anystyle 1.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/HISTORY.md +78 -0
- data/LICENSE +27 -0
- data/README.md +103 -0
- data/lib/anystyle.rb +71 -0
- data/lib/anystyle/dictionary.rb +132 -0
- data/lib/anystyle/dictionary/gdbm.rb +52 -0
- data/lib/anystyle/dictionary/lmdb.rb +67 -0
- data/lib/anystyle/dictionary/marshal.rb +27 -0
- data/lib/anystyle/dictionary/redis.rb +55 -0
- data/lib/anystyle/document.rb +264 -0
- data/lib/anystyle/errors.rb +14 -0
- data/lib/anystyle/feature.rb +27 -0
- data/lib/anystyle/feature/affix.rb +43 -0
- data/lib/anystyle/feature/brackets.rb +32 -0
- data/lib/anystyle/feature/canonical.rb +13 -0
- data/lib/anystyle/feature/caps.rb +20 -0
- data/lib/anystyle/feature/category.rb +70 -0
- data/lib/anystyle/feature/dictionary.rb +16 -0
- data/lib/anystyle/feature/indent.rb +16 -0
- data/lib/anystyle/feature/keyword.rb +52 -0
- data/lib/anystyle/feature/line.rb +39 -0
- data/lib/anystyle/feature/locator.rb +18 -0
- data/lib/anystyle/feature/number.rb +39 -0
- data/lib/anystyle/feature/position.rb +28 -0
- data/lib/anystyle/feature/punctuation.rb +22 -0
- data/lib/anystyle/feature/quotes.rb +20 -0
- data/lib/anystyle/feature/ref.rb +21 -0
- data/lib/anystyle/feature/terminal.rb +19 -0
- data/lib/anystyle/feature/words.rb +74 -0
- data/lib/anystyle/finder.rb +94 -0
- data/lib/anystyle/format/bibtex.rb +63 -0
- data/lib/anystyle/format/csl.rb +28 -0
- data/lib/anystyle/normalizer.rb +65 -0
- data/lib/anystyle/normalizer/brackets.rb +13 -0
- data/lib/anystyle/normalizer/container.rb +13 -0
- data/lib/anystyle/normalizer/date.rb +109 -0
- data/lib/anystyle/normalizer/edition.rb +16 -0
- data/lib/anystyle/normalizer/journal.rb +14 -0
- data/lib/anystyle/normalizer/locale.rb +30 -0
- data/lib/anystyle/normalizer/location.rb +24 -0
- data/lib/anystyle/normalizer/locator.rb +22 -0
- data/lib/anystyle/normalizer/names.rb +88 -0
- data/lib/anystyle/normalizer/page.rb +29 -0
- data/lib/anystyle/normalizer/publisher.rb +18 -0
- data/lib/anystyle/normalizer/pubmed.rb +18 -0
- data/lib/anystyle/normalizer/punctuation.rb +23 -0
- data/lib/anystyle/normalizer/quotes.rb +14 -0
- data/lib/anystyle/normalizer/type.rb +54 -0
- data/lib/anystyle/normalizer/volume.rb +26 -0
- data/lib/anystyle/parser.rb +199 -0
- data/lib/anystyle/support.rb +4 -0
- data/lib/anystyle/support/finder.mod +3234 -0
- data/lib/anystyle/support/finder.txt +75 -0
- data/lib/anystyle/support/parser.mod +15025 -0
- data/lib/anystyle/support/parser.txt +75 -0
- data/lib/anystyle/utils.rb +70 -0
- data/lib/anystyle/version.rb +3 -0
- data/res/finder/bb132pr2055.ttx +6803 -0
- data/res/finder/bb550sh8053.ttx +18660 -0
- data/res/finder/bb599nz4341.ttx +2957 -0
- data/res/finder/bb725rt6501.ttx +15276 -0
- data/res/finder/bc605xz1554.ttx +18815 -0
- data/res/finder/bd040gx5718.ttx +4271 -0
- data/res/finder/bd413nt2715.ttx +4956 -0
- data/res/finder/bd466fq0394.ttx +6100 -0
- data/res/finder/bf668vw2021.ttx +3578 -0
- data/res/finder/bg495cx0468.ttx +7267 -0
- data/res/finder/bg599vt3743.ttx +6752 -0
- data/res/finder/bg608dx2253.ttx +4094 -0
- data/res/finder/bh410qk3771.ttx +8785 -0
- data/res/finder/bh989ww6442.ttx +17204 -0
- data/res/finder/bj581pc8202.ttx +2719 -0
- data/res/parser/bad.xml +5199 -0
- data/res/parser/core.xml +7924 -0
- data/res/parser/gold.xml +2707 -0
- data/res/parser/good.xml +34281 -0
- data/res/parser/stanford-books.xml +2280 -0
- data/res/parser/stanford-diss.xml +726 -0
- data/res/parser/stanford-theses.xml +4684 -0
- data/res/parser/ugly.xml +33246 -0
- metadata +195 -0
@@ -0,0 +1,4271 @@
|
|
1
|
+
title | CULTIVATING THE GROWTH OF COMPLEX ENGINEERED SYSTEMS
|
2
|
+
| USING
|
3
|
+
| EMERGENT BEHAVIOURS OF ENGINEERING PROCESSES
|
4
|
+
blank |
|
5
|
+
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
text | A DISSERTATION
|
9
|
+
| SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING
|
10
|
+
| AND THE COMMITTEE ON GRADUATE STUDIES
|
11
|
+
| OF STANFORD UNIVERSITY
|
12
|
+
| IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
|
13
|
+
| FOR THE DEGREE OF
|
14
|
+
| DOCTOR OF PHILOSOPHY
|
15
|
+
| IN
|
16
|
+
| MECHANICAL ENGINEERING
|
17
|
+
blank |
|
18
|
+
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
text | Eric Alan Byler
|
22
|
+
| March 2014
|
23
|
+
| © 2014 by Eric Alan Byler. All Rights Reserved.
|
24
|
+
| Re-distributed by Stanford University under license with the author.
|
25
|
+
blank |
|
26
|
+
|
|
27
|
+
|
|
28
|
+
text | This work is licensed under a Creative Commons Attribution-
|
29
|
+
| Noncommercial 3.0 United States License.
|
30
|
+
| http://creativecommons.org/licenses/by-nc/3.0/us/
|
31
|
+
blank |
|
32
|
+
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
text | This dissertation is online at: http://purl.stanford.edu/bd040gx5718
|
36
|
+
blank |
|
37
|
+
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
meta | ii
|
41
|
+
text | I certify that I have read this dissertation and that, in my opinion, it is fully adequate
|
42
|
+
| in scope and quality as a dissertation for the degree of Doctor of Philosophy.
|
43
|
+
blank |
|
44
|
+
text | Larry Leifer, Primary Adviser
|
45
|
+
blank |
|
46
|
+
|
|
47
|
+
|
|
48
|
+
text | I certify that I have read this dissertation and that, in my opinion, it is fully adequate
|
49
|
+
| in scope and quality as a dissertation for the degree of Doctor of Philosophy.
|
50
|
+
blank |
|
51
|
+
text | Mark Cutkosky
|
52
|
+
blank |
|
53
|
+
|
|
54
|
+
|
|
55
|
+
text | I certify that I have read this dissertation and that, in my opinion, it is fully adequate
|
56
|
+
| in scope and quality as a dissertation for the degree of Doctor of Philosophy.
|
57
|
+
blank |
|
58
|
+
text | Friedrich Prinz
|
59
|
+
blank |
|
60
|
+
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
text | Approved for the Stanford University Committee on Graduate Studies.
|
64
|
+
| Patricia J. Gumport, Vice Provost for Graduate Education
|
65
|
+
blank |
|
66
|
+
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
text | This signature page was generated electronically upon submission of this dissertation in
|
70
|
+
| electronic format. An original signed hard copy of the signature page is on file in
|
71
|
+
| University Archives.
|
72
|
+
blank |
|
73
|
+
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
meta | iii
|
77
|
+
title | ABSTRACT
|
78
|
+
blank |
|
79
|
+
|
|
80
|
+
text | Design, construction, and operation of very large, complex aerospace systems
|
81
|
+
| (mega-systems) is challenging, with potential cost and schedule over-runs and with
|
82
|
+
| awkward upgrade issues. These challenges are amplified when the engineering
|
83
|
+
| organization is producing multiple mega-systems in parallel. This dissertation applies
|
84
|
+
| information theory, genetic computing, and chaos theory to product development within a
|
85
|
+
| large distributed organization. The goal is design environments that efficiently produce
|
86
|
+
| mega-systems that are better able to evolve within the changing world context.
|
87
|
+
| Complex systems are composed of dynamically interacting pieces that exhibit
|
88
|
+
| emergent behaviours as a result of their growth and/or the passage of time. Modern large
|
89
|
+
| engineered systems (~10,000+ man-years of design time), such as the American Air
|
90
|
+
| Traffic Control System and International Space Station, exhibit complex behaviour over
|
91
|
+
| their life, including design, installation, operation, and growth. The desired capability of
|
92
|
+
| the systems is so complex that it is difficult and time consuming to consistently specify
|
93
|
+
| detail for what is desired. The installation and operation of the complex systems changes
|
94
|
+
| the environment in which they are installed, creating a continuously changing context for
|
95
|
+
| follow-on and adjunct system requirements. Finally, maintenance and growth
|
96
|
+
| characteristics for complex systems, including new adjunct systems, exhibit various
|
97
|
+
| levels of brittleness.
|
98
|
+
| This dissertation develops a new type of model to analyze the design and
|
99
|
+
| construction of mega-systems, based on combining an organization network-model with
|
100
|
+
| an information-transfer link-model. Analysis of previous efforts within the Design
|
101
|
+
| Research and the System Engineering communities shows three major shortcomings:
|
102
|
+
| they assume efficient network connectivity, they assume static networks, and they
|
103
|
+
| assume loss-less data transfer. A new model type is developed and exercised to examine
|
104
|
+
| methods and techniques to improve mega-system design and construction, and then
|
105
|
+
| validated in a three-year experiment implementing an enterprise product delivery process.
|
106
|
+
| Model development is based on data from US aerospace companies and programs
|
107
|
+
| spanning the last 30 years.
|
108
|
+
blank |
|
109
|
+
|
|
110
|
+
|
|
111
|
+
meta | iv
|
112
|
+
text | The design of complex systems is not a linear, mechanistic process, but rather a
|
113
|
+
| multi-dimensional, growth process that can be cultivated over and above the analytical
|
114
|
+
| disciplines of design and optimization. The duality of a complex system designing a
|
115
|
+
| complex system reduces determinism. This dissertation identifies parameters of
|
116
|
+
| information exchange activities that can be adjusted to produce an efficient, successful
|
117
|
+
| outcome, albeit a non-deterministic outcome. This adjustment or shaping is similar to
|
118
|
+
| guided genetic evolution of organizations that produce mega-systems as the product of
|
119
|
+
| their computation, but within a restricted context of specified, but evolving, goals and
|
120
|
+
| constraints.
|
121
|
+
| This new analytical framework shows how to match information flow
|
122
|
+
| characteristics to emergent engineering activities to improve the efficiency and quality of
|
123
|
+
| the design process, and to improve the efficiency and coupling of research and
|
124
|
+
| development activities within the larger organization. Information flow must not be
|
125
|
+
| confused with data transfer. Information flow parameters include information resolution,
|
126
|
+
| variability, time scale, compression, link bandwidth, connectivity maps, and more. For
|
127
|
+
| instance, simply avoiding information aliasing in chaotic channels by matching the flow
|
128
|
+
| to the information aging rate can improve design efficiency 80% and product delivery
|
129
|
+
| efficiency 50% in the overall steady state.
|
130
|
+
| The implication of these results is a radical improvement in procurement of large
|
131
|
+
| systems. However, inherent linkages to government organizations that typically fund
|
132
|
+
| these large scale projects require a dual adaptation approach similar to meta-norms in
|
133
|
+
| game theory. Otherwise, the emergent properties of efficient engineering management
|
134
|
+
| will cause a reversion to a lower level of capability per status quo. Also, in order to
|
135
|
+
| support the greater output rate, mega-system specifications will become somewhat non-
|
136
|
+
| deterministic and delivery will rely inherently on product engineering, requiring a change
|
137
|
+
| in perspective of program management. This is beneficial evolution of the organization
|
138
|
+
| to improve delivery, and the total value delivered to society will accrue at higher
|
139
|
+
| compound growth rates.
|
140
|
+
blank |
|
141
|
+
|
|
142
|
+
|
|
143
|
+
|
|
144
|
+
meta | v
|
145
|
+
title | ACKNOWLEDGEMENTS
|
146
|
+
blank |
|
147
|
+
|
|
148
|
+
|
|
149
|
+
text | I would like to thank Professor Larry Leifer for his support of this effort as
|
150
|
+
| it evolved over time, and for his enthusiasm and generosity sharing the breadth of
|
151
|
+
| the design experience.
|
152
|
+
blank |
|
153
|
+
|
|
154
|
+
text | I would like to thank Tess for her commitment, support, and enjoyment of
|
155
|
+
| the roving, rambling path to get here and beyond.
|
156
|
+
blank |
|
157
|
+
|
|
158
|
+
|
|
159
|
+
|
|
160
|
+
meta | vi
|
161
|
+
title | TABLE OF CONTENTS
|
162
|
+
text | 1 Introduction ................................................................................................................. 1
|
163
|
+
| 1.1 Problem ................................................................................................................ 1
|
164
|
+
| 1.2 Mega Design Communities and Design Organization Model ............................. 3
|
165
|
+
| 1.3 Information Transfer and Link Model ................................................................. 4
|
166
|
+
| 1.4 Results .................................................................................................................. 9
|
167
|
+
| 1.5 Conclusions ........................................................................................................ 13
|
168
|
+
| 1.5.1 Design of Individual Mega-Systems ........................................................... 13
|
169
|
+
| 1.5.2 Company and Design-Organization Implications ....................................... 14
|
170
|
+
| 1.5.3 Government and Societal Implications ....................................................... 15
|
171
|
+
| 2 Network Model Development and Mega-Organizations .......................................... 17
|
172
|
+
| 2.1 Structure of Very Large Aerospace Design Communities ................................. 17
|
173
|
+
| 2.2 Network Characteristics ..................................................................................... 21
|
174
|
+
| 2.3 Abstraction to Meta-Network Model ................................................................. 27
|
175
|
+
| 3 Link Model Development ......................................................................................... 28
|
176
|
+
| 3.1 Model Overview ................................................................................................. 28
|
177
|
+
| 3.2 Design Information ............................................................................................ 31
|
178
|
+
| 3.2.1 Information in Design Communities .......................................................... 31
|
179
|
+
| 3.2.2 Information Modeling ................................................................................. 34
|
180
|
+
| 3.2.3 Product Entropy and Information Packages ............................................... 36
|
181
|
+
| 3.2.4 Information Growth, and Product Evolution .............................................. 39
|
182
|
+
| 3.3 Task Variety ....................................................................................................... 42
|
183
|
+
| 3.3.1 Variety and Information Processing ........................................................... 42
|
184
|
+
| 3.3.2 Variety in Distributed Product Development ............................................. 44
|
185
|
+
| 3.4 Information Transfer in Chaotic Channels ......................................................... 46
|
186
|
+
| 3.4.1 Dynamical Systems and the Logistics Map ................................................ 46
|
187
|
+
| 3.4.2 Information Transfer in Chaotic Channels ................................................. 48
|
188
|
+
| 3.4.3 Multi-scale Information Transfer ................................................................ 51
|
189
|
+
| 3.4.4 Combined Varietal, Organizational, and Temporal Aliasing ..................... 57
|
190
|
+
| 3.4.5 Noise in Chaotic Channels .......................................................................... 59
|
191
|
+
| 3.4.6 Synchronization .......................................................................................... 59
|
192
|
+
blank |
|
193
|
+
meta | vii
|
194
|
+
| 4 Application of Integrated Link/Network Model ....................................................... 60
|
195
|
+
text | 4.1 Matching Scale Dispersion to Time Regimes .................................................... 60
|
196
|
+
| 4.2 Identification of Candidate Links, Nodes, and Chains....................................... 63
|
197
|
+
| 4.3 Network Improvements ...................................................................................... 66
|
198
|
+
| 4.3.1 Link Discontinuity Adjustment................................................................... 67
|
199
|
+
| 4.3.2 Link-Chain Improvement............................................................................ 69
|
200
|
+
| 4.4 Cultivated Changes and Observed Emergent Side-Effects ................................ 72
|
201
|
+
| 5 Performance Observations and Implications ............................................................ 75
|
202
|
+
| 5.1 R&D Applicability Performance ........................................................................ 75
|
203
|
+
| 5.2 Estimating the Amount of Communication you Should Afford ........................ 76
|
204
|
+
| 5.3 Expected Product Changes ................................................................................. 77
|
205
|
+
| 5.3.1 Exporting Products at Delivery Dates......................................................... 78
|
206
|
+
| 5.3.2 Incremental Technology Incorporation....................................................... 79
|
207
|
+
| 5.3.3 Coupled Efficiency ..................................................................................... 80
|
208
|
+
| 5.3.4 Company and Product Goals ...................................................................... 80
|
209
|
+
| 5.4 Limits to Change ................................................................................................ 81
|
210
|
+
| 5.5 Applicability ....................................................................................................... 82
|
211
|
+
| 6 Conclusions ............................................................................................................... 85
|
212
|
+
| 6.1 More Efficient Design of Mega-Systems ........................................................... 85
|
213
|
+
| 6.2 Relying on Emergence and Organizational Computation .................................. 86
|
214
|
+
| 6.3 Government Aerospace, Low-Price Procurement, and Overhead Rates ........... 87
|
215
|
+
| 6.4 Additional Research Vectors .............................................................................. 89
|
216
|
+
| 6.4.1 Organizational Memory .............................................................................. 89
|
217
|
+
| 6.4.2 Engineering Tools ....................................................................................... 89
|
218
|
+
| 6.4.3 Long-Scale Neural Training of Sub-Networks ........................................... 89
|
219
|
+
| 7 Appendix A – Research Background........................................................................ 90
|
220
|
+
| 7.1 Evolutionary Design ........................................................................................... 90
|
221
|
+
| 7.2 Engineering Systems .......................................................................................... 91
|
222
|
+
| 7.3 Flow-Service-Quality Engineering .................................................................... 92
|
223
|
+
| 7.4 Engineering Tools .............................................................................................. 93
|
224
|
+
| 8 References ................................................................................................................. 95
|
225
|
+
blank |
|
226
|
+
meta | viii
|
227
|
+
title | LIST OF FIGURES
|
228
|
+
blank |
|
229
|
+
|
|
230
|
+
text | Figure 1-1 Examples of Mega-Systems ............................................................................. 2
|
231
|
+
| Figure 1-2 Development of Abstracted Design Organization Model ................................ 3
|
232
|
+
| Figure 1-3 Link Information Transfer Model underpins all node connections ................. 5
|
233
|
+
| Figure 1-4 Link Information Transfer Model .................................................................... 6
|
234
|
+
| Figure 1-5 Information Exchange Resonances .................................................................. 8
|
235
|
+
| Figure 1-6 Information Transfer Regimes and Amplification Factors .............................. 9
|
236
|
+
| Figure 1-7 Set of Consistent Guides to Repair Discontinuity ......................................... 10
|
237
|
+
| Figure 1-8 Link-chain Paths of Interest ........................................................................... 12
|
238
|
+
blank |
|
239
|
+
|
|
240
|
+
text | Figure 2-1 Geographic Distribution ................................................................................. 18
|
241
|
+
| Figure 2-2 Conceptual Organizational Structure, Staffing Levels, and Characteristics .. 19
|
242
|
+
| Figure 2-3 Organizational Size Characteristics ............................................................... 20
|
243
|
+
| Figure 2-4 Overlapping Hierarchies ................................................................................ 21
|
244
|
+
| Figure 2-5 Typical Hierarchical Organization ................................................................. 22
|
245
|
+
| Figure 2-6 Control Stability for Various Organizations .................................................. 23
|
246
|
+
| Figure 2-7 Organizational Performance........................................................................... 23
|
247
|
+
| Figure 2-8 Typical and Combined Network Characteristics ........................................... 24
|
248
|
+
| Figure 2-9 Abstracted Organizational Model .................................................................. 27
|
249
|
+
blank |
|
250
|
+
|
|
251
|
+
text | Figure 3-1 Parameters of Link Transfer Model ............................................................... 29
|
252
|
+
| Figure 3-2 Organizations, Information Products, and Time Epochs ............................... 32
|
253
|
+
| Figure 3-3 Product Entropy Flexibility for Related Designs ........................................... 36
|
254
|
+
| Figure 3-4 Product Entropy Levels for different rates of Growth ................................... 38
|
255
|
+
| Figure 3-5 Mutual and Conditional Information ............................................................. 39
|
256
|
+
| Figure 3-6 Design Process Models and Networks ........................................................... 44
|
257
|
+
| Figure 3-7 Meta-Performance Measures of Distributed Product Development .............. 45
|
258
|
+
| Figure 3-8 Bifurcation Diagram....................................................................................... 47
|
259
|
+
| Figure 3-9 Conditional, mutual, and total information for two and three time steps ...... 49
|
260
|
+
| Figure 3-10 Mutual information for larger iterations of time .......................................... 50
|
261
|
+
blank |
|
262
|
+
meta | ix
|
263
|
+
text | Figure 3-11 Values for Combined Organization (OAF) and Variety (VAF) Aliasing .... 55
|
264
|
+
| Figure 3-12 Values for Time Aliasing Factor (TAF)....................................................... 56
|
265
|
+
| Figure 3-13 Network with total Product Information Aliasing Factors (p) ..................... 58
|
266
|
+
blank |
|
267
|
+
|
|
268
|
+
text | Figure 4-1 Mutual, Conditional, and Postdicted (I(y)) Information ................................ 61
|
269
|
+
| Figure 4-2 Mutual information for larger numbers of iterations ..................................... 62
|
270
|
+
| Figure 4-3 Information Transfer Regimes and Amplification Factors ............................ 64
|
271
|
+
| Figure 4-4 Set of Consistent Guides to Repair Discontinuity ......................................... 67
|
272
|
+
| Figure 4-5 Link-chain Paths of Interest ........................................................................... 70
|
273
|
+
| Figure 4-6 Cultivated Organizational Change ................................................................. 74
|
274
|
+
blank |
|
275
|
+
|
|
276
|
+
text | Figure 5-1 Improved Value Over Time ........................................................................... 78
|
277
|
+
blank |
|
278
|
+
|
|
279
|
+
|
|
280
|
+
|
|
281
|
+
meta | x
|
282
|
+
title | GLOSSARY
|
283
|
+
blank |
|
284
|
+
|
|
285
|
+
|
|
286
|
+
text | Agent – an actor that undertakes an action in a design chain, here including individuals,
|
287
|
+
| design groups, project teams, discipline departments, support functions, small
|
288
|
+
| businesses, etc. A node with variety.
|
289
|
+
| Aliasing – loss of understanding of some detail within a set of information. Similar to
|
290
|
+
| straight-line aliasing in graphics or image analysis.
|
291
|
+
| Chaotic channel – an information exchange channel or link, that is susceptible to
|
292
|
+
| dynamic evolution with the ensuing noise injection and dissipation.
|
293
|
+
| Communicativity - is related to the number, speed, and bandwidth of connections between
|
294
|
+
| agents, spanning multiple scales (individual, group, organization) with different
|
295
|
+
| parameters at each scale.
|
296
|
+
| Context Variety– variety needed to acquire contextual information from an external
|
297
|
+
| source to connect the design to external detail.
|
298
|
+
| Directed links – a directed link in graph theory, or here a link through which information
|
299
|
+
| flows only one way.
|
300
|
+
| Encoded – packaged information such that it can be understood by an undefined recipient
|
301
|
+
| at an undefined time in the future.
|
302
|
+
| Evolutionary computing organisms – complex systems that evolve overtime including
|
303
|
+
| genetic populations.
|
304
|
+
| Exchange resonances – states where information package format and timing is consistent
|
305
|
+
| with environmental transmission characteristics.
|
306
|
+
| External norms – in game theory, externally applied forces that affect the pareto solution.
|
307
|
+
| Information content – the amount of information being exchanged.
|
308
|
+
| Information resolution – the resolution or scale of the information similar to image
|
309
|
+
| resolution and engineering tolerances.
|
310
|
+
| Information theoretic – Information modeled in a manner similar to entropy, statistical
|
311
|
+
| mechanics, and/or quantum physics.
|
312
|
+
blank |
|
313
|
+
|
|
314
|
+
meta | xi
|
315
|
+
text | Link – a link on a graph or network connecting two nodes, here especially connections
|
316
|
+
| between groups to exchange information.
|
317
|
+
| Link chains - sets of directed links corresponding to control paths required to focus the
|
318
|
+
| organization on particular future goal states.
|
319
|
+
| Mega-systems - systems whose design and production efforts span on the order of 10
|
320
|
+
| years of development time and require on the order of 10,000 man-years of effort.
|
321
|
+
| Mega-organizations – organizations that have tens of thousands of engineers spread
|
322
|
+
| widely across a large geographic area. Not necessarily with singular control.
|
323
|
+
| Niche construction – in biology or genetics, an internal adjustment to better fit the local
|
324
|
+
| environment for improved performance.
|
325
|
+
| Node – a node on a graph or network, here including individuals, design groups, project
|
326
|
+
| teams, discipline departments, support functions, small businesses, etc.
|
327
|
+
| Non-directed graph – in graph theory having multi-directional links, here especially bi-
|
328
|
+
| directional links connecting two separate nodes.
|
329
|
+
| Post diction - the forward use of information to increase the knowledge of another actor
|
330
|
+
| in a strictly subsequent time state. The inverse of prediction in an information
|
331
|
+
| theory sense.
|
332
|
+
| Resolution Variety – variety needed to add more detailed design information to increase
|
333
|
+
| the fidelity or resolution of the design.
|
334
|
+
| Scale-free network – in network theory, a random network with a degree distribution that
|
335
|
+
| follows a power law, at least asymptotically.
|
336
|
+
| Translation Variety – variety needed to translate or extract information from the current
|
337
|
+
| design to further the design in an additional dimension.
|
338
|
+
| Transmitted – delivering information such that it reaches additional recipients.
|
339
|
+
| Task-bits – quantum information of a task, similar to data bits or letters in a document.
|
340
|
+
| Variety – the diverse set of capabilities needed by an actor or group to execute an
|
341
|
+
| activity. The variety represents the set of capabilities and functionality.
|
342
|
+
blank |
|
343
|
+
|
|
344
|
+
|
|
345
|
+
|
|
346
|
+
text | xii
|
347
|
+
| …complex products
|
348
|
+
| produced by complex organizations
|
349
|
+
| become fragments of complex systems
|
350
|
+
blank |
|
351
|
+
|
|
352
|
+
|
|
353
|
+
|
|
354
|
+
meta | xiii
|
355
|
+
title | 1 Introduction
|
356
|
+
text | Engineers propose to understand canonical mechanisms and prototypical behaviours to
|
357
|
+
| better control the systems development effort. But you cannot control a complex system
|
358
|
+
| in which you are immersed, and within an environmental context that changes before
|
359
|
+
| your controls can respond. You must cultivate and guide these systems at various and
|
360
|
+
| appropriate time scales.
