Time Aliasing Factor (TAF)....................................................... 56
265
+ | Figure 3-13 Network with total Product Information Aliasing Factors (p) ..................... 58
266
+ blank |
267
+ |
268
+ text | Figure 4-1 Mutual, Conditional, and Postdicted (I(y)) Information ................................ 61
269
+ | Figure 4-2 Mutual information for larger numbers of iterations ..................................... 62
270
+ | Figure 4-3 Information Transfer Regimes and Amplification Factors ............................ 64
271
+ | Figure 4-4 Set of Consistent Guides to Repair Discontinuity ......................................... 67
272
+ | Figure 4-5 Link-chain Paths of Interest ........................................................................... 70
273
+ | Figure 4-6 Cultivated Organizational Change ................................................................. 74
274
+ blank |
275
+ |
276
+ text | Figure 5-1 Improved Value Over Time ........................................................................... 78
277
+ blank |
278
+ |
279
+ |
280
+ |
281
+ meta | x
282
+ title | GLOSSARY
283
+ blank |
284
+ |
285
+ |
286
+ text | Agent – an actor that undertakes an action in a design chain, here including individuals,
287
+ | design groups, project teams, discipline departments, support functions, small
288
+ | businesses, etc. A node with variety.
289
+ | Aliasing – loss of understanding of some detail within a set of information. Similar to
290
+ | straight-line aliasing in graphics or image analysis.
291
+ | Chaotic channel – an information exchange channel or link, that is susceptible to
292
+ | dynamic evolution with the ensuing noise injection and dissipation.
293
+ | Communicativity - is related to the number, speed, and bandwidth of connections between
294
+ | agents, spanning multiple scales (individual, group, organization) with different
295
+ | parameters at each scale.
296
+ | Context Variety– variety needed to acquire contextual information from an external
297
+ | source to connect the design to external detail.
298
+ | Directed links – a directed link in graph theory, or here a link through which information
299
+ | flows only one way.
300
+ | Encoded – packaged information such that it can be understood by an undefined recipient
301
+ | at an undefined time in the future.
302
+ | Evolutionary computing organisms – complex systems that evolve overtime including
303
+ | genetic populations.
304
+ | Exchange resonances – states where information package format and timing is consistent
305
+ | with environmental transmission characteristics.
306
+ | External norms – in game theory, externally applied forces that affect the pareto solution.
307
+ | Information content – the amount of information being exchanged.
308
+ | Information resolution – the resolution or scale of the information similar to image
309
+ | resolution and engineering tolerances.
310
+ | Information theoretic – Information modeled in a manner similar to entropy, statistical
311
+ | mechanics, and/or quantum physics.
312
+ blank |
313
+ |
314
+ meta | xi
315
+ text | Link – a link on a graph or network connecting two nodes, here especially connections
316
+ | between groups to exchange information.
317
+ | Link chains - sets of directed links corresponding to control paths required to focus the
318
+ | organization on particular future goal states.
319
+ | Mega-systems - systems whose design and production efforts span on the order of 10
320
+ | years of development time and require on the order of 10,000 man-years of effort.
321
+ | Mega-organizations – organizations that have tens of thousands of engineers spread
322
+ | widely across a large geographic area. Not necessarily with singular control.
323
+ | Niche construction – in biology or genetics, an internal adjustment to better fit the local
324
+ | environment for improved performance.
325
+ | Node – a node on a graph or network, here including individuals, design groups, project
326
+ | teams, discipline departments, support functions, small businesses, etc.
327
+ | Non-directed graph – in graph theory having multi-directional links, here especially bi-
328
+ | directional links connecting two separate nodes.
329
+ | Post diction - the forward use of information to increase the knowledge of another actor
330
+ | in a strictly subsequent time state. The inverse of prediction in an information
331
+ | theory sense.
332
+ | Resolution Variety – variety needed to add more detailed design information to increase
333
+ | the fidelity or resolution of the design.
334
+ | Scale-free network – in network theory, a random network with a degree distribution that
335
+ | follows a power law, at least asymptotically.
336
+ | Translation Variety – variety needed to translate or extract information from the current
337
+ | design to further the design in an additional dimension.
338
+ | Transmitted – delivering information such that it reaches additional recipients.
339
+ | Task-bits – quantum information of a task, similar to data bits or letters in a document.
340
+ | Variety – the diverse set of capabilities needed by an actor or group to execute an
341
+ | activity. The variety represents the set of capabilities and functionality.
342
+ blank |
343
+ |
344
+ |
345
+ |
346
+ text | xii
347
+ | …complex products
348
+ | produced by complex organizations
349
+ | become fragments of complex systems
350
+ blank |
351
+ |
352
+ |
353
+ |
354
+ meta | xiii
355
+ title | 1 Introduction
356
+ text | Engineers propose to understand canonical mechanisms and prototypical behaviours to
357
+ | better control the systems development effort. But you cannot control a complex system
358
+ | in which you are immersed, and within an environmental context that changes before
359
+ | your controls can respond. You must cultivate and guide these systems at various and
360
+ | appropriate time scales.
361
+ blank |
362
+ |
363
+ text | This dissertation develops a new type of model to analyze the design and construction of
364
+ | mega-systems, based on combining an organization network-model with an information-
365
+ | transfer link-model. This combined model is exercised to examine methods and
366
+ | techniques to improve mega-system design and construction, and then validated in a
367
+ | three-year experiment implementing an enterprise product delivery process. Model
368
+ | development is based on data from US aerospace companies and programs spanning the
369
+ | last 30 years.
370
+ blank |
371
+ |
372
+ text | Previous efforts within the Design Research and the System Engineering communities to
373
+ | analyze and improve Engineering Processes that are used to design mega-systems are
374
+ | summarized in Appendix A. Analysis of these recent efforts shows three major
375
+ | shortcomings: they assume efficient network connectivity, they assume static networks,
376
+ | and they assume loss-less data transfer. This dissertation is a first step toward correcting
377
+ | these deficiencies, and accounting for these very real constraints.
378
+ blank |
379
+ title | 1.1 Problem
380
+ text | Large Complex Mega-Systems are defined here as efforts that span 10 years of
381
+ | development time (design and production) and require 10,000 man-years of effort.
382
+ | Typically engineers are drawn from a wide supply chain spanning a large geographic
383
+ | area. These systems include the NASA Space Shuttle, the International Space Station
384
+ | (ISS), and planned Mars and asteroid missions (Figure 1-1). Terrestrial examples include
385
+ | the Air Traffic Control Systems (ATCS), missile defense systems, nuclear power plants,
386
+ | and others.
387
+ blank |
388
+ |
389
+ |
390
+ meta | 1
391
+ text | Figure 1-1 Examples of Mega-Systems
392
+ | (A) Space shuttles Atlantis and Endeavor at Kennedy Space Center launch complexes 39A and 39B.
393
+ | (B) Artist’s concept of exploration of Mars’s moon Phobos.
394
+ blank |
395
+ |
396
+ text | Problems arise when developing these systems, likely caused by their immense scale.
397
+ | Some systems are never built, or take a much longer time than planned before the design
398
+ | is finalized for production: this is sometimes caused by requirements churn such as for
399
+ | the ISS and its precursors. Other systems exhibit upgrade brittleness such as the ATCS:
400
+ | here, because of either the safety requirements, distributed nature, or necessary
401
+ | incremental approach to upgrades, the follow-on replacement design was unable to close
402
+ | and had to be restarted several times at great expense. Some products collide with
403
+ | obsolescence issues since their design process takes so long that some of the originally
404
+ | included components are no longer available.
405
+ blank |
406
+ |
407
+ text | “About one in three major U.S. Defense Department programs since 1997 have had cost
408
+ | overruns of as much as 50 percent over their original projections. The overruns, found in
409
+ | 47 of 134 programs included in a study by the U.S. Government Accountability Office,
410
+ | were enough to trigger a law [Nunn-McCurdy Act] that requires congressional
411
+ | notifications and potential termination” [Capaccio 2011].
412
+ blank |
413
+ |
414
+ |
415
+ |
416
+ meta | 2
417
+ text | 1.2 Mega Design Communities and Design Organization Model
418
+ | Mega-Systems are designed by Mega-Organizations that have tens of thousands of
419
+ | engineers spread widely across a large geographic area. Organizations are treated here as
420
+ | evolutionary computing organisms that evolve as they compute. An abstract
421
+ | organizational network model is developed in Section 2.0 as summarized in Figure 1-2.
422
+ | Subsequent discussion in Sections 3.0 and 4.0 will add measures of emergent parameters.
423
+ blank |
424
+ text | Louisville, CO
425
+ | Bangor, WA Denver, CO Newtown, PA
426
+ | • Coherent
427
+ | • FBM IA&T
428
+ | Technologies • Navigation Systems Sector
429
+ | Coord
430
+ | Sector
431
+ | Coord
432
+ | Major
433
+ | Sector
434
+ | Coord
435
+ blank |
436
+ text | Palo Alto, CA • Commercial Space Teammates
437
+ blank |
438
+ |
439
+ text | • ATC BD PROG
440
+ | PROG
441
+ | R&D
442
+ | PROG
443
+ | Sector
444
+ | PROG
445
+ | PROG
446
+ | Coord
447
+ | Exec Exec Exec
448
+ | Sunnyvale, CA
449
+ | Valley Forge, PA
450
+ | Santa Cruz, CA • Reentry Systems Adjacent
451
+ | Adjacent
452
+ | BD Executive Senior Adjacent
453
+ | • Test Support Markets
454
+ | Adjacent
455
+ | Markets
456
+ | Adjacent
457
+ | Markets
458
+ | Markets
459
+ | Director Staff Support Technologies
460
+ blank |
461
+ |
462
+ text | Washington, DC
463
+ | • FBM Liaison BD Advanced Senior
464
+ blank |
465
+ text | Business • Washington Ops Program Research
466
+ | Staff
467
+ | Program
468
+ | Program
469
+ | Program Develop
470
+ | Senior
471
+ | Senior
472
+ | Manager
473
+ | Senior
474
+ | ManagerSenior
475
+ | Manager
476
+ | Senior
477
+ | ManagerSenior
478
+ | Manager
479
+ | Manager
480
+ blank |
481
+ text | Development Management
482
+ | Manager
483
+ | Arlington, VA Senior Senior
484
+ | Edwards AFB, CA BD
485
+ | • Targets Prime PROG R&D
486
+ | Engineer
487
+ | Subsystem
488
+ | Subsystem
489
+ | Subsystem
490
+ | Subsystem
491
+ | Subsystem
492
+ | CRAD
493
+ | CRAD
494
+ | CRAD
495
+ | CRAD
496
+ | CRAD
497
+ | Scientist
498
+ | Subsystem CRAD
499
+ | • ABL
500
+ | Subsystem
501
+ | Huntsville, AL
502
+ | • Strategic & Missile Defense Tools Engineer Engineers Engineer
503
+ | Staff
504
+ | El Segundo, CA • Ares Support
505
+ | Scientist
506
+ blank |
507
+ text | • MILSATCOM Exec Exec Exec
508
+ | Albuquerque, NM Kings Bay, GA Discipline
509
+ | • ATC • FBM IA&T Discipline
510
+ | Director
511
+ | Discipline
512
+ | Director
513
+ | Discipline
514
+ | Suppliers Small Universities
515
+ | Director
516
+ | Kauai, HI White Sands, NM • ATK
517
+ | Discipline
518
+ | Director
519
+ | Discipline
520
+ | Director
521
+ | Business
522
+ blank |
523
+ |
524
+ text | • PMRF Courtland, AL Cape Canaveral, FL Discipline
525
+ | Director
526
+ | • Missile Range • Targets & Adjacent
527
+ | • Targets &
528
+ | BD
529
+ | Eastern Range
530
+ | Executive Senior
531
+ | Sector
532
+ | Discipline
533
+ | Adjacent
534
+ | Director
535
+ | Director
536
+ | Stennis, MS Markets Director Staff Coord
537
+ | Support
538
+ | ENG
539
+ | Technologies
540
+ | Countermeasures Countermeasures • Launch Operations
541
+ | • Propulsion
542
+ | Houston, TX Center
543
+ | ~19,500 employees • Orion
544
+ | New Orleans, LA BD Advanced Senior
545
+ | • ~ 8,700 in Silicon Valley
546
+ | • External Tank Staff
547
+ | Program
548
+ | Develop Manager
549
+ | • ~ 4,700 in Denver area
550
+ | • ~ 2,000 in New Orleans • Orion
551
+ | • ~ 1,500 in Cape and V
552
+ | • ~ 1,100 in Delaware Valley
553
+ | Senior
554
+ | Engineer
555
+ | Subsystem CRAD
556
+ | Senior
557
+ | Scientist
558
+ | 009_03.18.08
559
+ | • ~ 500 in Alabama
560
+ blank |
561
+ text | Staff
562
+ | Tools Engineer Engineer Engineer
563
+ | Scientist
564
+ blank |
565
+ |
566
+ |
567
+ text | Discipline
568
+ | Director
569
+ | Operational Prototype
570
+ | Systems Systems
571
+ | ENG
572
+ | Engineering
573
+ blank |
574
+ text | Figure 1-2 Development of Abstracted Design Organization Model
575
+ | (A) A large mega-organization (design community) of 100,000 people is spread across the wide range
576
+ | of North America in different cities. (B) Organizational groups (nodes) and major relations between
577
+ | them (links) are identified. (C) The nodes and links are then simplified into a two-dimensional
578
+ | structure to highlight parameters associated with activity duration, organization hierarchies, and
579
+ | different engineering capabilities and products.
580
+ blank |
581
+ |
582
+ text | The design-organization network model represents a distributed mega-design-community
583
+ | of 100,000 people producing a set of mega-systems over time. These people are
584
+ | assembled into various organizations including design groups, project teams, discipline
585
+ | departments, support functions, small businesses, etc. Each organizational group, or
586
+ | node, is composed of many people, and there may be multiple instances of any one
587
+ | group. The variety of people within each node provides a diverse set of capabilities to
588
+ | execute the group’s higher level function (see Section 3.3).
589
+ blank |
590
+ |
591
+ meta | 3
592
+ text | Multiple nodes (groups) may connect to a single node performing a coordinative
593
+ | function, but each link conveys separate information in different contexts (sections 1.3
594
+ | and 3.0). Groups may be linked to multiple sets of groups in different fashions for
595
+ | different purposes such as product design, tool development, financial control, etc. These
596
+ | overlapping sets represent various sub-groups or sub-functions within the design
597
+ | community and within the abstract organizational network model.
598
+ blank |
599
+ |
600
+ text | The resulting organizational network model is neither fully-connected nor hierarchically
601
+ | connected nor even efficiently connected, but rather has scale-free connectivity such that
602
+ | nodes can have several possible connection paths, even for the same information transfer
603
+ | activity, but with different efficiencies and restrictions (see Section 2.2).
604
+ blank |
605
+ title | 1.3 Information Transfer and Link Model
606
+ text | Earlier efforts in modeling multi-scale organizations with emergent properties [Byler
607
+ | 2000] showed the critical nature of multi-scale communications. Following an Adaptive
608
+ | Non-linear Testing technique [Miller 2007], the modeling validation and verification
609
+ | indicated massive instability around the parameters defining “communicativity”. This
610
+ | defined a critical area of investigation explored further in this dissertation.
611
+ blank |
612
+ |
613
+ text | “Communicativity” is related to the number, speed, and bandwidth of connections
614
+ | between agents. For individual design agents this is related, for example, to the number
615
+ | of emails sent per day, the number of addressees in an agents personal address book,
616
+ | number of off-site web-page accesses, typical phone usage, etc. For design groups, this is
617
+ | related to frequency and size of design reviews, availability and type of online design
618
+ | storage, geographic separation (bull-pen vs. cubicles), etc. For project swarms (groups,
619
+ | departments, small businesses), “communicativity” is rate of engineer reassignment, size
620
+ | and quality of information system network, frequency of training, and whether the project
621
+ | is owned by the company or someone else (which implies internalization of requirements
622
+ | and operations).
623
+ blank |
624
+ |
625
+ |
626
+ |
627
+ meta | 4
628
+ text | To address the importance of communicativity, an underpinning information transfer
629
+ | model for the network links was developed to better include factors addressing
630
+ | communications parameters as well as organization parameters, functional activities, and
631
+ | environmental constraints (Figure 1-3).
632
+ blank |
633
+ |
634
+ |
635
+ text | Agent X Agent Y
636
+ blank |
637
+ |
638
+ text | Information Transfer
639
+ blank |
640
+ text | Business Program Research
641
+ | Development BD PROG
642
+ | Management R&D
643
+ blank |
644
+ text | Chaotic Channel (non-linear)
645
+ | Exec Exec Exec
646
+ blank |
647
+ |
648
+ |
649
+ |
650
+ text | Adjacent BD Executive Senior Adjacent
651
+ | Markets Director Staff Support Technologies
652
+ blank |
653
+ |
654
+ |
655
+ text | BD Advanced Senior
656
+ | Program
657
+ | Staff Develop Manager
658
+ blank |
659
+ |
660
+ |
661
+ text | Senior Senior
662
+ | Subsystem CRAD
663
+ | Engineer Scientist
664
+ blank |
665
+ |
666
+ |
667
+ text | Staff
668
+ | Tools Engineer Engineer Engineer
669
+ | Scientist
670
+ blank |
671
+ |
672
+ |
673
+ text | Discipline
674
+ | Director
675
+ | Operational Prototype
676
+ | Systems Systems
677
+ | ENG
678
+ | Engineering
679
+ blank |
680
+ |
681
+ text | Figure 1-3 Link Information Transfer Model underpins all node connections
682
+ | Each link in the network model incorporates a detailed model of a chaotic communications channel.
683
+ blank |
684
+ |
685
+ |
686
+ text | This link information transfer model applies to all connections in the network model, and
687
+ | is shown in additional detail in Figure 1-4.
688
+ blank |
689
+ |
690
+ |
691
+ |
692
+ meta | 5
693
+ text | Link Information Transfer Model
694
+ | “Node” parameters
695
+ | defined by information encoding and transmitting activities
696
+ | and by design information content, resolution, & processing
697
+ | “Link” parameters
698
+ | defined by relative design role
699
+ | Agent X and by organizational activities Agent Y
700
+ | w/ Variety 7 w/ Variety 9
701
+ | Encoder V6
702
+ | Transmitter Vn
703
+ | Transmitter V7
704
+ blank |
705
+ text | environment, tools, time
706
+ blank |
707
+ |
708
+ text | Information Transfer
709
+ blank |
710
+ |
711
+ |
712
+ text | Chaotic Channel (non-linear)
713
+ | Machining V1 Receiver V1
714
+ | Cost Analysis V2 Decoder V2
715
+ | Programmer V3
716
+ blank |
717
+ |
718
+ text | Variety = a set of capabilities when
719
+ | and functionality Information Parameters (node + info package)
720
+ | are incompatible with
721
+ | Agents = can be individuals, Transmission Line Parameters (link + environment)
722
+ | groups, organizations, “aliasing” effects occur
723
+ | or other complices
724
+ blank |
725
+ text | Figure 1-4 Link Information Transfer Model
726
+ blank |
727
+ |
728
+ text | For the organization model developed here (Section 1.2 and 2.0), each node is an agent
729
+ | composed of many people (design groups, project swarms, etc.) in the sense defined by
730
+ | [Petrie 1996]. Agents can be individuals, groups, organizations, or other complices.
731
+ blank |
732
+ |
733
+ text | Each agent performs its function using a variety of people or skills. Producing a
734
+ | controller card, for instance, may require a machinist, a programmer, and a financial
735
+ | analyst. Then the product must be packaged and delivered. If one considers the
736
+ | controller card as inherently containing the design and product information, then the
737
+ | output could be termed to be encoded and transmitted, similar to packaged and delivered.
738
+ blank |
739
+ |
740
+ text | Depending on the complexity of the product or output of the Agent, it may require more
741
+ | or less variety of sub-tasks. The complexity of the product and/or of the agent is
742
+ blank |
743
+ |
744
+ meta | 6
745
+ text | represented by the Variety (Vi) of internal skills. The variety represents the set of
746
+ | capabilities and functionality.
747
+ blank |
748
+ |
749
+ text | The incremental task executed (item produced) by an agent can be a physical or
750
+ | ephemeral addition. In any event, information was imposed on the inputs (machining,
751
+ | assembly sequence, tuning) to increase its usefulness and reduce the entropy of the parts.
752
+ | The type of information imposed on the inputs, and representing the final product (piece-
753
+ | part), is modeled by information content, resolution, and processing.
754
+ blank |
755
+ |
756
+ text | The node parameters include the information content and resolution, as well as the
757
+ | information encoding and transmission. Information is modeled in an information
758
+ | theoretic sense after [Shannon 1948] and [Bais 2010]
759
+ blank |
760
+ |
761
+ text | I() = -ipilogpi
762
+ blank |
763
+ |
764
+ text | Any new (conditional) information received by agent y from the information sent by
765
+ | agent x will be
766
+ blank |
767
+ |
768
+ text | I(y|x) = -iPx(xi)jPy|x(yj|xi)log2Py|x(yj|xj)
769
+ blank |
770
+ |
771
+ text | which expresses the fact that the receiver must interpret (decode) the information he
772
+ | receives based on their previous mutual understanding. Note that information data-bits
773
+ | can be interpreted similarly with design “task-bits”.
774
+ blank |
775
+ |
776
+ text | The Link parameters are defined both by the relative design roles of the attached nodes
777
+ | within the organizational activities, and by the environment within which the products
778
+ | pass and exist. The effect of relative design roles is driven not so much by the different
779
+ | activities, but rather by how much work must be done to understand or incorporate
780
+ | (receive and decode) the material being transmitted by the input agent. The effect of the
781
+ | design environment includes how the information is stored (transmission is not
782
+ | instantaneous), the amount of time delay between production and use, the types of tools
783
+ blank |
784
+ |
785
+ meta | 7
786
+ text | used to decode or process the intermediate product, etc. Because of the dynamic nature
787
+ | of the information and the link, this model is a chaotic channel.
788
+ blank |
789
+ |
790
+ text | Information production, coding, aging, and obsolescence is modeled with the logistic
791
+ | growth curve [Verhulst 1838]
792
+ blank |
793
+ |
794
+ text | xt+1 = axt (1 - xt)
795
+ blank |
796
+ |
797
+ text | such that information is subject to dynamic effects over time. Iteration of mutual
798
+ | information over time shows “exchange resonances” (Figure 1-5).
799
+ blank |
800
+ |
801
+ text | When the Information parameters (node and product information package) are
802
+ | incompatible with Transmission Link parameters (link and environment), aliasing occurs.
803
+ | The information or product is not completely usable, or has become corrupted, and
804
+ | additional work will be needed to adapt or understand it. In fact even minor mismatches
805
+ | create observable aliasing; it is a matter of scale.
806
+ blank |
807
+ |
808
+ text | 7
809
+ | B
810
+ | 6
811
+ | A C
812
+ | Mutual Information I(x^y)
813
+ blank |
814
+ |
815
+ |
816
+ |
817
+ text | 5
818
+ blank |
819
+ text | 4
820
+ | t = 10
821
+ | 3 t = 20
822
+ | t = 40
823
+ | 2
824
+ blank |
825
+ text | 1
826
+ blank |
827
+ text | 0
828
+ | 0.0 1.0 2.0 3.0 4.0
829
+ | a
830
+ blank |
831
+ |
832
+ text | Figure 1-5 Information Exchange Resonances
833
+ | Information can be exchanged more completely at certain periods of time at the “resonant” nodes A,
834
+ | B, and C on the graph where a = 1, 3, and 3.5.