|
361
|
+
blank |
|
362
|
+
|
|
363
|
+
text | This dissertation develops a new type of model to analyze the design and construction of
|
364
|
+
| mega-systems, based on combining an organization network-model with an information-
|
365
|
+
| transfer link-model. This combined model is exercised to examine methods and
|
366
|
+
| techniques to improve mega-system design and construction, and then validated in a
|
367
|
+
| three-year experiment implementing an enterprise product delivery process. Model
|
368
|
+
| development is based on data from US aerospace companies and programs spanning the
|
369
|
+
| last 30 years.
|
370
|
+
blank |
|
371
|
+
|
|
372
|
+
text | Previous efforts within the Design Research and the System Engineering communities to
|
373
|
+
| analyze and improve Engineering Processes that are used to design mega-systems are
|
374
|
+
| summarized in Appendix A. Analysis of these recent efforts shows three major
|
375
|
+
| shortcomings: they assume efficient network connectivity, they assume static networks,
|
376
|
+
| and they assume loss-less data transfer. This dissertation is a first step toward correcting
|
377
|
+
| these deficiencies, and accounting for these very real constraints.
|
378
|
+
blank |
|
379
|
+
title | 1.1 Problem
|
380
|
+
text | Large Complex Mega-Systems are defined here as efforts that span 10 years of
|
381
|
+
| development time (design and production) and require 10,000 man-years of effort.
|
382
|
+
| Typically engineers are drawn from a wide supply chain spanning a large geographic
|
383
|
+
| area. These systems include the NASA Space Shuttle, the International Space Station
|
384
|
+
| (ISS), and planned Mars and asteroid missions (Figure 1-1). Terrestrial examples include
|
385
|
+
| the Air Traffic Control Systems (ATCS), missile defense systems, nuclear power plants,
|
386
|
+
| and others.
|
387
|
+
blank |
|
388
|
+
|
|
389
|
+
|
|
390
|
+
meta | 1
|
391
|
+
text | Figure 1-1 Examples of Mega-Systems
|
392
|
+
| (A) Space shuttles Atlantis and Endeavor at Kennedy Space Center launch complexes 39A and 39B.
|
393
|
+
| (B) Artist’s concept of exploration of Mars’s moon Phobos.
|
394
|
+
blank |
|
395
|
+
|
|
396
|
+
text | Problems arise when developing these systems, likely caused by their immense scale.
|
397
|
+
| Some systems are never built, or take a much longer time than planned before the design
|
398
|
+
| is finalized for production: this is sometimes caused by requirements churn such as for
|
399
|
+
| the ISS and its precursors. Other systems exhibit upgrade brittleness such as the ATCS:
|
400
|
+
| here, because of either the safety requirements, distributed nature, or necessary
|
401
|
+
| incremental approach to upgrades, the follow-on replacement design was unable to close
|
402
|
+
| and had to be restarted several times at great expense. Some products collide with
|
403
|
+
| obsolescence issues since their design process takes so long that some of the originally
|
404
|
+
| included components are no longer available.
|
405
|
+
blank |
|
406
|
+
|
|
407
|
+
text | “About one in three major U.S. Defense Department programs since 1997 have had cost
|
408
|
+
| overruns of as much as 50 percent over their original projections. The overruns, found in
|
409
|
+
| 47 of 134 programs included in a study by the U.S. Government Accountability Office,
|
410
|
+
| were enough to trigger a law [Nunn-McCurdy Act] that requires congressional
|
411
|
+
| notifications and potential termination” [Capaccio 2011].
|
412
|
+
blank |
|
413
|
+
|
|
414
|
+
|
|
415
|
+
|
|
416
|
+
meta | 2
|
417
|
+
text | 1.2 Mega Design Communities and Design Organization Model
|
418
|
+
| Mega-Systems are designed by Mega-Organizations that have tens of thousands of
|
419
|
+
| engineers spread widely across a large geographic area. Organizations are treated here as
|
420
|
+
| evolutionary computing organisms that evolve as they compute. An abstract
|
421
|
+
| organizational network model is developed in Section 2.0 as summarized in Figure 1-2.
|
422
|
+
| Subsequent discussion in Sections 3.0 and 4.0 will add measures of emergent parameters.
|
423
|
+
blank |
|
424
|
+
text | Louisville, CO
|
425
|
+
| Bangor, WA Denver, CO Newtown, PA
|
426
|
+
| • Coherent
|
427
|
+
| • FBM IA&T
|
428
|
+
| Technologies • Navigation Systems Sector
|
429
|
+
| Coord
|
430
|
+
| Sector
|
431
|
+
| Coord
|
432
|
+
| Major
|
433
|
+
| Sector
|
434
|
+
| Coord
|
435
|
+
blank |
|
436
|
+
text | Palo Alto, CA • Commercial Space Teammates
|
437
|
+
blank |
|
438
|
+
|
|
439
|
+
text | • ATC BD PROG
|
440
|
+
| PROG
|
441
|
+
| R&D
|
442
|
+
| PROG
|
443
|
+
| Sector
|
444
|
+
| PROG
|
445
|
+
| PROG
|
446
|
+
| Coord
|
447
|
+
| Exec Exec Exec
|
448
|
+
| Sunnyvale, CA
|
449
|
+
| Valley Forge, PA
|
450
|
+
| Santa Cruz, CA • Reentry Systems Adjacent
|
451
|
+
| Adjacent
|
452
|
+
| BD Executive Senior Adjacent
|
453
|
+
| • Test Support Markets
|
454
|
+
| Adjacent
|
455
|
+
| Markets
|
456
|
+
| Adjacent
|
457
|
+
| Markets
|
458
|
+
| Markets
|
459
|
+
| Director Staff Support Technologies
|
460
|
+
blank |
|
461
|
+
|
|
462
|
+
text | Washington, DC
|
463
|
+
| • FBM Liaison BD Advanced Senior
|
464
|
+
blank |
|
465
|
+
text | Business • Washington Ops Program Research
|
466
|
+
| Staff
|
467
|
+
| Program
|
468
|
+
| Program
|
469
|
+
| Program Develop
|
470
|
+
| Senior
|
471
|
+
| Senior
|
472
|
+
| Manager
|
473
|
+
| Senior
|
474
|
+
| ManagerSenior
|
475
|
+
| Manager
|
476
|
+
| Senior
|
477
|
+
| ManagerSenior
|
478
|
+
| Manager
|
479
|
+
| Manager
|
480
|
+
blank |
|
481
|
+
text | Development Management
|
482
|
+
| Manager
|
483
|
+
| Arlington, VA Senior Senior
|
484
|
+
| Edwards AFB, CA BD
|
485
|
+
| • Targets Prime PROG R&D
|
486
|
+
| Engineer
|
487
|
+
| Subsystem
|
488
|
+
| Subsystem
|
489
|
+
| Subsystem
|
490
|
+
| Subsystem
|
491
|
+
| Subsystem
|
492
|
+
| CRAD
|
493
|
+
| CRAD
|
494
|
+
| CRAD
|
495
|
+
| CRAD
|
496
|
+
| CRAD
|
497
|
+
| Scientist
|
498
|
+
| Subsystem CRAD
|
499
|
+
| • ABL
|
500
|
+
| Subsystem
|
501
|
+
| Huntsville, AL
|
502
|
+
| • Strategic & Missile Defense Tools Engineer Engineers Engineer
|
503
|
+
| Staff
|
504
|
+
| El Segundo, CA • Ares Support
|
505
|
+
| Scientist
|
506
|
+
blank |
|
507
|
+
text | • MILSATCOM Exec Exec Exec
|
508
|
+
| Albuquerque, NM Kings Bay, GA Discipline
|
509
|
+
| • ATC • FBM IA&T Discipline
|
510
|
+
| Director
|
511
|
+
| Discipline
|
512
|
+
| Director
|
513
|
+
| Discipline
|
514
|
+
| Suppliers Small Universities
|
515
|
+
| Director
|
516
|
+
| Kauai, HI White Sands, NM • ATK
|
517
|
+
| Discipline
|
518
|
+
| Director
|
519
|
+
| Discipline
|
520
|
+
| Director
|
521
|
+
| Business
|
522
|
+
blank |
|
523
|
+
|
|
524
|
+
text | • PMRF Courtland, AL Cape Canaveral, FL Discipline
|
525
|
+
| Director
|
526
|
+
| • Missile Range • Targets & Adjacent
|
527
|
+
| • Targets &
|
528
|
+
| BD
|
529
|
+
| Eastern Range
|
530
|
+
| Executive Senior
|
531
|
+
| Sector
|
532
|
+
| Discipline
|
533
|
+
| Adjacent
|
534
|
+
| Director
|
535
|
+
| Director
|
536
|
+
| Stennis, MS Markets Director Staff Coord
|
537
|
+
| Support
|
538
|
+
| ENG
|
539
|
+
| Technologies
|
540
|
+
| Countermeasures Countermeasures • Launch Operations
|
541
|
+
| • Propulsion
|
542
|
+
| Houston, TX Center
|
543
|
+
| ~19,500 employees • Orion
|
544
|
+
| New Orleans, LA BD Advanced Senior
|
545
|
+
| • ~ 8,700 in Silicon Valley
|
546
|
+
| • External Tank Staff
|
547
|
+
| Program
|
548
|
+
| Develop Manager
|
549
|
+
| • ~ 4,700 in Denver area
|
550
|
+
| • ~ 2,000 in New Orleans • Orion
|
551
|
+
| • ~ 1,500 in Cape and V
|
552
|
+
| • ~ 1,100 in Delaware Valley
|
553
|
+
| Senior
|
554
|
+
| Engineer
|
555
|
+
| Subsystem CRAD
|
556
|
+
| Senior
|
557
|
+
| Scientist
|
558
|
+
| 009_03.18.08
|
559
|
+
| • ~ 500 in Alabama
|
560
|
+
blank |
|
561
|
+
text | Staff
|
562
|
+
| Tools Engineer Engineer Engineer
|
563
|
+
| Scientist
|
564
|
+
blank |
|
565
|
+
|
|
566
|
+
|
|
567
|
+
text | Discipline
|
568
|
+
| Director
|
569
|
+
| Operational Prototype
|
570
|
+
| Systems Systems
|
571
|
+
| ENG
|
572
|
+
| Engineering
|
573
|
+
blank |
|
574
|
+
text | Figure 1-2 Development of Abstracted Design Organization Model
|
575
|
+
| (A) A large mega-organization (design community) of 100,000 people is spread across the wide range
|
576
|
+
| of North America in different cities. (B) Organizational groups (nodes) and major relations between
|
577
|
+
| them (links) are identified. (C) The nodes and links are then simplified into a two-dimensional
|
578
|
+
| structure to highlight parameters associated with activity duration, organization hierarchies, and
|
579
|
+
| different engineering capabilities and products.
|
580
|
+
blank |
|
581
|
+
|
|
582
|
+
text | The design-organization network model represents a distributed mega-design-community
|
583
|
+
| of 100,000 people producing a set of mega-systems over time. These people are
|
584
|
+
| assembled into various organizations including design groups, project teams, discipline
|
585
|
+
| departments, support functions, small businesses, etc. Each organizational group, or
|
586
|
+
| node, is composed of many people, and there may be multiple instances of any one
|
587
|
+
| group. The variety of people within each node provides a diverse set of capabilities to
|
588
|
+
| execute the group’s higher level function (see Section 3.3).
|
589
|
+
blank |
|
590
|
+
|
|
591
|
+
meta | 3
|
592
|
+
text | Multiple nodes (groups) may connect to a single node performing a coordinative
|
593
|
+
| function, but each link conveys separate information in different contexts (sections 1.3
|
594
|
+
| and 3.0). Groups may be linked to multiple sets of groups in different fashions for
|
595
|
+
| different purposes such as product design, tool development, financial control, etc. These
|
596
|
+
| overlapping sets represent various sub-groups or sub-functions within the design
|
597
|
+
| community and within the abstract organizational network model.
|
598
|
+
blank |
|
599
|
+
|
|
600
|
+
text | The resulting organizational network model is neither fully-connected nor hierarchically
|
601
|
+
| connected nor even efficiently connected, but rather has scale-free connectivity such that
|
602
|
+
| nodes can have several possible connection paths, even for the same information transfer
|
603
|
+
| activity, but with different efficiencies and restrictions (see Section 2.2).
|
604
|
+
blank |
|
605
|
+
title | 1.3 Information Transfer and Link Model
|
606
|
+
text | Earlier efforts in modeling multi-scale organizations with emergent properties [Byler
|
607
|
+
| 2000] showed the critical nature of multi-scale communications. Following an Adaptive
|
608
|
+
| Non-linear Testing technique [Miller 2007], the modeling validation and verification
|
609
|
+
| indicated massive instability around the parameters defining “communicativity”. This
|
610
|
+
| defined a critical area of investigation explored further in this dissertation.
|
611
|
+
blank |
|
612
|
+
|
|
613
|
+
text | “Communicativity” is related to the number, speed, and bandwidth of connections
|
614
|
+
| between agents. For individual design agents this is related, for example, to the number
|
615
|
+
| of emails sent per day, the number of addressees in an agents personal address book,
|
616
|
+
| number of off-site web-page accesses, typical phone usage, etc. For design groups, this is
|
617
|
+
| related to frequency and size of design reviews, availability and type of online design
|
618
|
+
| storage, geographic separation (bull-pen vs. cubicles), etc. For project swarms (groups,
|
619
|
+
| departments, small businesses), “communicativity” is rate of engineer reassignment, size
|
620
|
+
| and quality of information system network, frequency of training, and whether the project
|
621
|
+
| is owned by the company or someone else (which implies internalization of requirements
|
622
|
+
| and operations).
|
623
|
+
blank |
|
624
|
+
|
|
625
|
+
|
|
626
|
+
|
|
627
|
+
meta | 4
|
628
|
+
text | To address the importance of communicativity, an underpinning information transfer
|
629
|
+
| model for the network links was developed to better include factors addressing
|
630
|
+
| communications parameters as well as organization parameters, functional activities, and
|
631
|
+
| environmental constraints (Figure 1-3).
|
632
|
+
blank |
|
633
|
+
|
|
634
|
+
|
|
635
|
+
text | Agent X Agent Y
|
636
|
+
blank |
|
637
|
+
|
|
638
|
+
text | Information Transfer
|
639
|
+
blank |
|
640
|
+
text | Business Program Research
|
641
|
+
| Development BD PROG
|
642
|
+
| Management R&D
|
643
|
+
blank |
|
644
|
+
text | Chaotic Channel (non-linear)
|
645
|
+
| Exec Exec Exec
|
646
|
+
blank |
|
647
|
+
|
|
648
|
+
|
|
649
|
+
|
|
650
|
+
text | Adjacent BD Executive Senior Adjacent
|
651
|
+
| Markets Director Staff Support Technologies
|
652
|
+
blank |
|
653
|
+
|
|
654
|
+
|
|
655
|
+
text | BD Advanced Senior
|
656
|
+
| Program
|
657
|
+
| Staff Develop Manager
|
658
|
+
blank |
|
659
|
+
|
|
660
|
+
|
|
661
|
+
text | Senior Senior
|
662
|
+
| Subsystem CRAD
|
663
|
+
| Engineer Scientist
|
664
|
+
blank |
|
665
|
+
|
|
666
|
+
|
|
667
|
+
text | Staff
|
668
|
+
| Tools Engineer Engineer Engineer
|
669
|
+
| Scientist
|
670
|
+
blank |
|
671
|
+
|
|
672
|
+
|
|
673
|
+
text | Discipline
|
674
|
+
| Director
|
675
|
+
| Operational Prototype
|
676
|
+
| Systems Systems
|
677
|
+
| ENG
|
678
|
+
| Engineering
|
679
|
+
blank |
|
680
|
+
|
|
681
|
+
text | Figure 1-3 Link Information Transfer Model underpins all node connections
|
682
|
+
| Each link in the network model incorporates a detailed model of a chaotic communications channel.
|
683
|
+
blank |
|
684
|
+
|
|
685
|
+
|
|
686
|
+
text | This link information transfer model applies to all connections in the network model, and
|
687
|
+
| is shown in additional detail in Figure 1-4.
|
688
|
+
blank |
|
689
|
+
|
|
690
|
+
|
|
691
|
+
|
|
692
|
+
meta | 5
|
693
|
+
text | Link Information Transfer Model
|
694
|
+
| “Node” parameters
|
695
|
+
| defined by information encoding and transmitting activities
|
696
|
+
| and by design information content, resolution, & processing
|
697
|
+
| “Link” parameters
|
698
|
+
| defined by relative design role
|
699
|
+
| Agent X and by organizational activities Agent Y
|
700
|
+
| w/ Variety 7 w/ Variety 9
|
701
|
+
| Encoder V6
|
702
|
+
| Transmitter Vn
|
703
|
+
| Transmitter V7
|
704
|
+
blank |
|
705
|
+
text | environment, tools, time
|
706
|
+
blank |
|
707
|
+
|
|
708
|
+
text | Information Transfer
|
709
|
+
blank |
|
710
|
+
|
|
711
|
+
|
|
712
|
+
text | Chaotic Channel (non-linear)
|
713
|
+
| Machining V1 Receiver V1
|
714
|
+
| Cost Analysis V2 Decoder V2
|
715
|
+
| Programmer V3
|
716
|
+
blank |
|
717
|
+
|
|
718
|
+
text | Variety = a set of capabilities when
|
719
|
+
| and functionality Information Parameters (node + info package)
|
720
|
+
| are incompatible with
|
721
|
+
| Agents = can be individuals, Transmission Line Parameters (link + environment)
|
722
|
+
| groups, organizations, “aliasing” effects occur
|
723
|
+
| or other complices
|
724
|
+
blank |
|
725
|
+
text | Figure 1-4 Link Information Transfer Model
|
726
|
+
blank |
|
727
|
+
|
|
728
|
+
text | For the organization model developed here (Section 1.2 and 2.0), each node is an agent
|
729
|
+
| composed of many people (design groups, project swarms, etc.) in the sense defined by
|
730
|
+
| [Petrie 1996]. Agents can be individuals, groups, organizations, or other complices.
|
731
|
+
blank |
|
732
|
+
|
|
733
|
+
text | Each agent performs its function using a variety of people or skills. Producing a
|
734
|
+
| controller card, for instance, may require a machinist, a programmer, and a financial
|
735
|
+
| analyst. Then the product must be packaged and delivered. If one considers the
|
736
|
+
| controller card as inherently containing the design and product information, then the
|
737
|
+
| output could be termed to be encoded and transmitted, similar to packaged and delivered.
|
738
|
+
blank |
|
739
|
+
|
|
740
|
+
text | Depending on the complexity of the product or output of the Agent, it may require more
|
741
|
+
| or less variety of sub-tasks. The complexity of the product and/or of the agent is
|
742
|
+
blank |
|
743
|
+
|
|
744
|
+
meta | 6
|
745
|
+
text | represented by the Variety (Vi) of internal skills. The variety represents the set of
|
746
|
+
| capabilities and functionality.
|
747
|
+
blank |
|
748
|
+
|
|
749
|
+
text | The incremental task executed (item produced) by an agent can be a physical or
|
750
|
+
| ephemeral addition. In any event, information was imposed on the inputs (machining,
|
751
|
+
| assembly sequence, tuning) to increase its usefulness and reduce the entropy of the parts.
|
752
|
+
| The type of information imposed on the inputs, and representing the final product (piece-
|
753
|
+
| part), is modeled by information content, resolution, and processing.
|
754
|
+
blank |
|
755
|
+
|
|
756
|
+
text | The node parameters include the information content and resolution, as well as the
|
757
|
+
| information encoding and transmission. Information is modeled in an information
|
758
|
+
| theoretic sense after [Shannon 1948] and [Bais 2010]
|
759
|
+
blank |
|
760
|
+
|
|
761
|
+
text | I() = -ipilogpi
|
762
|
+
blank |
|
763
|
+
|
|
764
|
+
text | Any new (conditional) information received by agent y from the information sent by
|
765
|
+
| agent x will be
|
766
|
+
blank |
|
767
|
+
|
|
768
|
+
text | I(y|x) = -iPx(xi)jPy|x(yj|xi)log2Py|x(yj|xj)
|
769
|
+
blank |
|
770
|
+
|
|
771
|
+
text | which expresses the fact that the receiver must interpret (decode) the information he
|
772
|
+
| receives based on their previous mutual understanding. Note that information data-bits
|
773
|
+
| can be interpreted similarly with design “task-bits”.
|
774
|
+
blank |
|
775
|
+
|
|
776
|
+
text | The Link parameters are defined both by the relative design roles of the attached nodes
|
777
|
+
| within the organizational activities, and by the environment within which the products
|
778
|
+
| pass and exist. The effect of relative design roles is driven not so much by the different
|
779
|
+
| activities, but rather by how much work must be done to understand or incorporate
|
780
|
+
| (receive and decode) the material being transmitted by the input agent. The effect of the
|
781
|
+
| design environment includes how the information is stored (transmission is not
|
782
|
+
| instantaneous), the amount of time delay between production and use, the types of tools
|
783
|
+
blank |
|
784
|
+
|
|
785
|
+
meta | 7
|
786
|
+
text | used to decode or process the intermediate product, etc. Because of the dynamic nature
|
787
|
+
| of the information and the link, this model is a chaotic channel.
|
788
|
+
blank |
|
789
|
+
|
|
790
|
+
text | Information production, coding, aging, and obsolescence is modeled with the logistic
|
791
|
+
| growth curve [Verhulst 1838]
|
792
|
+
blank |
|
793
|
+
|
|
794
|
+
text | xt+1 = axt (1 - xt)
|
795
|
+
blank |
|
796
|
+
|
|
797
|
+
text | such that information is subject to dynamic effects over time. Iteration of mutual
|
798
|
+
| information over time shows “exchange resonances” (Figure 1-5).
|
799
|
+
blank |
|
800
|
+
|
|
801
|
+
text | When the Information parameters (node and product information package) are
|
802
|
+
| incompatible with Transmission Link parameters (link and environment), aliasing occurs.
|
803
|
+
| The information or product is not completely usable, or has become corrupted, and
|
804
|
+
| additional work will be needed to adapt or understand it. In fact even minor mismatches
|
805
|
+
| create observable aliasing; it is a matter of scale.
|
806
|
+
blank |
|
807
|
+
|
|
808
|
+
text | 7
|
809
|
+
| B
|
810
|
+
| 6
|
811
|
+
| A C
|
812
|
+
| Mutual Information I(x^y)
|
813
|
+
blank |
|
814
|
+
|
|
815
|
+
|
|
816
|
+
|
|
817
|
+
text | 5
|
818
|
+
blank |
|
819
|
+
text | 4
|
820
|
+
| t = 10
|
821
|
+
| 3 t = 20
|
822
|
+
| t = 40
|
823
|
+
| 2
|
824
|
+
blank |
|
825
|
+
text | 1
|
826
|
+
blank |
|
827
|
+
text | 0
|
828
|
+
| 0.0 1.0 2.0 3.0 4.0
|
829
|
+
| a
|
830
|
+
blank |
|
831
|
+
|
|
832
|
+
text | Figure 1-5 Information Exchange Resonances
|
833
|
+
| Information can be exchanged more completely at certain periods of time at the “resonant” nodes A,
|
834
|
+
| B, and C on the graph where a = 1, 3, and 3.5.
|
835
|
+
blank |
|
836
|
+
|
|
837
|
+
|
|
838
|
+
|
|
839
|
+
meta | 8
|
840
|
+
title | 1.4 Results
|
841
|
+
text | Model parameters were developed for each link in the organization model. Multiple
|
842
|
+
| parameters are summarized into a value for product information characteristics ‘p’, and
|
843
|
+
| for transmission characteristics ‘a’, for each link. Several of these are shown in Figure
|
844
|
+
| 1-6 to highlight cases of interest. The product information aliasing factor ‘p’, has been
|
845
|
+
| placed into three bins: (s) small (1-2), (m) medium (3), and (l) large (4-6). The
|
846
|
+
| environmental transmission/transfer rate is represented by ‘a’. (Note that ‘a’ is non-
|
847
|
+
| continuous, and has a reverse scale compared to ‘p’ (see Sections 3.4.2 and 4.2).)
|
848
|
+
blank |
|
849
|
+
|
|
850
|
+
text | BD PROG R&D
|
851
|
+
blank |
|
852
|
+
|
|
853
|
+
|
|
854
|
+
text | Exec Exec Exec
|
855
|
+
blank |
|
856
|
+
text | m=3
|
857
|
+
| Adjacent BD
|
858
|
+
| m=3
|
859
|
+
| a=3 √ Executive
|
860
|
+
| a=1
|
861
|
+
| Senior Adjacent
|
862
|
+
| Markets Director Staff Support Technologies
|
863
|
+
blank |
|
864
|
+
|
|
865
|
+
text | l=5 m=3
|
866
|
+
| BD
|
867
|
+
| Program a=1 a=1 Advanced Senior
|
868
|
+
| Staff m=3 Develop Manager
|
869
|
+
| a=3 √ √
|
870
|
+
| s=2
|
871
|
+
| Senior
|
872
|
+
| Subsystem CRAD
|
873
|
+
| √ a=4 Senior
|
874
|
+
| Tools Engineer m=3 Scientist
|
875
|
+
| a=3 √
|
876
|
+
| s=2
|
877
|
+
| √ a=4 Staff
|
878
|
+
| s=2 Engineer m=3 Engineer Engineer
|
879
|
+
| Scientist
|
880
|
+
| a=1 a=3 √
|
881
|
+
| Discipline
|
882
|
+
| Director
|
883
|
+
blank |
|
884
|
+
|
|
885
|
+
|
|
886
|
+
|
|
887
|
+
text | ENG
|
888
|
+
blank |
|
889
|
+
|
|
890
|
+
|
|
891
|
+
text | Figure 1-6 Information Transfer Regimes and Amplification Factors
|
892
|
+
| Network performance is evaluated by looking for link/information mismatch. The red circles are
|
893
|
+
| points of interest that have been evaluated for consistency. The checkmarks indicate consistent link
|
894
|
+
| parameters and information formatting. The sad-faces indicate mismatches that will be discussed in
|
895
|
+
| subsequent sections.
|
896
|
+
blank |
|
897
|
+
|
|
898
|
+
|
|
899
|
+
text | Potential network improvements can be assessed both at the individual links and nodes,
|
900
|
+
| and over “link-chains”. Between individual nodes, mismatches of Link parameters (p, a)
|
901
|
+
| indicate a discontinuity, or a mismatch of Lyupanov exponents (Section 3.4.1). Two
|
902
|
+
| nodes can improve their combined performance by exchanging information more
|
903
|
+
blank |
|
904
|
+
|
|
905
|
+
|
|
906
|
+
|
|
907
|
+
meta | 9
|
908
|
+
text | efficiently. However, improving information transfer at one link may or may not
|
909
|
+
| improve overall system performance, although there will certainly be local effects.
|
910
|
+
blank |
|
911
|
+
|
|
912
|
+
text | Figure 1-7 shows an analysis of an individual link for the transfer and insertion of
|
913
|
+
| research information into a new mega-system. In this case, new research was not being
|
914
|
+
| efficiently delivered into new system. Analysis of the information transfer characteristics
|
915
|
+
| BD PROG
|
916
|
+
| indicated potential for a five-fold increase in productivity. A complete description R&D
|
917
|
+
| and
|
918
|
+
| analysis is developed in section 4.3.1.
|
919
|
+
blank |
|
920
|
+
|
|
921
|
+
text | Exec Exec Exec
|
922
|
+
blank |
|
923
|
+
|
|
924
|
+
|
|
925
|
+
text | t=m
|
926
|
+
| BD
|
927
|
+
| B Executive a= 1 Senior Adjacent
|
928
|
+
| A
|
929
|
+
| Director Staff Support Technologies
|
930
|
+
| t=m D
|
931
|
+
| A a= 1 C
|
932
|
+
| BD C Advanced Senior
|
933
|
+
| Program
|
934
|
+
| Staff Develop Manager
|
935
|
+
| C D
|
936
|
+
| D
|
937
|
+
blank |
|
938
|
+
text | Senior Senior
|
939
|
+
| Subsystem CRAD
|
940
|
+
| Engineer Scientist
|
941
|
+
| Figure 1-7 Set of Consistent Guides to Repair Discontinuity
|
942
|
+
| This figure zooms into our design community network to focus on two identified discontinuities
|
943
|
+
| Staff is
|
944
|
+
| labeled A. In both of these cases, p = m and a = 1. So although the communication timeframe
|
945
|
+
| Engineer Engineer Engineer
|
946
|
+
| Scientist
|
947
|
+
| “medium”, the information delivered is in the wrong form for direct consumption. Also variety was
|
948
|
+
| expended at some cost to transform the original information. So the resources used to produce the
|
949
|
+
| original information are not being exploited efficiently. For steps B, C, and D, please refer to section
|
950
|
+
| Discipline 4.3.1.
|
951
|
+
| Director
|
952
|
+
blank |
|
953
|
+
text | Our mega-organization is not independent. Rather it is given particular direction and
|
954
|
+
| goals in order to achieve the design and production of mega-systems. For instance, some
|
955
|
+
| ENG information flows only a certain direction, and some information is tightly controlled.
|
956
|
+
| Therefore the network is only a quasi, scale-free network. Imposing external goals and
|
957
|
+
blank |
|
958
|
+
|
|
959
|
+
|
|
960
|
+
meta | 10
|
961
|
+
text | specifications onto our scale-free, multi-hierarchical control structure, creates sets of
|
962
|
+
| directed links (link-chains) corresponding to control paths required to focus the
|
963
|
+
| community on our particular future goal states. These directed link-chains need to be
|
964
|
+
| evaluated to make sure the information arrives timely and with minimal (acceptable)
|
965
|
+
| corruption.
|
966
|
+
blank |
|
967
|
+
|
|
968
|
+
text | Link-chains of interest focus on particular extended pathways that execute higher level
|
969
|
+
| functions, such as translating customer product requirements into research needs.
|
970
|
+
| Evaluation of various link chains can be analyzed both from an a priori interest as well as
|
971
|
+
| from evaluating the scale-free network for paths of overall poor quality.
|
972
|
+
blank |
|
973
|
+
|
|
974
|
+
text | Case (2) in Figure 1-8 shows the delivery of new Research products into large Programs.
|
975
|
+
| This was part of the same analysis of the transfer and insertion of research information
|
976
|
+
| into a new mega-system, but at a larger scale to examine total flow and also to look for
|
977
|
+
| side-effects. This path has a Total Aliasing Factor (TAF) of 15 (see Section 3.4).
|
978
|
+
| Changes from annealing the discontinuities from Figure 1-7 (discussed in Section 4.3.1)
|
979
|
+
| will reduce the link values (aliasing factors) of 5 and 3 to 2 and 2, and improve the
|
980
|
+
| efficiency of incorporating current (and appropriate) technology into the new mega-
|
981
|
+
| system.
|
982
|
+
blank |
|
983
|
+
|
|
984
|
+
|
|
985
|
+
|
|
986
|
+
meta | 11
|
987
|
+
text | BD PROG R&D
|
988
|
+
blank |
|
989
|
+
|
|
990
|
+
|
|
991
|
+
text | Exec 3 Exec Exec
|
992
|
+
blank |
|
993
|
+
text | 1 2 1 1
|
994
|
+
| Adjacent BD Executive
|
995
|
+
| 3 Senior Adjacent
|
996
|
+
| Markets Director Staff Support Technologies
|
997
|
+
| 3 2
|
998
|
+
| 2 2 5
|
999
|
+
| BD
|
1000
|
+
| Staff
|
1001
|
+
| 3 Program
|
1002
|
+
| 5
|
1003
|
+
| Advanced
|
1004
|
+
| Develop
|
1005
|
+
| Senior
|
1006
|
+
| Manager
|
1007
|
+
blank |
|
1008
|
+
text | 2 2 2
|
1009
|
+
| Senior 3 Subsystem CRAD
|
1010
|
+
| 2 Senior 3
|
1011
|
+
| Engineer Scientist
|
1012
|
+
blank |
|
1013
|
+
text | 2 2 3 2 22
|
1014
|
+
| Tools Engineer
|
1015
|
+
| 3 1
|
1016
|
+
| Engineer Engineer
|
1017
|
+
| 2 Staff
|
1018
|
+
| 5 Scientist
|
1019
|
+
| 1
|
1020
|
+
| 2 Discipline
|
1021
|
+
| Director
|
1022
|
+
blank |
|
1023
|
+
|
|
1024
|
+
|
|
1025
|
+
|
|
1026
|
+
text | ENG
|
1027
|
+
blank |
|
1028
|
+
|
|
1029
|
+
text | Figure 1-8 Link-chain Paths of Interest
|
1030
|
+
| External goals and specifications, combined with our quasi, scale-free network, create directed links
|
1031
|
+
| corresponding to control paths required to focus the community on the particular future goal states.
|
1032
|
+
| Numbered blue lines are directed link paths; red numbers are total aliasing factors (TAF) (section
|
1033
|
+
| 3.4.4). These link-chains need to be evaluated to make sure the information arrives timely and un-
|
1034
|
+
| corrupted. Corruption can be caused by aliasing, occurring either during variety compression /
|
1035
|
+
| decoding, or from multi-scale time-aliasing. Case (2), the delivery of new Research products into
|
1036
|
+
| large Programs, has the highest TAF corruption factor of 15.
|
1037
|
+
blank |
|
1038
|
+
|
|
1039
|
+
text | In fact, a case study addressing the delivery of new research products into large programs
|
1040
|
+
| was monitored in parallel wherein the delivery path of design products was adjusted.
|
1041
|
+
| Several interesting behaviours emerged around design ownership, as reflected within
|
1042
|
+
| changed design variety and program variety (section 4.4).
|
1043
|
+
blank |
|
1044
|
+
|
|
1045
|
+
text | While emergent engineering behaviours are interesting, another question is whether this
|
1046
|
+
| improved the value to the company and/or the value delivered to the environment
|
1047
|
+
| (society). These questions might not be definitively answerable, but one metric – the
|
1048
|
+
| inserted value of R&D efforts – rose from less than 5% to almost 80% as measured by
|
1049
|
+
| the number of research projects being fully used in operational programs. The research
|
1050
|
+
blank |
|
1051
|
+
|
|
1052
|
+
|
|
1053
|
+
|
|
1054
|
+
meta | 12
|
1055
|
+
text | projects themselves can be quite successful, but information transfer into a development
|
1056
|
+
| program runs into the problems indicated in terms of time synchronization.
|
1057
|
+
blank |
|
1058
|
+
title | 1.5 Conclusions
|
1059
|
+
text | This dissertation developed a new type of model for extremely large design organizations
|
1060
|
+
| and their environment by combining perspectives from:
|
1061
|
+
| - evolutionary genetic computing organisms,
|
1062
|
+
| - information theoretic (quantum) information production, and
|
1063
|
+
| - non-linear dynamics and chaos theory for information exchange.
|
1064
|
+
| to study some of the behaviours of complex organizations, especially information
|
1065
|
+
| transfer, to show how organizations can be guided to more efficiently and quickly
|
1066
|
+
| produce complex mega-systems.
|
1067
|
+
blank |
|
1068
|
+
|
|
1069
|
+
text | A three-year experiment was performed within a large design organization to see what
|
1070
|
+
| level and type of improvements would actually manifest.
|
1071
|
+
blank |
|
1072
|
+
|
|
1073
|
+
text | The results fall into three categories:
|
1074
|
+
| - production of individual mega-systems,
|
1075
|
+
| - improvement in organizations that develop mega-systems, and
|
1076
|
+
| - extraction of societal benefits from government funded mega-systems.
|
1077
|
+
| These are addressed separately below.
|
1078
|
+
blank |
|
1079
|
+
title | 1.5.1 Design of Individual Mega-Systems
|
1080
|
+
text | Mismatched quality of information transfer among organizational elements causes
|
1081
|
+
| significant inefficiencies. The transfer quality includes time synchronization, method of
|
1082
|
+
| transfer, and other variables. It is not that anything is currently wrong, just that a lot of
|
1083
|
+
| time is wasted waiting for information, translating information, or re-developing the
|
1084
|
+
| context to understand the information. Also, additional time (and resources) may be
|
1085
|
+
| spent waiting for task convergence at a higher level. Matching the characteristics of the
|
1086
|
+
| product design information to the characteristics of the transfer path minimizes aliasing
|
1087
|
+
| effects (dissipation and noise), creating many benefits including:
|
1088
|
+
blank |
|
1089
|
+
|
|
1090
|
+
|
|
1091
|
+
meta | 13
|
1092
|
+
text | - More efficient design and design execution,
|
1093
|
+
| - Improved design agility / currency, and
|
1094
|
+
| - Enablement / easing of “Evolutionary Design” ([Bobinis 2006], [Bar-Yam
|
1095
|
+
| 2003], [Sangiovanni 2006]) at the upper, large-scale limit.
|
1096
|
+
blank |
|
1097
|
+
|
|
1098
|
+
text | Results from a three-year experiment showed that the inserted value of R&D efforts rose
|
1099
|
+
| from less than 5% to almost 80% as measured by the number of research projects being
|
1100
|
+
| fully used in operational programs. The research projects themselves can be quite
|
1101
|
+
| successful, but information transfer into a development program runs into the problems
|
1102
|
+
| indicated in terms of time synchronization.
|
1103
|
+
blank |
|
1104
|
+
title | 1.5.2 Company and Design-Organization Implications
|
1105
|
+
text | Improvements in the performance of the organization will incrementally emerge, given
|
1106
|
+
| the inertia of large organizations and of engineering processes, and will initially manifest
|
1107
|
+
| as quicker mega-system deliveries and an accelerating ability to innovate ahead of other
|
1108
|
+
| companies.
|
1109
|
+
blank |
|
1110
|
+
|
|
1111
|
+
text | “One consequence of encoding information as statistical and time-varying patterns of
|
1112
|
+
| low-level components is that no individual component of the system can perceive or
|
1113
|
+
| communicate the ‘big-picture’ of the state of the system. Instead, information must be
|
1114
|
+
| communicated via spatial and temporal sampling.” [Mitchell 2009] Dynamically, the
|
1115
|
+
| mega-design process is progressing, and any snapshot is an incomplete view in a
|
1116
|
+
| changing context. This implies that the product directors exert little real control on where
|
1117
|
+
| the company is going. Their actual role is simply to monitor the outputs and nascent
|
1118
|
+
| products, and to guide the output (and rate of new product introduction and of upgrades)
|
1119
|
+
| to match the funding (requirements) source.
|
1120
|
+
blank |
|
1121
|
+
|
|
1122
|
+
text | This dynamic perspective implies that design communities can, and should, “construct
|
1123
|
+
| their own [evolutionary] selective constructs designed toward increasing mutual
|
1124
|
+
| information [within itself, and] between the organism and the environment” [Krakauer
|
1125
|
+
| 2011], for better computability or production of designs (cf. niche construction). In this
|
1126
|
+
blank |
|
1127
|
+
|
|
1128
|
+
|
|
1129
|
+
meta | 14
|
1130
|
+
text | case, the management structure ought to also look at higher level abstractions, such as
|
1131
|
+
| information transfer efficiencies, in addition to process control (like design reviews),
|
1132
|
+
| because looking at static variables will not improve the evolutionary adaptation rate.
|
1133
|
+
blank |
|
1134
|
+
title | 1.5.3 Government and Societal Implications
|
1135
|
+
text | The stability of any implemented improvements is somewhat problematic given the
|
1136
|
+
| evolving environment, but especially given the counter-acting efforts of government
|
1137
|
+
| acquisition regulations and nominal management tendencies.
|
1138
|
+
blank |
|
1139
|
+
|
|
1140
|
+
text | Scale, synchronization, and economic nudges may be appropriate for personal scale
|
1141
|
+
| complices such as smartPhone apps, but the economic and scale factors are different from
|
1142
|
+
| government “apps”. A focus on lowest cost procurement, for government “apps” (mega-
|
1143
|
+
| systems), has side effects on the engineering design process. Financially speaking, and
|
1144
|
+
| for more effective mega-system development, the government should modify cost-
|
1145
|
+
| selection constraints to avoid extra effort to achieve a particular instance when any of a
|
1146
|
+
| set of instances is all that is needed. This would necessarily become somewhat non-
|
1147
|
+
| deterministic.
|
1148
|
+
blank |
|
1149
|
+
|
|
1150
|
+
text | Individual program managers will avoid this because it is locally inefficient and also
|
1151
|
+
| uncontrollable. However, according to game theory (prisoner’s dilemma [Morrow
|
1152
|
+
| 1994]), a Pareto optimal solution is better, and can be achieved with “external norms”
|
1153
|
+
| [Mitchell 2009]. The external norms could either be via company processes and
|
1154
|
+
| procedures or, better, by the government’s Federal Acquisition Regulations (FAR).
|
1155
|
+
blank |
|
1156
|
+
|
|
1157
|
+
text | For instance, implementation at the government FAR level could be to assign 1% - 2% of
|
1158
|
+
| the value of programs over a certain size to internal efforts supporting adaptability and
|
1159
|
+
| risk reduction. For instance the Orion spacecraft program internally allocated $100M
|
1160
|
+
| (for a $4B program) to reduce schedule risk occurring from software integration. This is
|
1161
|
+
| the same scale as proposed, and was considered and approved as the correct engineering
|
1162
|
+
| approach. However, it was implemented without adjusting the encompassing process, so
|
1163
|
+
blank |
|
1164
|
+
|
|
1165
|
+
|
|
1166
|
+
|
|
1167
|
+
meta | 15
|
1168
|
+
text | savings could never be recaptured, nor future transitions eased. This fund would reduce
|
1169
|
+
| risk on the delivery of the initial system, and reduce cost of subsequent systems.
|
1170
|
+
blank |
|
1171
|
+
|
|
1172
|
+
text | Such a fund could also be allocated for application to follow-on project development, and
|
1173
|
+
| coordination of supporting technology and product development. Note that this would
|
1174
|
+
| avoid aliasing effects from Federally Funded Research and Development Companies
|
1175
|
+
| (FFRDCs) in their information transfer efforts, and would greatly improve technology
|
1176
|
+
| transfer from government labs to industry and society.
|
1177
|
+
blank |
|
1178
|
+
|
|
1179
|
+
|
|
1180
|
+
|
|
1181
|
+
meta | 16
|
1182
|
+
title | 2 Network Model Development and Mega-Organizations
|
1183
|
+
text | In order to design, integrate, and deliver a mega-system, the organizational unit must
|
1184
|
+
| itself be very large and thus inherently complex, especially when efficient use of capital
|
1185
|
+
| and labor indicate (out of phase) development of multiple mega-systems.
|
1186
|
+
blank |
|
1187
|
+
|
|
1188
|
+
|
|
1189
|
+
title | 2.1 Structure of Very Large Aerospace Design Communities
|
1190
|
+
text | Large aerospace companies typically have on the order of (100,000) employees, of whom
|
1191
|
+
| (50%) are engineers and scientists of various sorts. These organizations typically have a
|
1192
|
+
| large number of entwined organizations to produce and deliver their platforms.
|
1193
|
+
| (Numbers in parentheses refer to the notional parameter values in our abstracted model.)
|
1194
|
+
| (Capitalized terms are symbolic names.)
|
1195
|
+
blank |
|
1196
|
+
|
|
1197
|
+
text | Aerospace companies might be divided into (five) business areas or sectors to address
|
1198
|
+
| different market areas. An upper-level corporate organization might provide common
|
1199
|
+
| resources for business development, common research, common engineering tools and
|
1200
|
+
| process, and other functions.
|
1201
|
+
blank |
|
1202
|
+
|
|
1203
|
+
text | For our purposes we will discuss a medium sized space company (sector) of ($10B)
|
1204
|
+
| annual sales. Companies are divided into lines of business or business units on the scale
|
1205
|
+
| of ($1B) annual sales. The (10) business units are the major components of the company
|
1206
|
+
| and are responsible for producing and delivering the output of the organization.
|
1207
|
+
blank |
|
1208
|
+
|
|
1209
|
+
text | Geographically, the organization will be spread across the nation (Figure 2-1) [courtesy
|
1210
|
+
| of Lockheed Martin Space Systems Company]. Some locations have large numbers of
|
1211
|
+
| people; other sites have smaller numbers. The business units may or may not be
|
1212
|
+
| geographically centralized. If not, there is some communications overhead to coordinate
|
1213
|
+
| the pieces.
|
1214
|
+
blank |
|
1215
|
+
|
|
1216
|
+
|
|
1217
|
+
|
|
1218
|
+
meta | 17
|
1219
|
+
text | Louisville, CO
|
1220
|
+
| Bangor, WA Denver, CO Newtown, PA
|
1221
|
+
| • Coherent
|
1222
|
+
| • FBM IA&T
|
1223
|
+
| Technologies • Navigation Systems
|
1224
|
+
| Palo Alto, CA • Commercial Space
|
1225
|
+
| • ATC
|
1226
|
+
blank |
|
1227
|
+
|
|
1228
|
+
text | Sunnyvale, CA
|
1229
|
+
| Valley Forge, PA
|
1230
|
+
| Santa Cruz, CA • Reentry Systems
|
1231
|
+
| • Test Support
|
1232
|
+
| Washington, DC
|
1233
|
+
| • FBM Liaison
|
1234
|
+
| • Washington Ops
|
1235
|
+
| Arlington, VA
|
1236
|
+
| Edwards AFB, CA • Targets Prime
|
1237
|
+
| • ABL Huntsville, AL
|
1238
|
+
| • Strategic & Missile Defense
|
1239
|
+
| El Segundo, CA • Ares Support
|
1240
|
+
| • MILSATCOM
|
1241
|
+
| Albuquerque, NM Kings Bay, GA
|
1242
|
+
| • ATC • FBM IA&T
|
1243
|
+
| Kauai, HI White Sands, NM • ATK
|
1244
|
+
| • PMRF Courtland, AL Cape Canaveral, FL
|
1245
|
+
| • Missile Range • Targets & • Targets & Eastern Range
|
1246
|
+
| Stennis, MS
|
1247
|
+
| Countermeasures Countermeasures • Launch Operations
|
1248
|
+
| • Propulsion
|
1249
|
+
| Houston, TX Center
|
1250
|
+
| ~19,500 employees • Orion
|
1251
|
+
| New Orleans, LA
|
1252
|
+
| • ~ 8,700 in Silicon Valley
|
1253
|
+
| • External Tank
|
1254
|
+
| • ~ 4,700 in Denver area
|
1255
|
+
| • ~ 2,000 in New Orleans • Orion
|
1256
|
+
| • ~ 1,500 in Cape and V
|
1257
|
+
| • ~ 1,100 in Delaware Valley
|
1258
|
+
| 009_03.18.08
|
1259
|
+
| • ~ 500 in Alabama
|
1260
|
+
blank |
|
1261
|
+
text | Figure 2-1 Geographic Distribution
|
1262
|
+
blank |
|
1263
|
+
|
|
1264
|
+
|
|
1265
|
+
text | Our prototypical medium sized space company has on the order of (20,000) employees.
|
1266
|
+
| The (10,000) engineers frequently reside in an Engineering home-shop organization that
|
1267
|
+
| may span (10) disciplines, each with a Discipline Director. The goal of the Engineering
|
1268
|
+
| home-shops is to have 99.9% of their staff assigned to a Program where they are
|
1269
|
+
| developing deliverable products and profit. Each business unit would then have about
|
1270
|
+
| (1000) engineers and (2000) total staff. Engineering frequently has some small number
|
1271
|
+
| of senior engineering staff who coordinates Tools and processes.
|
1272
|
+
blank |
|
1273
|
+
|
|
1274
|
+
text | Business Development coordinates all the business units to coordinate their outputs to
|
1275
|
+
| optimally take advantage of resources while delivering to the customer requirements.
|
1276
|
+
blank |
|
1277
|
+
|
|
1278
|
+
text | Our typical company will have a Research group which may have (1000) scientists. Of
|
1279
|
+
| these we will assume that (400) work on advanced or specialized products, and (600)
|
1280
|
+
| advance the state of the art in (6) different technical areas. Hopefully their research is
|
1281
|
+
| applied to the next generation products being developed by the business units.
|
1282
|
+
blank |
|
1283
|
+
|
|
1284
|
+
|
|
1285
|
+
|
|
1286
|
+
meta | 18
|
1287
|
+
text | (Figure 2-2) abstracts our model community into a non-directed graph. (Figure 2-3)
|
1288
|
+
| shows typically sized organizational parameters.
|
1289
|
+
blank |
|
1290
|
+
|
|
1291
|
+
text | Sector Sector Sector
|
1292
|
+
| Coord Coord Coord
|
1293
|
+
| Major
|
1294
|
+
| Teammates
|
1295
|
+
blank |
|
1296
|
+
text | BD PROG R&D
|
1297
|
+
| PROG
|
1298
|
+
| PROG
|
1299
|
+
| Sector
|
1300
|
+
| PROG
|
1301
|
+
| PROG
|
1302
|
+
| Coord
|
1303
|
+
| Exec Exec Exec
|
1304
|
+
blank |
|
1305
|
+
|
|
1306
|
+
|
|
1307
|
+
|
|
1308
|
+
text | Adjacent BD Executive Senior Adjacent
|
1309
|
+
| Adjacent
|
1310
|
+
| Markets
|
1311
|
+
| Adjacent Director Staff Support Technologies
|
1312
|
+
| Markets
|
1313
|
+
| Adjacent
|
1314
|
+
| Markets
|
1315
|
+
| Markets
|
1316
|
+
blank |
|
1317
|
+
|
|
1318
|
+
text | BD Advanced Senior
|
1319
|
+
| Senior
|
1320
|
+
| Program
|
1321
|
+
| Program Senior
|
1322
|
+
| Staff Program Develop Manager
|
1323
|
+
| Senior
|
1324
|
+
| ManagerSenior
|
1325
|
+
| Manager
|
1326
|
+
| Senior
|
1327
|
+
| ManagerSenior
|
1328
|
+
| Manager
|
1329
|
+
| Manager
|
1330
|
+
| Manager
|
1331
|
+
blank |
|
1332
|
+
text | Senior Senior
|
1333
|
+
| Subsystem
|
1334
|
+
| Subsystem CRAD
|
1335
|
+
| CRAD
|
1336
|
+
| Engineer Subsystem
|
1337
|
+
| Subsystem CRAD
|
1338
|
+
| CRAD Scientist
|
1339
|
+
| Subsystem
|
1340
|
+
| Subsystem CRAD
|
1341
|
+
| CRAD
|
1342
|
+
| Subsystem
|
1343
|
+
blank |
|
1344
|
+
|
|
1345
|
+
text | Staff
|
1346
|
+
| Tools Engineer Engineers Engineer
|
1347
|
+
| Scientist
|
1348
|
+
blank |
|
1349
|
+
|
|
1350
|
+
|
|
1351
|
+
text | Discipline
|
1352
|
+
| Discipline
|
1353
|
+
| Director
|
1354
|
+
| Discipline
|
1355
|
+
| Director Suppliers Small Universities
|
1356
|
+
| Discipline
|
1357
|
+
| Director Business
|
1358
|
+
| Discipline
|
1359
|
+
| Director
|
1360
|
+
| Discipline
|
1361
|
+
| Director
|
1362
|
+
| Discipline
|
1363
|
+
| Director
|
1364
|
+
| Discipline
|
1365
|
+
| Director
|
1366
|
+
| Sector
|
1367
|
+
| ENG Director
|
1368
|
+
| Coord
|
1369
|
+
blank |
|
1370
|
+
|
|
1371
|
+
|
|
1372
|
+
text | Figure 2-2 Conceptual Organizational Structure, Staffing Levels, and Characteristics
|
1373
|
+
| “Sector Coord” (green arrows) maps to the other five Business Areas as additional, similar layers.
|
1374
|
+
| “Clouds” map to other complex communities such as university research networks, small businesses
|
1375
|
+
| and suppliers, etc. The linkages cross-connect at many places. “Major teammates” represent
|
1376
|
+
| another similar aerospace company of similar size (20,000 employees).
|
1377
|
+
blank |
|
1378
|
+
|
|
1379
|
+
|
|
1380
|
+
|
|
1381
|
+
meta | 19
|
1382
|
+
title | Sector Sector Sector
|
1383
|
+
text | Coord Coord Coord
|
1384
|
+
| Major
|
1385
|
+
| Teammates
|
1386
|
+
blank |
|
1387
|
+
text | BD PROG R&D
|
1388
|
+
| PROG
|
1389
|
+
| PROG
|
1390
|
+
| Sector
|
1391
|
+
| PROG
|
1392
|
+
| PROG
|
1393
|
+
| Coord
|
1394
|
+
| Exec Exec Exec
|
1395
|
+
| 1 1
|
1396
|
+
| 1 1 1
|
1397
|
+
| 8 5 3 3 2
|
1398
|
+
| Adjacent BD 1 1 Executive 1 3 Senior Adjacent
|
1399
|
+
| Adjacent
|
1400
|
+
| Markets
|
1401
|
+
| Adjacent Director Staff Support Technologies
|
1402
|
+
| Markets
|
1403
|
+
| Adjacent 1 240
|
1404
|
+
| Markets
|
1405
|
+
| Markets 1 1
|
1406
|
+
| 4 markets 5 3 1
|
1407
|
+
| 6
|
1408
|
+
| 3 progs
|
1409
|
+
| BD 5 1 Advanced Senior
|
1410
|
+
| Senior 6 techs
|
1411
|
+
| Program
|
1412
|
+
| Program Senior
|
1413
|
+
| Staff Program Develop Manager
|
1414
|
+
| Senior
|
1415
|
+
| Manager
|
1416
|
+
| Senior
|
1417
|
+
| Manager
|
1418
|
+
| Senior
|
1419
|
+
| 1 Manager
|
1420
|
+
| Senior
|
1421
|
+
| Manager
|
1422
|
+
| 1 1 Manager
|
1423
|
+
| 10 7 7 CRADS 10 Manager
|
1424
|
+
| 10 subs
|
1425
|
+
| Senior // 1/discipline Subsystem CRAD // Senior
|
1426
|
+
| Engineer Subsystem
|
1427
|
+
| Subsystem CRAD
|
1428
|
+
| CRAD Scientist
|
1429
|
+
| Subsystem
|
1430
|
+
| Subsystem CRAD
|
1431
|
+
| CRAD 1 10/tech
|
1432
|
+
| 10 Subsystem
|
1433
|
+
| Subsystem CRAD
|
1434
|
+
| 1 1 1 1
|
1435
|
+
| 5/discipline
|
1436
|
+
| 100 100 10 7
|
1437
|
+
| // 100/discipline Engineers // 3 Staff
|
1438
|
+
| Tools Engineer 1000 Engineer 70/tech
|
1439
|
+
| Scientist
|
1440
|
+
| 5 1000 10
|
1441
|
+
| 1
|
1442
|
+
| 1
|
1443
|
+
| Discipline
|
1444
|
+
| Discipline
|
1445
|
+
| Director
|
1446
|
+
| Discipline
|
1447
|
+
| Director Suppliers Small Universities
|
1448
|
+
| Discipline
|
1449
|
+
| Director Business
|
1450
|
+
| Discipline
|
1451
|
+
| Director
|
1452
|
+
| Discipline
|
1453
|
+
| Director
|
1454
|
+
| Discipline
|
1455
|
+
| Director
|
1456
|
+
| Discipline
|
1457
|
+
| Director 10 disciplines
|
1458
|
+
| Sector
|
1459
|
+
| ENG Director
|
1460
|
+
| Coord
|
1461
|
+
blank |
|
1462
|
+
|
|
1463
|
+
text | Figure 2-3 Organizational Size Characteristics
|
1464
|
+
| Numbers in red by ovals indicate typical number of similar groups. Double slashes indicate multiple
|
1465
|
+
| connections. Numbers in black near lines indicate the communications I/O dispersion.