835
+ blank |
836
+ |
837
+ |
838
+ |
839
+ meta | 8
840
+ title | 1.4 Results
841
+ text | Model parameters were developed for each link in the organization model. Multiple
842
+ | parameters are summarized into a value for product information characteristics ‘p’, and
843
+ | for transmission characteristics ‘a’, for each link. Several of these are shown in Figure
844
+ | 1-6 to highlight cases of interest. The product information aliasing factor ‘p’, has been
845
+ | placed into three bins: (s) small (1-2), (m) medium (3), and (l) large (4-6). The
846
+ | environmental transmission/transfer rate is represented by ‘a’. (Note that ‘a’ is non-
847
+ | continuous, and has a reverse scale compared to ‘p’ (see Sections 3.4.2 and 4.2).)
848
+ blank |
849
+ |
850
+ text | BD PROG R&D
851
+ blank |
852
+ |
853
+ |
854
+ text | Exec Exec Exec
855
+ blank |
856
+ text | m=3
857
+ | Adjacent BD
858
+ | m=3
859
+ | a=3 √ Executive
860
+ |  a=1
861
+ | Senior Adjacent
862
+ | Markets Director Staff Support Technologies
863
+ blank |
864
+ |
865
+ text | l=5 m=3
866
+ | BD
867
+ | Program a=1 a=1 Advanced Senior
868
+ | Staff m=3 Develop Manager
869
+ | a=3 √ √ 
870
+ | s=2
871
+ | Senior
872
+ | Subsystem CRAD
873
+ | √ a=4 Senior
874
+ | Tools Engineer m=3 Scientist
875
+ | a=3 √
876
+ | s=2
877
+ | √ a=4 Staff
878
+ | s=2 Engineer m=3 Engineer Engineer
879
+ | Scientist
880
+ | a=1 a=3 √
881
+ |  Discipline
882
+ | Director
883
+ blank |
884
+ |
885
+ |
886
+ |
887
+ text | ENG
888
+ blank |
889
+ |
890
+ |
891
+ text | Figure 1-6 Information Transfer Regimes and Amplification Factors
892
+ | Network performance is evaluated by looking for link/information mismatch. The red circles are
893
+ | points of interest that have been evaluated for consistency. The checkmarks indicate consistent link
894
+ | parameters and information formatting. The sad-faces indicate mismatches that will be discussed in
895
+ | subsequent sections.
896
+ blank |
897
+ |
898
+ |
899
+ text | Potential network improvements can be assessed both at the individual links and nodes,
900
+ | and over “link-chains”. Between individual nodes, mismatches of Link parameters (p, a)
901
+ | indicate a discontinuity, or a mismatch of Lyupanov exponents (Section 3.4.1). Two
902
+ | nodes can improve their combined performance by exchanging information more
903
+ blank |
904
+ |
905
+ |
906
+ |
907
+ meta | 9
908
+ text | efficiently. However, improving information transfer at one link may or may not
909
+ | improve overall system performance, although there will certainly be local effects.
910
+ blank |
911
+ |
912
+ text | Figure 1-7 shows an analysis of an individual link for the transfer and insertion of
913
+ | research information into a new mega-system. In this case, new research was not being
914
+ | efficiently delivered into new system. Analysis of the information transfer characteristics
915
+ | BD PROG
916
+ | indicated potential for a five-fold increase in productivity. A complete description R&D
917
+ | and
918
+ | analysis is developed in section 4.3.1.
919
+ blank |
920
+ |
921
+ text | Exec Exec Exec
922
+ blank |
923
+ |
924
+ |
925
+ text | t=m
926
+ | BD
927
+ | B Executive a= 1 Senior Adjacent
928
+ | A
929
+ | Director Staff Support Technologies
930
+ | t=m D
931
+ | A a= 1 C
932
+ | BD C Advanced Senior
933
+ | Program
934
+ | Staff Develop Manager
935
+ | C D
936
+ | D
937
+ blank |
938
+ text | Senior Senior
939
+ | Subsystem CRAD
940
+ | Engineer Scientist
941
+ | Figure 1-7 Set of Consistent Guides to Repair Discontinuity
942
+ | This figure zooms into our design community network to focus on two identified discontinuities
943
+ | Staff is
944
+ | labeled A. In both of these cases, p = m and a = 1. So although the communication timeframe
945
+ | Engineer Engineer Engineer
946
+ | Scientist
947
+ | “medium”, the information delivered is in the wrong form for direct consumption. Also variety was
948
+ | expended at some cost to transform the original information. So the resources used to produce the
949
+ | original information are not being exploited efficiently. For steps B, C, and D, please refer to section
950
+ | Discipline 4.3.1.
951
+ | Director
952
+ blank |
953
+ text | Our mega-organization is not independent. Rather it is given particular direction and
954
+ | goals in order to achieve the design and production of mega-systems. For instance, some
955
+ | ENG information flows only a certain direction, and some information is tightly controlled.
956
+ | Therefore the network is only a quasi, scale-free network. Imposing external goals and
957
+ blank |
958
+ |
959
+ |
960
+ meta | 10
961
+ text | specifications onto our scale-free, multi-hierarchical control structure, creates sets of
962
+ | directed links (link-chains) corresponding to control paths required to focus the
963
+ | community on our particular future goal states. These directed link-chains need to be
964
+ | evaluated to make sure the information arrives timely and with minimal (acceptable)
965
+ | corruption.
966
+ blank |
967
+ |
968
+ text | Link-chains of interest focus on particular extended pathways that execute higher level
969
+ | functions, such as translating customer product requirements into research needs.
970
+ | Evaluation of various link chains can be analyzed both from an a priori interest as well as
971
+ | from evaluating the scale-free network for paths of overall poor quality.
972
+ blank |
973
+ |
974
+ text | Case (2) in Figure 1-8 shows the delivery of new Research products into large Programs.
975
+ | This was part of the same analysis of the transfer and insertion of research information
976
+ | into a new mega-system, but at a larger scale to examine total flow and also to look for
977
+ | side-effects. This path has a Total Aliasing Factor (TAF) of 15 (see Section 3.4).
978
+ | Changes from annealing the discontinuities from Figure 1-7 (discussed in Section 4.3.1)
979
+ | will reduce the link values (aliasing factors) of 5 and 3 to 2 and 2, and improve the
980
+ | efficiency of incorporating current (and appropriate) technology into the new mega-
981
+ | system.
982
+ blank |
983
+ |
984
+ |
985
+ |
986
+ meta | 11
987
+ text | BD PROG R&D
988
+ blank |
989
+ |
990
+ |
991
+ text | Exec 3 Exec Exec
992
+ blank |
993
+ text | 1 2 1 1
994
+ | Adjacent BD Executive
995
+ | 3 Senior Adjacent
996
+ | Markets Director Staff Support Technologies
997
+ | 3 2
998
+ | 2 2 5
999
+ | BD
1000
+ | Staff
1001
+ | 3 Program
1002
+ | 5
1003
+ | Advanced
1004
+ | Develop
1005
+ | Senior
1006
+ | Manager
1007
+ blank |
1008
+ text | 2 2 2
1009
+ | Senior 3 Subsystem CRAD
1010
+ | 2 Senior 3
1011
+ | Engineer Scientist
1012
+ blank |
1013
+ text | 2 2 3 2 22
1014
+ | Tools Engineer
1015
+ | 3 1
1016
+ | Engineer Engineer
1017
+ | 2 Staff
1018
+ | 5 Scientist
1019
+ | 1
1020
+ | 2 Discipline
1021
+ | Director
1022
+ blank |
1023
+ |
1024
+ |
1025
+ |
1026
+ text | ENG
1027
+ blank |
1028
+ |
1029
+ text | Figure 1-8 Link-chain Paths of Interest
1030
+ | External goals and specifications, combined with our quasi, scale-free network, create directed links
1031
+ | corresponding to control paths required to focus the community on the particular future goal states.
1032
+ | Numbered blue lines are directed link paths; red numbers are total aliasing factors (TAF) (section
1033
+ | 3.4.4). These link-chains need to be evaluated to make sure the information arrives timely and un-
1034
+ | corrupted. Corruption can be caused by aliasing, occurring either during variety compression /
1035
+ | decoding, or from multi-scale time-aliasing. Case (2), the delivery of new Research products into
1036
+ | large Programs, has the highest TAF corruption factor of 15.
1037
+ blank |
1038
+ |
1039
+ text | In fact, a case study addressing the delivery of new research products into large programs
1040
+ | was monitored in parallel wherein the delivery path of design products was adjusted.
1041
+ | Several interesting behaviours emerged around design ownership, as reflected within
1042
+ | changed design variety and program variety (section 4.4).
1043
+ blank |
1044
+ |
1045
+ text | While emergent engineering behaviours are interesting, another question is whether this
1046
+ | improved the value to the company and/or the value delivered to the environment
1047
+ | (society). These questions might not be definitively answerable, but one metric – the
1048
+ | inserted value of R&D efforts – rose from less than 5% to almost 80% as measured by
1049
+ | the number of research projects being fully used in operational programs. The research
1050
+ blank |
1051
+ |
1052
+ |
1053
+ |
1054
+ meta | 12
1055
+ text | projects themselves can be quite successful, but information transfer into a development
1056
+ | program runs into the problems indicated in terms of time synchronization.
1057
+ blank |
1058
+ title | 1.5 Conclusions
1059
+ text | This dissertation developed a new type of model for extremely large design organizations
1060
+ | and their environment by combining perspectives from:
1061
+ | - evolutionary genetic computing organisms,
1062
+ | - information theoretic (quantum) information production, and
1063
+ | - non-linear dynamics and chaos theory for information exchange.
1064
+ | to study some of the behaviours of complex organizations, especially information
1065
+ | transfer, to show how organizations can be guided to more efficiently and quickly
1066
+ | produce complex mega-systems.
1067
+ blank |
1068
+ |
1069
+ text | A three-year experiment was performed within a large design organization to see what
1070
+ | level and type of improvements would actually manifest.
1071
+ blank |
1072
+ |
1073
+ text | The results fall into three categories:
1074
+ | - production of individual mega-systems,
1075
+ | - improvement in organizations that develop mega-systems, and
1076
+ | - extraction of societal benefits from government funded mega-systems.
1077
+ | These are addressed separately below.
1078
+ blank |
1079
+ title | 1.5.1 Design of Individual Mega-Systems
1080
+ text | Mismatched quality of information transfer among organizational elements causes
1081
+ | significant inefficiencies. The transfer quality includes time synchronization, method of
1082
+ | transfer, and other variables. It is not that anything is currently wrong, just that a lot of
1083
+ | time is wasted waiting for information, translating information, or re-developing the
1084
+ | context to understand the information. Also, additional time (and resources) may be
1085
+ | spent waiting for task convergence at a higher level. Matching the characteristics of the
1086
+ | product design information to the characteristics of the transfer path minimizes aliasing
1087
+ | effects (dissipation and noise), creating many benefits including:
1088
+ blank |
1089
+ |
1090
+ |
1091
+ meta | 13
1092
+ text | - More efficient design and design execution,
1093
+ | - Improved design agility / currency, and
1094
+ | - Enablement / easing of “Evolutionary Design” ([Bobinis 2006], [Bar-Yam
1095
+ | 2003], [Sangiovanni 2006]) at the upper, large-scale limit.
1096
+ blank |
1097
+ |
1098
+ text | Results from a three-year experiment showed that the inserted value of R&D efforts rose
1099
+ | from less than 5% to almost 80% as measured by the number of research projects being
1100
+ | fully used in operational programs. The research projects themselves can be quite
1101
+ | successful, but information transfer into a development program runs into the problems
1102
+ | indicated in terms of time synchronization.
1103
+ blank |
1104
+ title | 1.5.2 Company and Design-Organization Implications
1105
+ text | Improvements in the performance of the organization will incrementally emerge, given
1106
+ | the inertia of large organizations and of engineering processes, and will initially manifest
1107
+ | as quicker mega-system deliveries and an accelerating ability to innovate ahead of other
1108
+ | companies.
1109
+ blank |
1110
+ |
1111
+ text | “One consequence of encoding information as statistical and time-varying patterns of
1112
+ | low-level components is that no individual component of the system can perceive or
1113
+ | communicate the ‘big-picture’ of the state of the system. Instead, information must be
1114
+ | communicated via spatial and temporal sampling.” [Mitchell 2009] Dynamically, the
1115
+ | mega-design process is progressing, and any snapshot is an incomplete view in a
1116
+ | changing context. This implies that the product directors exert little real control on where
1117
+ | the company is going. Their actual role is simply to monitor the outputs and nascent
1118
+ | products, and to guide the output (and rate of new product introduction and of upgrades)
1119
+ | to match the funding (requirements) source.
1120
+ blank |
1121
+ |
1122
+ text | This dynamic perspective implies that design communities can, and should, “construct
1123
+ | their own [evolutionary] selective constructs designed toward increasing mutual
1124
+ | information [within itself, and] between the organism and the environment” [Krakauer
1125
+ | 2011], for better computability or production of designs (cf. niche construction). In this
1126
+ blank |
1127
+ |
1128
+ |
1129
+ meta | 14
1130
+ text | case, the management structure ought to also look at higher level abstractions, such as
1131
+ | information transfer efficiencies, in addition to process control (like design reviews),
1132
+ | because looking at static variables will not improve the evolutionary adaptation rate.
1133
+ blank |
1134
+ title | 1.5.3 Government and Societal Implications
1135
+ text | The stability of any implemented improvements is somewhat problematic given the
1136
+ | evolving environment, but especially given the counter-acting efforts of government
1137
+ | acquisition regulations and nominal management tendencies.
1138
+ blank |
1139
+ |
1140
+ text | Scale, synchronization, and economic nudges may be appropriate for personal scale
1141
+ | complices such as smartPhone apps, but the economic and scale factors are different from
1142
+ | government “apps”. A focus on lowest cost procurement, for government “apps” (mega-
1143
+ | systems), has side effects on the engineering design process. Financially speaking, and
1144
+ | for more effective mega-system development, the government should modify cost-
1145
+ | selection constraints to avoid extra effort to achieve a particular instance when any of a
1146
+ | set of instances is all that is needed. This would necessarily become somewhat non-
1147
+ | deterministic.
1148
+ blank |
1149
+ |
1150
+ text | Individual program managers will avoid this because it is locally inefficient and also
1151
+ | uncontrollable. However, according to game theory (prisoner’s dilemma [Morrow
1152
+ | 1994]), a Pareto optimal solution is better, and can be achieved with “external norms”
1153
+ | [Mitchell 2009]. The external norms could either be via company processes and
1154
+ | procedures or, better, by the government’s Federal Acquisition Regulations (FAR).
1155
+ blank |
1156
+ |
1157
+ text | For instance, implementation at the government FAR level could be to assign 1% - 2% of
1158
+ | the value of programs over a certain size to internal efforts supporting adaptability and
1159
+ | risk reduction. For instance the Orion spacecraft program internally allocated $100M
1160
+ | (for a $4B program) to reduce schedule risk occurring from software integration. This is
1161
+ | the same scale as proposed, and was considered and approved as the correct engineering
1162
+ | approach. However, it was implemented without adjusting the encompassing process, so
1163
+ blank |
1164
+ |
1165
+ |
1166
+ |
1167
+ meta | 15
1168
+ text | savings could never be recaptured, nor future transitions eased. This fund would reduce
1169
+ | risk on the delivery of the initial system, and reduce cost of subsequent systems.
1170
+ blank |
1171
+ |
1172
+ text | Such a fund could also be allocated for application to follow-on project development, and
1173
+ | coordination of supporting technology and product development. Note that this would
1174
+ | avoid aliasing effects from Federally Funded Research and Development Companies
1175
+ | (FFRDCs) in their information transfer efforts, and would greatly improve technology
1176
+ | transfer from government labs to industry and society.
1177
+ blank |
1178
+ |
1179
+ |
1180
+ |
1181
+ meta | 16
1182
+ title | 2 Network Model Development and Mega-Organizations
1183
+ text | In order to design, integrate, and deliver a mega-system, the organizational unit must
1184
+ | itself be very large and thus inherently complex, especially when efficient use of capital
1185
+ | and labor indicate (out of phase) development of multiple mega-systems.
1186
+ blank |
1187
+ |
1188
+ |
1189
+ title | 2.1 Structure of Very Large Aerospace Design Communities
1190
+ text | Large aerospace companies typically have on the order of (100,000) employees, of whom
1191
+ | (50%) are engineers and scientists of various sorts. These organizations typically have a
1192
+ | large number of entwined organizations to produce and deliver their platforms.
1193
+ | (Numbers in parentheses refer to the notional parameter values in our abstracted model.)
1194
+ | (Capitalized terms are symbolic names.)
1195
+ blank |
1196
+ |
1197
+ text | Aerospace companies might be divided into (five) business areas or sectors to address
1198
+ | different market areas. An upper-level corporate organization might provide common
1199
+ | resources for business development, common research, common engineering tools and
1200
+ | process, and other functions.
1201
+ blank |
1202
+ |
1203
+ text | For our purposes we will discuss a medium sized space company (sector) of ($10B)
1204
+ | annual sales. Companies are divided into lines of business or business units on the scale
1205
+ | of ($1B) annual sales. The (10) business units are the major components of the company
1206
+ | and are responsible for producing and delivering the output of the organization.
1207
+ blank |
1208
+ |
1209
+ text | Geographically, the organization will be spread across the nation (Figure 2-1) [courtesy
1210
+ | of Lockheed Martin Space Systems Company]. Some locations have large numbers of
1211
+ | people; other sites have smaller numbers. The business units may or may not be
1212
+ | geographically centralized. If not, there is some communications overhead to coordinate
1213
+ | the pieces.
1214
+ blank |
1215
+ |
1216
+ |
1217
+ |
1218
+ meta | 17
1219
+ text | Louisville, CO
1220
+ | Bangor, WA Denver, CO Newtown, PA
1221
+ | • Coherent
1222
+ | • FBM IA&T
1223
+ | Technologies • Navigation Systems
1224
+ | Palo Alto, CA • Commercial Space
1225
+ | • ATC
1226
+ blank |
1227
+ |
1228
+ text | Sunnyvale, CA
1229
+ | Valley Forge, PA
1230
+ | Santa Cruz, CA • Reentry Systems
1231
+ | • Test Support
1232
+ | Washington, DC
1233
+ | • FBM Liaison
1234
+ | • Washington Ops
1235
+ | Arlington, VA
1236
+ | Edwards AFB, CA • Targets Prime
1237
+ | • ABL Huntsville, AL
1238
+ | • Strategic & Missile Defense
1239
+ | El Segundo, CA • Ares Support
1240
+ | • MILSATCOM
1241
+ | Albuquerque, NM Kings Bay, GA
1242
+ | • ATC • FBM IA&T
1243
+ | Kauai, HI White Sands, NM • ATK
1244
+ | • PMRF Courtland, AL Cape Canaveral, FL
1245
+ | • Missile Range • Targets & • Targets & Eastern Range
1246
+ | Stennis, MS
1247
+ | Countermeasures Countermeasures • Launch Operations
1248
+ | • Propulsion
1249
+ | Houston, TX Center
1250
+ | ~19,500 employees • Orion
1251
+ | New Orleans, LA
1252
+ | • ~ 8,700 in Silicon Valley
1253
+ | • External Tank
1254
+ | • ~ 4,700 in Denver area
1255
+ | • ~ 2,000 in New Orleans • Orion
1256
+ | • ~ 1,500 in Cape and V
1257
+ | • ~ 1,100 in Delaware Valley
1258
+ | 009_03.18.08
1259
+ | • ~ 500 in Alabama
1260
+ blank |
1261
+ text | Figure 2-1 Geographic Distribution
1262
+ blank |
1263
+ |
1264
+ |
1265
+ text | Our prototypical medium sized space company has on the order of (20,000) employees.
1266
+ | The (10,000) engineers frequently reside in an Engineering home-shop organization that
1267
+ | may span (10) disciplines, each with a Discipline Director. The goal of the Engineering
1268
+ | home-shops is to have 99.9% of their staff assigned to a Program where they are
1269
+ | developing deliverable products and profit. Each business unit would then have about
1270
+ | (1000) engineers and (2000) total staff. Engineering frequently has some small number
1271
+ | of senior engineering staff who coordinates Tools and processes.
1272
+ blank |
1273
+ |
1274
+ text | Business Development coordinates all the business units to coordinate their outputs to
1275
+ | optimally take advantage of resources while delivering to the customer requirements.
1276
+ blank |
1277
+ |
1278
+ text | Our typical company will have a Research group which may have (1000) scientists. Of
1279
+ | these we will assume that (400) work on advanced or specialized products, and (600)
1280
+ | advance the state of the art in (6) different technical areas. Hopefully their research is
1281
+ | applied to the next generation products being developed by the business units.
1282
+ blank |
1283
+ |
1284
+ |
1285
+ |
1286
+ meta | 18
1287
+ text | (Figure 2-2) abstracts our model community into a non-directed graph. (Figure 2-3)
1288
+ | shows typically sized organizational parameters.
1289
+ blank |
1290
+ |
1291
+ text | Sector Sector Sector
1292
+ | Coord Coord Coord
1293
+ | Major
1294
+ | Teammates
1295
+ blank |
1296
+ text | BD PROG R&D
1297
+ | PROG
1298
+ | PROG
1299
+ | Sector
1300
+ | PROG
1301
+ | PROG
1302
+ | Coord
1303
+ | Exec Exec Exec
1304
+ blank |
1305
+ |
1306
+ |
1307
+ |
1308
+ text | Adjacent BD Executive Senior Adjacent
1309
+ | Adjacent
1310
+ | Markets
1311
+ | Adjacent Director Staff Support Technologies
1312
+ | Markets
1313
+ | Adjacent
1314
+ | Markets
1315
+ | Markets
1316
+ blank |
1317
+ |
1318
+ text | BD Advanced Senior
1319
+ | Senior
1320
+ | Program
1321
+ | Program Senior
1322
+ | Staff Program Develop Manager
1323
+ | Senior
1324
+ | ManagerSenior
1325
+ | Manager
1326
+ | Senior
1327
+ | ManagerSenior
1328
+ | Manager
1329
+ | Manager
1330
+ | Manager
1331
+ blank |
1332
+ text | Senior Senior
1333
+ | Subsystem
1334
+ | Subsystem CRAD
1335
+ | CRAD
1336
+ | Engineer Subsystem
1337
+ | Subsystem CRAD
1338
+ | CRAD Scientist
1339
+ | Subsystem
1340
+ | Subsystem CRAD
1341
+ | CRAD
1342
+ | Subsystem
1343
+ blank |
1344
+ |
1345
+ text | Staff
1346
+ | Tools Engineer Engineers Engineer
1347
+ | Scientist
1348
+ blank |
1349
+ |
1350
+ |
1351
+ text | Discipline
1352
+ | Discipline
1353
+ | Director
1354
+ | Discipline
1355
+ | Director Suppliers Small Universities
1356
+ | Discipline
1357
+ | Director Business
1358
+ | Discipline
1359
+ | Director
1360
+ | Discipline
1361
+ | Director
1362
+ | Discipline
1363
+ | Director
1364
+ | Discipline
1365
+ | Director
1366
+ | Sector
1367
+ | ENG Director
1368
+ | Coord
1369
+ blank |
1370
+ |
1371
+ |
1372
+ text | Figure 2-2 Conceptual Organizational Structure, Staffing Levels, and Characteristics
1373
+ | “Sector Coord” (green arrows) maps to the other five Business Areas as additional, similar layers.
1374
+ | “Clouds” map to other complex communities such as university research networks, small businesses
1375
+ | and suppliers, etc. The linkages cross-connect at many places. “Major teammates” represent
1376
+ | another similar aerospace company of similar size (20,000 employees).