|
1466
|
+
blank |
|
1467
|
+
|
|
1468
|
+
|
|
1469
|
+
|
|
1470
|
+
text | Most Engineering Design research focuses on performance developing a single, limited
|
1471
|
+
| product. We want to look both at a larger product and at the overall organizational
|
1472
|
+
| combination and the integrated product evolution.
|
1473
|
+
blank |
|
1474
|
+
|
|
1475
|
+
|
|
1476
|
+
|
|
1477
|
+
meta | 20
|
1478
|
+
title | 2.2 Network Characteristics
|
1479
|
+
text | In our model of this aerospace organization or community, there are many overlapping
|
1480
|
+
| hierarchies. First there are the five different Business Units that are controlled by upper-
|
1481
|
+
| level corporate organization that supplies common resources. In parallel, there are also
|
1482
|
+
| functional hierarchies such as for Engineering disciplines, Finance, Research, Quality
|
1483
|
+
| Control, etc. Finally, there are additional parallel hierarchies for business management,
|
1484
|
+
| Program control and engineering process control.
|
1485
|
+
blank |
|
1486
|
+
|
|
1487
|
+
text | This amalgamation of connections is entwined with the central corporate organizations to
|
1488
|
+
| support related market efforts. A simple two-level, overlapping hierarchy is shown in
|
1489
|
+
| Figure 2-4. Note that priorities, sequencing, and control issues may arise with multiple
|
1490
|
+
| different control staff.
|
1491
|
+
blank |
|
1492
|
+
|
|
1493
|
+
|
|
1494
|
+
|
|
1495
|
+
text | Figure 2-4 Overlapping Hierarchies
|
1496
|
+
blank |
|
1497
|
+
|
|
1498
|
+
text | In terms of task and staffing control, a simplistic hierarchical organization is shown in
|
1499
|
+
| Figure 2-5. Each level coordinates multiple activities of the level below.
|
1500
|
+
blank |
|
1501
|
+
|
|
1502
|
+
|
|
1503
|
+
|
|
1504
|
+
meta | 21
|
1505
|
+
text | System
|
1506
|
+
blank |
|
1507
|
+
|
|
1508
|
+
text | {
|
1509
|
+
| Design
|
1510
|
+
| Process Type
|
1511
|
+
| (Connectivity)
|
1512
|
+
| SubSystem
|
1513
|
+
| ...
|
1514
|
+
blank |
|
1515
|
+
|
|
1516
|
+
text | Requirements Product
|
1517
|
+
| ...
|
1518
|
+
| SubSubSystem
|
1519
|
+
| Design Coordination ?
|
1520
|
+
| Specifications Components
|
1521
|
+
blank |
|
1522
|
+
text | ...
|
1523
|
+
| Figure 2-5 Typical Hierarchical Organization
|
1524
|
+
| Types of connectivity, both vertical and horizontal, vary by type of engineering design process.
|
1525
|
+
| [Byler 2001]
|
1526
|
+
blank |
|
1527
|
+
|
|
1528
|
+
|
|
1529
|
+
|
|
1530
|
+
text | Hierarchical systems are difficult to scale. Single points of control can’t digest enough
|
1531
|
+
| information to quickly process the next step in the organization’s computation. You need
|
1532
|
+
| more information and more coordination among the larger team for goal-oriented, “feed-
|
1533
|
+
| forward” information to achieve timely efficiency. Also, hierarchies tend to create walls,
|
1534
|
+
| and by creating separate groups, you create (evolutionary) sub-populations which both
|
1535
|
+
| cannot process as much as the whole, but also compete with each other internally.
|
1536
|
+
| Finally, when the sub-populations ‘die’, they lose their knowledge/information; and when
|
1537
|
+
| larger groups “die”, they even lose their assets (like the international space station).
|
1538
|
+
blank |
|
1539
|
+
|
|
1540
|
+
text | For single systems with limited levels of control, both efficient performance and task
|
1541
|
+
| execution stability can be achieved. For larger systems, both stability and performance
|
1542
|
+
| degrade with scale (Figure 2-6 and Figure 2-7). In very large product development
|
1543
|
+
| networks (see section 3.3.2) networks can lose convergence, and tasks never complete.
|
1544
|
+
blank |
|
1545
|
+
|
|
1546
|
+
|
|
1547
|
+
|
|
1548
|
+
meta | 22
|
1549
|
+
text | Figure 2-6 Control Stability for Various Organizations
|
1550
|
+
| Scaling of the norm of the minimal control matrix required to achieve stability for various
|
1551
|
+
| organizations: global (solid, black), local (dashed, black), hierarchy (solid, gray) and multi-hierarchy
|
1552
|
+
| (dashed, gray) as a function of N. The hierarchical organizations are chosen with r = 0:5 and
|
1553
|
+
| branching ratio 2. [Hogg 2001]
|
1554
|
+
blank |
|
1555
|
+
|
|
1556
|
+
|
|
1557
|
+
|
|
1558
|
+
text | Figure 2-7 Organizational Performance
|
1559
|
+
| Effect of noise on the expected value of the largest eigenvalue, for N = 8, _ = 1, f = 0:8 and controls
|
1560
|
+
| with s = 0:7 as a function of _ for asymmetric multiplicative noise with zero mean and standard
|
1561
|
+
| deviation _. The organizations are global (solid, black), local (dashed, black), hierarchy (solid, gray)
|
1562
|
+
| and multi-hierarchy (dashed, gray). For the hierarchical cases, we have r = 0:5 and a branching ratio
|
1563
|
+
| of two. The error bars give the standard error estimate of the mean, based on 1000 samples.
|
1564
|
+
| Eigenvalues above zero indicate situations where the noise makes the system unstable, on average.
|
1565
|
+
| [Hogg 2001]
|
1566
|
+
blank |
|
1567
|
+
|
|
1568
|
+
|
|
1569
|
+
|
|
1570
|
+
meta | 23
|
1571
|
+
text | Cross connections within social systems are natural, and engineering design communities
|
1572
|
+
| have also evolved into ‘neural’ communities. Intuitively, this is good because they are
|
1573
|
+
| better able to compute their products. This is because of the extra information available
|
1574
|
+
| from peer groups (related to ‘a’ as defined in Section 3.0). The quicker computation rates
|
1575
|
+
| let the group/community evolve better because of broader scope and more agility. Thus
|
1576
|
+
| the community organism competes better.
|
1577
|
+
blank |
|
1578
|
+
|
|
1579
|
+
text | For our complex mega-design organization, these networks, in fact, have so much
|
1580
|
+
| secondary interconnections that they approach the connectedness of scale free networks.
|
1581
|
+
| Figure 2-8 shows several network types that underpin our organizational network model.
|
1582
|
+
blank |
|
1583
|
+
text | Scale Free Network
|
1584
|
+
| Abstracted Example of D
|
1585
|
+
| A
|
1586
|
+
| Design Community
|
1587
|
+
| Network
|
1588
|
+
| Sector Sector Sector
|
1589
|
+
| Coord Coord Coord
|
1590
|
+
| Major
|
1591
|
+
| Teammates
|
1592
|
+
blank |
|
1593
|
+
text | BD PROG R&D
|
1594
|
+
| PROG
|
1595
|
+
| PROG
|
1596
|
+
| PROG
|
1597
|
+
| Multi-Dimensional Sector
|
1598
|
+
| Coord
|
1599
|
+
| PROG
|
1600
|
+
blank |
|
1601
|
+
text | Scale Free Network Exec Exec Exec
|
1602
|
+
blank |
|
1603
|
+
|
|
1604
|
+
|
|
1605
|
+
|
|
1606
|
+
text | B Adjacent
|
1607
|
+
| Adjacent
|
1608
|
+
| Markets
|
1609
|
+
| Adjacent
|
1610
|
+
| BD
|
1611
|
+
| Director
|
1612
|
+
| Executive
|
1613
|
+
| Staff
|
1614
|
+
| Senior
|
1615
|
+
| Support
|
1616
|
+
| Adjacent
|
1617
|
+
| Technologies
|
1618
|
+
| Markets
|
1619
|
+
| Adjacent
|
1620
|
+
| Markets
|
1621
|
+
| Markets
|
1622
|
+
blank |
|
1623
|
+
|
|
1624
|
+
text | BD Advanced Senior
|
1625
|
+
| Senior
|
1626
|
+
| Program
|
1627
|
+
| Program Senior
|
1628
|
+
| Staff Program Develop Manager
|
1629
|
+
| Senior
|
1630
|
+
| ManagerSenior
|
1631
|
+
| Manager
|
1632
|
+
| Senior
|
1633
|
+
| ManagerSenior
|
1634
|
+
| Manager
|
1635
|
+
| Manager
|
1636
|
+
| Manager
|
1637
|
+
blank |
|
1638
|
+
text | Senior Senior
|
1639
|
+
| Subsystem
|
1640
|
+
| Subsystem CRAD
|
1641
|
+
| CRAD
|
1642
|
+
| Engineer Subsystem
|
1643
|
+
| Subsystem CRAD
|
1644
|
+
| CRAD Scientist
|
1645
|
+
| Subsystem
|
1646
|
+
| Subsystem CRAD
|
1647
|
+
| CRAD
|
1648
|
+
| Subsystem
|
1649
|
+
blank |
|
1650
|
+
|
|
1651
|
+
text | Staff
|
1652
|
+
| Tools Engineer Engineers Engineer
|
1653
|
+
| Scientist
|
1654
|
+
blank |
|
1655
|
+
|
|
1656
|
+
|
|
1657
|
+
text | Hierarchical Cluster Network Discipline
|
1658
|
+
| Discipline
|
1659
|
+
| Director
|
1660
|
+
| Discipline
|
1661
|
+
| Director Suppliers Small Universities
|
1662
|
+
| Discipline
|
1663
|
+
| Director Business
|
1664
|
+
| Discipline
|
1665
|
+
| Director
|
1666
|
+
| Discipline
|
1667
|
+
| C Director
|
1668
|
+
| Discipline
|
1669
|
+
| Director
|
1670
|
+
| Discipline
|
1671
|
+
| Sector Director
|
1672
|
+
| ENG Director
|
1673
|
+
| Coord
|
1674
|
+
blank |
|
1675
|
+
|
|
1676
|
+
|
|
1677
|
+
|
|
1678
|
+
text | Multi-Dimensional
|
1679
|
+
| Information Transfer Links
|
1680
|
+
| (details in section 3.0)
|
1681
|
+
blank |
|
1682
|
+
|
|
1683
|
+
|
|
1684
|
+
|
|
1685
|
+
text | Figure 2-8 Typical and Combined Network Characteristics
|
1686
|
+
| (A) shows a simple scale free network that spans the continental United States. Central nodes (red)
|
1687
|
+
| connect to leaf nodes (green) but there are multiple paths available between any two nodes. (B)
|
1688
|
+
| shows a much larger network, within which there are several types of connectivity among the nodes.
|
1689
|
+
| (C) is a hierarchical cluster network within which the hierarchies are not linear, but rather clusters
|
1690
|
+
| themselves. (D) Our organization has communication connectivity like a scale-free network, but also
|
1691
|
+
| includes directed links and geographic bandwidth restrictions like a cluster hierarchy. The multi-
|
1692
|
+
| dimensional transfer links are discussed in section 3.0
|
1693
|
+
blank |
|
1694
|
+
|
|
1695
|
+
|
|
1696
|
+
|
|
1697
|
+
meta | 24
|
1698
|
+
text | In the context of network theory a scale-free ideal network is a random network with a
|
1699
|
+
| degree distribution a power law, at least asymptotically. That is, the fraction P(k) of
|
1700
|
+
| nodes in the network having k connections to other nodes goes for large values of k as
|
1701
|
+
blank |
|
1702
|
+
|
|
1703
|
+
text | P(k) ~ k -
|
1704
|
+
blank |
|
1705
|
+
|
|
1706
|
+
text | where is a parameter whose value is typically in the range 2 < < 3.
|
1707
|
+
blank |
|
1708
|
+
|
|
1709
|
+
text | The most notable characteristic in a scale-free network is the relative commonness of
|
1710
|
+
| vertices with a degree that greatly exceeds the average. The highest-degree nodes are
|
1711
|
+
| often called "hubs". The scale-free property also strongly correlates with the network's
|
1712
|
+
| robustness to failure.
|
1713
|
+
blank |
|
1714
|
+
|
|
1715
|
+
text | Another important characteristic of scale-free networks is the clustering coefficient
|
1716
|
+
| distribution, which decreases as the node degree increases. This distribution also follows
|
1717
|
+
| a power law. This implies that the low-degree nodes belong to very dense sub-graphs and
|
1718
|
+
| those sub-graphs are connected to each other through hubs.
|
1719
|
+
blank |
|
1720
|
+
|
|
1721
|
+
text | Consider a social network in which nodes are people and links are acquaintance
|
1722
|
+
| relationships between people. It is easy to see that people tend to form communities, i.e.,
|
1723
|
+
| small groups in which everyone knows everyone (one can think of such community as a
|
1724
|
+
| complete graph). In addition, the members of a community also have a few acquaintance
|
1725
|
+
| relationships to people outside that community. Some people, however, are connected to
|
1726
|
+
| a large number of communities (e.g., celebrities, politicians). Those people may be
|
1727
|
+
| considered the hubs responsible for the small-world phenomenon. [Wikkipedia]
|
1728
|
+
blank |
|
1729
|
+
|
|
1730
|
+
text | Our mega-organization is not independent and therefore not completely scale-free.
|
1731
|
+
| Rather it is given particular direction and goals in order to achieve the design and
|
1732
|
+
| production of mega-systems. For instance, some information paths flow only a certain
|
1733
|
+
| direction, and some information is tightly controlled. Therefore the network is only a
|
1734
|
+
| quasi, scale-free network. Imposing external goals and specifications onto our scale-free,
|
1735
|
+
blank |
|
1736
|
+
|
|
1737
|
+
meta | 25
|
1738
|
+
text | multi-hierarchical control structure, creates sets of directed links (link-chains)
|
1739
|
+
| corresponding to control paths required to focus the community on our particular future
|
1740
|
+
| goal states. These directed link-chains need to be correctly addressed.
|
1741
|
+
blank |
|
1742
|
+
|
|
1743
|
+
|
|
1744
|
+
|
|
1745
|
+
meta | 26
|
1746
|
+
title | 2.3 Abstraction to Meta-Network Model
|
1747
|
+
text | (Figure 2-9) has abstracted the many actors from Section 2.1 into a simplified model to
|
1748
|
+
| which we will attach our organizational parameters in Section 3.0.
|
1749
|
+
blank |
|
1750
|
+
|
|
1751
|
+
|
|
1752
|
+
text | Business Program Research
|
1753
|
+
| Development BD PROG
|
1754
|
+
| Management R&D
|
1755
|
+
blank |
|
1756
|
+
|
|
1757
|
+
|
|
1758
|
+
text | Exec Exec Exec
|
1759
|
+
blank |
|
1760
|
+
|
|
1761
|
+
|
|
1762
|
+
|
|
1763
|
+
text | Adjacent BD Executive Senior Adjacent
|
1764
|
+
| Markets Director Staff Support Technologies
|
1765
|
+
blank |
|
1766
|
+
|
|
1767
|
+
|
|
1768
|
+
text | BD Advanced Senior
|
1769
|
+
| Program
|
1770
|
+
| Staff Develop Manager
|
1771
|
+
blank |
|
1772
|
+
|
|
1773
|
+
|
|
1774
|
+
text | Senior Senior
|
1775
|
+
| Subsystem CRAD
|
1776
|
+
| Engineer Scientist
|
1777
|
+
blank |
|
1778
|
+
|
|
1779
|
+
|
|
1780
|
+
text | Staff
|
1781
|
+
| Tools Engineer Engineer Engineer
|
1782
|
+
| Scientist
|
1783
|
+
blank |
|
1784
|
+
|
|
1785
|
+
|
|
1786
|
+
text | Discipline
|
1787
|
+
| Director
|
1788
|
+
| Operational Prototype
|
1789
|
+
| Systems Systems
|
1790
|
+
| ENG
|
1791
|
+
| Engineering
|
1792
|
+
| Figure 2-9 Abstracted Organizational Model
|
1793
|
+
blank |
|
1794
|
+
|
|
1795
|
+
text | In our abstracted organizational model, the information from Figure 2-3 has been
|
1796
|
+
| collapsed into two dimensions for display clarity and in order to focus on the
|
1797
|
+
| multidimensional parameters. The links are multi-dimensional themselves, including
|
1798
|
+
| characteristics on communication I/O dispersion, types of information carried, etc.
|
1799
|
+
| Likewise, the links are not necessarily singular stages, but can encompass multiple steps.
|
1800
|
+
| Extraction and development of these organizational parameters and link characteristics
|
1801
|
+
| are discussed in detail in Section 3.0.
|
1802
|
+
blank |
|
1803
|
+
|
|
1804
|
+
|
|
1805
|
+
|
|
1806
|
+
meta | 27
|
1807
|
+
title | 3 Link Model Development
|
1808
|
+
blank |
|
1809
|
+
title | 3.1 Model Overview
|
1810
|
+
text | For the organization model developed here (Section 2.0), each node is an agent composed
|
1811
|
+
| of many people. Agents can be individuals, design groups, project swarms, or other
|
1812
|
+
| complices. These agents are peer-to-peer agents in a weak sense as defined by Petrie
|
1813
|
+
| [Petrie 1996]. In this sense they are true agents that provide generation of new
|
1814
|
+
| information, but they are weak in that they do not use standard protocols for
|
1815
|
+
| communication. Each agent’s protocols (methods) are particular to that set of agents.
|
1816
|
+
blank |
|
1817
|
+
|
|
1818
|
+
text | Each agent performs its function using a variety of people or skills. Producing a
|
1819
|
+
| controller card, for instance, may require a machinist, a programmer, and a financial
|
1820
|
+
| analyst. Then the product must be packaged and delivered. If one considers the
|
1821
|
+
| controller card as inherently containing the design and product information, then the
|
1822
|
+
| output could be termed to be encoded and transmitted, similar to packaged and delivered.
|
1823
|
+
blank |
|
1824
|
+
|
|
1825
|
+
|
|
1826
|
+
|
|
1827
|
+
meta | 28
|
1828
|
+
text | Link Information Transfer Model
|
1829
|
+
| “Node” parameters
|
1830
|
+
| defined by information encoding and transmitting activities
|
1831
|
+
| and by design information content, resolution, & processing
|
1832
|
+
| “Link” parameters
|
1833
|
+
| defined by relative design role
|
1834
|
+
| Agent X and by organizational activities Agent Y
|
1835
|
+
| w/ Variety 7 w/ Variety 9
|
1836
|
+
| Encoder V6
|
1837
|
+
| Transmitter Vn
|
1838
|
+
| Transmitter V7
|
1839
|
+
blank |
|
1840
|
+
text | environment, tools, time
|
1841
|
+
blank |
|
1842
|
+
|
|
1843
|
+
text | Information Transfer
|
1844
|
+
blank |
|
1845
|
+
|
|
1846
|
+
|
|
1847
|
+
text | Chaotic Channel (non-linear)
|
1848
|
+
| Machining V1 Receiver V1
|
1849
|
+
| Cost Analysis V2 Decoder V2
|
1850
|
+
| Programmer V3
|
1851
|
+
blank |
|
1852
|
+
|
|
1853
|
+
text | Variety = a set of capabilities when
|
1854
|
+
| and functionality Information Parameters (node + info package)
|
1855
|
+
| are incompatible with
|
1856
|
+
| Agents = can be individuals, Transmission Line Parameters (link + environment)
|
1857
|
+
| groups, organizations, “aliasing” effects occur
|
1858
|
+
| or other complices
|
1859
|
+
blank |
|
1860
|
+
text | Figure 3-1 Parameters of Link Transfer Model
|
1861
|
+
blank |
|
1862
|
+
|
|
1863
|
+
text | Depending on the complexity of the product or output of the Agent, it may require more
|
1864
|
+
| or less variety of sub-tasks. Thus the complexity of the product and/or of the agent can
|
1865
|
+
| be represented by the Variety (Vi) of internal skills. The variety represents the set of
|
1866
|
+
| capabilities and functionality.
|
1867
|
+
blank |
|
1868
|
+
|
|
1869
|
+
text | The item produced by an agent can be a physical or ephemeral item. In any event
|
1870
|
+
| information was imposed on the inputs (machining, assembly sequence, tuning) to
|
1871
|
+
| increase its usefulness and reduce the entropy of the parts. The type of information
|
1872
|
+
| imposed on the inputs, and representing the final product (piece-part), can be modeled by
|
1873
|
+
| information content, resolution, and processing.
|
1874
|
+
blank |
|
1875
|
+
|
|
1876
|
+
|
|
1877
|
+
|
|
1878
|
+
meta | 29
|
1879
|
+
text | The node parameters include the information content and resolution, as well as the
|
1880
|
+
| information encoding and transmission. Information is modeled in an information
|
1881
|
+
| theoretic sense after [Shannon 1948] and [Bais 2010]
|
1882
|
+
blank |
|
1883
|
+
|
|
1884
|
+
text | I() = -ipilogpi
|
1885
|
+
blank |
|
1886
|
+
|
|
1887
|
+
text | Any new (conditional) information received by agent y from the information sent by
|
1888
|
+
| agent x will be
|
1889
|
+
blank |
|
1890
|
+
|
|
1891
|
+
text | I(y|x) = -iPx(xi)jPy|x(yj|xi)log2Py|x(yj|xj)
|
1892
|
+
blank |
|
1893
|
+
|
|
1894
|
+
text | which expresses the fact that the receiver must interpret (decode) the information he
|
1895
|
+
| receives based on their previous mutual understanding. Note that information data-bits
|
1896
|
+
| can be interpreted similarly with design “task-bits”.
|
1897
|
+
blank |
|
1898
|
+
|
|
1899
|
+
text | The Link parameters are defined both by the relative design roles of the attached nodes
|
1900
|
+
| within the organizational activities, and by the environment within which the products
|
1901
|
+
| pass and exist. The effect of relative design roles is driven not so much by the different
|
1902
|
+
| activities, but rather by how much work must be done to understand or incorporate
|
1903
|
+
| (receive and decode) the material being transmitted by the input agent. The effect of the
|
1904
|
+
| design environment includes how the information is stored (transmission is not
|
1905
|
+
| instantaneous), the amount of time delay between production and use, the types of tools
|
1906
|
+
| used to decode or process the intermediate product, etc. Because of the dynamic nature
|
1907
|
+
| of the information and the link, this model is a chaotic channel.
|
1908
|
+
blank |
|
1909
|
+
|
|
1910
|
+
text | Information production, aging, and obsolescence is modeled with the logistic growth
|
1911
|
+
| curve [Verhulst 1838]
|
1912
|
+
blank |
|
1913
|
+
|
|
1914
|
+
text | xt+1 = axt (1 - xt)
|
1915
|
+
blank |
|
1916
|
+
|
|
1917
|
+
|
|
1918
|
+
|
|
1919
|
+
meta | 30
|
1920
|
+
text | such that information is subject to dynamic effects over time. Iteration of conditional
|
1921
|
+
| information over time shows “exchange resonances” (see Section 3.4.2).
|
1922
|
+
blank |
|
1923
|
+
|
|
1924
|
+
text | When the Information parameters (node and product information package) are
|
1925
|
+
| incompatible with Transmission Link parameters (link and environment), aliasing occurs.
|
1926
|
+
| The information or product is not completely usable or has become corrupted, and
|
1927
|
+
| additional work will be needed to adapt or understand it. In fact even minor mismatches
|
1928
|
+
| create observable aliasing; it is a matter of scale.
|
1929
|
+
blank |
|
1930
|
+
|
|
1931
|
+
|
|
1932
|
+
title | 3.2 Design Information
|
1933
|
+
blank |
|
1934
|
+
title | 3.2.1 Information in Design Communities
|
1935
|
+
text | For our quasi-scale-free engineering design community (Section 2.0), “information”
|
1936
|
+
| includes the material acquired and developed to further the knowledge base, the product
|
1937
|
+
| design, and the integration, assembly and test of the output products. This includes point
|
1938
|
+
| design descriptions, experimental results, performance measurements, reports,
|
1939
|
+
| spreadsheets, technologies, CNC tapes, test sequences, manufacturing tolerances,
|
1940
|
+
| fabrication techniques, etc.
|
1941
|
+
blank |
|
1942
|
+
|
|
1943
|
+
text | This “information” accumulates over time and is applied to design and produce new
|
1944
|
+
| products. Our engineering community actually produces a portfolio of products
|
1945
|
+
| including evolutionary products, new products in current markets, current products in
|
1946
|
+
| new markets, and occasionally new products for new markets. There is an ongoing,
|
1947
|
+
| evolving set of core competencies within each design community that, when infused with
|
1948
|
+
| new information, allow the product stream to adapt to the changing market
|
1949
|
+
| (environment). This design community produces some number of mega-systems in
|
1950
|
+
| parallel efforts (but offset in time).
|
1951
|
+
blank |
|
1952
|
+
|
|
1953
|
+
|
|
1954
|
+
|
|
1955
|
+
meta | 31
|
1956
|
+
text | Business Program Research
|
1957
|
+
| Development BD PROG
|
1958
|
+
| Management R&D
|
1959
|
+
blank |
|
1960
|
+
|
|
1961
|
+
|
|
1962
|
+
|
|
1963
|
+
text | 1 year Exec Exec Exec
|
1964
|
+
blank |
|
1965
|
+
text | 3 years
|
1966
|
+
| Adjacent BD Executive Senior Adjacent
|
1967
|
+
| Markets Director Staff Support Technologies
|
1968
|
+
blank |
|
1969
|
+
|
|
1970
|
+
|
|
1971
|
+
text | BD Advanced Senior
|
1972
|
+
| Program
|
1973
|
+
| Staff Develop Manager
|
1974
|
+
blank |
|
1975
|
+
text | 2 years
|
1976
|
+
| Senior Senior
|
1977
|
+
| Subsystem CRAD
|
1978
|
+
| Engineer Scientist
|
1979
|
+
blank |
|
1980
|
+
|
|
1981
|
+
text | 12 years
|
1982
|
+
| Staff
|
1983
|
+
| Tools Engineer Engineer Engineer
|
1984
|
+
| Scientist
|
1985
|
+
blank |
|
1986
|
+
|
|
1987
|
+
|
|
1988
|
+
|
|
1989
|
+
text | 4 years Discipline Operational Prototype 1 year
|
1990
|
+
| Director
|
1991
|
+
blank |
|
1992
|
+
|
|
1993
|
+
|
|
1994
|
+
|
|
1995
|
+
text | ENG
|
1996
|
+
| Systems
|
1997
|
+
| Engineering
|
1998
|
+
blank |
|
1999
|
+
text | Figure 3-2 Organizations, Information Products, and Time Epochs
|
2000
|
+
blank |
|
2001
|
+
|
|
2002
|
+
text | In Figure 3-2, there are several major groups whose development products are roughly
|
2003
|
+
| summarized below (capitalized terms symbolically represent their definition). Programs
|
2004
|
+
| create the major output of our design community – an Operational System that takes 12
|
2005
|
+
| years to design, produce, integrate and test. Programs are controlled by Program
|
2006
|
+
| Management; this group coordinates several large projects, and is driven by a (typical)
|
2007
|
+
| three-year Long Range Plan (LRP). The internal information packages within Program
|
2008
|
+
| Management support the activity around successfully executing LRPs (not the program).