1377
+ blank |
1378
+ |
1379
+ |
1380
+ |
1381
+ meta | 19
1382
+ title | Sector Sector Sector
1383
+ text | Coord Coord Coord
1384
+ | Major
1385
+ | Teammates
1386
+ blank |
1387
+ text | BD PROG R&D
1388
+ | PROG
1389
+ | PROG
1390
+ | Sector
1391
+ | PROG
1392
+ | PROG
1393
+ | Coord
1394
+ | Exec Exec Exec
1395
+ | 1 1
1396
+ | 1 1 1
1397
+ | 8 5 3 3 2
1398
+ | Adjacent BD 1 1 Executive 1 3 Senior Adjacent
1399
+ | Adjacent
1400
+ | Markets
1401
+ | Adjacent Director Staff Support Technologies
1402
+ | Markets
1403
+ | Adjacent 1 240
1404
+ | Markets
1405
+ | Markets 1 1
1406
+ | 4 markets 5 3 1
1407
+ | 6
1408
+ | 3 progs
1409
+ | BD 5 1 Advanced Senior
1410
+ | Senior 6 techs
1411
+ | Program
1412
+ | Program Senior
1413
+ | Staff Program Develop Manager
1414
+ | Senior
1415
+ | Manager
1416
+ | Senior
1417
+ | Manager
1418
+ | Senior
1419
+ | 1 Manager
1420
+ | Senior
1421
+ | Manager
1422
+ | 1 1 Manager
1423
+ | 10 7 7 CRADS 10 Manager
1424
+ | 10 subs
1425
+ | Senior // 1/discipline Subsystem CRAD // Senior
1426
+ | Engineer Subsystem
1427
+ | Subsystem CRAD
1428
+ | CRAD Scientist
1429
+ | Subsystem
1430
+ | Subsystem CRAD
1431
+ | CRAD 1 10/tech
1432
+ | 10 Subsystem
1433
+ | Subsystem CRAD
1434
+ | 1 1 1 1
1435
+ | 5/discipline
1436
+ | 100 100 10 7
1437
+ | // 100/discipline Engineers // 3 Staff
1438
+ | Tools Engineer 1000 Engineer 70/tech
1439
+ | Scientist
1440
+ | 5 1000 10
1441
+ | 1
1442
+ | 1
1443
+ | Discipline
1444
+ | Discipline
1445
+ | Director
1446
+ | Discipline
1447
+ | Director Suppliers Small Universities
1448
+ | Discipline
1449
+ | Director Business
1450
+ | Discipline
1451
+ | Director
1452
+ | Discipline
1453
+ | Director
1454
+ | Discipline
1455
+ | Director
1456
+ | Discipline
1457
+ | Director 10 disciplines
1458
+ | Sector
1459
+ | ENG Director
1460
+ | Coord
1461
+ blank |
1462
+ |
1463
+ text | Figure 2-3 Organizational Size Characteristics
1464
+ | Numbers in red by ovals indicate typical number of similar groups. Double slashes indicate multiple
1465
+ | connections. Numbers in black near lines indicate the communications I/O dispersion.
1466
+ blank |
1467
+ |
1468
+ |
1469
+ |
1470
+ text | Most Engineering Design research focuses on performance developing a single, limited
1471
+ | product. We want to look both at a larger product and at the overall organizational
1472
+ | combination and the integrated product evolution.
1473
+ blank |
1474
+ |
1475
+ |
1476
+ |
1477
+ meta | 20
1478
+ title | 2.2 Network Characteristics
1479
+ text | In our model of this aerospace organization or community, there are many overlapping
1480
+ | hierarchies. First there are the five different Business Units that are controlled by upper-
1481
+ | level corporate organization that supplies common resources. In parallel, there are also
1482
+ | functional hierarchies such as for Engineering disciplines, Finance, Research, Quality
1483
+ | Control, etc. Finally, there are additional parallel hierarchies for business management,
1484
+ | Program control and engineering process control.
1485
+ blank |
1486
+ |
1487
+ text | This amalgamation of connections is entwined with the central corporate organizations to
1488
+ | support related market efforts. A simple two-level, overlapping hierarchy is shown in
1489
+ | Figure 2-4. Note that priorities, sequencing, and control issues may arise with multiple
1490
+ | different control staff.
1491
+ blank |
1492
+ |
1493
+ |
1494
+ |
1495
+ text | Figure 2-4 Overlapping Hierarchies
1496
+ blank |
1497
+ |
1498
+ text | In terms of task and staffing control, a simplistic hierarchical organization is shown in
1499
+ | Figure 2-5. Each level coordinates multiple activities of the level below.
1500
+ blank |
1501
+ |
1502
+ |
1503
+ |
1504
+ meta | 21
1505
+ text | System
1506
+ blank |
1507
+ |
1508
+ text | {
1509
+ | Design
1510
+ | Process Type
1511
+ | (Connectivity)
1512
+ | SubSystem
1513
+ | ...
1514
+ blank |
1515
+ |
1516
+ text | Requirements Product
1517
+ | ...
1518
+ | SubSubSystem
1519
+ | Design Coordination ?
1520
+ | Specifications Components
1521
+ blank |
1522
+ text | ...
1523
+ | Figure 2-5 Typical Hierarchical Organization
1524
+ | Types of connectivity, both vertical and horizontal, vary by type of engineering design process.
1525
+ | [Byler 2001]
1526
+ blank |
1527
+ |
1528
+ |
1529
+ |
1530
+ text | Hierarchical systems are difficult to scale. Single points of control can’t digest enough
1531
+ | information to quickly process the next step in the organization’s computation. You need
1532
+ | more information and more coordination among the larger team for goal-oriented, “feed-
1533
+ | forward” information to achieve timely efficiency. Also, hierarchies tend to create walls,
1534
+ | and by creating separate groups, you create (evolutionary) sub-populations which both
1535
+ | cannot process as much as the whole, but also compete with each other internally.
1536
+ | Finally, when the sub-populations ‘die’, they lose their knowledge/information; and when
1537
+ | larger groups “die”, they even lose their assets (like the international space station).
1538
+ blank |
1539
+ |
1540
+ text | For single systems with limited levels of control, both efficient performance and task
1541
+ | execution stability can be achieved. For larger systems, both stability and performance
1542
+ | degrade with scale (Figure 2-6 and Figure 2-7). In very large product development
1543
+ | networks (see section 3.3.2) networks can lose convergence, and tasks never complete.
1544
+ blank |
1545
+ |
1546
+ |
1547
+ |
1548
+ meta | 22
1549
+ text | Figure 2-6 Control Stability for Various Organizations
1550
+ | Scaling of the norm of the minimal control matrix required to achieve stability for various
1551
+ | organizations: global (solid, black), local (dashed, black), hierarchy (solid, gray) and multi-hierarchy
1552
+ | (dashed, gray) as a function of N. The hierarchical organizations are chosen with r = 0:5 and
1553
+ | branching ratio 2. [Hogg 2001]
1554
+ blank |
1555
+ |
1556
+ |
1557
+ |
1558
+ text | Figure 2-7 Organizational Performance
1559
+ | Effect of noise on the expected value of the largest eigenvalue, for N = 8, _ = 1, f = 0:8 and controls
1560
+ | with s = 0:7 as a function of _ for asymmetric multiplicative noise with zero mean and standard
1561
+ | deviation _. The organizations are global (solid, black), local (dashed, black), hierarchy (solid, gray)
1562
+ | and multi-hierarchy (dashed, gray). For the hierarchical cases, we have r = 0:5 and a branching ratio
1563
+ | of two. The error bars give the standard error estimate of the mean, based on 1000 samples.
1564
+ | Eigenvalues above zero indicate situations where the noise makes the system unstable, on average.
1565
+ | [Hogg 2001]
1566
+ blank |
1567
+ |
1568
+ |
1569
+ |
1570
+ meta | 23
1571
+ text | Cross connections within social systems are natural, and engineering design communities
1572
+ | have also evolved into ‘neural’ communities. Intuitively, this is good because they are
1573
+ | better able to compute their products. This is because of the extra information available
1574
+ | from peer groups (related to ‘a’ as defined in Section 3.0). The quicker computation rates
1575
+ | let the group/community evolve better because of broader scope and more agility. Thus
1576
+ | the community organism competes better.
1577
+ blank |
1578
+ |
1579
+ text | For our complex mega-design organization, these networks, in fact, have so much
1580
+ | secondary interconnections that they approach the connectedness of scale free networks.
1581
+ | Figure 2-8 shows several network types that underpin our organizational network model.
1582
+ blank |
1583
+ text | Scale Free Network
1584
+ | Abstracted Example of D
1585
+ | A
1586
+ | Design Community
1587
+ | Network
1588
+ | Sector Sector Sector
1589
+ | Coord Coord Coord
1590
+ | Major
1591
+ | Teammates
1592
+ blank |
1593
+ text | BD PROG R&D
1594
+ | PROG
1595
+ | PROG
1596
+ | PROG
1597
+ | Multi-Dimensional Sector
1598
+ | Coord
1599
+ | PROG
1600
+ blank |
1601
+ text | Scale Free Network Exec Exec Exec
1602
+ blank |
1603
+ |
1604
+ |
1605
+ |
1606
+ text | B Adjacent
1607
+ | Adjacent
1608
+ | Markets
1609
+ | Adjacent
1610
+ | BD
1611
+ | Director
1612
+ | Executive
1613
+ | Staff
1614
+ | Senior
1615
+ | Support
1616
+ | Adjacent
1617
+ | Technologies
1618
+ | Markets
1619
+ | Adjacent
1620
+ | Markets
1621
+ | Markets
1622
+ blank |
1623
+ |
1624
+ text | BD Advanced Senior
1625
+ | Senior
1626
+ | Program
1627
+ | Program Senior
1628
+ | Staff Program Develop Manager
1629
+ | Senior
1630
+ | ManagerSenior
1631
+ | Manager
1632
+ | Senior
1633
+ | ManagerSenior
1634
+ | Manager
1635
+ | Manager
1636
+ | Manager
1637
+ blank |
1638
+ text | Senior Senior
1639
+ | Subsystem
1640
+ | Subsystem CRAD
1641
+ | CRAD
1642
+ | Engineer Subsystem
1643
+ | Subsystem CRAD
1644
+ | CRAD Scientist
1645
+ | Subsystem
1646
+ | Subsystem CRAD
1647
+ | CRAD
1648
+ | Subsystem
1649
+ blank |
1650
+ |
1651
+ text | Staff
1652
+ | Tools Engineer Engineers Engineer
1653
+ | Scientist
1654
+ blank |
1655
+ |
1656
+ |
1657
+ text | Hierarchical Cluster Network Discipline
1658
+ | Discipline
1659
+ | Director
1660
+ | Discipline
1661
+ | Director Suppliers Small Universities
1662
+ | Discipline
1663
+ | Director Business
1664
+ | Discipline
1665
+ | Director
1666
+ | Discipline
1667
+ | C Director
1668
+ | Discipline
1669
+ | Director
1670
+ | Discipline
1671
+ | Sector Director
1672
+ | ENG Director
1673
+ | Coord
1674
+ blank |
1675
+ |
1676
+ |
1677
+ |
1678
+ text | Multi-Dimensional
1679
+ | Information Transfer Links
1680
+ | (details in section 3.0)
1681
+ blank |
1682
+ |
1683
+ |
1684
+ |
1685
+ text | Figure 2-8 Typical and Combined Network Characteristics
1686
+ | (A) shows a simple scale free network that spans the continental United States. Central nodes (red)
1687
+ | connect to leaf nodes (green) but there are multiple paths available between any two nodes. (B)
1688
+ | shows a much larger network, within which there are several types of connectivity among the nodes.
1689
+ | (C) is a hierarchical cluster network within which the hierarchies are not linear, but rather clusters
1690
+ | themselves. (D) Our organization has communication connectivity like a scale-free network, but also
1691
+ | includes directed links and geographic bandwidth restrictions like a cluster hierarchy. The multi-
1692
+ | dimensional transfer links are discussed in section 3.0
1693
+ blank |
1694
+ |
1695
+ |
1696
+ |
1697
+ meta | 24
1698
+ text | In the context of network theory a scale-free ideal network is a random network with a
1699
+ | degree distribution a power law, at least asymptotically. That is, the fraction P(k) of
1700
+ | nodes in the network having k connections to other nodes goes for large values of k as
1701
+ blank |
1702
+ |
1703
+ text | P(k) ~ k -
1704
+ blank |
1705
+ |
1706
+ text | where  is a parameter whose value is typically in the range 2 <  < 3.
1707
+ blank |
1708
+ |
1709
+ text | The most notable characteristic in a scale-free network is the relative commonness of
1710
+ | vertices with a degree that greatly exceeds the average. The highest-degree nodes are
1711
+ | often called "hubs". The scale-free property also strongly correlates with the network's
1712
+ | robustness to failure.
1713
+ blank |
1714
+ |
1715
+ text | Another important characteristic of scale-free networks is the clustering coefficient
1716
+ | distribution, which decreases as the node degree increases. This distribution also follows
1717
+ | a power law. This implies that the low-degree nodes belong to very dense sub-graphs and
1718
+ | those sub-graphs are connected to each other through hubs.
1719
+ blank |
1720
+ |
1721
+ text | Consider a social network in which nodes are people and links are acquaintance
1722
+ | relationships between people. It is easy to see that people tend to form communities, i.e.,
1723
+ | small groups in which everyone knows everyone (one can think of such community as a
1724
+ | complete graph). In addition, the members of a community also have a few acquaintance
1725
+ | relationships to people outside that community. Some people, however, are connected to
1726
+ | a large number of communities (e.g., celebrities, politicians). Those people may be
1727
+ | considered the hubs responsible for the small-world phenomenon. [Wikkipedia]
1728
+ blank |
1729
+ |
1730
+ text | Our mega-organization is not independent and therefore not completely scale-free.
1731
+ | Rather it is given particular direction and goals in order to achieve the design and
1732
+ | production of mega-systems. For instance, some information paths flow only a certain
1733
+ | direction, and some information is tightly controlled. Therefore the network is only a
1734
+ | quasi, scale-free network. Imposing external goals and specifications onto our scale-free,
1735
+ blank |
1736
+ |
1737
+ meta | 25
1738
+ text | multi-hierarchical control structure, creates sets of directed links (link-chains)
1739
+ | corresponding to control paths required to focus the community on our particular future
1740
+ | goal states. These directed link-chains need to be correctly addressed.
1741
+ blank |
1742
+ |
1743
+ |
1744
+ |
1745
+ meta | 26
1746
+ title | 2.3 Abstraction to Meta-Network Model
1747
+ text | (Figure 2-9) has abstracted the many actors from Section 2.1 into a simplified model to
1748
+ | which we will attach our organizational parameters in Section 3.0.
1749
+ blank |
1750
+ |
1751
+ |
1752
+ text | Business Program Research
1753
+ | Development BD PROG
1754
+ | Management R&D
1755
+ blank |
1756
+ |
1757
+ |
1758
+ text | Exec Exec Exec
1759
+ blank |
1760
+ |
1761
+ |
1762
+ |
1763
+ text | Adjacent BD Executive Senior Adjacent
1764
+ | Markets Director Staff Support Technologies
1765
+ blank |
1766
+ |
1767
+ |
1768
+ text | BD Advanced Senior
1769
+ | Program
1770
+ | Staff Develop Manager
1771
+ blank |
1772
+ |
1773
+ |
1774
+ text | Senior Senior
1775
+ | Subsystem CRAD
1776
+ | Engineer Scientist
1777
+ blank |
1778
+ |
1779
+ |
1780
+ text | Staff
1781
+ | Tools Engineer Engineer Engineer
1782
+ | Scientist
1783
+ blank |
1784
+ |
1785
+ |
1786
+ text | Discipline
1787
+ | Director
1788
+ | Operational Prototype
1789
+ | Systems Systems
1790
+ | ENG
1791
+ | Engineering
1792
+ | Figure 2-9 Abstracted Organizational Model
1793
+ blank |
1794
+ |
1795
+ text | In our abstracted organizational model, the information from Figure 2-3 has been
1796
+ | collapsed into two dimensions for display clarity and in order to focus on the
1797
+ | multidimensional parameters. The links are multi-dimensional themselves, including
1798
+ | characteristics on communication I/O dispersion, types of information carried, etc.
1799
+ | Likewise, the links are not necessarily singular stages, but can encompass multiple steps.
1800
+ | Extraction and development of these organizational parameters and link characteristics
1801
+ | are discussed in detail in Section 3.0.
1802
+ blank |
1803
+ |
1804
+ |
1805
+ |
1806
+ meta | 27
1807
+ title | 3 Link Model Development
1808
+ blank |
1809
+ title | 3.1 Model Overview
1810
+ text | For the organization model developed here (Section 2.0), each node is an agent composed
1811
+ | of many people. Agents can be individuals, design groups, project swarms, or other
1812
+ | complices. These agents are peer-to-peer agents in a weak sense as defined by Petrie
1813
+ | [Petrie 1996]. In this sense they are true agents that provide generation of new
1814
+ | information, but they are weak in that they do not use standard protocols for
1815
+ | communication. Each agent’s protocols (methods) are particular to that set of agents.
1816
+ blank |
1817
+ |
1818
+ text | Each agent performs its function using a variety of people or skills. Producing a
1819
+ | controller card, for instance, may require a machinist, a programmer, and a financial
1820
+ | analyst. Then the product must be packaged and delivered. If one considers the
1821
+ | controller card as inherently containing the design and product information, then the
1822
+ | output could be termed to be encoded and transmitted, similar to packaged and delivered.
1823
+ blank |
1824
+ |
1825
+ |
1826
+ |
1827
+ meta | 28
1828
+ text | Link Information Transfer Model
1829
+ | “Node” parameters
1830
+ | defined by information encoding and transmitting activities
1831
+ | and by design information content, resolution, & processing
1832
+ | “Link” parameters
1833
+ | defined by relative design role
1834
+ | Agent X and by organizational activities Agent Y
1835
+ | w/ Variety 7 w/ Variety 9
1836
+ | Encoder V6
1837
+ | Transmitter Vn
1838
+ | Transmitter V7
1839
+ blank |
1840
+ text | environment, tools, time
1841
+ blank |
1842
+ |
1843
+ text | Information Transfer
1844
+ blank |
1845
+ |
1846
+ |
1847
+ text | Chaotic Channel (non-linear)
1848
+ | Machining V1 Receiver V1
1849
+ | Cost Analysis V2 Decoder V2
1850
+ | Programmer V3
1851
+ blank |
1852
+ |
1853
+ text | Variety = a set of capabilities when
1854
+ | and functionality Information Parameters (node + info package)
1855
+ | are incompatible with
1856
+ | Agents = can be individuals, Transmission Line Parameters (link + environment)
1857
+ | groups, organizations, “aliasing” effects occur
1858
+ | or other complices
1859
+ blank |
1860
+ text | Figure 3-1 Parameters of Link Transfer Model
1861
+ blank |
1862
+ |
1863
+ text | Depending on the complexity of the product or output of the Agent, it may require more
1864
+ | or less variety of sub-tasks. Thus the complexity of the product and/or of the agent can
1865
+ | be represented by the Variety (Vi) of internal skills. The variety represents the set of
1866
+ | capabilities and functionality.
1867
+ blank |
1868
+ |
1869
+ text | The item produced by an agent can be a physical or ephemeral item. In any event
1870
+ | information was imposed on the inputs (machining, assembly sequence, tuning) to
1871
+ | increase its usefulness and reduce the entropy of the parts. The type of information
1872
+ | imposed on the inputs, and representing the final product (piece-part), can be modeled by
1873
+ | information content, resolution, and processing.
1874
+ blank |
1875
+ |
1876
+ |
1877
+ |
1878
+ meta | 29
1879
+ text | The node parameters include the information content and resolution, as well as the
1880
+ | information encoding and transmission. Information is modeled in an information
1881
+ | theoretic sense after [Shannon 1948] and [Bais 2010]
1882
+ blank |
1883
+ |
1884
+ text | I() = -ipilogpi
1885
+ blank |
1886
+ |
1887
+ text | Any new (conditional) information received by agent y from the information sent by
1888
+ | agent x will be
1889
+ blank |
1890
+ |
1891
+ text | I(y|x) = -iPx(xi)jPy|x(yj|xi)log2Py|x(yj|xj)
1892
+ blank |
1893
+ |
1894
+ text | which expresses the fact that the receiver must interpret (decode) the information he
1895
+ | receives based on their previous mutual understanding. Note that information data-bits
1896
+ | can be interpreted similarly with design “task-bits”.
1897
+ blank |
1898
+ |
1899
+ text | The Link parameters are defined both by the relative design roles of the attached nodes
1900
+ | within the organizational activities, and by the environment within which the products
1901
+ | pass and exist. The effect of relative design roles is driven not so much by the different
1902
+ | activities, but rather by how much work must be done to understand or incorporate
1903
+ | (receive and decode) the material being transmitted by the input agent. The effect of the
1904
+ | design environment includes how the information is stored (transmission is not
1905
+ | instantaneous), the amount of time delay between production and use, the types of tools
1906
+ | used to decode or process the intermediate product, etc. Because of the dynamic nature
1907
+ | of the information and the link, this model is a chaotic channel.
1908
+ blank |
1909
+ |
1910
+ text | Information production, aging, and obsolescence is modeled with the logistic growth
1911
+ | curve [Verhulst 1838]
1912
+ blank |
1913
+ |
1914
+ text | xt+1 = axt (1 - xt)
1915
+ blank |
1916
+ |
1917
+ |
1918
+ |
1919
+ meta | 30
1920
+ text | such that information is subject to dynamic effects over time. Iteration of conditional
1921
+ | information over time shows “exchange resonances” (see Section 3.4.2).
1922
+ blank |
1923
+ |
1924
+ text | When the Information parameters (node and product information package) are
1925
+ | incompatible with Transmission Link parameters (link and environment), aliasing occurs.
1926
+ | The information or product is not completely usable or has become corrupted, and
1927
+ | additional work will be needed to adapt or understand it. In fact even minor mismatches
1928
+ | create observable aliasing; it is a matter of scale.
1929
+ blank |
1930
+ |
1931
+ |
1932
+ title | 3.2 Design Information
1933
+ blank |
1934
+ title | 3.2.1 Information in Design Communities
1935
+ text | For our quasi-scale-free engineering design community (Section 2.0), “information”
1936
+ | includes the material acquired and developed to further the knowledge base, the product
1937
+ | design, and the integration, assembly and test of the output products. This includes point
1938
+ | design descriptions, experimental results, performance measurements, reports,
1939
+ | spreadsheets, technologies, CNC tapes, test sequences, manufacturing tolerances,
1940
+ | fabrication techniques, etc.
1941
+ blank |
1942
+ |
1943
+ text | This “information” accumulates over time and is applied to design and produce new
1944
+ | products. Our engineering community actually produces a portfolio of products
1945
+ | including evolutionary products, new products in current markets, current products in
1946
+ | new markets, and occasionally new products for new markets. There is an ongoing,
1947
+ | evolving set of core competencies within each design community that, when infused with
1948
+ | new information, allow the product stream to adapt to the changing market
1949
+ | (environment). This design community produces some number of mega-systems in
1950
+ | parallel efforts (but offset in time).