|
2009
|
+
| Creation of LRPs is guided by Business Development who operates on a one-year cycle,
|
2010
|
+
| based on accounting cycles including the government budgetary process. Research
|
2011
|
+
| groups typically operate on one-year cycles also, based on an internal budget allocation
|
2012
|
+
| cycle. Research reports are published and filed annually, and other internal information
|
2013
|
+
| products support these efforts. Research groups frequently develop new Prototype
|
2014
|
+
| Systems to demonstrate new capabilities to Program Management. These might take two
|
2015
|
+
| years to develop.
|
2016
|
+
blank |
|
2017
|
+
|
|
2018
|
+
text | To produce the product stream, the actors within the engineering community must
|
2019
|
+
| exchange information in a timely and focused manner. (Note that faster information
|
2020
|
+
| exchange is frequently better for quicker growth, unless the information transfer is so
|
2021
|
+
| quick it is misunderstood, or not yet broadly applicable.)
|
2022
|
+
blank |
|
2023
|
+
|
|
2024
|
+
meta | 32
|
2025
|
+
text | Actors (and groups of actors) within our design community also transfer part of the
|
2026
|
+
| evolving context, in addition to official design documents or drawings, as a broad
|
2027
|
+
| synchronization method. Thus, the information exchanged within the community is the
|
2028
|
+
| combination of newly created technology pieces and components, and the updated
|
2029
|
+
| pointers/relations to additional sources/actors.
|
2030
|
+
blank |
|
2031
|
+
|
|
2032
|
+
text | “In larger organizations, the complexity is vastly different and the chance for deep
|
2033
|
+
| personal co-commitment is diminished. Ad hoc exchanges within one’s personal
|
2034
|
+
| network do happen, but systematic knowledge sharing usually requires brokering through
|
2035
|
+
| people or technology. Along with brokering come issues such as knowledge
|
2036
|
+
| identification, verification, and validation [Leifer 1999].”
|
2037
|
+
blank |
|
2038
|
+
|
|
2039
|
+
text | “[All organizations] can benefit from the implementation of a central knowledge capture
|
2040
|
+
| and re-use infrastructure, a core technology for sharing and learning from each other,
|
2041
|
+
| peer-to-peer. In large institutions (greater than 500 people) this infrastructure will have to
|
2042
|
+
| be explicit and managed separately from the design team support infrastructure.” [Leifer]
|
2043
|
+
blank |
|
2044
|
+
|
|
2045
|
+
text | A separate explicit infrastructure however becomes problematic, especially on projects
|
2046
|
+
| with long time scales (~10 years). Issues arise that interfere with having a consistent
|
2047
|
+
| structure. The portfolio of projects across a large organization use different engineering
|
2048
|
+
| tools. This will always be true because of a mismatch of time frequencies between new
|
2049
|
+
| tools and new projects, and the fact you can’t and don’t want to update your tools all at
|
2050
|
+
| once on a preordained schedule. Also actors bring different sets of tool knowledge with
|
2051
|
+
| them to each activity. It actually takes some finite time for a team to get synchronized on
|
2052
|
+
| common tools and data structures. Much training is completed on the job, with no
|
2053
|
+
| separate time allotment and no separate instructors, with the result that tools are not
|
2054
|
+
| always used as they were designed, nor to their full potential. Finally, retrieval of old
|
2055
|
+
| knowledge becomes problematic and time consuming, and may become moot as different
|
2056
|
+
| technologies advance at different rates, opening up new solution spaces for consideration.
|
2057
|
+
blank |
|
2058
|
+
|
|
2059
|
+
|
|
2060
|
+
|
|
2061
|
+
meta | 33
|
2062
|
+
text | Another issue arising from large organizations that affects knowledge retention and
|
2063
|
+
| retrieval is that engineering team members do not always follow a project from
|
2064
|
+
| conception through design, manufacture, production, maintenance, and growth.
|
2065
|
+
| Typically, engineers focus on one stage of design. As a result the information associated
|
2066
|
+
| with a project bifurcates, with one instance progressing with the product as the product
|
2067
|
+
| “design” and “context”, and the other instance going with the engineer or data base to a
|
2068
|
+
| new product at a similar stage as “knowledge”.
|
2069
|
+
blank |
|
2070
|
+
|
|
2071
|
+
|
|
2072
|
+
title | 3.2.2 Information Modeling
|
2073
|
+
text | Information is modeled similarly to entropy, and transcends its basis in statistical
|
2074
|
+
| mechanics “to describe any system with states {i} and a given probability distribution
|
2075
|
+
| {pi}. Credit for realizing this is usually given to Shannon [Shannon 1948], although
|
2076
|
+
| antecedents include Szilard, Nyquist, and Hartley.”[Bais 2010] Treating information this
|
2077
|
+
| way is useful to analyze and design communication and encryption systems.
|
2078
|
+
blank |
|
2079
|
+
|
|
2080
|
+
text | Shannon proposed that by analogy to the entropy S, information can be defined as
|
2081
|
+
blank |
|
2082
|
+
|
|
2083
|
+
text | H = -ipilogpi
|
2084
|
+
blank |
|
2085
|
+
|
|
2086
|
+
text | A microstate pi is one particular instantiation of all the degrees of freedom of our system.
|
2087
|
+
| If there are N particles (or bits of information), and each bit can have 2 values, then there
|
2088
|
+
| are 2N possible microstates. The space of possible microstates is called the phase space.
|
2089
|
+
blank |
|
2090
|
+
|
|
2091
|
+
text | Information is usually written as I() to emphasize its dependence on the scale of
|
2092
|
+
| resolution of the measurements (and without the Boltzman constant)
|
2093
|
+
blank |
|
2094
|
+
|
|
2095
|
+
text | I() = -ipilogpi
|
2096
|
+
blank |
|
2097
|
+
|
|
2098
|
+
text | This () can be used to define the information dimension
|
2099
|
+
blank |
|
2100
|
+
|
|
2101
|
+
|
|
2102
|
+
|
|
2103
|
+
meta | 34
|
2104
|
+
text | D = lim( ->0) ( I() / |log | )
|
2105
|
+
blank |
|
2106
|
+
|
|
2107
|
+
text | which becomes the fractal dimension with sufficient resolution.
|
2108
|
+
blank |
|
2109
|
+
|
|
2110
|
+
text | In information theory it is common to take logarithms in base two. Units of information
|
2111
|
+
| are called bits as opposed to ‘nats’ for entropy with the conversion that 1 nat = 1.443 bits.
|
2112
|
+
blank |
|
2113
|
+
|
|
2114
|
+
text | Each information package can have its information content “I” measured. The
|
2115
|
+
| information content is a higher level abstraction from the data contained in the package.
|
2116
|
+
blank |
|
2117
|
+
|
|
2118
|
+
text | Information exchange between actors can be modeled with information theory. Here we
|
2119
|
+
| will distinguish information transfer from information acquisition or creation (as in a lab
|
2120
|
+
| or designer’s mind).
|
2121
|
+
blank |
|
2122
|
+
|
|
2123
|
+
text | If we assume the information being transferred can be represented with i bits of
|
2124
|
+
| resolution r, then the piece of information being transferred by actor x, I(x), can be
|
2125
|
+
| represented as
|
2126
|
+
| I(x) = -iPx(xi)log2Px(xi) (1)
|
2127
|
+
blank |
|
2128
|
+
|
|
2129
|
+
text | The new (conditional) information received by actor y from the information sent by actor
|
2130
|
+
| x will be
|
2131
|
+
| I(y|x) = -iPx(xi)jPy|x(yj|xi)log2Py|x(yj|xj) (2)
|
2132
|
+
blank |
|
2133
|
+
|
|
2134
|
+
text | This equation expresses the fact that the receiver must interpret (decode) the information
|
2135
|
+
| he receives based on their previous mutual understanding.
|
2136
|
+
blank |
|
2137
|
+
|
|
2138
|
+
|
|
2139
|
+
|
|
2140
|
+
meta | 35
|
2141
|
+
title | 3.2.3 Product Entropy and Information Packages
|
2142
|
+
text | In discussing information content (I(x)) as opposed to information transfer, the entropy
|
2143
|
+
| (information) level of a possible conceptual design is very high in that there are a very
|
2144
|
+
| large number of ways the design could be implemented; different functions included;
|
2145
|
+
| different materials used; different reliabilities; etc. The entropy level of a completed
|
2146
|
+
| product is close to zero in that the design is frozen. This “zero” entropy is a relative
|
2147
|
+
| value since there is still myriad flexibility in subsequent product use, in product
|
2148
|
+
| combinations, etc. (Figure 3-3).
|
2149
|
+
blank |
|
2150
|
+
|
|
2151
|
+
|
|
2152
|
+
|
|
2153
|
+
text | Figure 3-3 Product Entropy Flexibility for Related Designs
|
2154
|
+
| Entropy (s) is very large when a design problem starts. As decisions are made, materials chosen,
|
2155
|
+
| and functionality included, entropy is reduced until there is no flexibility (s = 0) in the final
|
2156
|
+
| product. At an earlier preliminary design stage (s > 0), there is flexibility in the design to create
|
2157
|
+
| different possible variants. The set of possible variants is a Hilbert space.
|
2158
|
+
blank |
|
2159
|
+
|
|
2160
|
+
|
|
2161
|
+
|
|
2162
|
+
text | Likewise the entropy of a new technology or technique is very large. This new material
|
2163
|
+
| or new processor could be used in thousands of different products; the process could be
|
2164
|
+
| refined through cost reduction, or not, which would drive how and where it would be
|
2165
|
+
| used. Of course, in this sense the entropy will likely grow as the ideas expand.
|
2166
|
+
blank |
|
2167
|
+
|
|
2168
|
+
|
|
2169
|
+
meta | 36
|
2170
|
+
text | The entropy evolution of a product over the design life is an interesting phenomenon. If
|
2171
|
+
| you have a product that you want to incrementally improve, you would need to step back
|
2172
|
+
| some number of “computation” steps to find a sufficiently flexible design space (with
|
2173
|
+
| more entropy) that allows you to move forward with a slightly different instantiation
|
2174
|
+
| using other technology for your new product.
|
2175
|
+
blank |
|
2176
|
+
|
|
2177
|
+
text | In quantum information theory, the physical state is described by a wave function that
|
2178
|
+
| can be thought of as a vector in an abstract, multi-dimensional state, called a Hilbert
|
2179
|
+
| space. Hilbert space replaces the concept of phase space in classical mechanics. An
|
2180
|
+
| important difference is that many quantum information quantities cannot be measured
|
2181
|
+
| simultaneously. Also, as time passes and the q-bits become less deterministic, the Hilbert
|
2182
|
+
| space rapidly diverges away from what you have earlier defined.
|
2183
|
+
blank |
|
2184
|
+
|
|
2185
|
+
text | Note that another interesting phenomenon is observed in product families. Here you
|
2186
|
+
| would like to have an intermediate shelf (stage) that has enough flexibility to be able to
|
2187
|
+
| evolve in several directions, or allows a time-phased introduction corresponding to a
|
2188
|
+
| time-phased improvement of your particular core technology. The essential conundrum
|
2189
|
+
| is to have the right amount of breadth so that you can easily arrive at your next step, but
|
2190
|
+
| not too much breadth which can be confusing and hard to consider (Figure 3-4). This
|
2191
|
+
| “shelf” stage must be stored and documented.
|
2192
|
+
blank |
|
2193
|
+
|
|
2194
|
+
|
|
2195
|
+
|
|
2196
|
+
meta | 37
|
2197
|
+
text | ln(x)
|
2198
|
+
blank |
|
2199
|
+
text | t2
|
2200
|
+
blank |
|
2201
|
+
text | Design Space
|
2202
|
+
| t1
|
2203
|
+
| Q = f(Mt)
|
2204
|
+
blank |
|
2205
|
+
text | S>f
|
2206
|
+
| S >> f S = f (relative)
|
2207
|
+
blank |
|
2208
|
+
|
|
2209
|
+
|
|
2210
|
+
|
|
2211
|
+
text | Figure 3-4 Product Entropy Levels for different rates of Growth
|
2212
|
+
| Intermediate shelves (stages) have design flexibility (s > 0) to be able to evolve in several directions, or
|
2213
|
+
| allow a time-phased introduction corresponding to a time-phased improvement of your particular
|
2214
|
+
| core technology. Since the Hilbert space rapidly diverges away from what you have earlier defined,
|
2215
|
+
| the essential conundrum is to have the right amount of breadth so that you can easily arrive at your
|
2216
|
+
| next step, but not too much breadth which can be confusing and hard to consider
|
2217
|
+
blank |
|
2218
|
+
|
|
2219
|
+
|
|
2220
|
+
|
|
2221
|
+
text | Controlling the entropy level (information level) is one of the functions of organizational
|
2222
|
+
| computation.
|
2223
|
+
blank |
|
2224
|
+
|
|
2225
|
+
|
|
2226
|
+
|
|
2227
|
+
meta | 38
|
2228
|
+
title | 3.2.4 Information Growth, and Product Evolution
|
2229
|
+
blank |
|
2230
|
+
|
|
2231
|
+
text | The degree to which the state of an actor (or group) at one point in time determines the
|
2232
|
+
| state of a different actor at a subsequent point in time is driven by the mutual information
|
2233
|
+
| between these observations, and the conditional information between them. The mutual
|
2234
|
+
| information I(x/\y) = I(x) intersect I(y) is the common set of knowledge that allows them
|
2235
|
+
| to understand each other and includes the range from basic engineering equations to
|
2236
|
+
| current catalog numbers. When Actor X discovers new information I(xi+1) > I(xi) and
|
2237
|
+
| wants to transfer this information to Actor Y, he will encode it for transfer based on
|
2238
|
+
| mutual information I(xi/\y) and conditional information I(y|xi).
|
2239
|
+
blank |
|
2240
|
+
|
|
2241
|
+
text | For two correlated events x and y, the relations between the information I(x), conditional
|
2242
|
+
| information I(x|y), joint information I(x,y), and mutual information I(x/\y) are illustrated
|
2243
|
+
| in (Figure 3-5) [Metzler 2003].
|
2244
|
+
blank |
|
2245
|
+
|
|
2246
|
+
|
|
2247
|
+
|
|
2248
|
+
text | Figure 3-5 Mutual and Conditional Information
|
2249
|
+
blank |
|
2250
|
+
|
|
2251
|
+
|
|
2252
|
+
|
|
2253
|
+
meta | 39
|
2254
|
+
text | For engineering design we are interested mainly in post-diction. Post-diction is the
|
2255
|
+
| forward use of information to increase the knowledge of another actor in a strictly
|
2256
|
+
| subsequent time state. The initiator’s message is based on his current state, and the
|
2257
|
+
| receiver interprets it according to what the receiver knows. (Note that this is the inverse
|
2258
|
+
| direction to prediction (coding) wherein one could compute the desired resolution or
|
2259
|
+
| scale that the sender should use.) The mutual information I(y/\x) is simply the difference
|
2260
|
+
| between input information I(x) and the conditional information I(x|y) or I(y) and I(y|x).
|
2261
|
+
| The quality of the information received by Actor Y (at a subsequent time i + n) will be a
|
2262
|
+
| function of the accuracy of coding I(x|y) given I(x/\y). Thus
|
2263
|
+
blank |
|
2264
|
+
|
|
2265
|
+
text | I(yi+1) = I(xi/\y) + I(xi+1|y)f(I(xi/\y)) (3)
|
2266
|
+
blank |
|
2267
|
+
|
|
2268
|
+
text | Mutual information I(xi/\yi) is not static, and actors’ mutual information will decrease
|
2269
|
+
| over time if not refreshed or synchronized. This can be thought of as the actors evolving
|
2270
|
+
| separately, starting to use different materials, using different design lingo [Leifer 1999],
|
2271
|
+
| or even working on different programs or products.
|
2272
|
+
blank |
|
2273
|
+
|
|
2274
|
+
text | Given our logarithmic definition of information, we note that mutual information decays
|
2275
|
+
| to zero on the order(log r) time steps, where r is the resolution of the information.
|
2276
|
+
| Statically, without refresh, I(x/\y) will naturally approach 0 on orders similar to product
|
2277
|
+
| life, material life, and/or component life. This is similar to having a design use a
|
2278
|
+
| particular Digital Signal Processor (DSP) that goes out of production and must now be
|
2279
|
+
| replaced with a different technology. For our community, this is on the order of 5 to 12
|
2280
|
+
| years for aerospace type products. This will be discussed more later.
|
2281
|
+
blank |
|
2282
|
+
|
|
2283
|
+
text | When I(x/\y) reaches zero, it creates a wall within the complex (design community)
|
2284
|
+
| where information is not flowing. This has several effects. For one, it reduces the
|
2285
|
+
| computational efficiency of the organization. For another, it effectively creates separate,
|
2286
|
+
| competing sub-complexes. In a small scale industry this could be good as it maintains a
|
2287
|
+
| vibrant population of new small businesses. For our very large systems within our
|
2288
|
+
| constrained resources, this is not good. A third side effect that may occur as a result of
|
2289
|
+
blank |
|
2290
|
+
|
|
2291
|
+
|
|
2292
|
+
meta | 40
|
2293
|
+
text | losing mutual information coherence is that the group that is cut off may die (or become
|
2294
|
+
| irrelevant). At this point it would be consuming resources without a useful output or, if
|
2295
|
+
| recognized, it would have to be reabsorbed with the concomitant costs of re-training.
|
2296
|
+
blank |
|
2297
|
+
|
|
2298
|
+
|
|
2299
|
+
|
|
2300
|
+
meta | 41
|
2301
|
+
title | 3.3 Task Variety
|
2302
|
+
blank |
|
2303
|
+
title | 3.3.1 Variety and Information Processing
|
2304
|
+
text | Variety is defined as the set of actions needed by an actor to execute an activity, where an
|
2305
|
+
| actor can be an individual, a group of individuals, or a group of groups. The set of
|
2306
|
+
| actions includes information gathering, information creation and processing, distribution
|
2307
|
+
| of resultant information, self control, and environmental interaction with other actors.
|
2308
|
+
| Executing a task requires an actor to have sufficient variety to perform all of the
|
2309
|
+
| component activity required to execute the task.
|
2310
|
+
blank |
|
2311
|
+
|
|
2312
|
+
text | It is conventional to measure variety, like information, in logarithmic units so that the
|
2313
|
+
| total variety of a set of independent components V=log(M) is the sum of the variety of
|
2314
|
+
| the components, V=Nv, where v=log(m).
|
2315
|
+
blank |
|
2316
|
+
|
|
2317
|
+
text | The key to task analysis of the variety of any system is that each of the actors has a limit
|
2318
|
+
| on its variety – the logarithm of the number of distinguishable states. Components can be
|
2319
|
+
| individuals that act in performing tasks, or individuals that manage or coordinate tasks or
|
2320
|
+
| serve as communications channels. [Bar-Yam 2004b]
|
2321
|
+
blank |
|
2322
|
+
|
|
2323
|
+
text | Assume that the design system is composed of a number of subsystems, N, that are
|
2324
|
+
| variously coordinated to respond to external contexts. The number of possible actions
|
2325
|
+
| that the system can take, M, is not more than mN, the product of the possible actions of
|
2326
|
+
| each part, m. We further constrain the problem of effective function by assuming that
|
2327
|
+
| effective actions require a sufficient variety at each scale of action corresponding to the
|
2328
|
+
| requirements for action at that scale. At every scale the variety of the system must be
|
2329
|
+
| larger than the variety necessary for the task. [Bar-Yam 2004b]
|
2330
|
+
blank |
|
2331
|
+
|
|
2332
|
+
text | Assuming a simple coordination mechanism such that the system is partitioned into
|
2333
|
+
| groups that are fully coordinated and that different groups are independent of each other,
|
2334
|
+
| then the variety of actions of each group is the same as the variety of actions of any
|
2335
|
+
| individual of that group, and the scale of action is just the number of individuals in that
|
2336
|
+
blank |
|
2337
|
+
|
|
2338
|
+
meta | 42
|
2339
|
+
text | group. For the entire system the variety at scale k is D(k)=vn(k) where n(k) is the
|
2340
|
+
| number of different k-member fully coordinated groups needed to perform the entire task,
|
2341
|
+
| which therefore at a minimum requires N=kn(k) components to perform. The total
|
2342
|
+
| variety of the task is proportional to the total number of subsets of any scale V=D(k).
|
2343
|
+
| [Bar-Yam 2004b]
|
2344
|
+
blank |
|
2345
|
+
|
|
2346
|
+
text | With these assumptions, given a predetermined number of components N, the system
|
2347
|
+
| can, in the extreme, perform a task of scale N, with variety equal to that of one
|
2348
|
+
| component, or a task of scale one with variety N times as great.
|
2349
|
+
blank |
|
2350
|
+
|
|
2351
|
+
text | More generally the equation Nv=kD(k) can be considered a constraint on the possible
|
2352
|
+
| behaviour patterns (sum rule) of a system due to different mechanisms of organization. It
|
2353
|
+
| is often convenient to think about the variety of a system, V(k), that has a scale k or
|
2354
|
+
| larger, as this is the set of possible actions that can have at least that scale,
|
2355
|
+
blank |
|
2356
|
+
text | V(k) = Σ D(k’) (summed for k’ = k,N and 1 < k < N)
|
2357
|
+
blank |
|
2358
|
+
|
|
2359
|
+
text | Then the total variety of the system is V(1), and the sum rule can be written as:
|
2360
|
+
blank |
|
2361
|
+
text | Σ V(k) = Nv (summed for k = 1,N)
|
2362
|
+
blank |
|
2363
|
+
|
|
2364
|
+
text | This equation “describes the existence of a tradeoff between variety at different scales.
|
2365
|
+
| Increasing the variety at one scale by changing the organizational form must come at the
|
2366
|
+
| expense of variety at other scales.” [Bar-Yam 2004 p.19]
|
2367
|
+
blank |
|
2368
|
+
|
|
2369
|
+
text | Hierarchical systems have performance limits. Scale-free organizations avoid these
|
2370
|
+
| limits by adding (essentially) communication paths which avoid variety limits, but the
|
2371
|
+
| price is loss of controllability. The balance of controllability and efficiency is important,
|
2372
|
+
| especially for Mega-Systems, and provides a distinguishing characteristic from
|
2373
|
+
| Evolutionary Engineering which has been primarily developed for larger populations
|
2374
|
+
| without considering costs of scale, or even availability at scale.
|
2375
|
+
blank |
|
2376
|
+
|
|
2377
|
+
|
|
2378
|
+
|
|
2379
|
+
meta | 43
|
2380
|
+
title | 3.3.2 Variety in Distributed Product Development
|
2381
|
+
text | Performance of distributed complex product development networks has been analyzed to
|
2382
|
+
| discover the role of various types and mixes of variety in system development. For
|
2383
|
+
| instance [Braha 2007] studied relations between input and output tasks, design iterations,
|
2384
|
+
| and convergence in large distributed task networks for product design of complex
|
2385
|
+
| systems such as vehicles, hospitals, and pharmaceutical facilities. This analysis was
|
2386
|
+
| based on detailed design process models and task networks as shown in Figure 3-6.
|
2387
|
+
blank |
|
2388
|
+
|
|
2389
|
+
|
|
2390
|
+
|
|
2391
|
+
text | Figure 3-6 Design Process Models and Networks
|
2392
|
+
| This PD task network consists of 1,245 directed information flows between 466 development tasks.
|
2393
|
+
| Each task is assigned to one or more actors (“design teams” or “engineers”) who are responsible for
|
2394
|
+
| it. [Braha 2007] Input information can be ‘external’, intra-disciplinary’, or ‘cross-disciplinary’.
|
2395
|
+
| Output information moves toward the right. The primary diagram shows a closeup of three tasks
|
2396
|
+
| with 17 information streams; the inset shows the overall (quasi-scale-free) network.
|
2397
|
+
blank |
|
2398
|
+
|
|
2399
|
+
|
|
2400
|
+
meta | 44
|
2401
|
+
text | Some of the interesting results from these studies showed that limits on input versus
|
2402
|
+
| output variety had emergent effects on design convergence (Figure 3-7). In this case, one
|
2403
|
+
| would apply special attention to tasks with a large number of outputs.
|
2404
|
+
blank |
|
2405
|
+
|
|
2406
|
+
|
|
2407
|
+
|
|
2408
|
+
text | Figure 3-7 Meta-Performance Measures of Distributed Product Development
|
2409
|
+
| Research results show that limits on input versus output variety has emergent effects on design
|
2410
|
+
| convergence. In this case, one would apply special attention to tasks with a large number of outputs.
|
2411
|
+
| [Braha 2007]
|
2412
|
+
blank |
|
2413
|
+
|
|
2414
|
+
text | However, a major limit on these types of analysis is an assumption of homogenous
|
2415
|
+
| communication channels. Also these links are directed and have a single defined
|
2416
|
+
| information package. Another limit is that the transfer of information was assumed to be
|
2417
|
+
| 100% complete so there was no degradation due to scale. These limits will be addressed
|
2418
|
+
| in Section 4.0.
|
2419
|
+
blank |
|
2420
|
+
|
|
2421
|
+
|
|
2422
|
+
meta | 45
|
2423
|
+
title | 3.4 Information Transfer in Chaotic Channels
|
2424
|
+
blank |
|
2425
|
+
title | 3.4.1 Dynamical Systems and the Logistics Map
|
2426
|
+
text | Dynamical systems evolve over time. The composition/capabilities evolve as a function
|
2427
|
+
| of the previous state. One model of interest representing this behaviour is the logistic
|
2428
|
+
| equation. “The logistic equation (sometimes called the Verhulst model, logistic map, or
|
2429
|
+
| logistic growth curve) is a model of population growth first published by Pierre Verhulst
|
2430
|
+
| [Verhulst 1838]. The Verhulst model is continuous in time, but a modification of the
|
2431
|
+
| continuous equation to a discrete quadratic recurrence equation is also known as the
|
2432
|
+
| logistic model.” [http://mathworld.wolfram.com/LogisticEquation.html] The logistic
|
2433
|
+
| map is the name given to one particularly useful way of expressing the logistic model:
|
2434
|
+
blank |
|
2435
|
+
|
|
2436
|
+
text | nt+1 = (birthrate – deathrate)[knt – nt2]/k
|
2437
|
+
blank |
|
2438
|
+
|
|
2439
|
+
text | where nt is the population at the current generation and k is the carrying capacity. To
|
2440
|
+
| derive the logistic map from this model, let
|
2441
|
+
| xt = nt/k, and
|
2442
|
+
| a = (information creation rate – information annihilation rate)
|
2443
|
+
| to get the map posed as a simple iteration:
|
2444
|
+
blank |
|
2445
|
+
|
|
2446
|
+
text | xt+1 = axt (1 - xt) (4)
|
2447
|
+
blank |
|
2448
|
+
|
|
2449
|
+
text | Note that xt is a fraction of the carrying capacity (from the population model). For us,
|
2450
|
+
| this is the amount of the original information that is still understandable over the passage
|
2451
|
+
| of time as t --> t + 1. The variable ‘a’ represents the rate of net information production.