1951
+ blank |
1952
+ |
1953
+ |
1954
+ |
1955
+ meta | 31
1956
+ text | Business Program Research
1957
+ | Development BD PROG
1958
+ | Management R&D
1959
+ blank |
1960
+ |
1961
+ |
1962
+ |
1963
+ text | 1 year Exec Exec Exec
1964
+ blank |
1965
+ text | 3 years
1966
+ | Adjacent BD Executive Senior Adjacent
1967
+ | Markets Director Staff Support Technologies
1968
+ blank |
1969
+ |
1970
+ |
1971
+ text | BD Advanced Senior
1972
+ | Program
1973
+ | Staff Develop Manager
1974
+ blank |
1975
+ text | 2 years
1976
+ | Senior Senior
1977
+ | Subsystem CRAD
1978
+ | Engineer Scientist
1979
+ blank |
1980
+ |
1981
+ text | 12 years
1982
+ | Staff
1983
+ | Tools Engineer Engineer Engineer
1984
+ | Scientist
1985
+ blank |
1986
+ |
1987
+ |
1988
+ |
1989
+ text | 4 years Discipline Operational Prototype 1 year
1990
+ | Director
1991
+ blank |
1992
+ |
1993
+ |
1994
+ |
1995
+ text | ENG
1996
+ | Systems
1997
+ | Engineering
1998
+ blank |
1999
+ text | Figure 3-2 Organizations, Information Products, and Time Epochs
2000
+ blank |
2001
+ |
2002
+ text | In Figure 3-2, there are several major groups whose development products are roughly
2003
+ | summarized below (capitalized terms symbolically represent their definition). Programs
2004
+ | create the major output of our design community – an Operational System that takes 12
2005
+ | years to design, produce, integrate and test. Programs are controlled by Program
2006
+ | Management; this group coordinates several large projects, and is driven by a (typical)
2007
+ | three-year Long Range Plan (LRP). The internal information packages within Program
2008
+ | Management support the activity around successfully executing LRPs (not the program).
2009
+ | Creation of LRPs is guided by Business Development who operates on a one-year cycle,
2010
+ | based on accounting cycles including the government budgetary process. Research
2011
+ | groups typically operate on one-year cycles also, based on an internal budget allocation
2012
+ | cycle. Research reports are published and filed annually, and other internal information
2013
+ | products support these efforts. Research groups frequently develop new Prototype
2014
+ | Systems to demonstrate new capabilities to Program Management. These might take two
2015
+ | years to develop.
2016
+ blank |
2017
+ |
2018
+ text | To produce the product stream, the actors within the engineering community must
2019
+ | exchange information in a timely and focused manner. (Note that faster information
2020
+ | exchange is frequently better for quicker growth, unless the information transfer is so
2021
+ | quick it is misunderstood, or not yet broadly applicable.)
2022
+ blank |
2023
+ |
2024
+ meta | 32
2025
+ text | Actors (and groups of actors) within our design community also transfer part of the
2026
+ | evolving context, in addition to official design documents or drawings, as a broad
2027
+ | synchronization method. Thus, the information exchanged within the community is the
2028
+ | combination of newly created technology pieces and components, and the updated
2029
+ | pointers/relations to additional sources/actors.
2030
+ blank |
2031
+ |
2032
+ text | “In larger organizations, the complexity is vastly different and the chance for deep
2033
+ | personal co-commitment is diminished. Ad hoc exchanges within one’s personal
2034
+ | network do happen, but systematic knowledge sharing usually requires brokering through
2035
+ | people or technology. Along with brokering come issues such as knowledge
2036
+ | identification, verification, and validation [Leifer 1999].”
2037
+ blank |
2038
+ |
2039
+ text | “[All organizations] can benefit from the implementation of a central knowledge capture
2040
+ | and re-use infrastructure, a core technology for sharing and learning from each other,
2041
+ | peer-to-peer. In large institutions (greater than 500 people) this infrastructure will have to
2042
+ | be explicit and managed separately from the design team support infrastructure.” [Leifer]
2043
+ blank |
2044
+ |
2045
+ text | A separate explicit infrastructure however becomes problematic, especially on projects
2046
+ | with long time scales (~10 years). Issues arise that interfere with having a consistent
2047
+ | structure. The portfolio of projects across a large organization use different engineering
2048
+ | tools. This will always be true because of a mismatch of time frequencies between new
2049
+ | tools and new projects, and the fact you can’t and don’t want to update your tools all at
2050
+ | once on a preordained schedule. Also actors bring different sets of tool knowledge with
2051
+ | them to each activity. It actually takes some finite time for a team to get synchronized on
2052
+ | common tools and data structures. Much training is completed on the job, with no
2053
+ | separate time allotment and no separate instructors, with the result that tools are not
2054
+ | always used as they were designed, nor to their full potential. Finally, retrieval of old
2055
+ | knowledge becomes problematic and time consuming, and may become moot as different
2056
+ | technologies advance at different rates, opening up new solution spaces for consideration.
2057
+ blank |
2058
+ |
2059
+ |
2060
+ |
2061
+ meta | 33
2062
+ text | Another issue arising from large organizations that affects knowledge retention and
2063
+ | retrieval is that engineering team members do not always follow a project from
2064
+ | conception through design, manufacture, production, maintenance, and growth.
2065
+ | Typically, engineers focus on one stage of design. As a result the information associated
2066
+ | with a project bifurcates, with one instance progressing with the product as the product
2067
+ | “design” and “context”, and the other instance going with the engineer or data base to a
2068
+ | new product at a similar stage as “knowledge”.
2069
+ blank |
2070
+ |
2071
+ |
2072
+ title | 3.2.2 Information Modeling
2073
+ text | Information is modeled similarly to entropy, and transcends its basis in statistical
2074
+ | mechanics “to describe any system with states {i} and a given probability distribution
2075
+ | {pi}. Credit for realizing this is usually given to Shannon [Shannon 1948], although
2076
+ | antecedents include Szilard, Nyquist, and Hartley.”[Bais 2010] Treating information this
2077
+ | way is useful to analyze and design communication and encryption systems.
2078
+ blank |
2079
+ |
2080
+ text | Shannon proposed that by analogy to the entropy S, information can be defined as
2081
+ blank |
2082
+ |
2083
+ text | H = -ipilogpi
2084
+ blank |
2085
+ |
2086
+ text | A microstate pi is one particular instantiation of all the degrees of freedom of our system.
2087
+ | If there are N particles (or bits of information), and each bit can have 2 values, then there
2088
+ | are 2N possible microstates. The space of possible microstates is called the phase space.
2089
+ blank |
2090
+ |
2091
+ text | Information is usually written as I() to emphasize its dependence on the scale of
2092
+ | resolution of the measurements (and without the Boltzman constant)
2093
+ blank |
2094
+ |
2095
+ text | I() = -ipilogpi
2096
+ blank |
2097
+ |
2098
+ text | This () can be used to define the information dimension
2099
+ blank |
2100
+ |
2101
+ |
2102
+ |
2103
+ meta | 34
2104
+ text | D = lim( ->0) ( I() / |log | )
2105
+ blank |
2106
+ |
2107
+ text | which becomes the fractal dimension with sufficient resolution.
2108
+ blank |
2109
+ |
2110
+ text | In information theory it is common to take logarithms in base two. Units of information
2111
+ | are called bits as opposed to ‘nats’ for entropy with the conversion that 1 nat = 1.443 bits.
2112
+ blank |
2113
+ |
2114
+ text | Each information package can have its information content “I” measured. The
2115
+ | information content is a higher level abstraction from the data contained in the package.
2116
+ blank |
2117
+ |
2118
+ text | Information exchange between actors can be modeled with information theory. Here we
2119
+ | will distinguish information transfer from information acquisition or creation (as in a lab
2120
+ | or designer’s mind).
2121
+ blank |
2122
+ |
2123
+ text | If we assume the information being transferred can be represented with i bits of
2124
+ | resolution r, then the piece of information being transferred by actor x, I(x), can be
2125
+ | represented as
2126
+ | I(x) = -iPx(xi)log2Px(xi) (1)
2127
+ blank |
2128
+ |
2129
+ text | The new (conditional) information received by actor y from the information sent by actor
2130
+ | x will be
2131
+ | I(y|x) = -iPx(xi)jPy|x(yj|xi)log2Py|x(yj|xj) (2)
2132
+ blank |
2133
+ |
2134
+ text | This equation expresses the fact that the receiver must interpret (decode) the information
2135
+ | he receives based on their previous mutual understanding.
2136
+ blank |
2137
+ |
2138
+ |
2139
+ |
2140
+ meta | 35
2141
+ title | 3.2.3 Product Entropy and Information Packages
2142
+ text | In discussing information content (I(x)) as opposed to information transfer, the entropy
2143
+ | (information) level of a possible conceptual design is very high in that there are a very
2144
+ | large number of ways the design could be implemented; different functions included;
2145
+ | different materials used; different reliabilities; etc. The entropy level of a completed
2146
+ | product is close to zero in that the design is frozen. This “zero” entropy is a relative
2147
+ | value since there is still myriad flexibility in subsequent product use, in product
2148
+ | combinations, etc. (Figure 3-3).
2149
+ blank |
2150
+ |
2151
+ |
2152
+ |
2153
+ text | Figure 3-3 Product Entropy Flexibility for Related Designs
2154
+ | Entropy (s) is very large when a design problem starts. As decisions are made, materials chosen,
2155
+ | and functionality included, entropy is reduced until there is no flexibility (s = 0) in the final
2156
+ | product. At an earlier preliminary design stage (s > 0), there is flexibility in the design to create
2157
+ | different possible variants. The set of possible variants is a Hilbert space.
2158
+ blank |
2159
+ |
2160
+ |
2161
+ |
2162
+ text | Likewise the entropy of a new technology or technique is very large. This new material
2163
+ | or new processor could be used in thousands of different products; the process could be
2164
+ | refined through cost reduction, or not, which would drive how and where it would be
2165
+ | used. Of course, in this sense the entropy will likely grow as the ideas expand.
2166
+ blank |
2167
+ |
2168
+ |
2169
+ meta | 36
2170
+ text | The entropy evolution of a product over the design life is an interesting phenomenon. If
2171
+ | you have a product that you want to incrementally improve, you would need to step back
2172
+ | some number of “computation” steps to find a sufficiently flexible design space (with
2173
+ | more entropy) that allows you to move forward with a slightly different instantiation
2174
+ | using other technology for your new product.
2175
+ blank |
2176
+ |
2177
+ text | In quantum information theory, the physical state is described by a wave function that
2178
+ | can be thought of as a vector in an abstract, multi-dimensional state, called a Hilbert
2179
+ | space. Hilbert space replaces the concept of phase space in classical mechanics. An
2180
+ | important difference is that many quantum information quantities cannot be measured
2181
+ | simultaneously. Also, as time passes and the q-bits become less deterministic, the Hilbert
2182
+ | space rapidly diverges away from what you have earlier defined.
2183
+ blank |
2184
+ |
2185
+ text | Note that another interesting phenomenon is observed in product families. Here you
2186
+ | would like to have an intermediate shelf (stage) that has enough flexibility to be able to
2187
+ | evolve in several directions, or allows a time-phased introduction corresponding to a
2188
+ | time-phased improvement of your particular core technology. The essential conundrum
2189
+ | is to have the right amount of breadth so that you can easily arrive at your next step, but
2190
+ | not too much breadth which can be confusing and hard to consider (Figure 3-4). This
2191
+ | “shelf” stage must be stored and documented.
2192
+ blank |
2193
+ |
2194
+ |
2195
+ |
2196
+ meta | 37
2197
+ text | ln(x)
2198
+ blank |
2199
+ text | t2
2200
+ blank |
2201
+ text | Design Space
2202
+ | t1
2203
+ | Q = f(Mt)
2204
+ blank |
2205
+ text | S>f
2206
+ | S >> f S = f (relative)
2207
+ blank |
2208
+ |
2209
+ |
2210
+ |
2211
+ text | Figure 3-4 Product Entropy Levels for different rates of Growth
2212
+ | Intermediate shelves (stages) have design flexibility (s > 0) to be able to evolve in several directions, or
2213
+ | allow a time-phased introduction corresponding to a time-phased improvement of your particular
2214
+ | core technology. Since the Hilbert space rapidly diverges away from what you have earlier defined,
2215
+ | the essential conundrum is to have the right amount of breadth so that you can easily arrive at your
2216
+ | next step, but not too much breadth which can be confusing and hard to consider
2217
+ blank |
2218
+ |
2219
+ |
2220
+ |
2221
+ text | Controlling the entropy level (information level) is one of the functions of organizational
2222
+ | computation.
2223
+ blank |
2224
+ |
2225
+ |
2226
+ |
2227
+ meta | 38
2228
+ title | 3.2.4 Information Growth, and Product Evolution
2229
+ blank |
2230
+ |
2231
+ text | The degree to which the state of an actor (or group) at one point in time determines the
2232
+ | state of a different actor at a subsequent point in time is driven by the mutual information
2233
+ | between these observations, and the conditional information between them. The mutual
2234
+ | information I(x/\y) = I(x) intersect I(y) is the common set of knowledge that allows them
2235
+ | to understand each other and includes the range from basic engineering equations to
2236
+ | current catalog numbers. When Actor X discovers new information I(xi+1) > I(xi) and
2237
+ | wants to transfer this information to Actor Y, he will encode it for transfer based on
2238
+ | mutual information I(xi/\y) and conditional information I(y|xi).
2239
+ blank |
2240
+ |
2241
+ text | For two correlated events x and y, the relations between the information I(x), conditional
2242
+ | information I(x|y), joint information I(x,y), and mutual information I(x/\y) are illustrated
2243
+ | in (Figure 3-5) [Metzler 2003].
2244
+ blank |
2245
+ |
2246
+ |
2247
+ |
2248
+ text | Figure 3-5 Mutual and Conditional Information
2249
+ blank |
2250
+ |
2251
+ |
2252
+ |
2253
+ meta | 39
2254
+ text | For engineering design we are interested mainly in post-diction. Post-diction is the
2255
+ | forward use of information to increase the knowledge of another actor in a strictly
2256
+ | subsequent time state. The initiator’s message is based on his current state, and the
2257
+ | receiver interprets it according to what the receiver knows. (Note that this is the inverse
2258
+ | direction to prediction (coding) wherein one could compute the desired resolution or
2259
+ | scale that the sender should use.) The mutual information I(y/\x) is simply the difference
2260
+ | between input information I(x) and the conditional information I(x|y) or I(y) and I(y|x).
2261
+ | The quality of the information received by Actor Y (at a subsequent time i + n) will be a
2262
+ | function of the accuracy of coding I(x|y) given I(x/\y). Thus
2263
+ blank |
2264
+ |
2265
+ text | I(yi+1) = I(xi/\y) + I(xi+1|y)f(I(xi/\y)) (3)
2266
+ blank |
2267
+ |
2268
+ text | Mutual information I(xi/\yi) is not static, and actors’ mutual information will decrease
2269
+ | over time if not refreshed or synchronized. This can be thought of as the actors evolving
2270
+ | separately, starting to use different materials, using different design lingo [Leifer 1999],
2271
+ | or even working on different programs or products.
2272
+ blank |
2273
+ |
2274
+ text | Given our logarithmic definition of information, we note that mutual information decays
2275
+ | to zero on the order(log r) time steps, where r is the resolution of the information.
2276
+ | Statically, without refresh, I(x/\y) will naturally approach 0 on orders similar to product
2277
+ | life, material life, and/or component life. This is similar to having a design use a
2278
+ | particular Digital Signal Processor (DSP) that goes out of production and must now be
2279
+ | replaced with a different technology. For our community, this is on the order of 5 to 12
2280
+ | years for aerospace type products. This will be discussed more later.
2281
+ blank |
2282
+ |
2283
+ text | When I(x/\y) reaches zero, it creates a wall within the complex (design community)
2284
+ | where information is not flowing. This has several effects. For one, it reduces the
2285
+ | computational efficiency of the organization. For another, it effectively creates separate,
2286
+ | competing sub-complexes. In a small scale industry this could be good as it maintains a
2287
+ | vibrant population of new small businesses. For our very large systems within our
2288
+ | constrained resources, this is not good. A third side effect that may occur as a result of
2289
+ blank |
2290
+ |
2291
+ |
2292
+ meta | 40
2293
+ text | losing mutual information coherence is that the group that is cut off may die (or become
2294
+ | irrelevant). At this point it would be consuming resources without a useful output or, if
2295
+ | recognized, it would have to be reabsorbed with the concomitant costs of re-training.
2296
+ blank |
2297
+ |
2298
+ |
2299
+ |
2300
+ meta | 41
2301
+ title | 3.3 Task Variety
2302
+ blank |
2303
+ title | 3.3.1 Variety and Information Processing
2304
+ text | Variety is defined as the set of actions needed by an actor to execute an activity, where an
2305
+ | actor can be an individual, a group of individuals, or a group of groups. The set of
2306
+ | actions includes information gathering, information creation and processing, distribution
2307
+ | of resultant information, self control, and environmental interaction with other actors.
2308
+ | Executing a task requires an actor to have sufficient variety to perform all of the
2309
+ | component activity required to execute the task.
2310
+ blank |
2311
+ |
2312
+ text | It is conventional to measure variety, like information, in logarithmic units so that the
2313
+ | total variety of a set of independent components V=log(M) is the sum of the variety of
2314
+ | the components, V=Nv, where v=log(m).
2315
+ blank |
2316
+ |
2317
+ text | The key to task analysis of the variety of any system is that each of the actors has a limit
2318
+ | on its variety – the logarithm of the number of distinguishable states. Components can be
2319
+ | individuals that act in performing tasks, or individuals that manage or coordinate tasks or
2320
+ | serve as communications channels. [Bar-Yam 2004b]
2321
+ blank |
2322
+ |
2323
+ text | Assume that the design system is composed of a number of subsystems, N, that are
2324
+ | variously coordinated to respond to external contexts. The number of possible actions
2325
+ | that the system can take, M, is not more than mN, the product of the possible actions of
2326
+ | each part, m. We further constrain the problem of effective function by assuming that
2327
+ | effective actions require a sufficient variety at each scale of action corresponding to the
2328
+ | requirements for action at that scale. At every scale the variety of the system must be
2329
+ | larger than the variety necessary for the task. [Bar-Yam 2004b]
2330
+ blank |
2331
+ |
2332
+ text | Assuming a simple coordination mechanism such that the system is partitioned into
2333
+ | groups that are fully coordinated and that different groups are independent of each other,
2334
+ | then the variety of actions of each group is the same as the variety of actions of any
2335
+ | individual of that group, and the scale of action is just the number of individuals in that
2336
+ blank |
2337
+ |
2338
+ meta | 42
2339
+ text | group. For the entire system the variety at scale k is D(k)=vn(k) where n(k) is the
2340
+ | number of different k-member fully coordinated groups needed to perform the entire task,
2341
+ | which therefore at a minimum requires N=kn(k) components to perform. The total
2342
+ | variety of the task is proportional to the total number of subsets of any scale V=D(k).
2343
+ | [Bar-Yam 2004b]
2344
+ blank |
2345
+ |
2346
+ text | With these assumptions, given a predetermined number of components N, the system
2347
+ | can, in the extreme, perform a task of scale N, with variety equal to that of one
2348
+ | component, or a task of scale one with variety N times as great.
2349
+ blank |
2350
+ |
2351
+ text | More generally the equation Nv=kD(k) can be considered a constraint on the possible
2352
+ | behaviour patterns (sum rule) of a system due to different mechanisms of organization. It
2353
+ | is often convenient to think about the variety of a system, V(k), that has a scale k or
2354
+ | larger, as this is the set of possible actions that can have at least that scale,
2355
+ blank |
2356
+ text | V(k) = Σ D(k’) (summed for k’ = k,N and 1 < k < N)
2357
+ blank |
2358
+ |
2359
+ text | Then the total variety of the system is V(1), and the sum rule can be written as:
2360
+ blank |
2361
+ text | Σ V(k) = Nv (summed for k = 1,N)
2362
+ blank |
2363
+ |
2364
+ text | This equation “describes the existence of a tradeoff between variety at different scales.
2365
+ | Increasing the variety at one scale by changing the organizational form must come at the
2366
+ | expense of variety at other scales.” [Bar-Yam 2004 p.19]
2367
+ blank |
2368
+ |
2369
+ text | Hierarchical systems have performance limits. Scale-free organizations avoid these
2370
+ | limits by adding (essentially) communication paths which avoid variety limits, but the
2371
+ | price is loss of controllability. The balance of controllability and efficiency is important,
2372
+ | especially for Mega-Systems, and provides a distinguishing characteristic from
2373
+ | Evolutionary Engineering which has been primarily developed for larger populations
2374
+ | without considering costs of scale, or even availability at scale.
2375
+ blank |
2376
+ |
2377
+ |
2378
+ |
2379
+ meta | 43
2380
+ title | 3.3.2 Variety in Distributed Product Development
2381
+ text | Performance of distributed complex product development networks has been analyzed to
2382
+ | discover the role of various types and mixes of variety in system development. For
2383
+ | instance [Braha 2007] studied relations between input and output tasks, design iterations,
2384
+ | and convergence in large distributed task networks for product design of complex
2385
+ | systems such as vehicles, hospitals, and pharmaceutical facilities. This analysis was
2386
+ | based on detailed design process models and task networks as shown in Figure 3-6.
2387
+ blank |
2388
+ |
2389
+ |
2390
+ |
2391
+ text | Figure 3-6 Design Process Models and Networks
2392
+ | This PD task network consists of 1,245 directed information flows between 466 development tasks.
2393
+ | Each task is assigned to one or more actors (“design teams” or “engineers”) who are responsible for
2394
+ | it. [Braha 2007] Input information can be ‘external’, intra-disciplinary’, or ‘cross-disciplinary’.
2395
+ | Output information moves toward the right. The primary diagram shows a closeup of three tasks
2396
+ | with 17 information streams; the inset shows the overall (quasi-scale-free) network.
2397
+ blank |
2398
+ |
2399
+ |
2400
+ meta | 44
2401
+ text | Some of the interesting results from these studies showed that limits on input versus
2402
+ | output variety had emergent effects on design convergence (Figure 3-7). In this case, one
2403
+ | would apply special attention to tasks with a large number of outputs.
2404
+ blank |
2405
+ |
2406
+ |
2407
+ |
2408
+ text | Figure 3-7 Meta-Performance Measures of Distributed Product Development
2409
+ | Research results show that limits on input versus output variety has emergent effects on design
2410
+ | convergence. In this case, one would apply special attention to tasks with a large number of outputs.
2411
+ | [Braha 2007]
2412
+ blank |
2413
+ |
2414
+ text | However, a major limit on these types of analysis is an assumption of homogenous
2415
+ | communication channels. Also these links are directed and have a single defined
2416
+ | information package. Another limit is that the transfer of information was assumed to be
2417
+ | 100% complete so there was no degradation due to scale. These limits will be addressed
2418
+ | in Section 4.0.
2419
+ blank |
2420
+ |
2421
+ |
2422
+ meta | 45
2423
+ title | 3.4 Information Transfer in Chaotic Channels
2424
+ blank |
2425
+ title | 3.4.1 Dynamical Systems and the Logistics Map
2426
+ text | Dynamical systems evolve over time. The composition/capabilities evolve as a function
2427
+ | of the previous state. One model of interest representing this behaviour is the logistic
2428
+ | equation. “The logistic equation (sometimes called the Verhulst model, logistic map, or
2429
+ | logistic growth curve) is a model of population growth first published by Pierre Verhulst
2430
+ | [Verhulst 1838]. The Verhulst model is continuous in time, but a modification of the
2431
+ | continuous equation to a discrete quadratic recurrence equation is also known as the
2432
+ | logistic model.” [http://mathworld.wolfram.com/LogisticEquation.html] The logistic
2433
+ | map is the name given to one particularly useful way of expressing the logistic model:
2434
+ blank |
2435
+ |
2436
+ text | nt+1 = (birthrate – deathrate)[knt – nt2]/k
2437
+ blank |
2438
+ |
2439
+ text | where nt is the population at the current generation and k is the carrying capacity. To
2440
+ | derive the logistic map from this model, let
2441
+ | xt = nt/k, and
2442
+ | a = (information creation rate – information annihilation rate)
2443
+ | to get the map posed as a simple iteration:
2444
+ blank |
2445
+ |
2446
+ text | xt+1 = axt (1 - xt) (4)
2447
+ blank |
2448
+ |
2449
+ text | Note that xt is a fraction of the carrying capacity (from the population model). For us,
2450
+ | this is the amount of the original information that is still understandable over the passage
2451
+ | of time as t --> t + 1. The variable ‘a’ represents the rate of net information production.