|
2452
|
+
blank |
|
2453
|
+
|
|
2454
|
+
text | The logistic map can be used to study the behaviour of complex systems over time as
|
2455
|
+
| they evolve. For our model of mega-design communities, the link performance between
|
2456
|
+
| two groups will evolve over time, causing the relationship of the two groups to evolve in
|
2457
|
+
| response. As each link in our quasi-scale-free community evolves according to its own
|
2458
|
+
| characteristics, the overall design community will evolve in a doubly complex fashion.
|
2459
|
+
blank |
|
2460
|
+
|
|
2461
|
+
meta | 46
|
2462
|
+
text | The logistic map is frequently called the chaos model, and discussions of information
|
2463
|
+
| transfer in complex systems are sometimes discussed as information transfer in chaotic
|
2464
|
+
| channels.
|
2465
|
+
blank |
|
2466
|
+
|
|
2467
|
+
text | One representation of the behaviour of our dynamical system is shown in (Figure 3-8)
|
2468
|
+
| [Mitchell 1992], which shows how the output in these systems quickly become
|
2469
|
+
| unpredictable (chaotic). The bifurcation points, where one path expands into two, are
|
2470
|
+
| strange attractors and represent areas of local stability.
|
2471
|
+
blank |
|
2472
|
+
|
|
2473
|
+
|
|
2474
|
+
text | B C
|
2475
|
+
| A
|
2476
|
+
blank |
|
2477
|
+
|
|
2478
|
+
|
|
2479
|
+
|
|
2480
|
+
text | Figure 3-8 Bifurcation Diagram
|
2481
|
+
| The bifurcation points, where one path expands into two, are strange attractors and represent
|
2482
|
+
| areas of local stability. In this diagram the areas of local stability are (A) 3.0, (B) 3.45, and (C) 3.55.
|
2483
|
+
blank |
|
2484
|
+
|
|
2485
|
+
|
|
2486
|
+
|
|
2487
|
+
text | “Note that for an N dimensional dynamical system there are N Lyapunov exponents. The
|
2488
|
+
| positive Lyapunov exponents + measure the rates of exponential divergence, and the
|
2489
|
+
| negative ones - the rates of convergence.” [Bais 2010] The sum of the positive
|
2490
|
+
| Lyapunov exponents (the metric entropy) and the information dimension can be used to
|
2491
|
+
| estimate the amount of time that postdictions remain valid.
|
2492
|
+
blank |
|
2493
|
+
|
|
2494
|
+
|
|
2495
|
+
meta | 47
|
2496
|
+
title | 3.4.2 Information Transfer in Chaotic Channels
|
2497
|
+
blank |
|
2498
|
+
|
|
2499
|
+
text | Earlier (Section 3.2), information was modeled in a general, bi-directional sense. Now
|
2500
|
+
| we want to look at the time sequence of information and how it behaves as it moves into
|
2501
|
+
| subsequent states. Conditional information transfer was defined in equation (2). Actor X
|
2502
|
+
| starts with some particular, local information iPx(xi), so that our local conditional
|
2503
|
+
| information becomes
|
2504
|
+
blank |
|
2505
|
+
|
|
2506
|
+
text | Il(y|x) = jPy|x(yj|xi)log2Py|x(yj|xj) (5)
|
2507
|
+
blank |
|
2508
|
+
|
|
2509
|
+
text | We can define a variable for the rate of information change d = dy/dx which represents
|
2510
|
+
| how the information is changed by the environment during a transfer (or over time). This
|
2511
|
+
| includes both to the dissipation rate and to the divergence rate.
|
2512
|
+
blank |
|
2513
|
+
|
|
2514
|
+
text | Assuming sufficiently fine resolution, the conditional information at a subsequent time
|
2515
|
+
| from a given initial state can be solved to be:
|
2516
|
+
blank |
|
2517
|
+
|
|
2518
|
+
text | < Il(y|x)>o = log2d + 1/(2dln2) (6)
|
2519
|
+
blank |
|
2520
|
+
|
|
2521
|
+
text | Now we subject the conditional information (equation (6)) to evolution in the logistics
|
2522
|
+
| map (equation (4)). This can be computed by numerical integration (avoiding the
|
2523
|
+
| singularity at d = 1). Results are shown in Figure 3-9 (note a = d). Even after only 3
|
2524
|
+
| iterations, it can be seen that I(y/\x) is no longer monotonic in a – several maxima of
|
2525
|
+
| conserved information can be seen. I(y|x) does not depend strongly on r, whereas the
|
2526
|
+
| other quantities include an additive term of log2r [Metzler 2003].
|
2527
|
+
blank |
|
2528
|
+
|
|
2529
|
+
|
|
2530
|
+
|
|
2531
|
+
meta | 48
|
2532
|
+
text | t=2 t=3
|
2533
|
+
blank |
|
2534
|
+
|
|
2535
|
+
|
|
2536
|
+
|
|
2537
|
+
text | Figure 3-9 Conditional, mutual, and total information for two and three time steps
|
2538
|
+
| “Here, I(y|x) represents the uncertainty generated by stretching and compressing; I(x) – I(y)
|
2539
|
+
| represents the uncertainty through shrinking of phase space; and I(x) – I(y/\x) is the average
|
2540
|
+
| information necessary to reconstruct x from knowledge of y. The mutual information I(y/\x) is the
|
2541
|
+
| amount of information about the initial state retained after the mapping [Metzler 2003].
|
2542
|
+
blank |
|
2543
|
+
|
|
2544
|
+
|
|
2545
|
+
|
|
2546
|
+
text | For intermediate time iterations (3 < t < 100), Figure 3-10 shows the mutual information
|
2547
|
+
| at various intermediate times (note a = d). Several large peaks are apparent. The wider
|
2548
|
+
| peaks in Figure 3-10 at a = 1, 3, and 3.54 correspond to the bifurcation points. There, the
|
2549
|
+
| Lyapunov exponent is 0 and deviations from the fixed point or cycle decay like a power
|
2550
|
+
| law rather than exponentially. These broader peaks indicate information transfer regimes
|
2551
|
+
| that are still working effectively, as long as you can choose the correct formatting.
|
2552
|
+
blank |
|
2553
|
+
|
|
2554
|
+
|
|
2555
|
+
|
|
2556
|
+
meta | 49
|
2557
|
+
text | B C
|
2558
|
+
| A
|
2559
|
+
blank |
|
2560
|
+
|
|
2561
|
+
|
|
2562
|
+
|
|
2563
|
+
text | Figure 3-10 Mutual information for larger iterations of time
|
2564
|
+
| The wider peaks at a = 1, 3, and 3.54 correspond to the bifurcation points. There, the Lyapunov
|
2565
|
+
| exponent is 0 and deviations from the fixed point or cycle decay like a power law rather than
|
2566
|
+
| exponentially [Metzler 2003]. These broader peaks (A, B, and C) indicate information transfer
|
2567
|
+
| regimes that are still working effectively, as long as you can choose the correct formatting.
|
2568
|
+
blank |
|
2569
|
+
|
|
2570
|
+
text | “The narrow peaks (e.g. near a = 1.3, 1.6, and 2.5) occur when the fixed point is very
|
2571
|
+
| close to the boundary between two bins, such that small deviations from the fixed point
|
2572
|
+
| lead to ambiguities in the outcome. They change positions if the binning [resolution] is
|
2573
|
+
| chosen differently.” [Metzler 2003] This is similar to data aliasing caused by information
|
2574
|
+
| transfer between groups within our design community. These effects will be described in
|
2575
|
+
| Section 4.3 - Section 4.6.
|
2576
|
+
blank |
|
2577
|
+
|
|
2578
|
+
|
|
2579
|
+
|
|
2580
|
+
meta | 50
|
2581
|
+
title | 3.4.3 Multi-scale Information Transfer
|
2582
|
+
blank |
|
2583
|
+
|
|
2584
|
+
text | Regarding information transfer between two actors, if the message received is completely
|
2585
|
+
| uncertain, the message is lost – this is often the case in chaotic systems. On the other
|
2586
|
+
| hand if all received messages appear to be the same, the recipient cannot determine what
|
2587
|
+
| message he was supposed to receive – this can occur in dissipative systems.
|
2588
|
+
blank |
|
2589
|
+
|
|
2590
|
+
text | “Dissipation and chaos have a common aspect: in both cases the dynamics makes a
|
2591
|
+
| connection between large and small scales. Chaotic dynamics amplify small differences
|
2592
|
+
| in the initial states until they reach macroscopic proportions, whereas dissipative
|
2593
|
+
| dynamics shrink differences until they vanish below the threshold of perception.” [Bais
|
2594
|
+
| 2010]
|
2595
|
+
blank |
|
2596
|
+
|
|
2597
|
+
text | For our discussion, we will customize the following definitions of variables:
|
2598
|
+
blank |
|
2599
|
+
|
|
2600
|
+
text | a = = the (designed) spread rate of information. (Too high and too much non-
|
2601
|
+
| synchronized information results in chaos; too low and dissipation (friction)
|
2602
|
+
| slows information exchange so much that there is no growth from synergy.) (This
|
2603
|
+
| is similar to the amplification parameter in logistics map terminology which is a
|
2604
|
+
| combination of growth rate and death rate.) “a” is a controllable or cultivatable
|
2605
|
+
| parameter.
|
2606
|
+
blank |
|
2607
|
+
|
|
2608
|
+
text | r = = resolution. Information packets have behaviors related to their size divided
|
2609
|
+
| by the resolution of the information. Packetization of the information at some
|
2610
|
+
| resolution is related to the size of the producing group: individual researchers or
|
2611
|
+
| other producers that have high r create so much information that the channel
|
2612
|
+
| becomes clogged. Clumping the information (to a higher scale) lets it spread
|
2613
|
+
| better because it rejects noise.
|
2614
|
+
blank |
|
2615
|
+
|
|
2616
|
+
|
|
2617
|
+
|
|
2618
|
+
meta | 51
|
2619
|
+
text | t = = time. We will calculate the individual time scales based on a static
|
2620
|
+
| dissipation time of 5 years, or 60 months or 250 weeks. In order for our scale to
|
2621
|
+
| span orders of magnitude, we will work in weeks.
|
2622
|
+
blank |
|
2623
|
+
|
|
2624
|
+
text | X = = Sender.
|
2625
|
+
| Y = = Receiver.
|
2626
|
+
blank |
|
2627
|
+
|
|
2628
|
+
text | Organizations have both peer and hierarchical levels of “production” that affect
|
2629
|
+
| information transfer and consumption. We will next define multi-scale, and then three
|
2630
|
+
| types of multi-scale parameters: organizational, task, and time scales.
|
2631
|
+
blank |
|
2632
|
+
|
|
2633
|
+
text | A) Multi-scale Defined [Bar-Yam 2004b]
|
2634
|
+
| Multi-scale effects can be pictured by imagining information at different scales
|
2635
|
+
| analogously to multi-scale real numbers. “On one hand, each real number can be
|
2636
|
+
| represented by one point on the real axis – it is a one-dimensional quantity. On the other
|
2637
|
+
| hand, in the usual descriptions (decimal, binary, etc.), real numbers are represented by a
|
2638
|
+
| set of integers that stand for different scales – the scales of 1s, 10s, 100s, etc. This makes
|
2639
|
+
| sense because it reflects what happens when some x is added to x: the digits of x are
|
2640
|
+
| strongly affected for all scales finer than the scale of x, and weakly affected for coarser
|
2641
|
+
| scales. There are two [aspects] with the usual representations: first, they are
|
2642
|
+
| discontinuous: a small change on a fine scale will have no effect at all on coarser scales
|
2643
|
+
| most of the time, but a dramatic effect in rare cases (such as when 0.001 is added to
|
2644
|
+
| 0.999). This is a necessary side effect of using discrete (integer) representations on each
|
2645
|
+
| scale. Second, they do not lend themselves to simple modification under multiplication:
|
2646
|
+
| multiplication is basically a convolution of the representations of the two factors.
|
2647
|
+
| Whereas multiplications with numbers that have a simple representation in the chosen
|
2648
|
+
| base gives a shift (e.g. multiplication with 10 in the decimal representation just shifts the
|
2649
|
+
| decimal point), all other factors lead to changes throughout the scales.”
|
2650
|
+
blank |
|
2651
|
+
|
|
2652
|
+
|
|
2653
|
+
|
|
2654
|
+
meta | 52
|
2655
|
+
title | B) Organization Scales
|
2656
|
+
text | For our engineering community, one instantiation of scale that can be easily recognized is
|
2657
|
+
| levels in an organizational hierarchy. Information being passed up and down the chain
|
2658
|
+
| gets compressed or expanded for delivery. Months’ worth of testing is compressed into a
|
2659
|
+
| report that the group delivers to their manager. The manager uses certain meta-aspects at
|
2660
|
+
| his level (budget spent, Intellectual Property (IP) filed, etc.) but has no visceral under-
|
2661
|
+
| standing of whether the new component is easy or hard to use, and whether it provides
|
2662
|
+
| the improved performance easily or only with great tweaking. The report may be filed in
|
2663
|
+
| an IP repository. Later, a design group looking for a new component accesses the reports
|
2664
|
+
| and tries to understand it enough to determine if they should use it in their product.
|
2665
|
+
blank |
|
2666
|
+
|
|
2667
|
+
text | So vertical-organization information-transfer either dissipates information (upward), or it
|
2668
|
+
| adds noise (chaos) (downward) (unless accompanied by additional (decompression)
|
2669
|
+
| information).
|
2670
|
+
blank |
|
2671
|
+
|
|
2672
|
+
text | An Organizational Aliasing Factor (OAF) is defined, and estimated to be on the order of
|
2673
|
+
| the relative sizes of the hierarchical groups. For instance, if a manager has ten
|
2674
|
+
| subordinates, then:
|
2675
|
+
| OAF = O( scale)
|
2676
|
+
| = O(10) – O(1)
|
2677
|
+
| =1
|
2678
|
+
| This factor is similar to limits on organizational controllability [Hogg 2001].
|
2679
|
+
blank |
|
2680
|
+
|
|
2681
|
+
text | C) Variety Scales
|
2682
|
+
| Cross-organization information transfer can ostensibly retain the information scale and
|
2683
|
+
| relay information at very high bandwidths without loss, although again the transfers are
|
2684
|
+
| subject to transmission effects. Cross-organization transfers are often not peer to peer,
|
2685
|
+
| and are frequently dis-intermediated by other functional groups.
|
2686
|
+
blank |
|
2687
|
+
|
|
2688
|
+
text | These agents are peer-to-peer agents in a weak sense as defined by Petrie [Petrie 1996].
|
2689
|
+
| In this sense they are true agents that provide generation of new information, but they are
|
2690
|
+
blank |
|
2691
|
+
|
|
2692
|
+
meta | 53
|
2693
|
+
text | weak in that they do not use standard protocols for communication. Each agent’s
|
2694
|
+
| protocols (methods) are particular to that set of agents.
|
2695
|
+
| Variety scale differences in peer to peer relations involve the definition of mutual
|
2696
|
+
| information needed for the information transfer. These scale differences can arise from
|
2697
|
+
| three variables: resolution, translation, and context.
|
2698
|
+
blank |
|
2699
|
+
|
|
2700
|
+
text | Resolution effects occur when the information needs to be further developed to add more
|
2701
|
+
| detailed design information.
|
2702
|
+
blank |
|
2703
|
+
|
|
2704
|
+
text | Translation effects occur when the type of information needs to be transformed. For
|
2705
|
+
| example, when a prototype’s key development focus was improving and characterizing a
|
2706
|
+
| new control system possibly using new lightweight components, and it now needs to be
|
2707
|
+
| characterized for material properties for reliability and radiation effects. The original
|
2708
|
+
| (controls) engineers may not have documented the reference information needed to start
|
2709
|
+
| to collect the information and samples for material environmental testing.
|
2710
|
+
blank |
|
2711
|
+
|
|
2712
|
+
text | Context effects involve the environmental linkages and might include introducing
|
2713
|
+
| subcontractors and transferring between points of contact within the subcontractors
|
2714
|
+
| organization.
|
2715
|
+
blank |
|
2716
|
+
|
|
2717
|
+
text | We define a Variety Aliasing Factor VAF = ln(V1/V2). Here Variety Vi is estimated to be
|
2718
|
+
| linear with the number of people in the group, although other studies [BarYam 2004a]
|
2719
|
+
| have addressed fractional variety with non-linear additive effects. VAF has been
|
2720
|
+
| computed for each link in our scale-free design community as shown in (Figure 3-11).
|
2721
|
+
| Organizational aliasing factors (OAF) are included with variety aliasing factors (VAF)
|
2722
|
+
| since each half of an explicit organizational hierarchy should be designed to have the
|
2723
|
+
| correct agents to compress / decode the information packages.
|
2724
|
+
blank |
|
2725
|
+
|
|
2726
|
+
|
|
2727
|
+
|
|
2728
|
+
meta | 54
|
2729
|
+
text | Figure 3-11 Values for Combined Organization (OAF) and Variety (VAF) Aliasing
|
2730
|
+
| Values in red are the combined OAF and VAF based on the measured organizational values shown
|
2731
|
+
| in the Mega-Organization model in Section 2.1
|
2732
|
+
blank |
|
2733
|
+
|
|
2734
|
+
|
|
2735
|
+
text | At this level of modeling, we can ignore actor interactions as interposed by variety
|
2736
|
+
| [BarYam 2004a] regarding whether they are simply coordinated, fully coordinated, or
|
2737
|
+
| independent.
|
2738
|
+
blank |
|
2739
|
+
|
|
2740
|
+
title | D) Time Scales
|
2741
|
+
text | Information in our mega-design community is produced by certain groups for certain
|
2742
|
+
| purposes. Information can be produced quickly or it may take quite some time.
|
2743
|
+
| Consumption rates will be different for different groups and, within groups, will be
|
2744
|
+
| different for different types of information. Information exchanges may be scheduled
|
2745
|
+
| processes (like quarterly reports), they may be continuous (as may occur within a lab), or
|
2746
|
+
| they may be ad hoc.
|
2747
|
+
blank |
|
2748
|
+
|
|
2749
|
+
text | During the early stages of design of a very large product, the design engineers may talk
|
2750
|
+
| with laboratory staff frequently to discover the possible span of solutions that are
|
2751
|
+
blank |
|
2752
|
+
|
|
2753
|
+
|
|
2754
|
+
meta | 55
|
2755
|
+
text | implementable. However, after the PDR (Preliminary Design Review), the design point
|
2756
|
+
| has become conceptually fixed and the designers switch from talking with scientists to
|
2757
|
+
| talking with component vendors in order to develop a detailed design. The product team
|
2758
|
+
| will not talk with the laboratory scientists until after detailed design, manufacturing,
|
2759
|
+
| integration, test, launch, and initial operations. There may be a 12 year gap before the
|
2760
|
+
| design engineers again talk with the research team. Now, assuming the laboratory is not
|
2761
|
+
| lazy, they have been producing research reports for each of the last 12 years (600 weeks)
|
2762
|
+
| which have been ignored by the engineers. This is multi-scale aliasing (Figure 3-12).
|
2763
|
+
blank |
|
2764
|
+
|
|
2765
|
+
text | BD PROG R&D
|
2766
|
+
blank |
|
2767
|
+
|
|
2768
|
+
|
|
2769
|
+
|
|
2770
|
+
text | 1 year Exec Exec Exec
|
2771
|
+
blank |
|
2772
|
+
text | 3 years
|
2773
|
+
| Adjacent BD 3 Executive
|
2774
|
+
| 3 Senior Adjacent
|
2775
|
+
| Markets Director Staff Support Technologies
|
2776
|
+
| 1.5
|
2777
|
+
| BD
|
2778
|
+
| 12 4 Advanced Senior
|
2779
|
+
| Program
|
2780
|
+
| Staff Develop Manager
|
2781
|
+
blank |
|
2782
|
+
text | 2 years
|
2783
|
+
| Senior 3 Subsystem CRAD
|
2784
|
+
| Senior
|
2785
|
+
| Engineer Scientist
|
2786
|
+
blank |
|
2787
|
+
|
|
2788
|
+
text | 12 years 2
|
2789
|
+
| Staff
|
2790
|
+
| Tools Engineer Engineer Engineer
|
2791
|
+
| Scientist
|
2792
|
+
| 3
|
2793
|
+
| 4 years Discipline
|
2794
|
+
| 1 year
|
2795
|
+
| Director
|
2796
|
+
blank |
|
2797
|
+
|
|
2798
|
+
|
|
2799
|
+
|
|
2800
|
+
text | ENG
|
2801
|
+
blank |
|
2802
|
+
|
|
2803
|
+
text | Figure 3-12 Values for Time Aliasing Factor (TAF)
|
2804
|
+
| Numbers in black are the event lifetimes for each of the red-boxed major organizational elements.
|
2805
|
+
| For instance, ‘Programs’ take 12 years to develop their mega-system; ‘Advanced Development’ takes
|
2806
|
+
| 2 years to develop a prototype. TAFs (red numbers), are calculated on links that cross major
|
2807
|
+
| boundaries, and are based on the relative values of the two intersecting time epochs.
|
2808
|
+
blank |
|
2809
|
+
|
|
2810
|
+
text | Of course the situation is not quite so simple as there are other mega-products within the
|
2811
|
+
| design community that are at different stages of development. So assuming a reasonably
|
2812
|
+
| large set of programs, there are likely other efforts that were listening during the
|
2813
|
+
| intervening 12 years. But unfortunately with large systems we do not have a normal
|
2814
|
+
blank |
|
2815
|
+
|
|
2816
|
+
|
|
2817
|
+
|
|
2818
|
+
meta | 56
|
2819
|
+
text | distribution of programs, and, operating within a quasi-scale-free organization, there are
|
2820
|
+
| other timing constraints.
|
2821
|
+
blank |
|
2822
|
+
|
|
2823
|
+
text | So the opportunity for multi-scale time aliasing is large for organizations dealing with
|
2824
|
+
| large products. There are dis-intermediating organizations that are set up to overcome
|
2825
|
+
| this time aliasing such as groups that create annual research reports from the continuous
|
2826
|
+
| science production, and groups that match business requirements to technical capabilities.
|
2827
|
+
| These groups have been inserted onto information transfer paths to reduce multi-scale
|
2828
|
+
| aliasing. Balance and effectiveness of these anti-aliasing functions can be analyzed
|
2829
|
+
| within our network.
|
2830
|
+
blank |
|
2831
|
+
|
|
2832
|
+
|
|
2833
|
+
title | 3.4.4 Combined Varietal, Organizational, and Temporal Aliasing
|
2834
|
+
text | The aliasing factors (AF) from individual scale parameters:
|
2835
|
+
| TAF = t1/t2
|
2836
|
+
| OAF = O(scale)
|
2837
|
+
| VAF = ln(V1/V2)
|
2838
|
+
| are combined according to an efficiency equation for combined link activity. The total
|
2839
|
+
| product information aliasing factor ‘p’, for each link, becomes:
|
2840
|
+
| p = π(T,O,V) = (t1/t2)*(O(scale))*(ln(v1/v2))
|
2841
|
+
blank |
|
2842
|
+
|
|
2843
|
+
text | Reference (Figure 3-13). These values will be used in subsequent performance analyses.
|
2844
|
+
blank |
|
2845
|
+
|
|
2846
|
+
|
|
2847
|
+
|
|
2848
|
+
meta | 57
|
2849
|
+
text | Figure 3-13 Network with total Product Information Aliasing Factors (p)
|
2850
|
+
| for combined Time, Organization, and Variety Factors
|
2851
|
+
blank |
|
2852
|
+
|
|
2853
|
+
|
|
2854
|
+
|
|
2855
|
+
meta | 58
|
2856
|
+
title | 3.4.5 Noise in Chaotic Channels
|
2857
|
+
text | Scale factors cause received/stored information to not equal transmitted/produced
|
2858
|
+
| information. Is it noise or is it compression or aliasing? At the level of abstraction we
|
2859
|
+
| are discussing here, it does not really matter. What matters is that we have a measure of
|
2860
|
+
| the turbulence structure in the link so we can smoothly elide.
|
2861
|
+
blank |
|
2862
|
+
|
|
2863
|
+
text | For individual link smoothing (improvement), there are questions about what kind of
|
2864
|
+
| noise and dissipation is injected, and how can it be controlled, reduced, or avoided?
|
2865
|
+
| Inversely, how can we amplify “good” information exchange? For example, synthesizing
|
2866
|
+
| information into a report or a meeting format compresses it. In order to decompress the
|
2867
|
+
| report properly, or at least better, we may want to add the engineer’s names and phone
|
2868
|
+
| numbers, or add more hotlinks to the supporting sources.
|
2869
|
+
blank |
|
2870
|
+
|
|
2871
|
+
text | The time length between preparation and consumption also causes dissipation. For
|
2872
|
+
| instance, a lab engineer currently remembers how to debug his system, but 6 months later
|
2873
|
+
| he would have to refer to his documentation and think for a while and re-analyze his
|
2874
|
+
| system. This may not be adjustable, except possibly by deciding whether to use the
|
2875
|
+
| prototype system before the inventor has time to forget.
|
2876
|
+
blank |
|
2877
|
+
title | 3.4.6 Synchronization
|
2878
|
+
text | Organizations are kept internally synchronized according to communication among the
|
2879
|
+
| actors. The rate, scale, and granularity of synchronization create a characteristic that is
|
2880
|
+
| similar to the evolution rate in a computing organism. A tightly coupled organization can
|
2881
|
+
| steer more quickly to adapt to changes. One could imagine that steering a big ship is not
|
2882
|
+
| as hard as steering a line of barges with a tug at one-end through as s-curve. Despite the
|
2883
|
+
| inertia, at least it is tightly coupled.
|
2884
|
+
blank |
|
2885
|
+
|
|
2886
|
+
|
|
2887
|
+
|
|
2888
|
+
meta | 59
|
2889
|
+
title | 4 Application of Integrated Link/Network Model
|
2890
|
+
blank |
|
2891
|
+
title | 4.1 Matching Scale Dispersion to Time Regimes
|
2892
|
+
text | We now interpret and expand the results of previous sections with a view to the problem
|
2893
|
+
| of optimal computation (communication) within our organization network. Given the
|
2894
|
+
| time scales of product delivery, tool evolution, and staff relocations defined earlier, how
|
2895
|
+
| do we select the size of groups, their relationships, and the type of information transfer
|
2896
|
+
| and storage (memory), such that we get “low-noise” information spread and growth
|
2897
|
+
| within the time frame of evolutionary design?
|
2898
|
+
blank |
|
2899
|
+
|
|
2900
|
+
text | Our goal is to foster a system whose dynamics are somewhat stable to perturbations and
|
2901
|
+
| slow compared to the time t. Remember that we are solving the problem of post diction,
|
2902
|
+
| not prediction, which is what gives us flexibility for genetic evolution and emergence
|
2903
|
+
| within this design organization. This is very significant. Prediction implies accurately
|
2904
|
+
| arriving at a predetermined optimal point. Determining the future specification is time-
|
2905
|
+
| consuming, and arriving at the point requires extra (control) resources. Post diction
|
2906
|
+
| implies efficiently using your (past) resources to move generally toward your goal.