2452
+ blank |
2453
+ |
2454
+ text | The logistic map can be used to study the behaviour of complex systems over time as
2455
+ | they evolve. For our model of mega-design communities, the link performance between
2456
+ | two groups will evolve over time, causing the relationship of the two groups to evolve in
2457
+ | response. As each link in our quasi-scale-free community evolves according to its own
2458
+ | characteristics, the overall design community will evolve in a doubly complex fashion.
2459
+ blank |
2460
+ |
2461
+ meta | 46
2462
+ text | The logistic map is frequently called the chaos model, and discussions of information
2463
+ | transfer in complex systems are sometimes discussed as information transfer in chaotic
2464
+ | channels.
2465
+ blank |
2466
+ |
2467
+ text | One representation of the behaviour of our dynamical system is shown in (Figure 3-8)
2468
+ | [Mitchell 1992], which shows how the output in these systems quickly become
2469
+ | unpredictable (chaotic). The bifurcation points, where one path expands into two, are
2470
+ | strange attractors and represent areas of local stability.
2471
+ blank |
2472
+ |
2473
+ |
2474
+ text | B C
2475
+ | A
2476
+ blank |
2477
+ |
2478
+ |
2479
+ |
2480
+ text | Figure 3-8 Bifurcation Diagram
2481
+ | The bifurcation points, where one path expands into two, are strange attractors and represent
2482
+ | areas of local stability. In this diagram the areas of local stability are (A) 3.0, (B) 3.45, and (C) 3.55.
2483
+ blank |
2484
+ |
2485
+ |
2486
+ |
2487
+ text | “Note that for an N dimensional dynamical system there are N Lyapunov exponents. The
2488
+ | positive Lyapunov exponents + measure the rates of exponential divergence, and the
2489
+ | negative ones - the rates of convergence.” [Bais 2010] The sum of the positive
2490
+ | Lyapunov exponents (the metric entropy) and the information dimension can be used to
2491
+ | estimate the amount of time that postdictions remain valid.
2492
+ blank |
2493
+ |
2494
+ |
2495
+ meta | 47
2496
+ title | 3.4.2 Information Transfer in Chaotic Channels
2497
+ blank |
2498
+ |
2499
+ text | Earlier (Section 3.2), information was modeled in a general, bi-directional sense. Now
2500
+ | we want to look at the time sequence of information and how it behaves as it moves into
2501
+ | subsequent states. Conditional information transfer was defined in equation (2). Actor X
2502
+ | starts with some particular, local information iPx(xi), so that our local conditional
2503
+ | information becomes
2504
+ blank |
2505
+ |
2506
+ text | Il(y|x) = jPy|x(yj|xi)log2Py|x(yj|xj) (5)
2507
+ blank |
2508
+ |
2509
+ text | We can define a variable for the rate of information change d = dy/dx which represents
2510
+ | how the information is changed by the environment during a transfer (or over time). This
2511
+ | includes both to the dissipation rate and to the divergence rate.
2512
+ blank |
2513
+ |
2514
+ text | Assuming sufficiently fine resolution, the conditional information at a subsequent time
2515
+ | from a given initial state can be solved to be:
2516
+ blank |
2517
+ |
2518
+ text | < Il(y|x)>o = log2d + 1/(2dln2) (6)
2519
+ blank |
2520
+ |
2521
+ text | Now we subject the conditional information (equation (6)) to evolution in the logistics
2522
+ | map (equation (4)). This can be computed by numerical integration (avoiding the
2523
+ | singularity at d = 1). Results are shown in Figure 3-9 (note a = d). Even after only 3
2524
+ | iterations, it can be seen that I(y/\x) is no longer monotonic in a – several maxima of
2525
+ | conserved information can be seen. I(y|x) does not depend strongly on r, whereas the
2526
+ | other quantities include an additive term of log2r [Metzler 2003].
2527
+ blank |
2528
+ |
2529
+ |
2530
+ |
2531
+ meta | 48
2532
+ text | t=2 t=3
2533
+ blank |
2534
+ |
2535
+ |
2536
+ |
2537
+ text | Figure 3-9 Conditional, mutual, and total information for two and three time steps
2538
+ | “Here, I(y|x) represents the uncertainty generated by stretching and compressing; I(x) – I(y)
2539
+ | represents the uncertainty through shrinking of phase space; and I(x) – I(y/\x) is the average
2540
+ | information necessary to reconstruct x from knowledge of y. The mutual information I(y/\x) is the
2541
+ | amount of information about the initial state retained after the mapping [Metzler 2003].
2542
+ blank |
2543
+ |
2544
+ |
2545
+ |
2546
+ text | For intermediate time iterations (3 < t < 100), Figure 3-10 shows the mutual information
2547
+ | at various intermediate times (note a = d). Several large peaks are apparent. The wider
2548
+ | peaks in Figure 3-10 at a = 1, 3, and 3.54 correspond to the bifurcation points. There, the
2549
+ | Lyapunov exponent is 0 and deviations from the fixed point or cycle decay like a power
2550
+ | law rather than exponentially. These broader peaks indicate information transfer regimes
2551
+ | that are still working effectively, as long as you can choose the correct formatting.
2552
+ blank |
2553
+ |
2554
+ |
2555
+ |
2556
+ meta | 49
2557
+ text | B C
2558
+ | A
2559
+ blank |
2560
+ |
2561
+ |
2562
+ |
2563
+ text | Figure 3-10 Mutual information for larger iterations of time
2564
+ | The wider peaks at a = 1, 3, and 3.54 correspond to the bifurcation points. There, the Lyapunov
2565
+ | exponent is 0 and deviations from the fixed point or cycle decay like a power law rather than
2566
+ | exponentially [Metzler 2003]. These broader peaks (A, B, and C) indicate information transfer
2567
+ | regimes that are still working effectively, as long as you can choose the correct formatting.
2568
+ blank |
2569
+ |
2570
+ text | “The narrow peaks (e.g. near a = 1.3, 1.6, and 2.5) occur when the fixed point is very
2571
+ | close to the boundary between two bins, such that small deviations from the fixed point
2572
+ | lead to ambiguities in the outcome. They change positions if the binning [resolution] is
2573
+ | chosen differently.” [Metzler 2003] This is similar to data aliasing caused by information
2574
+ | transfer between groups within our design community. These effects will be described in
2575
+ | Section 4.3 - Section 4.6.
2576
+ blank |
2577
+ |
2578
+ |
2579
+ |
2580
+ meta | 50
2581
+ title | 3.4.3 Multi-scale Information Transfer
2582
+ blank |
2583
+ |
2584
+ text | Regarding information transfer between two actors, if the message received is completely
2585
+ | uncertain, the message is lost – this is often the case in chaotic systems. On the other
2586
+ | hand if all received messages appear to be the same, the recipient cannot determine what
2587
+ | message he was supposed to receive – this can occur in dissipative systems.
2588
+ blank |
2589
+ |
2590
+ text | “Dissipation and chaos have a common aspect: in both cases the dynamics makes a
2591
+ | connection between large and small scales. Chaotic dynamics amplify small differences
2592
+ | in the initial states until they reach macroscopic proportions, whereas dissipative
2593
+ | dynamics shrink differences until they vanish below the threshold of perception.” [Bais
2594
+ | 2010]
2595
+ blank |
2596
+ |
2597
+ text | For our discussion, we will customize the following definitions of variables:
2598
+ blank |
2599
+ |
2600
+ text | a = = the (designed) spread rate of information. (Too high and too much non-
2601
+ | synchronized information results in chaos; too low and dissipation (friction)
2602
+ | slows information exchange so much that there is no growth from synergy.) (This
2603
+ | is similar to the amplification parameter in logistics map terminology which is a
2604
+ | combination of growth rate and death rate.) “a” is a controllable or cultivatable
2605
+ | parameter.
2606
+ blank |
2607
+ |
2608
+ text | r = = resolution. Information packets have behaviors related to their size divided
2609
+ | by the resolution of the information. Packetization of the information at some
2610
+ | resolution is related to the size of the producing group: individual researchers or
2611
+ | other producers that have high r create so much information that the channel
2612
+ | becomes clogged. Clumping the information (to a higher scale) lets it spread
2613
+ | better because it rejects noise.
2614
+ blank |
2615
+ |
2616
+ |
2617
+ |
2618
+ meta | 51
2619
+ text | t = = time. We will calculate the individual time scales based on a static
2620
+ | dissipation time of 5 years, or 60 months or 250 weeks. In order for our scale to
2621
+ | span orders of magnitude, we will work in weeks.
2622
+ blank |
2623
+ |
2624
+ text | X = = Sender.
2625
+ | Y = = Receiver.
2626
+ blank |
2627
+ |
2628
+ text | Organizations have both peer and hierarchical levels of “production” that affect
2629
+ | information transfer and consumption. We will next define multi-scale, and then three
2630
+ | types of multi-scale parameters: organizational, task, and time scales.
2631
+ blank |
2632
+ |
2633
+ text | A) Multi-scale Defined [Bar-Yam 2004b]
2634
+ | Multi-scale effects can be pictured by imagining information at different scales
2635
+ | analogously to multi-scale real numbers. “On one hand, each real number can be
2636
+ | represented by one point on the real axis – it is a one-dimensional quantity. On the other
2637
+ | hand, in the usual descriptions (decimal, binary, etc.), real numbers are represented by a
2638
+ | set of integers that stand for different scales – the scales of 1s, 10s, 100s, etc. This makes
2639
+ | sense because it reflects what happens when some x is added to x: the digits of x are
2640
+ | strongly affected for all scales finer than the scale of x, and weakly affected for coarser
2641
+ | scales. There are two [aspects] with the usual representations: first, they are
2642
+ | discontinuous: a small change on a fine scale will have no effect at all on coarser scales
2643
+ | most of the time, but a dramatic effect in rare cases (such as when 0.001 is added to
2644
+ | 0.999). This is a necessary side effect of using discrete (integer) representations on each
2645
+ | scale. Second, they do not lend themselves to simple modification under multiplication:
2646
+ | multiplication is basically a convolution of the representations of the two factors.
2647
+ | Whereas multiplications with numbers that have a simple representation in the chosen
2648
+ | base gives a shift (e.g. multiplication with 10 in the decimal representation just shifts the
2649
+ | decimal point), all other factors lead to changes throughout the scales.”
2650
+ blank |
2651
+ |
2652
+ |
2653
+ |
2654
+ meta | 52
2655
+ title | B) Organization Scales
2656
+ text | For our engineering community, one instantiation of scale that can be easily recognized is
2657
+ | levels in an organizational hierarchy. Information being passed up and down the chain
2658
+ | gets compressed or expanded for delivery. Months’ worth of testing is compressed into a
2659
+ | report that the group delivers to their manager. The manager uses certain meta-aspects at
2660
+ | his level (budget spent, Intellectual Property (IP) filed, etc.) but has no visceral under-
2661
+ | standing of whether the new component is easy or hard to use, and whether it provides
2662
+ | the improved performance easily or only with great tweaking. The report may be filed in
2663
+ | an IP repository. Later, a design group looking for a new component accesses the reports
2664
+ | and tries to understand it enough to determine if they should use it in their product.
2665
+ blank |
2666
+ |
2667
+ text | So vertical-organization information-transfer either dissipates information (upward), or it
2668
+ | adds noise (chaos) (downward) (unless accompanied by additional (decompression)
2669
+ | information).
2670
+ blank |
2671
+ |
2672
+ text | An Organizational Aliasing Factor (OAF) is defined, and estimated to be on the order of
2673
+ | the relative sizes of the hierarchical groups. For instance, if a manager has ten
2674
+ | subordinates, then:
2675
+ | OAF = O( scale)
2676
+ | = O(10) – O(1)
2677
+ | =1
2678
+ | This factor is similar to limits on organizational controllability [Hogg 2001].
2679
+ blank |
2680
+ |
2681
+ text | C) Variety Scales
2682
+ | Cross-organization information transfer can ostensibly retain the information scale and
2683
+ | relay information at very high bandwidths without loss, although again the transfers are
2684
+ | subject to transmission effects. Cross-organization transfers are often not peer to peer,
2685
+ | and are frequently dis-intermediated by other functional groups.
2686
+ blank |
2687
+ |
2688
+ text | These agents are peer-to-peer agents in a weak sense as defined by Petrie [Petrie 1996].
2689
+ | In this sense they are true agents that provide generation of new information, but they are
2690
+ blank |
2691
+ |
2692
+ meta | 53
2693
+ text | weak in that they do not use standard protocols for communication. Each agent’s
2694
+ | protocols (methods) are particular to that set of agents.
2695
+ | Variety scale differences in peer to peer relations involve the definition of mutual
2696
+ | information needed for the information transfer. These scale differences can arise from
2697
+ | three variables: resolution, translation, and context.
2698
+ blank |
2699
+ |
2700
+ text | Resolution effects occur when the information needs to be further developed to add more
2701
+ | detailed design information.
2702
+ blank |
2703
+ |
2704
+ text | Translation effects occur when the type of information needs to be transformed. For
2705
+ | example, when a prototype’s key development focus was improving and characterizing a
2706
+ | new control system possibly using new lightweight components, and it now needs to be
2707
+ | characterized for material properties for reliability and radiation effects. The original
2708
+ | (controls) engineers may not have documented the reference information needed to start
2709
+ | to collect the information and samples for material environmental testing.
2710
+ blank |
2711
+ |
2712
+ text | Context effects involve the environmental linkages and might include introducing
2713
+ | subcontractors and transferring between points of contact within the subcontractors
2714
+ | organization.
2715
+ blank |
2716
+ |
2717
+ text | We define a Variety Aliasing Factor VAF = ln(V1/V2). Here Variety Vi is estimated to be
2718
+ | linear with the number of people in the group, although other studies [BarYam 2004a]
2719
+ | have addressed fractional variety with non-linear additive effects. VAF has been
2720
+ | computed for each link in our scale-free design community as shown in (Figure 3-11).
2721
+ | Organizational aliasing factors (OAF) are included with variety aliasing factors (VAF)
2722
+ | since each half of an explicit organizational hierarchy should be designed to have the
2723
+ | correct agents to compress / decode the information packages.
2724
+ blank |
2725
+ |
2726
+ |
2727
+ |
2728
+ meta | 54
2729
+ text | Figure 3-11 Values for Combined Organization (OAF) and Variety (VAF) Aliasing
2730
+ | Values in red are the combined OAF and VAF based on the measured organizational values shown
2731
+ | in the Mega-Organization model in Section 2.1
2732
+ blank |
2733
+ |
2734
+ |
2735
+ text | At this level of modeling, we can ignore actor interactions as interposed by variety
2736
+ | [BarYam 2004a] regarding whether they are simply coordinated, fully coordinated, or
2737
+ | independent.
2738
+ blank |
2739
+ |
2740
+ title | D) Time Scales
2741
+ text | Information in our mega-design community is produced by certain groups for certain
2742
+ | purposes. Information can be produced quickly or it may take quite some time.
2743
+ | Consumption rates will be different for different groups and, within groups, will be
2744
+ | different for different types of information. Information exchanges may be scheduled
2745
+ | processes (like quarterly reports), they may be continuous (as may occur within a lab), or
2746
+ | they may be ad hoc.
2747
+ blank |
2748
+ |
2749
+ text | During the early stages of design of a very large product, the design engineers may talk
2750
+ | with laboratory staff frequently to discover the possible span of solutions that are
2751
+ blank |
2752
+ |
2753
+ |
2754
+ meta | 55
2755
+ text | implementable. However, after the PDR (Preliminary Design Review), the design point
2756
+ | has become conceptually fixed and the designers switch from talking with scientists to
2757
+ | talking with component vendors in order to develop a detailed design. The product team
2758
+ | will not talk with the laboratory scientists until after detailed design, manufacturing,
2759
+ | integration, test, launch, and initial operations. There may be a 12 year gap before the
2760
+ | design engineers again talk with the research team. Now, assuming the laboratory is not
2761
+ | lazy, they have been producing research reports for each of the last 12 years (600 weeks)
2762
+ | which have been ignored by the engineers. This is multi-scale aliasing (Figure 3-12).
2763
+ blank |
2764
+ |
2765
+ text | BD PROG R&D
2766
+ blank |
2767
+ |
2768
+ |
2769
+ |
2770
+ text | 1 year Exec Exec Exec
2771
+ blank |
2772
+ text | 3 years
2773
+ | Adjacent BD 3 Executive
2774
+ | 3 Senior Adjacent
2775
+ | Markets Director Staff Support Technologies
2776
+ | 1.5
2777
+ | BD
2778
+ | 12 4 Advanced Senior
2779
+ | Program
2780
+ | Staff Develop Manager
2781
+ blank |
2782
+ text | 2 years
2783
+ | Senior 3 Subsystem CRAD
2784
+ | Senior
2785
+ | Engineer Scientist
2786
+ blank |
2787
+ |
2788
+ text | 12 years 2
2789
+ | Staff
2790
+ | Tools Engineer Engineer Engineer
2791
+ | Scientist
2792
+ | 3
2793
+ | 4 years Discipline
2794
+ | 1 year
2795
+ | Director
2796
+ blank |
2797
+ |
2798
+ |
2799
+ |
2800
+ text | ENG
2801
+ blank |
2802
+ |
2803
+ text | Figure 3-12 Values for Time Aliasing Factor (TAF)
2804
+ | Numbers in black are the event lifetimes for each of the red-boxed major organizational elements.
2805
+ | For instance, ‘Programs’ take 12 years to develop their mega-system; ‘Advanced Development’ takes
2806
+ | 2 years to develop a prototype. TAFs (red numbers), are calculated on links that cross major
2807
+ | boundaries, and are based on the relative values of the two intersecting time epochs.
2808
+ blank |
2809
+ |
2810
+ text | Of course the situation is not quite so simple as there are other mega-products within the
2811
+ | design community that are at different stages of development. So assuming a reasonably
2812
+ | large set of programs, there are likely other efforts that were listening during the
2813
+ | intervening 12 years. But unfortunately with large systems we do not have a normal
2814
+ blank |
2815
+ |
2816
+ |
2817
+ |
2818
+ meta | 56
2819
+ text | distribution of programs, and, operating within a quasi-scale-free organization, there are
2820
+ | other timing constraints.
2821
+ blank |
2822
+ |
2823
+ text | So the opportunity for multi-scale time aliasing is large for organizations dealing with
2824
+ | large products. There are dis-intermediating organizations that are set up to overcome
2825
+ | this time aliasing such as groups that create annual research reports from the continuous
2826
+ | science production, and groups that match business requirements to technical capabilities.
2827
+ | These groups have been inserted onto information transfer paths to reduce multi-scale
2828
+ | aliasing. Balance and effectiveness of these anti-aliasing functions can be analyzed
2829
+ | within our network.
2830
+ blank |
2831
+ |
2832
+ |
2833
+ title | 3.4.4 Combined Varietal, Organizational, and Temporal Aliasing
2834
+ text | The aliasing factors (AF) from individual scale parameters:
2835
+ | TAF = t1/t2
2836
+ | OAF = O(scale)
2837
+ | VAF = ln(V1/V2)
2838
+ | are combined according to an efficiency equation for combined link activity. The total
2839
+ | product information aliasing factor ‘p’, for each link, becomes:
2840
+ | p = π(T,O,V) = (t1/t2)*(O(scale))*(ln(v1/v2))
2841
+ blank |
2842
+ |
2843
+ text | Reference (Figure 3-13). These values will be used in subsequent performance analyses.
2844
+ blank |
2845
+ |
2846
+ |
2847
+ |
2848
+ meta | 57
2849
+ text | Figure 3-13 Network with total Product Information Aliasing Factors (p)
2850
+ | for combined Time, Organization, and Variety Factors
2851
+ blank |
2852
+ |
2853
+ |
2854
+ |
2855
+ meta | 58
2856
+ title | 3.4.5 Noise in Chaotic Channels
2857
+ text | Scale factors cause received/stored information to not equal transmitted/produced
2858
+ | information. Is it noise or is it compression or aliasing? At the level of abstraction we
2859
+ | are discussing here, it does not really matter. What matters is that we have a measure of
2860
+ | the turbulence structure in the link so we can smoothly elide.
2861
+ blank |
2862
+ |
2863
+ text | For individual link smoothing (improvement), there are questions about what kind of
2864
+ | noise and dissipation is injected, and how can it be controlled, reduced, or avoided?
2865
+ | Inversely, how can we amplify “good” information exchange? For example, synthesizing
2866
+ | information into a report or a meeting format compresses it. In order to decompress the
2867
+ | report properly, or at least better, we may want to add the engineer’s names and phone
2868
+ | numbers, or add more hotlinks to the supporting sources.
2869
+ blank |
2870
+ |
2871
+ text | The time length between preparation and consumption also causes dissipation. For
2872
+ | instance, a lab engineer currently remembers how to debug his system, but 6 months later
2873
+ | he would have to refer to his documentation and think for a while and re-analyze his
2874
+ | system. This may not be adjustable, except possibly by deciding whether to use the
2875
+ | prototype system before the inventor has time to forget.
2876
+ blank |
2877
+ title | 3.4.6 Synchronization
2878
+ text | Organizations are kept internally synchronized according to communication among the
2879
+ | actors. The rate, scale, and granularity of synchronization create a characteristic that is
2880
+ | similar to the evolution rate in a computing organism. A tightly coupled organization can
2881
+ | steer more quickly to adapt to changes. One could imagine that steering a big ship is not
2882
+ | as hard as steering a line of barges with a tug at one-end through as s-curve. Despite the
2883
+ | inertia, at least it is tightly coupled.
2884
+ blank |
2885
+ |
2886
+ |
2887
+ |
2888
+ meta | 59
2889
+ title | 4 Application of Integrated Link/Network Model
2890
+ blank |
2891
+ title | 4.1 Matching Scale Dispersion to Time Regimes
2892
+ text | We now interpret and expand the results of previous sections with a view to the problem
2893
+ | of optimal computation (communication) within our organization network. Given the
2894
+ | time scales of product delivery, tool evolution, and staff relocations defined earlier, how
2895
+ | do we select the size of groups, their relationships, and the type of information transfer
2896
+ | and storage (memory), such that we get “low-noise” information spread and growth
2897
+ | within the time frame of evolutionary design?
2898
+ blank |
2899
+ |
2900
+ text | Our goal is to foster a system whose dynamics are somewhat stable to perturbations and
2901
+ | slow compared to the time t. Remember that we are solving the problem of post diction,
2902
+ | not prediction, which is what gives us flexibility for genetic evolution and emergence
2903
+ | within this design organization. This is very significant. Prediction implies accurately
2904
+ | arriving at a predetermined optimal point. Determining the future specification is time-
2905
+ | consuming, and arriving at the point requires extra (control) resources. Post diction
2906
+ | implies efficiently using your (past) resources to move generally toward your goal.
2907
+ blank |
2908
+ |
2909
+ text | The information being received by agent Y (I(y)) is less than the original information I(x)
2910
+ | because of the dynamics of the information carrying capacity of the channel (Figure 4-1).
2911
+ | The received information is a function of I(x^y) and I(x|y). There are certain exchange
2912
+ | resonances where the information scale matches the transmission scale, and the
2913
+ | information is not distorted.
2914
+ blank |
2915
+ |
2916
+ |
2917
+ |
2918
+ meta | 60
2919
+ | 7
2920
+ blank |
2921
+ text | 6 Good Information
2922
+ | 5
2923
+ | Postdiction
2924
+ | Information (bits)
2925
+ blank |
2926
+ text | 4 I(x)
2927
+ blank |
2928
+ text | 3 I(y)
2929
+ | I(y^x)
2930
+ | 2
2931
+ | I(y|x)
2932
+ | 1
2933
+ blank |
2934
+ text | 0
2935
+ | 0.0 1.0 2.0 3.0 4.0
2936
+ | aa
2937
+ blank |
2938
+ text | Figure 4-1 Mutual, Conditional, and Postdicted (I(y)) Information
2939
+ | Information evolution after three time steps. Despite the rapid loss of mutual information I(y^x)
2940
+ | within the first several time steps, there is still enough conditional information I(y|x) in the higher ‘a’
2941
+ | regions to allow good information postdiction I(y) near a=4.
2942
+ blank |
2943
+ text | “For very short times (t < 3), Figure 4-1 shows that agent Y has the best chances of
2944
+ | postdicting the initial state in the chaotic regime near a = 4. “The loss of information
2945
+ | through chaos is not as significant as that through phase space shrinking in the low-a-
2946
+ | regime.” [Metzler 2003] These activities are similar to a technical symposium, where the
2947
+ | information exchange benefits are a massive (iconic) exchange of new techniques and
2948
+ | results. Information transfer is better when a range of engineers attend a conference
2949
+ | rather than ordering a copy of the proceedings and mailing it around to a distribution list
2950
+ | (given that cost is a separate variable).
2951
+ blank |
2952
+ |
2953
+ text | “In the limit of very long times, when the system has converged to its attractors, the only
2954
+ | regime where information about the initial state persists is the bifurcation regimes. What
2955
+ | value of “a” gives optimal transmission depends on the resolution: the recipient has to be
2956
+ | able to resolve all branches of the cycle to make full use of the remaining information.”
2957
+ | [Metzler 2003] This implies the information to be transferred must be completely
2958
+ | defined in a static form with all assumptions and requirements documented; with the
2959
+ | trade space documented; performance results parameterized; and consistent with future
2960
+ | engineering and IT tools. Thus for large t (t > 100), we need to have a = 1. In other
2961
+ blank |
2962
+ |
2963
+ |
2964
+ meta | 61
2965
+ text | words, all details need to be documented in long-term memory as otherwise there will be
2966
+ | insufficient knowledge to interpret the information.
2967
+ blank |
2968
+ |
2969
+ text | The Saturn V rocket used to launch the moon missions is an excellent example. Even
2970
+ | though the rocket was produced for ten years during the 1960s, some items were not
2971
+ | documented, such that when the space program was being restarted in the 1980s and
2972
+ | large lift capacity was needed again, the Saturn V could not be reproduced, and a whole
2973
+ | new design cycle had to be started anew. In fact, forty years later, we are still in the
2974
+ | midst of a ten-year process to design and qualify the new Space Launch System (SLS).
2975
+ blank |
2976
+ |
2977
+ text | For intermediate times (10 < t < 80)), at high “a”, chaotic dynamics eliminates all
2978
+ | information about the initial state; so does fast convergence to a single fixed point for
2979
+ | small “a”. As (Figure 4-2) shows, the quality of agent Y’s mutual information I(x/\y) is
2980
+ | greatest if “a” is close to one of the bifurcation points ( approximately 3 or 3.5), where
2981
+ | convergence follows a power law rather than an exponential. (Remember from Section
2982
+ | 3.4.1 that this is where the solutions change form.)
2983
+ blank |
2984
+ |
2985
+ text | Available/current link transfer rates must match information package delivery type
2986
+ | (resolution), delivery rate, and decoding capability.
2987
+ | 7
2988
+ | B
2989
+ | 6
2990
+ | A C
2991
+ | Mutual Information I(x^y)
2992
+ blank |
2993
+ |
2994
+ |
2995
+ |
2996
+ text | 5
2997
+ blank |
2998
+ text | 4
2999
+ | t = 10
3000
+ | 3 t = 20
3001
+ | t = 40
3002
+ | 2
3003
+ blank |
3004
+ text | 1
3005
+ blank |
3006
+ text | 0
3007
+ | 0.0 1.0 2.0 3.0 4.0
3008
+ | a
3009
+ blank |
3010
+ |
3011
+ |
3012
+ text | Figure 4-2 Mutual information for larger numbers of iterations
3013
+ | The loss of mutual information I(x^y) becomes so significant over longer times that there are only
3014
+ | a few “resonant” regions that allow good information transfer. Information can be exchanged
3015
+ | more completely at certain periods of time in certain formats at the resonant nodes B and C on the
3016
+ | graph where a = 3, and 3.5. Node A has low conditional information, and is unrecoverable despite
3017
+ | reasonable mutual information.
3018
+ blank |
3019
+ meta | 62
3020
+ title | 4.2 Identification of Candidate Links, Nodes, and Chains
3021
+ text | Network performance is evaluated by looking for link/information mismatch. In (Figure
3022
+ | 4-3), the red circles are evaluated for consistency. The checkmarks indicate consistent
3023
+ | link parameters and information formatting. The sad-faces indicate mismatches that will
3024
+ | be discussed in subsequent sections.
3025
+ blank |
3026
+ |
3027
+ text | The product information aliasing factor ‘p’, related to the combination of all the time and
3028
+ | variety scale factors (Figure 3-13), can be placed into three bins:
3029
+ | s – small (1-2) (chaotic)
3030
+ | m – medium (3)
3031
+ | l – large (4-6) (dissipative)
3032
+ blank |
3033
+ |
3034
+ text | These time regimes address the rate of change of I(x/\y) which is essentially the
3035
+ | differential growth rate (in different directions as well as vector magnitudes) of I(x) and
3036
+ | I(y). See (Figure 4-3). The ‘small’ total-aliasing region should be in the broadband
3037
+ | transfer regime (a=4). ‘Large’ (l) and ‘medium’ (m) total-aliasing factors represent
3038
+ | dissipative regions that require defined communications.
3039
+ blank |
3040
+ |
3041
+ text | To modify or adjust the aliasing, you could change the number of people on the link, or
3042
+ | change the percent of people in the transceivers (delta variety ‘receivers’) (V).
3043
+ blank |
3044
+ |
3045
+ |
3046
+ |
3047
+ meta | 63
3048
+ text | BD PROG R&D
3049
+ blank |
3050
+ |
3051
+ |
3052
+ text | Exec Exec Exec
3053
+ blank |
3054
+ text | m=3
3055
+ | Adjacent BD
3056
+ | m=3
3057
+ | a=3 √ Executive
3058
+ |  a=1 Senior Adjacent
3059
+ | Markets Director Staff Support Technologies
3060
+ blank |
3061
+ |
3062
+ text | l=5 m=3
3063
+ | BD
3064
+ | Program a=1 a=1 Advanced Senior
3065
+ | Staff m=3 Develop Manager
3066
+ | a=3 √ √ 
3067
+ | s=2
3068
+ | Senior
3069
+ | Subsystem CRAD
3070
+ | √ a=4 Senior
3071
+ | Tools Engineer m=3 Scientist
3072
+ | a=3 √
3073
+ | s=2
3074
+ | √ a=4 Staff
3075
+ | s=2 Engineer m=3 Engineer Engineer
3076
+ | Scientist
3077
+ | a=1 a=3 √
3078
+ |  Discipline
3079
+ | Director
3080
+ blank |
3081
+ |
3082
+ |
3083
+ |
3084
+ text | ENG
3085
+ blank |
3086
+ |
3087
+ |
3088
+ text | Figure 4-3 Information Transfer Regimes and Amplification Factors
3089
+ | Network performance is evaluated by looking for link/information mismatch. The red circles are
3090
+ | points of interest that have been evaluated for consistency. The checkmarks indicate consistent link
3091
+ | parameters and information formatting. The sad-faces indicate mismatches that will be discussed in
3092
+ | subsequent sections.
3093
+ blank |
3094
+ |
3095
+ |
3096
+ |
3097
+ meta | 64
3098
+ text | The (environmental) transmission/transfer rate of information is represented by ‘a’. This
3099
+ | is proportional to f(birthrate – deathrate), and is similar to the net information creation
3100
+ | rate or circulation rate (recall section 3.4.1).
3101
+ blank |
3102
+ |
3103
+ text | The birthrate could be about 1 month in lab; or about 2 years in contracted research and
3104
+ | development (CR&D) if you assume information is transferred only when the prototype
3105
+ | is delivered. This also implies 3months for technology management reports and one year
3106
+ | for internal research and development (IR&D) management planning. The deathrate is
3107
+ | somewhat constant and could be proportional to engineering re-training rate (~5yrs).
3108
+ | Here, retraining might imply new tools, etc.
3109
+ blank |
3110
+ |
3111
+ text | In (Figure 4-3), on the link between “BD Director” and “Prog Executive Staff”, a = 3 as
3112
+ | there are monthly program coordination meetings and customer meetings every four
3113
+ | weeks. Between “R&D Senior Support” and “Prog Executive Staff”, a = 1 representing
3114
+ | the annual funding cycle, and the annual report. On the two links between “R&D” and
3115
+ | “CR&D Prototyping”, the teams are working shoulder to shoulder with constant
3116
+ | information exchange and a = 4. The “Operational design team” has monthly design
3117
+ | reviews with the “Engineering process control staff” for a = 3; in “Engineering Tool
3118
+ | Development”, it is rare to have a faster update rate than once per year or 50 weeks, so a
3119
+ | = 1. Finally, the delivery of the “CR&D Prototype” to the “Prog Executive Staff” only
3120
+ | occurs every 100 weeks, so a = 1.
3121
+ blank |
3122
+ |
3123
+ text | The resolution ‘r’ which represents the granularity of the information package, whether
3124
+ | delivered face-to-face or in a document, is not a driver. There is only the requirement
3125
+ | that you need a larger ‘r’ for larger ‘a’.
3126
+ blank |
3127
+ |
3128
+ |
3129
+ |
3130
+ meta | 65
3131
+ title | 4.3 Network Improvements
3132
+ text | Network improvements can be assessed both at the individual links and nodes, and over
3133
+ | “link-chains”. Between individual nodes, mismatches of Link parameters (p, a) indicate
3134
+ | a discontinuity, or a mismatch of Lyupanov exponents. Two nodes can improve their
3135
+ | combined performance by exchanging information more efficiently. However, fixing one
3136
+ | link may or may not improve overall system performance, although there will certainly
3137
+ | be local effects.
3138
+ blank |
3139
+ |
3140
+ text | Link-chains of interest focus on particular extended pathways that execute higher level
3141
+ | functions such as translating customer product requirements into research needs.
3142
+ | Evaluation of various link chains can be analyzed both from an a priori interest as well as
3143
+ | from evaluating the scale-free network for paths of poor quality.
3144
+ blank |
3145
+ |
3146
+ text | We will first address Link improvements, then Chain improvements in Section 4.3.1 and
3147
+ | Section 4.3.2, respectively.
3148
+ blank |
3149
+ |
3150
+ |
3151
+ |
3152
+ meta | 66
3153
+ title | 4.3.1 Link Discontinuity Adjustment
3154
+ text | (Figure 4-4) zooms into our design community network to focus on two identified
3155
+ | discontinuities labeled A (sad faces in Figure 4-3). In both of these cases, t = m and a =
3156
+ | 1. The communication timeframe is “medium”, but the information delivered is in the
3157
+ | BD PROG
3158
+ | wrong form (a=1) for direct consumption. Also variety was expended at some costR&D
3159
+ | to
3160
+ | transform the original information (through ‘Executive Staff’ at B), so the resources used
3161
+ | to produce the original information are not being exploited efficiently.
3162
+ | Exec Exec Exec
3163
+ blank |
3164
+ |
3165
+ |
3166
+ text | t=m
3167
+ | BD
3168
+ | B Executive a= 1 Senior Adjacent
3169
+ | A
3170
+ | Director Staff Support Technologies
3171
+ | t=m D
3172
+ | A a= 1 C
3173
+ | BD C Advanced Senior
3174
+ | Program
3175
+ | Staff Develop Manager
3176
+ | C D
3177
+ | D
3178
+ blank |
3179
+ text | Senior Senior
3180
+ | Subsystem CRAD
3181
+ | Engineer Scientist
3182
+ | Figure 4-4 Set of Consistent Guides to Repair Discontinuity
3183
+ | This figure zooms into our design community network to focus on two identified discontinuities
3184
+ | Staff is
3185
+ | labeled A. In both of these cases, p = m and a = 1. So although the communication timeframe
3186
+ | Engineer Engineer Engineer
3187
+ | “medium”, the information delivered is in the wrong form for direct consumption. Scientist
3188
+ blank |
3189
+ text | Adjusting the information transfer regime ‘a’ to 3 for the two links labeled A would
3190
+ | Discipline improve the performance of this system by matching the link parameters. However, this
3191
+ | Director increase in bandwidth (changing ‘a’ from 1 to 3 on two links) must be absorbed by the
3192
+ | consuming agent B in order to maintain overall continuity.
3193
+ blank |
3194
+ |
3195
+ text | ENG The potential information overload at B (from increasing the bandwidth handled) must be
3196
+ | digested by appropriately increasing the Variety (to decode, process, and re-encode).
3197
+ | This could be managed by adding more staff within agent B (Executive Staff), but this is
3198
+ blank |
3199
+ |
3200
+ |
3201
+ meta | 67
3202
+ text | bad for several reasons: first, there are two links so you would need to add two additional
3203
+ | sets; second, the difference in variety is 2 (ln[v1/v2]) which would require significant
3204
+ | additional staff to overcome those magnitudes; and third, the overall link chain would
3205
+ | still be problematic (see section 4.3.2).
3206
+ blank |
3207
+ |
3208
+ text | A better adjustment would be to reconnect the “Advanced Development Group” D with
3209
+ | two new links at C . This matches the agent’s time scales (t = m), has a smaller change in
3210
+ | variety (∆V = O(1)), and addresses overall link chain performance.
3211
+ blank |
3212
+ |
3213
+ text | The final step is to add more Variety at all three D so that the new information flow paths
3214
+ | can be absorbed.
3215
+ blank |
3216
+ |
3217
+ |
3218
+ |
3219
+ meta | 68
3220
+ title | 4.3.2 Link-Chain Improvement
3221
+ text | Link-chains within the extended design community organization can be arbitrarily long.
3222
+ | This is not necessarily an adverse condition, as long as the information is not corrupted
3223
+ | and as long as the information arrives in a timely fashion. In fact, having a quasi-free
3224
+ | scale organization implies some limits on chain lengths (because of the cross
3225
+ | connections).
3226
+ blank |
3227
+ |
3228
+ text | However, by having imposed our external goals/specifications, and our multi-hierarchical
3229
+ | control structure, there are directed links corresponding to control paths required to focus
3230
+ | the community on our particular future goal states. These link-chains need to be
3231
+ | evaluated to make sure the information arrives timely and un-corrupted.
3232
+ blank |
3233
+ |
3234
+ text | Five link chains of interest are computed below. The link-chain “performance” value is a
3235
+ | linear sum of the included links, each of which is composed of variety and other multi-
3236
+ | scale terms. For labeling, the start- and end- Agents are listed, and a representative name
3237
+ | is added in between. Higher values imply more chances for information corruption.
3238
+ blank |
3239
+ |
3240
+ text | (1) ENG -> tools selection and deployment -> PROG
3241
+ | 2 + 2 + 3 + 3 = 10
3242
+ | (2) RES -> technology development -> PROG
3243
+ | 2 + 2 + 2 + 1 + 3 + 5 = 15
3244
+ | (3) BD -> customer requested research -> RES
3245
+ | 2 + 3 + 3 + 1 + 2 + 2 = 13
3246
+ | (4) PROG -> follow-on platforms -> PROG
3247
+ | 12 + 3 = 15
3248
+ | (5) RES -> prototype development and deployment -> LOB
3249
+ | 2 + 2 + 2 + 3 + 5 = 15
3250
+ blank |
3251
+ |
3252
+ text | (Figure 4-5) shows these link-chain paths (directed graphs) within our scale-free design
3253
+ | community network.
3254
+ blank |
3255
+ |
3256
+ |
3257
+ |
3258
+ meta | 69
3259
+ text | BD PROG R&D
3260
+ blank |
3261
+ |
3262
+ |
3263
+ text | Exec 3 Exec Exec
3264
+ blank |
3265
+ text | 1 2 1 1
3266
+ | Adjacent BD Executive
3267
+ | 3 Senior Adjacent
3268
+ | Markets Director Staff Support Technologies
3269
+ | 3 2
3270
+ | 2 2 5
3271
+ | BD
3272
+ | Staff
3273
+ | 3 Program
3274
+ | 5
3275
+ | Advanced
3276
+ | Develop
3277
+ | Senior
3278
+ | Manager
3279
+ blank |
3280
+ text | 2 2 2
3281
+ | Senior 3 Subsystem CRAD
3282
+ | 2 Senior 3
3283
+ | Engineer Scientist
3284
+ blank |
3285
+ text | 2 2 3 2 22
3286
+ | Tools Engineer
3287
+ | 3 1
3288
+ | Engineer Engineer
3289
+ | 2 Staff
3290
+ | 5 Scientist
3291
+ | 1
3292
+ | 2 Discipline
3293
+ | Director
3294
+ blank |
3295
+ |
3296
+ |
3297
+ |
3298
+ text | ENG
3299
+ blank |
3300
+ |
3301
+ text | Figure 4-5 Link-chain Paths of Interest
3302
+ | External goals and specifications, combined with our quasi, scale-free network, create directed links
3303
+ | corresponding to control paths required to focus the community on the particular future goal states.
3304
+ | Numbered blue lines are directed link paths; red numbers are total aliasing factors (TAF) (section
3305
+ | 3.4.4). These link-chains need to be evaluated to make sure the information arrives timely and un-
3306
+ | corrupted. Corruption can be caused by aliasing, occurring either during variety compression /
3307
+ | decoding, or from multi-scale time-aliasing. Case (2), the delivery of new Research products into
3308
+ | large Programs, has the highest TAF corruption factor of 15.
3309
+ blank |
3310
+ |
3311
+ text | Case (2), the delivery of new Research products into large Programs, has the highest
3312
+ | corruption factor of 15. Changes from annealing the discontinuities discussed earlier in
3313
+ | Section 4.3.1 will reduce the link values (aliasing factors) of 5 and 3 to 2 and 2.
3314
+ blank |
3315
+ |
3316
+ text | In addition to making links more efficient, one can also remove links entirely by
3317
+ | implementing organizational or process changes. An example of this, with emergent side
3318
+ | effects, will be discussed in Section 4.4.
3319
+ blank |
3320
+ |
3321
+ text | Another perspective, when looking at an extended chain as opposed to an individual link,
3322
+ | is to adjust link transfer rates (p * a) to all be similar. This similarity indicates similar
3323
+ | efficiencies through the process so that one poor link doesn’t downgrade the values of the
3324
+ blank |
3325
+ |
3326
+ |
3327
+ meta | 70
3328
+ text | attached links. This can be thought of as ensuring the transfer rate of the program staff
3329
+ | (variety providers) is on the same order as the learning rate of the program engineers who
3330
+ | are applying the information to the product, although this doesn’t address whether “V” is
3331
+ | correct.
3332
+ blank |
3333
+ |
3334
+ |
3335
+ |
3336
+ meta | 71
3337
+ title | 4.4 Cultivated Changes and Observed Emergent Side-Effects
3338
+ text | One limit in many organizations is how internal and external research is incorporated into
3339
+ | defined programs delivering products. Delivering major products that are pre-specified
3340
+ | in contracts does not need any new research, so program managers would rather control
3341
+ | internal technology resources to solve contract problems rather than create more new
3342
+ | technologies.
3343
+ blank |
3344
+ |
3345
+ text | This is exactly what is seen comparing a 90/5/5 portfolio to a 50/30/20 portfolio in the
3346
+ | time distribution of R&D allocation. Here, the numbers represent the percent of funds
3347
+ | devoted to “current-technology” / “product-development&qualification-efforts” /
3348
+ | “research-efforts”.
3349
+ blank |
3350
+ |
3351
+ text | Because program managers are not receiving any immediate value from the longer term
3352
+ | investments they try to reallocate all (90%) the R&D money internal to their product
3353
+ | development and production. Since the program managers control the source of income,
3354
+ | they have a large say in how internal funds are allocated. This is more efficient for their
3355
+ | individual program, but puts the company into a weaker long-term competitive posture
3356
+ | (slower evolution rate).
3357
+ blank |
3358
+ |
3359
+ text | A 50/30/20 distribution places more emphasis on research and development and enables a
3360
+ | more forward-leaning product offering that adapts more quickly and takes advantage of
3361
+ | recent advances in technology and new lower cost methods.
3362
+ blank |
3363
+ |
3364
+ text | For the network model of our particular design community, looking at product
3365
+ | development, the organization had evolved into a 60/5/35 investment position; value-
3366
+ | delivery of research into programs was close to zero (separate from experiential
3367
+ | development side-effects); and product evolution was stale. The significant research
3368
+ | effort was not being transferred anyplace.
3369
+ blank |
3370
+ |
3371
+ text | In this particular case we discover:
3372
+ blank |
3373
+ |
3374
+ |
3375
+ meta | 72
3376
+ text | (6) LOB -> product development -> PROG
3377
+ meta | 2 + 3 + 5 = 10
3378
+ text | This implies there are some impediments to transition new technologies into qualified
3379
+ | products for the new mega-systems.
3380
+ blank |
3381
+ |
3382
+ text | To increase innovation of the income-producing product stream, the investment position
3383
+ | was changed to 60/30/10 to increase product transition (30%), with the understanding (or
3384
+ | assumption) that many of the side-benefits accruing from a robust R&D program would
3385
+ | be lost (amount of research reduced from 35% to 10%). The implementation method was
3386
+ | to supply internal development funds directly to the Engineering subsystems to improve
3387
+ | their products for the set of Programs that were being developed.
3388
+ blank |
3389
+ |
3390
+ text | To maintain organizational coherence, new communication pathways had to be
3391
+ | developed. Allocation of the development funds to subsystem engineering groups was
3392
+ | equivalent to doubling their task diversity. There were now two roles for these
3393
+ | engineering groups: subassembly improvement with links to Research, and subassembly
3394
+ | integration with links to the Programs.
3395
+ blank |
3396
+ |
3397
+ text | A snapshot of the new information flow network is shown in (Figure 4-6) on the left.
3398
+ | The right side shows the diagram with an updated arrangement. This evolved version can
3399
+ | now be evaluated for future cultivation (the blue portion is new).
3400
+ blank |
3401
+ |
3402
+ |
3403
+ |
3404
+ meta | 73
3405
+ text | Figure 4-6 Cultivated Organizational Change
3406
+ | Adding resources and responsibility to ‘Engineering’ (Senior Engineers and Engineers) allowed them
3407
+ | to increase their variety both to expand their design work, and also to work the transitions into the
3408
+ | Program and from Research. Allocation of the development funds to subsystem engineering groups
3409
+ | was equivalent to doubling their task diversity. Two new links for these engineering groups were
3410
+ | required: subassembly improvement with links to Research, and subassembly integration with links
3411
+ | to the Programs. A second equivalent diagram is shown on the right. Either can be used depending
3412
+ | on the purpose and resolution of the subsequent analysis.
3413
+ blank |
3414
+ |
3415
+ |
3416
+ |
3417
+ text | Two interesting side-effects emerged. One of these might have been predicted in that the
3418
+ | Program Subsystem actor now had fewer responsibilities. In essence, the actor could
3419
+ | discard the variety needed to lead a new design effort, and focus on system integration.
3420
+ blank |
3421
+ |
3422
+ text | Another more interesting result was the effect this had on the Engineering Subsystem
3423
+ | teams. Previously they had no responsibility for their products other than to deliver their
3424
+ | design within the particular program requirements. Now, as they were tasked to improve
3425
+ | the status quo and coordinate its insertion into the program, their engineering behaviors
3426
+ | emerged into product ownership with the related activity that they desired to see ‘their’
3427
+ | product evolve and get inserted into additional programs. This was a significant
3428
+ | evolution of the company engineering culture which might be subsequently applied to
3429
+ | other evolutionary threads as indicated by the many variations of product strategy.