|
2907
|
+
blank |
|
2908
|
+
|
|
2909
|
+
text | The information being received by agent Y (I(y)) is less than the original information I(x)
|
2910
|
+
| because of the dynamics of the information carrying capacity of the channel (Figure 4-1).
|
2911
|
+
| The received information is a function of I(x^y) and I(x|y). There are certain exchange
|
2912
|
+
| resonances where the information scale matches the transmission scale, and the
|
2913
|
+
| information is not distorted.
|
2914
|
+
blank |
|
2915
|
+
|
|
2916
|
+
|
|
2917
|
+
|
|
2918
|
+
meta | 60
|
2919
|
+
| 7
|
2920
|
+
blank |
|
2921
|
+
text | 6 Good Information
|
2922
|
+
| 5
|
2923
|
+
| Postdiction
|
2924
|
+
| Information (bits)
|
2925
|
+
blank |
|
2926
|
+
text | 4 I(x)
|
2927
|
+
blank |
|
2928
|
+
text | 3 I(y)
|
2929
|
+
| I(y^x)
|
2930
|
+
| 2
|
2931
|
+
| I(y|x)
|
2932
|
+
| 1
|
2933
|
+
blank |
|
2934
|
+
text | 0
|
2935
|
+
| 0.0 1.0 2.0 3.0 4.0
|
2936
|
+
| aa
|
2937
|
+
blank |
|
2938
|
+
text | Figure 4-1 Mutual, Conditional, and Postdicted (I(y)) Information
|
2939
|
+
| Information evolution after three time steps. Despite the rapid loss of mutual information I(y^x)
|
2940
|
+
| within the first several time steps, there is still enough conditional information I(y|x) in the higher ‘a’
|
2941
|
+
| regions to allow good information postdiction I(y) near a=4.
|
2942
|
+
blank |
|
2943
|
+
text | “For very short times (t < 3), Figure 4-1 shows that agent Y has the best chances of
|
2944
|
+
| postdicting the initial state in the chaotic regime near a = 4. “The loss of information
|
2945
|
+
| through chaos is not as significant as that through phase space shrinking in the low-a-
|
2946
|
+
| regime.” [Metzler 2003] These activities are similar to a technical symposium, where the
|
2947
|
+
| information exchange benefits are a massive (iconic) exchange of new techniques and
|
2948
|
+
| results. Information transfer is better when a range of engineers attend a conference
|
2949
|
+
| rather than ordering a copy of the proceedings and mailing it around to a distribution list
|
2950
|
+
| (given that cost is a separate variable).
|
2951
|
+
blank |
|
2952
|
+
|
|
2953
|
+
text | “In the limit of very long times, when the system has converged to its attractors, the only
|
2954
|
+
| regime where information about the initial state persists is the bifurcation regimes. What
|
2955
|
+
| value of “a” gives optimal transmission depends on the resolution: the recipient has to be
|
2956
|
+
| able to resolve all branches of the cycle to make full use of the remaining information.”
|
2957
|
+
| [Metzler 2003] This implies the information to be transferred must be completely
|
2958
|
+
| defined in a static form with all assumptions and requirements documented; with the
|
2959
|
+
| trade space documented; performance results parameterized; and consistent with future
|
2960
|
+
| engineering and IT tools. Thus for large t (t > 100), we need to have a = 1. In other
|
2961
|
+
blank |
|
2962
|
+
|
|
2963
|
+
|
|
2964
|
+
meta | 61
|
2965
|
+
text | words, all details need to be documented in long-term memory as otherwise there will be
|
2966
|
+
| insufficient knowledge to interpret the information.
|
2967
|
+
blank |
|
2968
|
+
|
|
2969
|
+
text | The Saturn V rocket used to launch the moon missions is an excellent example. Even
|
2970
|
+
| though the rocket was produced for ten years during the 1960s, some items were not
|
2971
|
+
| documented, such that when the space program was being restarted in the 1980s and
|
2972
|
+
| large lift capacity was needed again, the Saturn V could not be reproduced, and a whole
|
2973
|
+
| new design cycle had to be started anew. In fact, forty years later, we are still in the
|
2974
|
+
| midst of a ten-year process to design and qualify the new Space Launch System (SLS).
|
2975
|
+
blank |
|
2976
|
+
|
|
2977
|
+
text | For intermediate times (10 < t < 80)), at high “a”, chaotic dynamics eliminates all
|
2978
|
+
| information about the initial state; so does fast convergence to a single fixed point for
|
2979
|
+
| small “a”. As (Figure 4-2) shows, the quality of agent Y’s mutual information I(x/\y) is
|
2980
|
+
| greatest if “a” is close to one of the bifurcation points ( approximately 3 or 3.5), where
|
2981
|
+
| convergence follows a power law rather than an exponential. (Remember from Section
|
2982
|
+
| 3.4.1 that this is where the solutions change form.)
|
2983
|
+
blank |
|
2984
|
+
|
|
2985
|
+
text | Available/current link transfer rates must match information package delivery type
|
2986
|
+
| (resolution), delivery rate, and decoding capability.
|
2987
|
+
| 7
|
2988
|
+
| B
|
2989
|
+
| 6
|
2990
|
+
| A C
|
2991
|
+
| Mutual Information I(x^y)
|
2992
|
+
blank |
|
2993
|
+
|
|
2994
|
+
|
|
2995
|
+
|
|
2996
|
+
text | 5
|
2997
|
+
blank |
|
2998
|
+
text | 4
|
2999
|
+
| t = 10
|
3000
|
+
| 3 t = 20
|
3001
|
+
| t = 40
|
3002
|
+
| 2
|
3003
|
+
blank |
|
3004
|
+
text | 1
|
3005
|
+
blank |
|
3006
|
+
text | 0
|
3007
|
+
| 0.0 1.0 2.0 3.0 4.0
|
3008
|
+
| a
|
3009
|
+
blank |
|
3010
|
+
|
|
3011
|
+
|
|
3012
|
+
text | Figure 4-2 Mutual information for larger numbers of iterations
|
3013
|
+
| The loss of mutual information I(x^y) becomes so significant over longer times that there are only
|
3014
|
+
| a few “resonant” regions that allow good information transfer. Information can be exchanged
|
3015
|
+
| more completely at certain periods of time in certain formats at the resonant nodes B and C on the
|
3016
|
+
| graph where a = 3, and 3.5. Node A has low conditional information, and is unrecoverable despite
|
3017
|
+
| reasonable mutual information.
|
3018
|
+
blank |
|
3019
|
+
meta | 62
|
3020
|
+
title | 4.2 Identification of Candidate Links, Nodes, and Chains
|
3021
|
+
text | Network performance is evaluated by looking for link/information mismatch. In (Figure
|
3022
|
+
| 4-3), the red circles are evaluated for consistency. The checkmarks indicate consistent
|
3023
|
+
| link parameters and information formatting. The sad-faces indicate mismatches that will
|
3024
|
+
| be discussed in subsequent sections.
|
3025
|
+
blank |
|
3026
|
+
|
|
3027
|
+
text | The product information aliasing factor ‘p’, related to the combination of all the time and
|
3028
|
+
| variety scale factors (Figure 3-13), can be placed into three bins:
|
3029
|
+
| s – small (1-2) (chaotic)
|
3030
|
+
| m – medium (3)
|
3031
|
+
| l – large (4-6) (dissipative)
|
3032
|
+
blank |
|
3033
|
+
|
|
3034
|
+
text | These time regimes address the rate of change of I(x/\y) which is essentially the
|
3035
|
+
| differential growth rate (in different directions as well as vector magnitudes) of I(x) and
|
3036
|
+
| I(y). See (Figure 4-3). The ‘small’ total-aliasing region should be in the broadband
|
3037
|
+
| transfer regime (a=4). ‘Large’ (l) and ‘medium’ (m) total-aliasing factors represent
|
3038
|
+
| dissipative regions that require defined communications.
|
3039
|
+
blank |
|
3040
|
+
|
|
3041
|
+
text | To modify or adjust the aliasing, you could change the number of people on the link, or
|
3042
|
+
| change the percent of people in the transceivers (delta variety ‘receivers’) (V).
|
3043
|
+
blank |
|
3044
|
+
|
|
3045
|
+
|
|
3046
|
+
|
|
3047
|
+
meta | 63
|
3048
|
+
text | BD PROG R&D
|
3049
|
+
blank |
|
3050
|
+
|
|
3051
|
+
|
|
3052
|
+
text | Exec Exec Exec
|
3053
|
+
blank |
|
3054
|
+
text | m=3
|
3055
|
+
| Adjacent BD
|
3056
|
+
| m=3
|
3057
|
+
| a=3 √ Executive
|
3058
|
+
| a=1 Senior Adjacent
|
3059
|
+
| Markets Director Staff Support Technologies
|
3060
|
+
blank |
|
3061
|
+
|
|
3062
|
+
text | l=5 m=3
|
3063
|
+
| BD
|
3064
|
+
| Program a=1 a=1 Advanced Senior
|
3065
|
+
| Staff m=3 Develop Manager
|
3066
|
+
| a=3 √ √
|
3067
|
+
| s=2
|
3068
|
+
| Senior
|
3069
|
+
| Subsystem CRAD
|
3070
|
+
| √ a=4 Senior
|
3071
|
+
| Tools Engineer m=3 Scientist
|
3072
|
+
| a=3 √
|
3073
|
+
| s=2
|
3074
|
+
| √ a=4 Staff
|
3075
|
+
| s=2 Engineer m=3 Engineer Engineer
|
3076
|
+
| Scientist
|
3077
|
+
| a=1 a=3 √
|
3078
|
+
| Discipline
|
3079
|
+
| Director
|
3080
|
+
blank |
|
3081
|
+
|
|
3082
|
+
|
|
3083
|
+
|
|
3084
|
+
text | ENG
|
3085
|
+
blank |
|
3086
|
+
|
|
3087
|
+
|
|
3088
|
+
text | Figure 4-3 Information Transfer Regimes and Amplification Factors
|
3089
|
+
| Network performance is evaluated by looking for link/information mismatch. The red circles are
|
3090
|
+
| points of interest that have been evaluated for consistency. The checkmarks indicate consistent link
|
3091
|
+
| parameters and information formatting. The sad-faces indicate mismatches that will be discussed in
|
3092
|
+
| subsequent sections.
|
3093
|
+
blank |
|
3094
|
+
|
|
3095
|
+
|
|
3096
|
+
|
|
3097
|
+
meta | 64
|
3098
|
+
text | The (environmental) transmission/transfer rate of information is represented by ‘a’. This
|
3099
|
+
| is proportional to f(birthrate – deathrate), and is similar to the net information creation
|
3100
|
+
| rate or circulation rate (recall section 3.4.1).
|
3101
|
+
blank |
|
3102
|
+
|
|
3103
|
+
text | The birthrate could be about 1 month in lab; or about 2 years in contracted research and
|
3104
|
+
| development (CR&D) if you assume information is transferred only when the prototype
|
3105
|
+
| is delivered. This also implies 3months for technology management reports and one year
|
3106
|
+
| for internal research and development (IR&D) management planning. The deathrate is
|
3107
|
+
| somewhat constant and could be proportional to engineering re-training rate (~5yrs).
|
3108
|
+
| Here, retraining might imply new tools, etc.
|
3109
|
+
blank |
|
3110
|
+
|
|
3111
|
+
text | In (Figure 4-3), on the link between “BD Director” and “Prog Executive Staff”, a = 3 as
|
3112
|
+
| there are monthly program coordination meetings and customer meetings every four
|
3113
|
+
| weeks. Between “R&D Senior Support” and “Prog Executive Staff”, a = 1 representing
|
3114
|
+
| the annual funding cycle, and the annual report. On the two links between “R&D” and
|
3115
|
+
| “CR&D Prototyping”, the teams are working shoulder to shoulder with constant
|
3116
|
+
| information exchange and a = 4. The “Operational design team” has monthly design
|
3117
|
+
| reviews with the “Engineering process control staff” for a = 3; in “Engineering Tool
|
3118
|
+
| Development”, it is rare to have a faster update rate than once per year or 50 weeks, so a
|
3119
|
+
| = 1. Finally, the delivery of the “CR&D Prototype” to the “Prog Executive Staff” only
|
3120
|
+
| occurs every 100 weeks, so a = 1.
|
3121
|
+
blank |
|
3122
|
+
|
|
3123
|
+
text | The resolution ‘r’ which represents the granularity of the information package, whether
|
3124
|
+
| delivered face-to-face or in a document, is not a driver. There is only the requirement
|
3125
|
+
| that you need a larger ‘r’ for larger ‘a’.
|
3126
|
+
blank |
|
3127
|
+
|
|
3128
|
+
|
|
3129
|
+
|
|
3130
|
+
meta | 65
|
3131
|
+
title | 4.3 Network Improvements
|
3132
|
+
text | Network improvements can be assessed both at the individual links and nodes, and over
|
3133
|
+
| “link-chains”. Between individual nodes, mismatches of Link parameters (p, a) indicate
|
3134
|
+
| a discontinuity, or a mismatch of Lyupanov exponents. Two nodes can improve their
|
3135
|
+
| combined performance by exchanging information more efficiently. However, fixing one
|
3136
|
+
| link may or may not improve overall system performance, although there will certainly
|
3137
|
+
| be local effects.
|
3138
|
+
blank |
|
3139
|
+
|
|
3140
|
+
text | Link-chains of interest focus on particular extended pathways that execute higher level
|
3141
|
+
| functions such as translating customer product requirements into research needs.
|
3142
|
+
| Evaluation of various link chains can be analyzed both from an a priori interest as well as
|
3143
|
+
| from evaluating the scale-free network for paths of poor quality.
|
3144
|
+
blank |
|
3145
|
+
|
|
3146
|
+
text | We will first address Link improvements, then Chain improvements in Section 4.3.1 and
|
3147
|
+
| Section 4.3.2, respectively.
|
3148
|
+
blank |
|
3149
|
+
|
|
3150
|
+
|
|
3151
|
+
|
|
3152
|
+
meta | 66
|
3153
|
+
title | 4.3.1 Link Discontinuity Adjustment
|
3154
|
+
text | (Figure 4-4) zooms into our design community network to focus on two identified
|
3155
|
+
| discontinuities labeled A (sad faces in Figure 4-3). In both of these cases, t = m and a =
|
3156
|
+
| 1. The communication timeframe is “medium”, but the information delivered is in the
|
3157
|
+
| BD PROG
|
3158
|
+
| wrong form (a=1) for direct consumption. Also variety was expended at some costR&D
|
3159
|
+
| to
|
3160
|
+
| transform the original information (through ‘Executive Staff’ at B), so the resources used
|
3161
|
+
| to produce the original information are not being exploited efficiently.
|
3162
|
+
| Exec Exec Exec
|
3163
|
+
blank |
|
3164
|
+
|
|
3165
|
+
|
|
3166
|
+
text | t=m
|
3167
|
+
| BD
|
3168
|
+
| B Executive a= 1 Senior Adjacent
|
3169
|
+
| A
|
3170
|
+
| Director Staff Support Technologies
|
3171
|
+
| t=m D
|
3172
|
+
| A a= 1 C
|
3173
|
+
| BD C Advanced Senior
|
3174
|
+
| Program
|
3175
|
+
| Staff Develop Manager
|
3176
|
+
| C D
|
3177
|
+
| D
|
3178
|
+
blank |
|
3179
|
+
text | Senior Senior
|
3180
|
+
| Subsystem CRAD
|
3181
|
+
| Engineer Scientist
|
3182
|
+
| Figure 4-4 Set of Consistent Guides to Repair Discontinuity
|
3183
|
+
| This figure zooms into our design community network to focus on two identified discontinuities
|
3184
|
+
| Staff is
|
3185
|
+
| labeled A. In both of these cases, p = m and a = 1. So although the communication timeframe
|
3186
|
+
| Engineer Engineer Engineer
|
3187
|
+
| “medium”, the information delivered is in the wrong form for direct consumption. Scientist
|
3188
|
+
blank |
|
3189
|
+
text | Adjusting the information transfer regime ‘a’ to 3 for the two links labeled A would
|
3190
|
+
| Discipline improve the performance of this system by matching the link parameters. However, this
|
3191
|
+
| Director increase in bandwidth (changing ‘a’ from 1 to 3 on two links) must be absorbed by the
|
3192
|
+
| consuming agent B in order to maintain overall continuity.
|
3193
|
+
blank |
|
3194
|
+
|
|
3195
|
+
text | ENG The potential information overload at B (from increasing the bandwidth handled) must be
|
3196
|
+
| digested by appropriately increasing the Variety (to decode, process, and re-encode).
|
3197
|
+
| This could be managed by adding more staff within agent B (Executive Staff), but this is
|
3198
|
+
blank |
|
3199
|
+
|
|
3200
|
+
|
|
3201
|
+
meta | 67
|
3202
|
+
text | bad for several reasons: first, there are two links so you would need to add two additional
|
3203
|
+
| sets; second, the difference in variety is 2 (ln[v1/v2]) which would require significant
|
3204
|
+
| additional staff to overcome those magnitudes; and third, the overall link chain would
|
3205
|
+
| still be problematic (see section 4.3.2).
|
3206
|
+
blank |
|
3207
|
+
|
|
3208
|
+
text | A better adjustment would be to reconnect the “Advanced Development Group” D with
|
3209
|
+
| two new links at C . This matches the agent’s time scales (t = m), has a smaller change in
|
3210
|
+
| variety (∆V = O(1)), and addresses overall link chain performance.
|
3211
|
+
blank |
|
3212
|
+
|
|
3213
|
+
text | The final step is to add more Variety at all three D so that the new information flow paths
|
3214
|
+
| can be absorbed.
|
3215
|
+
blank |
|
3216
|
+
|
|
3217
|
+
|
|
3218
|
+
|
|
3219
|
+
meta | 68
|
3220
|
+
title | 4.3.2 Link-Chain Improvement
|
3221
|
+
text | Link-chains within the extended design community organization can be arbitrarily long.
|
3222
|
+
| This is not necessarily an adverse condition, as long as the information is not corrupted
|
3223
|
+
| and as long as the information arrives in a timely fashion. In fact, having a quasi-free
|
3224
|
+
| scale organization implies some limits on chain lengths (because of the cross
|
3225
|
+
| connections).
|
3226
|
+
blank |
|
3227
|
+
|
|
3228
|
+
text | However, by having imposed our external goals/specifications, and our multi-hierarchical
|
3229
|
+
| control structure, there are directed links corresponding to control paths required to focus
|
3230
|
+
| the community on our particular future goal states. These link-chains need to be
|
3231
|
+
| evaluated to make sure the information arrives timely and un-corrupted.
|
3232
|
+
blank |
|
3233
|
+
|
|
3234
|
+
text | Five link chains of interest are computed below. The link-chain “performance” value is a
|
3235
|
+
| linear sum of the included links, each of which is composed of variety and other multi-
|
3236
|
+
| scale terms. For labeling, the start- and end- Agents are listed, and a representative name
|
3237
|
+
| is added in between. Higher values imply more chances for information corruption.
|
3238
|
+
blank |
|
3239
|
+
|
|
3240
|
+
text | (1) ENG -> tools selection and deployment -> PROG
|
3241
|
+
| 2 + 2 + 3 + 3 = 10
|
3242
|
+
| (2) RES -> technology development -> PROG
|
3243
|
+
| 2 + 2 + 2 + 1 + 3 + 5 = 15
|
3244
|
+
| (3) BD -> customer requested research -> RES
|
3245
|
+
| 2 + 3 + 3 + 1 + 2 + 2 = 13
|
3246
|
+
| (4) PROG -> follow-on platforms -> PROG
|
3247
|
+
| 12 + 3 = 15
|
3248
|
+
| (5) RES -> prototype development and deployment -> LOB
|
3249
|
+
| 2 + 2 + 2 + 3 + 5 = 15
|
3250
|
+
blank |
|
3251
|
+
|
|
3252
|
+
text | (Figure 4-5) shows these link-chain paths (directed graphs) within our scale-free design
|
3253
|
+
| community network.
|
3254
|
+
blank |
|
3255
|
+
|
|
3256
|
+
|
|
3257
|
+
|
|
3258
|
+
meta | 69
|
3259
|
+
text | BD PROG R&D
|
3260
|
+
blank |
|
3261
|
+
|
|
3262
|
+
|
|
3263
|
+
text | Exec 3 Exec Exec
|
3264
|
+
blank |
|
3265
|
+
text | 1 2 1 1
|
3266
|
+
| Adjacent BD Executive
|
3267
|
+
| 3 Senior Adjacent
|
3268
|
+
| Markets Director Staff Support Technologies
|
3269
|
+
| 3 2
|
3270
|
+
| 2 2 5
|
3271
|
+
| BD
|
3272
|
+
| Staff
|
3273
|
+
| 3 Program
|
3274
|
+
| 5
|
3275
|
+
| Advanced
|
3276
|
+
| Develop
|
3277
|
+
| Senior
|
3278
|
+
| Manager
|
3279
|
+
blank |
|
3280
|
+
text | 2 2 2
|
3281
|
+
| Senior 3 Subsystem CRAD
|
3282
|
+
| 2 Senior 3
|
3283
|
+
| Engineer Scientist
|
3284
|
+
blank |
|
3285
|
+
text | 2 2 3 2 22
|
3286
|
+
| Tools Engineer
|
3287
|
+
| 3 1
|
3288
|
+
| Engineer Engineer
|
3289
|
+
| 2 Staff
|
3290
|
+
| 5 Scientist
|
3291
|
+
| 1
|
3292
|
+
| 2 Discipline
|
3293
|
+
| Director
|
3294
|
+
blank |
|
3295
|
+
|
|
3296
|
+
|
|
3297
|
+
|
|
3298
|
+
text | ENG
|
3299
|
+
blank |
|
3300
|
+
|
|
3301
|
+
text | Figure 4-5 Link-chain Paths of Interest
|
3302
|
+
| External goals and specifications, combined with our quasi, scale-free network, create directed links
|
3303
|
+
| corresponding to control paths required to focus the community on the particular future goal states.
|
3304
|
+
| Numbered blue lines are directed link paths; red numbers are total aliasing factors (TAF) (section
|
3305
|
+
| 3.4.4). These link-chains need to be evaluated to make sure the information arrives timely and un-
|
3306
|
+
| corrupted. Corruption can be caused by aliasing, occurring either during variety compression /
|
3307
|
+
| decoding, or from multi-scale time-aliasing. Case (2), the delivery of new Research products into
|
3308
|
+
| large Programs, has the highest TAF corruption factor of 15.
|
3309
|
+
blank |
|
3310
|
+
|
|
3311
|
+
text | Case (2), the delivery of new Research products into large Programs, has the highest
|
3312
|
+
| corruption factor of 15. Changes from annealing the discontinuities discussed earlier in
|
3313
|
+
| Section 4.3.1 will reduce the link values (aliasing factors) of 5 and 3 to 2 and 2.
|
3314
|
+
blank |
|
3315
|
+
|
|
3316
|
+
text | In addition to making links more efficient, one can also remove links entirely by
|
3317
|
+
| implementing organizational or process changes. An example of this, with emergent side
|
3318
|
+
| effects, will be discussed in Section 4.4.
|
3319
|
+
blank |
|
3320
|
+
|
|
3321
|
+
text | Another perspective, when looking at an extended chain as opposed to an individual link,
|
3322
|
+
| is to adjust link transfer rates (p * a) to all be similar. This similarity indicates similar
|
3323
|
+
| efficiencies through the process so that one poor link doesn’t downgrade the values of the
|
3324
|
+
blank |
|
3325
|
+
|
|
3326
|
+
|
|
3327
|
+
meta | 70
|
3328
|
+
text | attached links. This can be thought of as ensuring the transfer rate of the program staff
|
3329
|
+
| (variety providers) is on the same order as the learning rate of the program engineers who
|
3330
|
+
| are applying the information to the product, although this doesn’t address whether “V” is
|
3331
|
+
| correct.
|
3332
|
+
blank |
|
3333
|
+
|
|
3334
|
+
|
|
3335
|
+
|
|
3336
|
+
meta | 71
|
3337
|
+
title | 4.4 Cultivated Changes and Observed Emergent Side-Effects
|
3338
|
+
text | One limit in many organizations is how internal and external research is incorporated into
|
3339
|
+
| defined programs delivering products. Delivering major products that are pre-specified
|
3340
|
+
| in contracts does not need any new research, so program managers would rather control
|
3341
|
+
| internal technology resources to solve contract problems rather than create more new
|
3342
|
+
| technologies.
|
3343
|
+
blank |
|
3344
|
+
|
|
3345
|
+
text | This is exactly what is seen comparing a 90/5/5 portfolio to a 50/30/20 portfolio in the
|
3346
|
+
| time distribution of R&D allocation. Here, the numbers represent the percent of funds
|
3347
|
+
| devoted to “current-technology” / “product-development&qualification-efforts” /
|
3348
|
+
| “research-efforts”.
|
3349
|
+
blank |
|
3350
|
+
|
|
3351
|
+
text | Because program managers are not receiving any immediate value from the longer term
|
3352
|
+
| investments they try to reallocate all (90%) the R&D money internal to their product
|
3353
|
+
| development and production. Since the program managers control the source of income,
|
3354
|
+
| they have a large say in how internal funds are allocated. This is more efficient for their
|
3355
|
+
| individual program, but puts the company into a weaker long-term competitive posture
|
3356
|
+
| (slower evolution rate).
|
3357
|
+
blank |
|
3358
|
+
|
|
3359
|
+
text | A 50/30/20 distribution places more emphasis on research and development and enables a
|
3360
|
+
| more forward-leaning product offering that adapts more quickly and takes advantage of
|
3361
|
+
| recent advances in technology and new lower cost methods.
|
3362
|
+
blank |
|
3363
|
+
|
|
3364
|
+
text | For the network model of our particular design community, looking at product
|
3365
|
+
| development, the organization had evolved into a 60/5/35 investment position; value-
|
3366
|
+
| delivery of research into programs was close to zero (separate from experiential
|
3367
|
+
| development side-effects); and product evolution was stale. The significant research
|
3368
|
+
| effort was not being transferred anyplace.
|
3369
|
+
blank |
|
3370
|
+
|
|
3371
|
+
text | In this particular case we discover:
|
3372
|
+
blank |
|
3373
|
+
|
|
3374
|
+
|
|
3375
|
+
meta | 72
|
3376
|
+
text | (6) LOB -> product development -> PROG
|
3377
|
+
meta | 2 + 3 + 5 = 10
|
3378
|
+
text | This implies there are some impediments to transition new technologies into qualified
|
3379
|
+
| products for the new mega-systems.
|
3380
|
+
blank |
|
3381
|
+
|
|
3382
|
+
text | To increase innovation of the income-producing product stream, the investment position
|
3383
|
+
| was changed to 60/30/10 to increase product transition (30%), with the understanding (or
|
3384
|
+
| assumption) that many of the side-benefits accruing from a robust R&D program would
|
3385
|
+
| be lost (amount of research reduced from 35% to 10%). The implementation method was
|
3386
|
+
| to supply internal development funds directly to the Engineering subsystems to improve
|
3387
|
+
| their products for the set of Programs that were being developed.