3430
+ blank |
3431
+ |
3432
+ text | Note that the resulting information transfer formats are still evolving.
3433
+ blank |
3434
+ |
3435
+ |
3436
+ |
3437
+ meta | 74
3438
+ title | 5 Performance Observations and Implications
3439
+ text | A large corporation was modeled as an adaptive computing organism that creates new
3440
+ | assets (mega-platforms). We are trying to make this (organizational) computing more
3441
+ | efficient so we can get more output so we can achieve better survivability (for the
3442
+ | organization) and better social value (for the environment). This section identifies areas
3443
+ | of potential benefits and changes.
3444
+ blank |
3445
+ |
3446
+ |
3447
+ title | 5.1 R&D Applicability Performance
3448
+ text | While emergent engineering behaviours are interesting, another question is whether this
3449
+ | improved the value to the company and/or the value delivered to the environment
3450
+ | (society). These questions may not be answerable, but one metric – the inserted value of
3451
+ | R&D efforts – rose from less than 5% to almost 80% as measured by the number of
3452
+ | research projects being fully used in an operational program.
3453
+ blank |
3454
+ |
3455
+ text | How well are typical research-expenditures used? This is a good question since there are
3456
+ | currently no good metrics and there is currently no generally accepted technique. People
3457
+ | have been looking for a long time, but nothing seems to work. This may be because the
3458
+ | desired answer doesn’t match the computed answer. Common methods of calculation
3459
+ | give extremely low values (<5% (?!)), indicating very low rates of return on invested
3460
+ | funds.
3461
+ blank |
3462
+ |
3463
+ text | In fact, it is very hard to discover any direct relation between research investments and
3464
+ | new product delivery. Many people would agree that the return on investment is mostly
3465
+ | in the experience gained by the engineers.
3466
+ blank |
3467
+ |
3468
+ text | Following the framework developed in Section 2.0 through Section 4.0 indicates that less
3469
+ | than 20% of R&D is directly useful (in the aerospace community). The research projects
3470
+ | themselves can be quite successful, but information transfer to a development program
3471
+ | runs into the problems indicated in terms of time synchronization. Reports may be
3472
+ blank |
3473
+ |
3474
+ |
3475
+ meta | 75
3476
+ text | prepared every year at the end of each research project, but the program engineers only
3477
+ | look to see what new technologies are available at the start of a new program. A
3478
+ | particular system and/or upgrade may start anew once every fifteen years (twelve years
3479
+ | development, plus three years of initial operations). Even within a business or product
3480
+ | area that averages three large systems in concurrent development, the average time
3481
+ | between new starts would be five years. Thus the research results for four years are put
3482
+ | on the shelf, and only in the fifth year do application engineers research new approaches
3483
+ | for their program (1/5 = 20%).
3484
+ blank |
3485
+ |
3486
+ |
3487
+ text | 5.2 Estimating the Amount of Communication you Should Afford
3488
+ | When you change the information transfer rate a, you must also adjust the variety at both
3489
+ | the receiving and transmitting agents. Otherwise the agents will suffer an information
3490
+ | overload, and you will still have inefficient information transfer. It may be that the cost
3491
+ | of the extra staff needed to increase the variety of the agent is more than the value of the
3492
+ | improved information transfer.
3493
+ blank |
3494
+ |
3495
+ text | The value of the improved information transfer is the benefit minus the cost.
3496
+ | Value = Benefit – Cost = Benefit – (changes in variety at all nodes)
3497
+ blank |
3498
+ |
3499
+ text | In the simplest example, when passing information from one peer actor to another,
3500
+ | instead of vertical information transfers (up and down) through a common management
3501
+ | actor, you should simply arrange a peer transfer link. Here you wouldn’t have to pay for
3502
+ | a compression and a decompression task – you would simply pay for the variety to make
3503
+ | the original product understandable to the new actor. Assuming all encoding/decoding
3504
+ | tasks are the same and equal V, you would delete an up-link (2V) (one encode, one
3505
+ | receive) and a down-link (2V) (one transmit, and one decode), and replace it with a single
3506
+ | peer link (2V) (one transmit, one receive). So the change in value would be - (- 4 + 2)
3507
+ | which equals +2, or a 50% improvement.
3508
+ blank |
3509
+ |
3510
+ |
3511
+ |
3512
+ meta | 76
3513
+ text | For the earlier example in Section 4.4.1, for the short term evaluation, the amount (cost)
3514
+ | of variety added at D (three places) must be less than or equal to the value of recovered
3515
+ | resources at A (2x) and D (two places) minus some inefficiencies and overhead costs.
3516
+ | Here the value would be +3 that is, again, about a 50% improvement. This value change
3517
+ | may be different for “translation” and “context” effects (cf. Section 3.4.3). More detail
3518
+ | could be developed by using a fine-grained organizational model with fractional values
3519
+ | for all actors and all types of variety.
3520
+ blank |
3521
+ |
3522
+ text | Average adjustments of variety will be close to a net-zero effect, compared to the goal
3523
+ | benefit, so variety cost savings will neither help nor hinder the justification for any
3524
+ | planned improvement in communication. This is reasonable since the improvements are
3525
+ | designed to improve a meta-level of activity for the organization.
3526
+ blank |
3527
+ |
3528
+ |
3529
+ title | 5.3 Expected Product Changes
3530
+ text | Increased information transfer regarding new technologies and validated prototypes will
3531
+ | enable more rapid design of aerospace products and a more rapid growth of the aerospace
3532
+ | environment through two pathways: Delivery Date Export, and Incremental Technology
3533
+ | Incorporation. A representative cumulative effect is shown in (Figure 5-1). The x-axis is
3534
+ | time, measured in years, and the y-axis is capacity or social value, measured in some
3535
+ | combination of dollars, performance, quality, or similar metric. The bottom curve is the
3536
+ | status quo showing growth in social value in 12 year steps. A current system of this type
3537
+ | might be the GPS satellite network or the Air Traffic Control system. The top curve
3538
+ | shows the potential value of a system evolution using system engineering methods such
3539
+ | as evolutionary design [Bobinis 2006] or flow-service-quality engineering [Linger 2002]
3540
+ | to improve the efficiency and rate of delivery. Methods to cultivate the incremental
3541
+ | pathways (within these methods) are discussed below. This is consistent with
3542
+ | Evolutionary Design practices.
3543
+ blank |
3544
+ |
3545
+ |
3546
+ |
3547
+ meta | 77
3548
+ text | Accelerates
3549
+ | because of
3550
+ | Value synergistic
3551
+ | {Performance, benefits
3552
+ | Quality, $}
3553
+ | Larger benefits under
3554
+ | the curve when
3555
+ | integrated over time
3556
+ blank |
3557
+ text | Can pull out instantiations of
3558
+ | current version as Keeps getting
3559
+ | requirements dictate slower because
3560
+ | complexity of
3561
+ | upfront
3562
+ | Performance Slip requirements
3563
+ | Schedule
3564
+ | Slip
3565
+ blank |
3566
+ text | 3yrs
3567
+ blank |
3568
+ |
3569
+ text | 12yrs
3570
+ blank |
3571
+ |
3572
+ |
3573
+ text | Time (years)
3574
+ blank |
3575
+ |
3576
+ text | Figure 5-1 Improved Value Over Time
3577
+ | The x-axis is time, measured in years, and the y-axis is capacity or social value, measured in some
3578
+ | combination of dollars, performance, quality, or similar metric. The bottom curve is the status quo
3579
+ | showing growth in social value in 12 year steps. The top curve shows the potential value of a system
3580
+ | evolution when smaller time steps are enabled due to greater efficiency and agility. This is similar to
3581
+ | compound interest.
3582
+ blank |
3583
+ |
3584
+ |
3585
+ |
3586
+ title | 5.3.1 Exporting Products at Delivery Dates
3587
+ text | Exporting products at predefined delivery dates is similar to design-to-schedule and
3588
+ | design-to-cost efforts. However, instead of pre-defining a goal and then forcing your
3589
+ | design to achieve it, you define a set of interfaces and boundary conditions, and deliver
3590
+ | within those constraints. This requires some inefficient margins (initially), but as you
3591
+ | reuse the base design for subsequent products, you can focus on improving the various
3592
+ | performance parameters without spending time on the interface. So within a couple of
3593
+ | iterations you will have improved total performance with less cost.
3594
+ blank |
3595
+ |
3596
+ |
3597
+ |
3598
+ meta | 78
3599
+ text | These ideas have been incorporated into chip design in the electronics industry. Chip
3600
+ | automated design tools had to use inefficient circuit designs to enable automated layout
3601
+ | and automated test. But the lower cost, compared to hand layouts, enabled greater sales,
3602
+ | and with subsequent miniaturization outgrew the pre-allocated “inefficient” margins.
3603
+ blank |
3604
+ |
3605
+ text | Engineers can, and will, allow for design growth with exported products at delivery dates,
3606
+ | and can incorporate the same testing protocols and support equipment, so it will be easy
3607
+ | to integrate. This decouples a lot of the simultaneous development and feedback
3608
+ | otherwise required to ensure everything fits, as in Section 3.3.2.
3609
+ blank |
3610
+ |
3611
+ text | Allowing engineers to apply half their time to looking for new technologies and
3612
+ | implementation methods, instead of optimizing their current design, allows for this
3613
+ | quicker growth, despite the initial margins needed.
3614
+ blank |
3615
+ |
3616
+ text | In (Figure 5-1), this increases the step height of subsequent deliveries, and improves even
3617
+ | further the compound growth curve.
3618
+ blank |
3619
+ |
3620
+ |
3621
+ title | 5.3.2 Incremental Technology Incorporation
3622
+ text | Program managers and senior engineers, if they use this same technique of improved
3623
+ | information flow, will have a more current understanding of related systems and can
3624
+ | define, and more quickly incorporate, consistent and grow-able requirements. Also they
3625
+ | will have a current understanding of current subsystems from related efforts where they
3626
+ | could modify an on-the-shelf design and integrate it into their system.
3627
+ blank |
3628
+ |
3629
+ text | There will be some overhead associated with incremental/evolutionary systems, but since
3630
+ | the subsequent new technologies will likely use less power and weight, they can be
3631
+ | inserted on the second platform and actually increase performance past the design margin
3632
+ | on the first vehicle.
3633
+ blank |
3634
+ |
3635
+ |
3636
+ |
3637
+ meta | 79
3638
+ title | 5.3.3 Coupled Efficiency
3639
+ text | These two effects (Delivery Date Export, and Incremental Technology Incorporation)
3640
+ | improve the overall Evolutionary Design approach , as compared to classic centralized
3641
+ | (computed) control, by avoiding large inefficiencies associated with unitary hardware
3642
+ | instantiation (primary, and 2nd and 3rd tier suppliers) by multiple organizations.
3643
+ blank |
3644
+ |
3645
+ |
3646
+ title | 5.3.4 Company and Product Goals
3647
+ text | Design of organizations and processes can affect the growth vector of the larger
3648
+ | community by emplacing the proper “a” factor in desired areas. For instance, if one
3649
+ | believes robotic exploration will be a driver of aerospace systems (instead of human
3650
+ | exploration), then the laboratories/groups associated with autonomy activities need new
3651
+ | channels formed and trained.
3652
+ blank |
3653
+ |
3654
+ |
3655
+ |
3656
+ meta | 80
3657
+ title | 5.4 Limits to Change
3658
+ text | Given this new perspective, and the apparent small scale of individual changes, how far
3659
+ | can you go? There are certainly limits to improvement, most basically from the external
3660
+ | environment’s ability to incorporate changes at a stable rate.
3661
+ blank |
3662
+ |
3663
+ text | Another restriction, or basic conceptual limit, is that there is no right answer and no
3664
+ | optimal solution. In fact trying to find an overall solution is diametrically opposite from
3665
+ | the direction taken here: that you try to improve the organization to more easily
3666
+ | incorporate engineer’s capabilities. And, although many engineers say that “better is the
3667
+ | enemy of good enough”, here you are not waiting to become perfect before you move
3668
+ | forward, you are independently improving engineering efficiency in parallel with
3669
+ | delivering your products.
3670
+ blank |
3671
+ |
3672
+ text | Likewise, there are costs associated with change. Changes in organizations and in
3673
+ | policies and procedures take time and effort to implement. You probably can only
3674
+ | change one link at a time. Also, if you change all the links at once, you would lose
3675
+ | ‘communicativity’ and your organization would collapse.
3676
+ blank |
3677
+ |
3678
+ text | Finally, you don’t want to change too fast. In this case you will have incurred the costs
3679
+ | of change without having looked ahead to see where external changes (and your changes)
3680
+ | have affected the environment in which you are working. You may want to reprioritize
3681
+ | your cultivation so you don’t overshoot.
3682
+ blank |
3683
+ |
3684
+ |
3685
+ |
3686
+ meta | 81
3687
+ title | 5.5 Applicability
3688
+ text | At what scale does this dissonant behaviour manifest? It was stated earlier that mega-
3689
+ | systems require on the order of 10,000 man-years of design time; that the total involved
3690
+ | set of people may number toward 100,000; and that the company size is around $10B
3691
+ | orders per year.
3692
+ blank |
3693
+ |
3694
+ text | Depending on the resolution, our proto-typical example organization has 22 nodes at the
3695
+ | top, virtual-lens level, at least 480 major agents at the composed summary level, and over
3696
+ | 5,000 working groups at the various individual program levels. From a bottom-up
3697
+ | perspective, there could be 200,000 information pathways given the number of people
3698
+ | involved and the required task variety. The exact number is problematic, both to actually
3699
+ | measure or record people, but also to identify intermediate groups and information
3700
+ | transfer paths.
3701
+ blank |
3702
+ |
3703
+ text | The work of [Braha 2007] indicates that 460 nodes and 1200 information transfer
3704
+ | activities is at the top end of what is currently analyzable, but is already at a statistically
3705
+ | significant population scale to quantify extracted behaviours with reasonable statistical
3706
+ | validity.
3707
+ blank |
3708
+ |
3709
+ text | From a control theory perspective, one could calculate stability metrics based on
3710
+ | feedback loops, task duration, measurement delays, etc. [Hogg 2001] showed that
3711
+ | hierarchies with more than 6 levels and/or with a span greater than 8 have limited
3712
+ | throughput, but of course this runs into the same analytic limits as the detailed task
3713
+ | analysis methods. [Park 1995] showed problematic convergence without additional
3714
+ | ‘parallel’ activities; no size values were given, but current computational limits were
3715
+ | listed even on cabling tasks.
3716
+ blank |
3717
+ |
3718
+ text | A different approach to defining applicability is to analyze where and why the aliasing
3719
+ | effects enter the design and production process, and then see how these accumulate into
3720
+ | increasing levels of significance.
3721
+ blank |
3722
+ |
3723
+ meta | 82
3724
+ text | Simple organizations and simple activity networks have high ‘a’ (3.5 – 4.0). Information
3725
+ | transfer is chaotic in the sense that it is immediate, complete, and very high bandwidth.
3726
+ | Imagine a very small company with a team of 5 working in a single room to design and
3727
+ | produce a single part for a machine. Each knows what the other is doing, they can
3728
+ | communicate verbally, and all the information is in the room including the supplier
3729
+ | catalogs, CNC settings, account ledger, etc. So development and production is straight
3730
+ | forward. The major risk for information loss is if one of the people is sick for a day:
3731
+ | since nothing was documented, you would have to wait for his return, or simply
3732
+ | regenerate the information.
3733
+ blank |
3734
+ |
3735
+ text | As the company size increases, there are more people, more rooms, and even more
3736
+ | buildings. Task assignments must be better planned and information flow must be better
3737
+ | documented. Things are less chaotic and more structured. Information is becoming
3738
+ | somewhat static, and must now be delivered explicitly. ‘a’ is approaching 3.0 or less.
3739
+ | Depending on how busy the shop is, some production tasks may get temporarily lost; or
3740
+ | possibly an invoice not given to finance to be paid. But these are small effects, and given
3741
+ | that the teams are well organized, have good processes, and understand the overall effort,
3742
+ | no big problems arise. It is not quite as efficient as before since now you need design
3743
+ | reviews, manufacturing readiness reviews, quality control, etc., but now you can address
3744
+ | larger efforts, delivering entire machines and getting the higher profits due the extra
3745
+ | complexity.
3746
+ blank |
3747
+ |
3748
+ text | At some point the time synchronization becomes problematic. Possibly because the next
3749
+ | use of information is indeterminate at the time of production, possibly because of
3750
+ | physical separation, or because of a number of reasons. Efforts to not lose information
3751
+ | become important: documenting fabrication improvements to feedback to design;
3752
+ | creating reusable components and product families; transferring consistent customer
3753
+ | requirements to different sub-organizations. This is the dissipative zone (a ~1.5) and care
3754
+ | must be taken to avoid slowing the design and production process, and becoming a
3755
+ | lethargic organization.
3756
+ blank |
3757
+ |
3758
+ |
3759
+ meta | 83
3760
+ text | So as you move from right to left in Figure 4-2 (high ‘a’ to low ‘a’), the growth of the
3761
+ | organization and processes provides more opportunities for information aliasing – both
3762
+ | from noise injection and from dissipation. Any organization, no matter what its size, sees
3763
+ | these effects. The bigger the organization, the bigger the size of the effects, and the more
3764
+ | valuable it is to adjust for smoother dynamics.
3765
+ blank |
3766
+ |
3767
+ text | Note that the longer time dynamics (low ‘a’) occur when trying to use resources across
3768
+ | individual mega-systems. In trying to even out the use of product resources (knowledge,
3769
+ | capital equipment), problems can be injected. This implies there is (at least) one, or a set
3770
+ | of activities that are single use within the design of a mega-system. When these are
3771
+ | applied to the next megasystem, their system context is essentially not cleared. This
3772
+ | might imply an additional type of aliasing, sort of like a feed-forward echo.
3773
+ blank |
3774
+ |
3775
+ |
3776
+ |
3777
+ meta | 84
3778
+ title | 6 Conclusions
3779
+ text | This dissertation developed a new type of model for extremely large design organizations
3780
+ | and their environment by combining perspectives from:
3781
+ | - evolutionary genetic computing organisms,
3782
+ | - information theoretic (quantum) information production, and
3783
+ | - non-linear dynamics and chaos theory for information exchange.
3784
+ | to study some of the behaviours of complex organizations, especially information
3785
+ | transfer, to show how organizations can be guided to more efficiently and quickly
3786
+ | produce complex mega-systems.
3787
+ blank |
3788
+ |
3789
+ text | A three-year experiment was performed within a large design organization to see what
3790
+ | level and type of improvements would actually manifest.
3791
+ blank |
3792
+ |
3793
+ text | The results fall into three categories:
3794
+ | - production of individual mega-systems,
3795
+ | - improvement in organizations that develop mega-systems, and
3796
+ | - extraction of societal benefits from government funded mega-systems.
3797
+ | These are addressed separately below.
3798
+ blank |
3799
+ |
3800
+ |
3801
+ title | 6.1 More Efficient Design of Mega-Systems
3802
+ text | Ignoring the quality of information transfer among organizational elements causes
3803
+ | significant inefficiencies. The transfer quality includes time synchronization, method of
3804
+ | transfer, and other variables. It is not that anything is currently wrong, just that a lot of
3805
+ | time is wasted waiting for information, translating information, or re-developing the
3806
+ | context to understand the information, and additional time (and resources) may be spent
3807
+ | waiting for task convergence. Matching the characteristics of the product design
3808
+ | information to the characteristics of the transfer path minimizes aliasing effects
3809
+ | (dissipation and noise), creating many benefits including:
3810
+ | - More efficient design and design execution,
3811
+ blank |
3812
+ |
3813
+ |
3814
+ meta | 85
3815
+ text | - Improved design agility / currency, and
3816
+ | - Enablement / easing of “Evolutionary Design” ([Bobinis 2006], [Bar-Yam
3817
+ | 2003], [Sangiovanni 2006]) at the upper, large-scale limit.
3818
+ blank |
3819
+ |
3820
+ text | Results from a three-year experiment showed that the inserted value of R&D efforts rose
3821
+ | from less than 5% to almost 80% as measured by the number of research projects being
3822
+ | fully used in operational programs. The research projects themselves can be quite
3823
+ | successful, but information transfer into a development program runs into the problems
3824
+ | indicated in terms of time synchronization.
3825
+ blank |
3826
+ |
3827
+ |
3828
+ title | 6.2 Relying on Emergence and Organizational Computation
3829
+ text | Improvements in the performance of the organization will incrementally emerge, given
3830
+ | the inertia of large organizations and of engineering processes, and will initially manifest
3831
+ | as quicker deliveries and an accelerating ability to innovate ahead of other companies.
3832
+ blank |
3833
+ |
3834
+ text | “One consequence of encoding information as statistical and time-varying patterns of
3835
+ | low-level components is that no individual component of the system can perceive or
3836
+ | communicate the ‘big-picture’ of the state of the system. Instead, information must be
3837
+ | communicated via spatial and temporal sampling.” [Mitchell 2009] Dynamically, the
3838
+ | mega-design process is progressing, and any snapshot is an incomplete view in a
3839
+ | changing context. This implies that the product directors can’t really direct or control
3840
+ | where the company is going: their role should only be to monitor the outputs and nascent
3841
+ | products, and guide the output (and rate of new product introduction and of upgrades) to
3842
+ | match the funding (requirements) source. This would balance control and efficiency.
3843
+ blank |
3844
+ |
3845
+ text | “Recently [in the field of biology] there has been a renewed effort to provide a
3846
+ | macroscopic theory for the origins of selection mechanisms. … This effort goes under
3847
+ | the name of niche construction. … [Here], the selective filter is partially constructed by
3848
+ | the organism itself, and exerts an influence over a locally reproducing population. … In
3849
+ | this way, adaptations lift themselves up by their own bootstraps.” [Krakauer 2011].
3850
+ blank |
3851
+ |
3852
+ |
3853
+ meta | 86
3854
+ text | This dynamic perspective implies that design communities can, and should, “construct
3855
+ | their own [evolutionary] selective constructs designed toward increasing mutual
3856
+ | information [within itself, and] between the organism and the environment” [Krakauer
3857
+ | 2011], for better computability or production of designs. In this case, the management
3858
+ | structure ought to also look at higher level abstractions, such as information transfer
3859
+ | efficiencies, in addition to process control (like design reviews), because looking at static
3860
+ | variables will not improve the evolutionary adaptation rate.
3861
+ blank |
3862
+ title | 6.3 Government Aerospace, Low-Price Procurement, and
3863
+ text | Overhead Rates
3864
+ | The stability of any implemented improvements is somewhat problematic given the
3865
+ | evolving environment, but especially given the counter-acting efforts of government
3866
+ | acquisition regulations and nominal management tendencies.
3867
+ blank |
3868
+ |
3869
+ text | Scale, synchronization, and economic nudges may be appropriate for personal scale
3870
+ | complices such as smartPhone apps, but the economic and scale factors are different from
3871
+ | government “apps”. A focus on lowest cost procurement, for government “apps” (mega-
3872
+ | systems), has side effects on the engineering design process. Financially speaking, and
3873
+ | for more effective mega-system development, the government should modify cost-
3874
+ | selection constraints to avoid extra effort to achieve a particular instance when any of a
3875
+ | set of instances is all that is needed. This would necessarily become somewhat non-
3876
+ | deterministic.
3877
+ blank |
3878
+ |
3879
+ text | Individual program managers will avoid this because it is locally inefficient and also
3880
+ | uncontrollable. However, according to game theory (prisoner’s dilemma [Morrow
3881
+ | 1994]), a Pareto optimal solution is better, and can be achieved with “external norms”
3882
+ | [Mitchell 2009]. The external norms could either be via company processes and
3883
+ | procedures or, better, by the government’s Federal Acquisition Regulations (FAR).
3884
+ blank |
3885
+ |
3886
+ |
3887
+ |
3888
+ meta | 87
3889
+ text | For instance, implementation at the government FAR level could be to assign 1% - 2% of
3890
+ | the value of programs over a certain size to internal efforts supporting adaptability and
3891
+ | risk reduction. For instance the Orion spacecraft program internally allocated $100M
3892
+ | (for a $4B program) to reduce schedule risk occurring from software integration. This is
3893
+ | the same scale as proposed, and was considered and approved as the correct engineering
3894
+ | approach. However, it was implemented without adjusting the encompassing process, so
3895
+ | savings could never be recaptured, nor future transitions eased. This fund would reduce
3896
+ | risk on the delivery of the initial system, and reduce cost of subsequent systems.
3897
+ blank |
3898
+ |
3899
+ text | Such a fund could also be allocated for application to follow-on project development, and
3900
+ | coordination of supporting technology and product development. Note that this would
3901
+ | avoid aliasing effects from Federally Funded Research and Development Companies
3902
+ | (FFRDCs) in their information transfer efforts, and would greatly improve technology
3903
+ | transfer from government labs to industry and society.
3904
+ blank |
3905
+ |
3906
+ |
3907
+ |
3908
+ meta | 88
3909
+ title | 6.4 Additional Research Vectors
3910
+ text | Several areas of this model could be extended based on related supporting theoretical
3911
+ | areas, including organizational memory, the effects of different engineering tools, and
3912
+ | evaluation of sub-networks in large communities. These are briefly discussed below.
3913
+ blank |
3914
+ title | 6.4.1 Organizational Memory
3915
+ text | Including memory as a communication channel with a “long” time constant is a straight-
3916
+ | forward addition. Efficient internal communication is similar to having some global
3917
+ | memory with time constant t0. This provides our organism (design community) the best
3918
+ | combination of a Von Neumann architecture and a cellular automata.
3919
+ blank |
3920
+ title | 6.4.2 Engineering Tools
3921
+ text | An area for future investigation as it is indicated by this analysis. Engineering design
3922
+ | tools play a large role in communicating knowledge and techniques.
3923
+ blank |
3924
+ title | 6.4.3 Long-Scale Neural Training of Sub-Networks
3925
+ text | Adjusting variety takes time like a single neuron in a network with different time
3926
+ | constants. The existence of Bifurcative channels in large communities needs additional
3927
+ | structure as the evolutionary time scale of the channels does not match that of the actors.
3928
+ blank |
3929
+ |
3930
+ |
3931
+ |
3932
+ meta | 89
3933
+ title | 7 Appendix A – Research Background
3934
+ text | Design Community Responses to Recognition of Complexity
3935
+ | There are two inter-twined facets of large scale engineering organizations: the large
3936
+ | organization itself, required to design, build, and operate the product, and the processes
3937
+ | they follow to produce their mega-products. Mega-organizations were covered in
3938
+ | Section 1. Here we address the internal design processes that guide the organizational
3939
+ | information development and transfer.
3940
+ blank |
3941
+ title | 7.1 Evolutionary Design
3942
+ text | Evolutionary design includes functions of complex systems that allow us to discover,
3943
+ | measure, and implement design activities during the entire life cycle of a system. It
3944
+ | assumes that we cannot know all the functions of deployed complex systems, and that an
3945
+ | evolutionary approach to design, is required. Several unique design methods were added
3946
+ | to the system engineering repertoire, including incremental engineering by which
3947
+ | portions of the system are redesigned and operate in parallel to other parts of the system.
3948
+ | Bar-Yam suggests that spiral development is an instantiation, (although simplified), of
3949
+ | evolutionary acquisition and design. “Recent extensions that adopt some complex
3950
+ | systems ideas include spiral development and evolutionary acquisition and adaptive
3951
+ | programming. A complex systems perspective provides a large conceptual framework –
3952
+ | evolution-from which to understand how incremental change can enable rapid
3953
+ | innovation.” [Bar-Yam 2003].
3954
+ blank |
3955
+ |
3956
+ text | Evolutionary design implies that since we cannot iteratively account for all functions and
3957
+ | processes of complex systems, we must provide a design process which allows us to
3958
+ | inductively determine system behaviors and processes, after the system is fielded. Spiral
3959
+ | design engineering, is really just a traditional design methodology which is repeated
3960
+ | recursively over the entire life cycle of the system. But it does account for all the
3961
+ | interfaces, transactions, and controls of a complex system that cannot be known during
3962
+ | initial design. Through this process, we can apply traditional methods in changing small
3963
+ | parts of complex systems, during its life cycle, rather than trying to change the “whole
3964
+ blank |
3965
+ |
3966
+ |
3967
+ meta | 90
3968
+ text | system”. And, that through the process of acquiring knowledge of self-organizing
3969
+ | systems, parts of the system may be known and tested, and replaced through traditional
3970
+ | planning, specification and implementation. Evolutionary design implies that on-going
3971
+ | discovery and re-design is a life cycle function of the system. The system must have a
3972
+ | means of monitoring its own “state”. An example of this, might be the modern
3973
+ | application of prognostics in complex platforms, where system states can be collected,
3974
+ | analyzed, and understood to the extent that we are provided the “patterns of system
3975
+ | behavior” to be able to predict and/or design out system failures, failure modes, and use
3976
+ | cases that the system may not have been designed for [sic]. [Bobinis 2006]
3977
+ blank |
3978
+ title | 7.2 Engineering Systems
3979
+ text | Rhodes and Hasting, in their paper The Case for Evolving Systems Engineering as a
3980
+ | Field within Engineering Systems, propose a more holistic systems engineering practice
3981
+ | which not only encompasses the boundaries of the system under development, but also a
3982
+ | broader context which includes the environment the system must co-exist in, including
3983
+ | the evolution of the system in the broader context.
3984
+ | “When taking the classical view, a major fault cited with Systems engineering is that it
3985
+ | does not take an adequate holistic perspective and is too introspective. Additionally, it is
3986
+ | often viewed as taking too much of a top-down approach…Further, Systems Engineering
3987
+ | is sometimes criticized for focusing too extensively on requirements and not enough on
3988
+ | system properties and behaviors.” [Rhodes 2004]. It recognizes that the Systems
3989
+ | Engineering discipline, ontology, and associated epistemology must be revised to account
3990
+ | for increasingly complex and self-organizing systems. It alludes to a process which
3991
+ | includes not only traditional engineering disciplines, but also a cross disciplinary
3992
+ | approach that includes the ability to understand the “human system”, the “environment”,
3993
+ | and the “community” as part of the context of the overall system, as “determinate
3994
+ | interfaces”.
3995
+ blank |
3996
+ |
3997
+ |
3998
+ |
3999
+ meta | 91
4000
+ title | 7.3 Flow-Service-Quality Engineering
4001
+ text | Carnegie Mellon, in response to study commissioned by the U.S. Air Force, has
4002
+ | developed a methodology to address large scale network centric systems design. “These
4003
+ | systems are characterized by changing and often unknown boundaries and components,
4004
+ | constantly varying function and usage, and complexities of pervasive asynchronous
4005
+ | operations. Their complexity challenges human intellectual control…”[Linger 2002 p.v].
4006
+ blank |
4007
+ |
4008
+ text | They attack the problem through the design of a “system services” function for these
4009
+ | types of systems as the “unifying”, and specifiable “function” of any system of systems.
4010
+ | It is the function wherein the myriad of users, systems, and subsystems interact, and
4011
+ | perform their unique transactions (interfaces).
4012
+ blank |
4013
+ |
4014
+ text | System Services is the primary hub for their analysis and methodology of control. It
4015
+ | directs, analyzes, stores, and measures all the transactional processes of the complex
4016
+ | system. It starts at a functional analysis of user based operations and interfaces the
4017
+ | system services function needs to support all users (human or other systems). By
4018
+ | mapping the interchanges with the supported “users”, the system services function can
4019
+ | analyze system, as well as sub-system, states. It also defines the standards and protocols
4020
+ | for the entire system and serves as the “super hub”.
4021
+ blank |
4022
+ |
4023
+ text | What is important here is not the architecture promoted in this study, but the fact that
4024
+ | there is both the recognition that all subsystem functions cannot be accounted for in the
4025
+ | design, and that the primary hub “system services” has specific sub-functions that
4026
+ | account for growth (new nodes), and reorganization (once added, the types of information
4027
+ | shared across nodes). It’s ability to account for nodes as they are added, the type of
4028
+ | requests of these unique nodes, the mapping and storage of system topology, in near real-
4029
+ | time, and the realization that as unique functional nodes are added to the system, they
4030
+ | must be accounted for, monitored, and measured, as they function within the system.
4031
+ blank |
4032
+ |
4033
+ text | “FSQ engineering provides systematic, scale-free semantic structures for requirements,
4034
+ | specification, design, verification and implementation…User flows of services and
4035
+ blank |
4036
+ |
4037
+ meta | 92
4038
+ text | quality attributes permit system development in terms of user views of services, as
4039
+ | opposed to strictly functional decomposition or object-based composition.” [Linger 2002
4040
+ | p.37]
4041
+ blank |
4042
+ |
4043
+ |
4044
+ title | 7.4 Engineering Tools
4045
+ text | Some studies that examined the engineering process have focused on tools developed to
4046
+ | improve product design by engineering teams [Leifer 1999]. Here the tools fall into three
4047
+ | classes: interpersonal communication, knowledge capture, and knowledge retrieval.
4048
+ | Productivity gains have been shown when design teams can begin from a better starting
4049
+ | point as a result of having access to learned information from previous designs.
4050
+ | “In larger organizations, the complexity is vastly different and the chance for deep
4051
+ | personal co-commitment is diminished. Ad hoc exchanges within one’s personal
4052
+ | network do happen, but systematic knowledge sharing usually requires brokering through
4053
+ | people or technology. Along with brokering come issues such as knowledge
4054
+ | identification, verification, and validation [Leifer 1999].”
4055
+ blank |
4056
+ |
4057
+ text | “[All organizations] can benefit from the implementation of a central knowledge capture
4058
+ | and re-use infrastructure, a core technology for sharing and learning from each other,
4059
+ | peer-to-peer. In large institutions (greater that 500 people) this infrastructure will have to
4060
+ | be explicit and managed separately from the design team support infrastructure [Leifer
4061
+ | 1999].”
4062
+ blank |
4063
+ |
4064
+ text | A separate explicit infrastructure however becomes problematic, especially on projects
4065
+ | with long time scales (~10 years). Issues arise that interfere with having a consistent
4066
+ | structure. The portfolio of projects across a large organization use different engineering
4067
+ | tools. This will always be true because of a mismatch of time frequencies between new
4068
+ | tools and new projects, and the fact you can’t and don’t want to update your tools all at
4069
+ | once on a preordained schedule. Also engineers bring different sets of tool knowledge
4070
+ | with them to new projects. It actually takes some finite time for a team to get
4071
+ | synchronized on common tools and data structures. Also most training is done on the job
4072
+ blank |
4073
+ |
4074
+ |
4075
+ meta | 93
4076
+ text | with no separate time allotment and no separate instructors, with the result that tools are
4077
+ | not always used as they were designed, nor to their full potential. Finally, retrieval of old
4078
+ | knowledge becomes problematic and time consuming, and may become moot as different
4079
+ | technologies advance at different rates, opening up new solution spaces for consideration.
4080
+ blank |
4081
+ |
4082
+ text | Another issue arising from large organizations that affects knowledge retention and
4083
+ | retrieval is that engineering team members do not usually follow a project from
4084
+ | conception through design, manufacture, production, maintenance, and growth.
4085
+ | Typically, engineers focus on one stage of design. Therefore the information associated
4086
+ | with a project bifurcates, with one instance progressing with the product as the product
4087
+ | “design” and “context”, and the other instance going with the engineer or data base to a
4088
+ | new product at a similar stage as “knowledge”.
4089
+ blank |
4090
+ |
4091
+ |
4092
+ |
4093
+ meta | 94
4094
+ title | 8 References
4095
+ ref | [Bais 2010] “The Physics of Information”, F. Alexander Bais and J. Doyne Farmer, SFI
4096
+ | Working Paper 07-08-029 to be included in “The Handbook on the Philosophy of
4097
+ | Information, to be published by Elsevier.
4098
+ blank |
4099
+ ref | [Barabasi 2003] Linked, Albert-Laszlo Barabasi, Plume, 2003.
4100
+ blank |
4101
+ ref | [Bar-Yam 2002] “Large Scale Engineering and Evolutionary Change: Useful Concepts
4102
+ | for Implementation of FORCEnet,” Bar-Yam, Yaneer, FORCEnet and the 21st
4103
+ | Century Warrior, USN Strategic Studies Group, Contract F30602-02-C-0158,
4104
+ | 2002.
4105
+ blank |
4106
+ ref | [Bar-Yam 2003] “When Systems Engineering Fails---Toward Complex Systems
4107
+ | Engineering”; Yaneer Bar-Yam, IEEE International Conference, 5-8 Oct. 2003,
4108
+ | Volume: 2, on page: 2022 vol.2
4109
+ blank |
4110
+ ref | [Bar-Yam 2004a] “A Mathematical Theory of Strong Emergence Using Multiscale
4111
+ | Variety,” Bar-Yam, Yaneer, in Complexity, Wiley Periodicals, vol. 9, no. 6,
4112
+ | 2004.
4113
+ blank |
4114
+ ref | [Bar-Yam 2004b] “About Engineering Complex Systems: Multiscale Analysis and
4115
+ | Evolutionary Engineering”, Yaneer Bar-Yam; ESOA 2004, LNCS 3464, pp. 16-
4116
+ | 31, 2005.
4117
+ blank |
4118
+ ref | [Bar-Yam 2005] “About Engineering Complex Systems: Multiscale Analysis and
4119
+ | Evolutionary Engineering,” Bar-Yam, Yaneer, ESOA 2004, LNCS3464, S.
4120
+ | Brueckner et al (Eds), Springer-Verlag, 2005.
4121
+ blank |
4122
+ ref | [Bobinis 2006] “Complex Self-Organizing Systems And Their Effect on the Systems
4123
+ | Engineering Paradigm”, Joe Bobinis, 2006.
4124
+ blank |
4125
+ ref | [Bonissone 2006] “Evolutionary Algorithms plus Domain Knowledge equals Real-World
4126
+ | Evolutionary Computation,” Bonissone, Piero P., Subbu, Raj, Eklund, Neil, and
4127
+ blank |
4128
+ |
4129
+ |
4130
+ |
4131
+ meta | 95
4132
+ ref | Kiehl, Thomas R., IEEE Transactions on Evolutionary Computation, vol. 10, no.
4133
+ | 3, June 2006.
4134
+ blank |
4135
+ ref | [Braha 2007] “The Statistical Mechanics of Complex Product Development: Empirical
4136
+ | and Analytical Results,” Dan Braha and Yaneer Bar-Yam, Management Science,
4137
+ | Special Issue on Complex Systems; Volume 53, number 7, July 2007.
4138
+ blank |
4139
+ ref | [Byler 2000] “Cultivating the Growth of Complex Systems Using Emergent Behaviours
4140
+ | of Engineering Processes,” International Conference on Complex Systems:
4141
+ | Control and Modeling; Russian Academy of Sciences; Samara Russia, June
4142
+ | 2000.
4143
+ blank |
4144
+ ref | [Capaccio 2011] Tony Capaccio, "Cost Overruns Plague One-Third Of Pentagon's
4145
+ | Biggest Programs”, Bloomberg Government, March 29, 2011.
4146
+ blank |
4147
+ ref | [Clouse 1999] Clouse, Raja Laifa and Waldron, Manjula. “Effect of History to Achieve
4148
+ | Self Adaptation”. Center for Integrated Design, Ohio State University,
4149
+ | manuscript in progress 1999.
4150
+ blank |
4151
+ ref | [Crutchfield 2011] James P. Crutchfield and Jon Machta, “Introduction to Focus Issue on
4152
+ | Randomness, Structure, and Causality: Measures of Complexity from Theory to
4153
+ | Applications,” Chaos, An Interdisciplinary Journal on Nonlinear Science;
4154
+ | American Institute of Physics, 2011.
4155
+ blank |
4156
+ ref | [de Smith 2008] “Simulation/Modelling (s/m) Systems for Agent-Based Modelling,” de
4157
+ | Smith, Goodchild, Longley, Geospatial Analysis – a Comprehensive Guide, 2nd
4158
+ | edition, 2008.
4159
+ blank |
4160
+ ref | [Flack 2011] Jessica C. Flack and David C. Krakauer, “Challenges for Complexity
4161
+ | Measures: A perspective from social dynamics and collective social
4162
+ | computation,” Chaos, An Interdisciplinary Journal on Nonlinear Science;
4163
+ | American Institute of Physics, 2011.
4164
+ blank |
4165
+ ref | [Flecker 2011] Benjamin Flecker, Wesley Alford, John M. Beggs, Paul L. Williams, and
4166
+ | Randall D. Beer, “Partial Information Decomposition as a Spatio-temporal Filter,”
4167
+ | Chaos, An Interdisciplinary Journal on Nonlinear Science; American Institute of
4168
+ | Physics, 2011.
4169
+ blank |
4170
+ |
4171
+ meta | 96
4172
+ ref | [Hofstadter] Hofstadter, Douglas. “Godel, Escher, Bach: an Eternal Golden Braid”, Basic
4173
+ | Books, 1979.
4174
+ blank |
4175
+ ref | [Hogg 2001] “Controlling Smart Matter”, Tad Hogg and Bernardo A. Huberman; Xerox
4176
+ | Palo Alto Research Center, June 1, 2001
4177
+ blank |
4178
+ ref | [Holland 1998] Holland, John B. “Emergence: From Chaos to Order”, Addison-Wesley,
4179
+ | 1998.
4180
+ blank |
4181
+ ref | [Howley 1999] Howley, Brian. Discussions on Design Agent Models at the Stanford
4182
+ | Center for Design Research, 1999.
4183
+ blank |
4184
+ ref | [Kleene 1956] Kleene, S.C., “Representation of Events in Nerve Nets and Finite
4185
+ | Automata” // Automata Studies, Shannon & McCarthy eds. Princeton University
4186
+ | Press, 1956.
4187
+ blank |
4188
+ ref | [Krakauer 2011] David C. Krakauer, “Darwinian Demons, evolutionary complexity, and
4189
+ | information maximization,” Chaos, An Interdisciplinary Journal on Nonlinear
4190
+ | Science; American Institute of Physics, 2011.
4191
+ blank |
4192
+ ref | [Leifer 1999] Leifer, Liang, Cannon, Mabogunje, Yen, and Yang. “Experience Capture
4193
+ | and Reuse for Complex System Design-Deployment” // Proceedings of the
4194
+ | International Conference on Complex Systems: Control and Modeling Problems,
4195
+ | Myasnikov, Kuznetsov, and Vittikh eds., Samara, Russia, 1999.
4196
+ blank |
4197
+ ref | [Linger 2002] “Flow–Service–Quality (FSQ) Engineering: Foundations for Network
4198
+ | System Analysis and Development”; Richard Linger, Mark Pleszkoch,
4199
+ | Gwendolyn Walton, & Alan Hevner, Carnegie Mellon University in performance
4200
+ | of Federal Government contract number F19628-00-C-0003, 2002, pg. v.
4201
+ blank |
4202
+ ref | [Metzler 2003] Metzler, Bar-Yam, & Kardar, “Information Flow through a Chaotic
4203
+ | Channel: Prediction and Postdiction at Finite Resolution”, 2003; section IV A, pg
4204
+ | 9.
4205
+ blank |
4206
+ ref | [Metzler 2005] “Multiscale Complexity of Correlated Gaussians,” Metzler, Richard, and
4207
+ | Yaneer, Bar-Yam, Physical Review E71 046114, The American Physical Society,
4208
+ | 2005.
4209
+ blank |
4210
+ |
4211
+ |
4212
+ meta | 97
4213
+ ref | [Miller 2007] John H. Miller and Scott E. Page, “Complex Adaptive Systems, an
4214
+ | Introduction to Computational Models of Social Life”, Princeton University
4215
+ | Press, 2007, pp 72-73.
4216
+ blank |
4217
+ ref | [Minar 1996] Minar, Burkhart, Langton, and Askenazi. “The SWARM Simulation
4218
+ | System: A Toolkit for building Multi-Agent Simulations”,
4219
+ | <http://www.swarm.org>, June, 1996.
4220
+ blank |
4221
+ ref | [Mitchell 1992] Complexity: The Emerging Science at the Edge of Order and Chaos, M.
4222
+ | Mitchell Waldrop, Simon & Schuster, 1992.
4223
+ blank |
4224
+ ref | [Mitchell 2009] “Complexity: A Guided Tour”, Melanie Mitchell; p180; Oxford
4225
+ | University Press, 2009.
4226
+ blank |
4227
+ ref | [Morrow 1994] Game Theory for Political Scientists, James D. Morrow, Princeton
4228
+ | University Press, 1994.
4229
+ blank |
4230
+ ref | [Omerod 1999] Ormerod, Paul. “Butterfly Economics: A New General Theory of Social
4231
+ | and Economic Behavior”, Pantheon, 1999.
4232
+ blank |
4233
+ ref | [Park 1995] Park, Hisup. “Modeling of Collaborative Design Processes for Agent-
4234
+ | Assisted Product Design”, Stanford Doctoral Thesis, March 1995.
4235
+ blank |
4236
+ ref | [Petrie 1996] Petrie, Charles J. “Agent-Based Engineering, the Web, and Intelligence” //
4237
+ | IEEE Expert, December 1996.
4238
+ blank |
4239
+ ref | [Railsback 2006] “Agent-based Simulation Platforms: Review and Development
4240
+ | Recommendations,” Railsback, Steven F.,Lytinen, Steven L., and Jackson,
4241
+ | Stephen K., in press at Simlation, Santa Fe Institute, 2006.
4242
+ blank |
4243
+ ref | [Rhodes 2004] “The Case for Evolving Systems Engineering as a Field within
4244
+ | Engineering Systems”; Donna Rhodes & Daniel Hastings, MIT Engineering
4245
+ | Systems Symposium, March 2004, pg. 3.
4246
+ blank |
4247
+ ref | [Ruffini 2007] Information, Complexity, Brains, and Reality (Kolmogorov Manifesto),
4248
+ | Giulio Ruffini, Starlab Technical Note TN00054, 2007.
4249
+ blank |
4250
+ |
4251
+ |
4252
+ |
4253
+ meta | 98
4254
+ ref | [Sangiovanni 2006] “A framework for modeling the distributed deployment of
4255
+ | synchronous designs”, Formal methods in systems design - an international
4256
+ | journal, Springer-Verlag, Vol. 28, No. 2.
4257
+ blank |
4258
+ ref | [Shannon 1948] C. E. Shannon, The Bell System Technical Journal 27, 379 (1948).
4259
+ blank |
4260
+ ref | [Strader 1998] Strader, Lin, and Shaw. “Simulation of Order Fulfillment in Divergent
4261
+ | Assembly Supply Chains” // Journal of Artificial Societies and Social Simulation,
4262
+ | vol. 1, no. 2, <http://www.soc.surrey.ac.uk/JASSS/1/2/5.html> March 1998.
4263
+ blank |
4264
+ ref | [Verhulst 1838] “Notice sur la loi que la population poursuit dans son accroissement”,
4265
+ | Correspondance mathematique et physique 10: 113-121, 1838.
4266
+ blank |
4267
+ |
4268
+ |
4269
+ |
4270
+ meta | 99
4271
+ blank |