|
3388
|
+
blank |
|
3389
|
+
|
|
3390
|
+
text | To maintain organizational coherence, new communication pathways had to be
|
3391
|
+
| developed. Allocation of the development funds to subsystem engineering groups was
|
3392
|
+
| equivalent to doubling their task diversity. There were now two roles for these
|
3393
|
+
| engineering groups: subassembly improvement with links to Research, and subassembly
|
3394
|
+
| integration with links to the Programs.
|
3395
|
+
blank |
|
3396
|
+
|
|
3397
|
+
text | A snapshot of the new information flow network is shown in (Figure 4-6) on the left.
|
3398
|
+
| The right side shows the diagram with an updated arrangement. This evolved version can
|
3399
|
+
| now be evaluated for future cultivation (the blue portion is new).
|
3400
|
+
blank |
|
3401
|
+
|
|
3402
|
+
|
|
3403
|
+
|
|
3404
|
+
meta | 73
|
3405
|
+
text | Figure 4-6 Cultivated Organizational Change
|
3406
|
+
| Adding resources and responsibility to ‘Engineering’ (Senior Engineers and Engineers) allowed them
|
3407
|
+
| to increase their variety both to expand their design work, and also to work the transitions into the
|
3408
|
+
| Program and from Research. Allocation of the development funds to subsystem engineering groups
|
3409
|
+
| was equivalent to doubling their task diversity. Two new links for these engineering groups were
|
3410
|
+
| required: subassembly improvement with links to Research, and subassembly integration with links
|
3411
|
+
| to the Programs. A second equivalent diagram is shown on the right. Either can be used depending
|
3412
|
+
| on the purpose and resolution of the subsequent analysis.
|
3413
|
+
blank |
|
3414
|
+
|
|
3415
|
+
|
|
3416
|
+
|
|
3417
|
+
text | Two interesting side-effects emerged. One of these might have been predicted in that the
|
3418
|
+
| Program Subsystem actor now had fewer responsibilities. In essence, the actor could
|
3419
|
+
| discard the variety needed to lead a new design effort, and focus on system integration.
|
3420
|
+
blank |
|
3421
|
+
|
|
3422
|
+
text | Another more interesting result was the effect this had on the Engineering Subsystem
|
3423
|
+
| teams. Previously they had no responsibility for their products other than to deliver their
|
3424
|
+
| design within the particular program requirements. Now, as they were tasked to improve
|
3425
|
+
| the status quo and coordinate its insertion into the program, their engineering behaviors
|
3426
|
+
| emerged into product ownership with the related activity that they desired to see ‘their’
|
3427
|
+
| product evolve and get inserted into additional programs. This was a significant
|
3428
|
+
| evolution of the company engineering culture which might be subsequently applied to
|
3429
|
+
| other evolutionary threads as indicated by the many variations of product strategy.
|
3430
|
+
blank |
|
3431
|
+
|
|
3432
|
+
text | Note that the resulting information transfer formats are still evolving.
|
3433
|
+
blank |
|
3434
|
+
|
|
3435
|
+
|
|
3436
|
+
|
|
3437
|
+
meta | 74
|
3438
|
+
title | 5 Performance Observations and Implications
|
3439
|
+
text | A large corporation was modeled as an adaptive computing organism that creates new
|
3440
|
+
| assets (mega-platforms). We are trying to make this (organizational) computing more
|
3441
|
+
| efficient so we can get more output so we can achieve better survivability (for the
|
3442
|
+
| organization) and better social value (for the environment). This section identifies areas
|
3443
|
+
| of potential benefits and changes.
|
3444
|
+
blank |
|
3445
|
+
|
|
3446
|
+
|
|
3447
|
+
title | 5.1 R&D Applicability Performance
|
3448
|
+
text | While emergent engineering behaviours are interesting, another question is whether this
|
3449
|
+
| improved the value to the company and/or the value delivered to the environment
|
3450
|
+
| (society). These questions may not be answerable, but one metric – the inserted value of
|
3451
|
+
| R&D efforts – rose from less than 5% to almost 80% as measured by the number of
|
3452
|
+
| research projects being fully used in an operational program.
|
3453
|
+
blank |
|
3454
|
+
|
|
3455
|
+
text | How well are typical research-expenditures used? This is a good question since there are
|
3456
|
+
| currently no good metrics and there is currently no generally accepted technique. People
|
3457
|
+
| have been looking for a long time, but nothing seems to work. This may be because the
|
3458
|
+
| desired answer doesn’t match the computed answer. Common methods of calculation
|
3459
|
+
| give extremely low values (<5% (?!)), indicating very low rates of return on invested
|
3460
|
+
| funds.
|
3461
|
+
blank |
|
3462
|
+
|
|
3463
|
+
text | In fact, it is very hard to discover any direct relation between research investments and
|
3464
|
+
| new product delivery. Many people would agree that the return on investment is mostly
|
3465
|
+
| in the experience gained by the engineers.
|
3466
|
+
blank |
|
3467
|
+
|
|
3468
|
+
text | Following the framework developed in Section 2.0 through Section 4.0 indicates that less
|
3469
|
+
| than 20% of R&D is directly useful (in the aerospace community). The research projects
|
3470
|
+
| themselves can be quite successful, but information transfer to a development program
|
3471
|
+
| runs into the problems indicated in terms of time synchronization. Reports may be
|
3472
|
+
blank |
|
3473
|
+
|
|
3474
|
+
|
|
3475
|
+
meta | 75
|
3476
|
+
text | prepared every year at the end of each research project, but the program engineers only
|
3477
|
+
| look to see what new technologies are available at the start of a new program. A
|
3478
|
+
| particular system and/or upgrade may start anew once every fifteen years (twelve years
|
3479
|
+
| development, plus three years of initial operations). Even within a business or product
|
3480
|
+
| area that averages three large systems in concurrent development, the average time
|
3481
|
+
| between new starts would be five years. Thus the research results for four years are put
|
3482
|
+
| on the shelf, and only in the fifth year do application engineers research new approaches
|
3483
|
+
| for their program (1/5 = 20%).
|
3484
|
+
blank |
|
3485
|
+
|
|
3486
|
+
|
|
3487
|
+
text | 5.2 Estimating the Amount of Communication you Should Afford
|
3488
|
+
| When you change the information transfer rate a, you must also adjust the variety at both
|
3489
|
+
| the receiving and transmitting agents. Otherwise the agents will suffer an information
|
3490
|
+
| overload, and you will still have inefficient information transfer. It may be that the cost
|
3491
|
+
| of the extra staff needed to increase the variety of the agent is more than the value of the
|
3492
|
+
| improved information transfer.
|
3493
|
+
blank |
|
3494
|
+
|
|
3495
|
+
text | The value of the improved information transfer is the benefit minus the cost.
|
3496
|
+
| Value = Benefit – Cost = Benefit – (changes in variety at all nodes)
|
3497
|
+
blank |
|
3498
|
+
|
|
3499
|
+
text | In the simplest example, when passing information from one peer actor to another,
|
3500
|
+
| instead of vertical information transfers (up and down) through a common management
|
3501
|
+
| actor, you should simply arrange a peer transfer link. Here you wouldn’t have to pay for
|
3502
|
+
| a compression and a decompression task – you would simply pay for the variety to make
|
3503
|
+
| the original product understandable to the new actor. Assuming all encoding/decoding
|
3504
|
+
| tasks are the same and equal V, you would delete an up-link (2V) (one encode, one
|
3505
|
+
| receive) and a down-link (2V) (one transmit, and one decode), and replace it with a single
|
3506
|
+
| peer link (2V) (one transmit, one receive). So the change in value would be - (- 4 + 2)
|
3507
|
+
| which equals +2, or a 50% improvement.
|
3508
|
+
blank |
|
3509
|
+
|
|
3510
|
+
|
|
3511
|
+
|
|
3512
|
+
meta | 76
|
3513
|
+
text | For the earlier example in Section 4.4.1, for the short term evaluation, the amount (cost)
|
3514
|
+
| of variety added at D (three places) must be less than or equal to the value of recovered
|
3515
|
+
| resources at A (2x) and D (two places) minus some inefficiencies and overhead costs.
|
3516
|
+
| Here the value would be +3 that is, again, about a 50% improvement. This value change
|
3517
|
+
| may be different for “translation” and “context” effects (cf. Section 3.4.3). More detail
|
3518
|
+
| could be developed by using a fine-grained organizational model with fractional values
|
3519
|
+
| for all actors and all types of variety.
|
3520
|
+
blank |
|
3521
|
+
|
|
3522
|
+
text | Average adjustments of variety will be close to a net-zero effect, compared to the goal
|
3523
|
+
| benefit, so variety cost savings will neither help nor hinder the justification for any
|
3524
|
+
| planned improvement in communication. This is reasonable since the improvements are
|
3525
|
+
| designed to improve a meta-level of activity for the organization.
|
3526
|
+
blank |
|
3527
|
+
|
|
3528
|
+
|
|
3529
|
+
title | 5.3 Expected Product Changes
|
3530
|
+
text | Increased information transfer regarding new technologies and validated prototypes will
|
3531
|
+
| enable more rapid design of aerospace products and a more rapid growth of the aerospace
|
3532
|
+
| environment through two pathways: Delivery Date Export, and Incremental Technology
|
3533
|
+
| Incorporation. A representative cumulative effect is shown in (Figure 5-1). The x-axis is
|
3534
|
+
| time, measured in years, and the y-axis is capacity or social value, measured in some
|
3535
|
+
| combination of dollars, performance, quality, or similar metric. The bottom curve is the
|
3536
|
+
| status quo showing growth in social value in 12 year steps. A current system of this type
|
3537
|
+
| might be the GPS satellite network or the Air Traffic Control system. The top curve
|
3538
|
+
| shows the potential value of a system evolution using system engineering methods such
|
3539
|
+
| as evolutionary design [Bobinis 2006] or flow-service-quality engineering [Linger 2002]
|
3540
|
+
| to improve the efficiency and rate of delivery. Methods to cultivate the incremental
|
3541
|
+
| pathways (within these methods) are discussed below. This is consistent with
|
3542
|
+
| Evolutionary Design practices.
|
3543
|
+
blank |
|
3544
|
+
|
|
3545
|
+
|
|
3546
|
+
|
|
3547
|
+
meta | 77
|
3548
|
+
text | Accelerates
|
3549
|
+
| because of
|
3550
|
+
| Value synergistic
|
3551
|
+
| {Performance, benefits
|
3552
|
+
| Quality, $}
|
3553
|
+
| Larger benefits under
|
3554
|
+
| the curve when
|
3555
|
+
| integrated over time
|
3556
|
+
blank |
|
3557
|
+
text | Can pull out instantiations of
|
3558
|
+
| current version as Keeps getting
|
3559
|
+
| requirements dictate slower because
|
3560
|
+
| complexity of
|
3561
|
+
| upfront
|
3562
|
+
| Performance Slip requirements
|
3563
|
+
| Schedule
|
3564
|
+
| Slip
|
3565
|
+
blank |
|
3566
|
+
text | 3yrs
|
3567
|
+
blank |
|
3568
|
+
|
|
3569
|
+
text | 12yrs
|
3570
|
+
blank |
|
3571
|
+
|
|
3572
|
+
|
|
3573
|
+
text | Time (years)
|
3574
|
+
blank |
|
3575
|
+
|
|
3576
|
+
text | Figure 5-1 Improved Value Over Time
|
3577
|
+
| The x-axis is time, measured in years, and the y-axis is capacity or social value, measured in some
|
3578
|
+
| combination of dollars, performance, quality, or similar metric. The bottom curve is the status quo
|
3579
|
+
| showing growth in social value in 12 year steps. The top curve shows the potential value of a system
|
3580
|
+
| evolution when smaller time steps are enabled due to greater efficiency and agility. This is similar to
|
3581
|
+
| compound interest.
|
3582
|
+
blank |
|
3583
|
+
|
|
3584
|
+
|
|
3585
|
+
|
|
3586
|
+
title | 5.3.1 Exporting Products at Delivery Dates
|
3587
|
+
text | Exporting products at predefined delivery dates is similar to design-to-schedule and
|
3588
|
+
| design-to-cost efforts. However, instead of pre-defining a goal and then forcing your
|
3589
|
+
| design to achieve it, you define a set of interfaces and boundary conditions, and deliver
|
3590
|
+
| within those constraints. This requires some inefficient margins (initially), but as you
|
3591
|
+
| reuse the base design for subsequent products, you can focus on improving the various
|
3592
|
+
| performance parameters without spending time on the interface. So within a couple of
|
3593
|
+
| iterations you will have improved total performance with less cost.
|
3594
|
+
blank |
|
3595
|
+
|
|
3596
|
+
|
|
3597
|
+
|
|
3598
|
+
meta | 78
|
3599
|
+
text | These ideas have been incorporated into chip design in the electronics industry. Chip
|
3600
|
+
| automated design tools had to use inefficient circuit designs to enable automated layout
|
3601
|
+
| and automated test. But the lower cost, compared to hand layouts, enabled greater sales,
|
3602
|
+
| and with subsequent miniaturization outgrew the pre-allocated “inefficient” margins.
|
3603
|
+
blank |
|
3604
|
+
|
|
3605
|
+
text | Engineers can, and will, allow for design growth with exported products at delivery dates,
|
3606
|
+
| and can incorporate the same testing protocols and support equipment, so it will be easy
|
3607
|
+
| to integrate. This decouples a lot of the simultaneous development and feedback
|
3608
|
+
| otherwise required to ensure everything fits, as in Section 3.3.2.
|
3609
|
+
blank |
|
3610
|
+
|
|
3611
|
+
text | Allowing engineers to apply half their time to looking for new technologies and
|
3612
|
+
| implementation methods, instead of optimizing their current design, allows for this
|
3613
|
+
| quicker growth, despite the initial margins needed.
|
3614
|
+
blank |
|
3615
|
+
|
|
3616
|
+
text | In (Figure 5-1), this increases the step height of subsequent deliveries, and improves even
|
3617
|
+
| further the compound growth curve.
|
3618
|
+
blank |
|
3619
|
+
|
|
3620
|
+
|
|
3621
|
+
title | 5.3.2 Incremental Technology Incorporation
|
3622
|
+
text | Program managers and senior engineers, if they use this same technique of improved
|
3623
|
+
| information flow, will have a more current understanding of related systems and can
|
3624
|
+
| define, and more quickly incorporate, consistent and grow-able requirements. Also they
|
3625
|
+
| will have a current understanding of current subsystems from related efforts where they
|
3626
|
+
| could modify an on-the-shelf design and integrate it into their system.
|
3627
|
+
blank |
|
3628
|
+
|
|
3629
|
+
text | There will be some overhead associated with incremental/evolutionary systems, but since
|
3630
|
+
| the subsequent new technologies will likely use less power and weight, they can be
|
3631
|
+
| inserted on the second platform and actually increase performance past the design margin
|
3632
|
+
| on the first vehicle.
|
3633
|
+
blank |
|
3634
|
+
|
|
3635
|
+
|
|
3636
|
+
|
|
3637
|
+
meta | 79
|
3638
|
+
title | 5.3.3 Coupled Efficiency
|
3639
|
+
text | These two effects (Delivery Date Export, and Incremental Technology Incorporation)
|
3640
|
+
| improve the overall Evolutionary Design approach , as compared to classic centralized
|
3641
|
+
| (computed) control, by avoiding large inefficiencies associated with unitary hardware
|
3642
|
+
| instantiation (primary, and 2nd and 3rd tier suppliers) by multiple organizations.
|
3643
|
+
blank |
|
3644
|
+
|
|
3645
|
+
|
|
3646
|
+
title | 5.3.4 Company and Product Goals
|
3647
|
+
text | Design of organizations and processes can affect the growth vector of the larger
|
3648
|
+
| community by emplacing the proper “a” factor in desired areas. For instance, if one
|
3649
|
+
| believes robotic exploration will be a driver of aerospace systems (instead of human
|
3650
|
+
| exploration), then the laboratories/groups associated with autonomy activities need new
|
3651
|
+
| channels formed and trained.
|
3652
|
+
blank |
|
3653
|
+
|
|
3654
|
+
|
|
3655
|
+
|
|
3656
|
+
meta | 80
|
3657
|
+
title | 5.4 Limits to Change
|
3658
|
+
text | Given this new perspective, and the apparent small scale of individual changes, how far
|
3659
|
+
| can you go? There are certainly limits to improvement, most basically from the external
|
3660
|
+
| environment’s ability to incorporate changes at a stable rate.
|
3661
|
+
blank |
|
3662
|
+
|
|
3663
|
+
text | Another restriction, or basic conceptual limit, is that there is no right answer and no
|
3664
|
+
| optimal solution. In fact trying to find an overall solution is diametrically opposite from
|
3665
|
+
| the direction taken here: that you try to improve the organization to more easily
|
3666
|
+
| incorporate engineer’s capabilities. And, although many engineers say that “better is the
|
3667
|
+
| enemy of good enough”, here you are not waiting to become perfect before you move
|
3668
|
+
| forward, you are independently improving engineering efficiency in parallel with
|
3669
|
+
| delivering your products.
|
3670
|
+
blank |
|
3671
|
+
|
|
3672
|
+
text | Likewise, there are costs associated with change. Changes in organizations and in
|
3673
|
+
| policies and procedures take time and effort to implement. You probably can only
|
3674
|
+
| change one link at a time. Also, if you change all the links at once, you would lose
|
3675
|
+
| ‘communicativity’ and your organization would collapse.
|
3676
|
+
blank |
|
3677
|
+
|
|
3678
|
+
text | Finally, you don’t want to change too fast. In this case you will have incurred the costs
|
3679
|
+
| of change without having looked ahead to see where external changes (and your changes)
|
3680
|
+
| have affected the environment in which you are working. You may want to reprioritize
|
3681
|
+
| your cultivation so you don’t overshoot.
|
3682
|
+
blank |
|
3683
|
+
|
|
3684
|
+
|
|
3685
|
+
|
|
3686
|
+
meta | 81
|
3687
|
+
title | 5.5 Applicability
|
3688
|
+
text | At what scale does this dissonant behaviour manifest? It was stated earlier that mega-
|
3689
|
+
| systems require on the order of 10,000 man-years of design time; that the total involved
|
3690
|
+
| set of people may number toward 100,000; and that the company size is around $10B
|
3691
|
+
| orders per year.
|
3692
|
+
blank |
|
3693
|
+
|
|
3694
|
+
text | Depending on the resolution, our proto-typical example organization has 22 nodes at the
|
3695
|
+
| top, virtual-lens level, at least 480 major agents at the composed summary level, and over
|
3696
|
+
| 5,000 working groups at the various individual program levels. From a bottom-up
|
3697
|
+
| perspective, there could be 200,000 information pathways given the number of people
|
3698
|
+
| involved and the required task variety. The exact number is problematic, both to actually
|
3699
|
+
| measure or record people, but also to identify intermediate groups and information
|
3700
|
+
| transfer paths.
|
3701
|
+
blank |
|
3702
|
+
|
|
3703
|
+
text | The work of [Braha 2007] indicates that 460 nodes and 1200 information transfer
|
3704
|
+
| activities is at the top end of what is currently analyzable, but is already at a statistically
|
3705
|
+
| significant population scale to quantify extracted behaviours with reasonable statistical
|
3706
|
+
| validity.
|
3707
|
+
blank |
|
3708
|
+
|
|
3709
|
+
text | From a control theory perspective, one could calculate stability metrics based on
|
3710
|
+
| feedback loops, task duration, measurement delays, etc. [Hogg 2001] showed that
|
3711
|
+
| hierarchies with more than 6 levels and/or with a span greater than 8 have limited
|
3712
|
+
| throughput, but of course this runs into the same analytic limits as the detailed task
|
3713
|
+
| analysis methods. [Park 1995] showed problematic convergence without additional
|
3714
|
+
| ‘parallel’ activities; no size values were given, but current computational limits were
|
3715
|
+
| listed even on cabling tasks.
|
3716
|
+
blank |
|
3717
|
+
|
|
3718
|
+
text | A different approach to defining applicability is to analyze where and why the aliasing
|
3719
|
+
| effects enter the design and production process, and then see how these accumulate into
|
3720
|
+
| increasing levels of significance.
|
3721
|
+
blank |
|
3722
|
+
|
|
3723
|
+
meta | 82
|
3724
|
+
text | Simple organizations and simple activity networks have high ‘a’ (3.5 – 4.0). Information
|
3725
|
+
| transfer is chaotic in the sense that it is immediate, complete, and very high bandwidth.
|
3726
|
+
| Imagine a very small company with a team of 5 working in a single room to design and
|
3727
|
+
| produce a single part for a machine. Each knows what the other is doing, they can
|
3728
|
+
| communicate verbally, and all the information is in the room including the supplier
|
3729
|
+
| catalogs, CNC settings, account ledger, etc. So development and production is straight
|
3730
|
+
| forward. The major risk for information loss is if one of the people is sick for a day:
|
3731
|
+
| since nothing was documented, you would have to wait for his return, or simply
|
3732
|
+
| regenerate the information.
|
3733
|
+
blank |
|
3734
|
+
|
|
3735
|
+
text | As the company size increases, there are more people, more rooms, and even more
|
3736
|
+
| buildings. Task assignments must be better planned and information flow must be better
|
3737
|
+
| documented. Things are less chaotic and more structured. Information is becoming
|
3738
|
+
| somewhat static, and must now be delivered explicitly. ‘a’ is approaching 3.0 or less.
|
3739
|
+
| Depending on how busy the shop is, some production tasks may get temporarily lost; or
|
3740
|
+
| possibly an invoice not given to finance to be paid. But these are small effects, and given
|
3741
|
+
| that the teams are well organized, have good processes, and understand the overall effort,
|
3742
|
+
| no big problems arise. It is not quite as efficient as before since now you need design
|
3743
|
+
| reviews, manufacturing readiness reviews, quality control, etc., but now you can address
|
3744
|
+
| larger efforts, delivering entire machines and getting the higher profits due the extra
|
3745
|
+
| complexity.
|
3746
|
+
blank |
|
3747
|
+
|
|
3748
|
+
text | At some point the time synchronization becomes problematic. Possibly because the next
|
3749
|
+
| use of information is indeterminate at the time of production, possibly because of
|
3750
|
+
| physical separation, or because of a number of reasons. Efforts to not lose information
|
3751
|
+
| become important: documenting fabrication improvements to feedback to design;
|
3752
|
+
| creating reusable components and product families; transferring consistent customer
|
3753
|
+
| requirements to different sub-organizations. This is the dissipative zone (a ~1.5) and care
|
3754
|
+
| must be taken to avoid slowing the design and production process, and becoming a
|
3755
|
+
| lethargic organization.
|
3756
|
+
blank |
|
3757
|
+
|
|
3758
|
+
|
|
3759
|
+
meta | 83
|
3760
|
+
text | So as you move from right to left in Figure 4-2 (high ‘a’ to low ‘a’), the growth of the
|
3761
|
+
| organization and processes provides more opportunities for information aliasing – both
|
3762
|
+
| from noise injection and from dissipation. Any organization, no matter what its size, sees
|
3763
|
+
| these effects. The bigger the organization, the bigger the size of the effects, and the more
|
3764
|
+
| valuable it is to adjust for smoother dynamics.
|
3765
|
+
blank |
|
3766
|
+
|
|
3767
|
+
text | Note that the longer time dynamics (low ‘a’) occur when trying to use resources across
|
3768
|
+
| individual mega-systems. In trying to even out the use of product resources (knowledge,
|
3769
|
+
| capital equipment), problems can be injected. This implies there is (at least) one, or a set
|
3770
|
+
| of activities that are single use within the design of a mega-system. When these are
|
3771
|
+
| applied to the next megasystem, their system context is essentially not cleared. This
|
3772
|
+
| might imply an additional type of aliasing, sort of like a feed-forward echo.
|
3773
|
+
blank |
|
3774
|
+
|
|
3775
|
+
|
|
3776
|
+
|
|
3777
|
+
meta | 84
|
3778
|
+
title | 6 Conclusions
|
3779
|
+
text | This dissertation developed a new type of model for extremely large design organizations
|
3780
|
+
| and their environment by combining perspectives from:
|
3781
|
+
| - evolutionary genetic computing organisms,
|
3782
|
+
| - information theoretic (quantum) information production, and
|
3783
|
+
| - non-linear dynamics and chaos theory for information exchange.
|
3784
|
+
| to study some of the behaviours of complex organizations, especially information
|
3785
|
+
| transfer, to show how organizations can be guided to more efficiently and quickly
|
3786
|
+
| produce complex mega-systems.
|
3787
|
+
blank |
|
3788
|
+
|
|
3789
|
+
text | A three-year experiment was performed within a large design organization to see what
|
3790
|
+
| level and type of improvements would actually manifest.
|
3791
|
+
blank |
|
3792
|
+
|
|
3793
|
+
text | The results fall into three categories:
|
3794
|
+
| - production of individual mega-systems,
|
3795
|
+
| - improvement in organizations that develop mega-systems, and
|
3796
|
+
| - extraction of societal benefits from government funded mega-systems.
|
3797
|
+
| These are addressed separately below.
|
3798
|
+
blank |
|
3799
|
+
|
|
3800
|
+
|
|
3801
|
+
title | 6.1 More Efficient Design of Mega-Systems
|
3802
|
+
text | Ignoring the quality of information transfer among organizational elements causes
|
3803
|
+
| significant inefficiencies. The transfer quality includes time synchronization, method of
|
3804
|
+
| transfer, and other variables. It is not that anything is currently wrong, just that a lot of
|
3805
|
+
| time is wasted waiting for information, translating information, or re-developing the
|
3806
|
+
| context to understand the information, and additional time (and resources) may be spent
|
3807
|
+
| waiting for task convergence. Matching the characteristics of the product design
|
3808
|
+
| information to the characteristics of the transfer path minimizes aliasing effects
|
3809
|
+
| (dissipation and noise), creating many benefits including:
|
3810
|
+
| - More efficient design and design execution,
|
3811
|
+
blank |
|
3812
|
+
|
|
3813
|
+
|
|
3814
|
+
meta | 85
|
3815
|
+
text | - Improved design agility / currency, and
|
3816
|
+
| - Enablement / easing of “Evolutionary Design” ([Bobinis 2006], [Bar-Yam
|
3817
|
+
| 2003], [Sangiovanni 2006]) at the upper, large-scale limit.
|
3818
|
+
blank |
|
3819
|
+
|
|
3820
|
+
text | Results from a three-year experiment showed that the inserted value of R&D efforts rose
|
3821
|
+
| from less than 5% to almost 80% as measured by the number of research projects being
|
3822
|
+
| fully used in operational programs. The research projects themselves can be quite
|
3823
|
+
| successful, but information transfer into a development program runs into the problems
|
3824
|
+
| indicated in terms of time synchronization.
|
3825
|
+
blank |
|
3826
|
+
|
|
3827
|
+
|
|
3828
|
+
title | 6.2 Relying on Emergence and Organizational Computation
|
3829
|
+
text | Improvements in the performance of the organization will incrementally emerge, given
|
3830
|
+
| the inertia of large organizations and of engineering processes, and will initially manifest
|
3831
|
+
| as quicker deliveries and an accelerating ability to innovate ahead of other companies.
|
3832
|
+
blank |
|
3833
|
+
|
|
3834
|
+
text | “One consequence of encoding information as statistical and time-varying patterns of
|
3835
|
+
| low-level components is that no individual component of the system can perceive or
|
3836
|
+
| communicate the ‘big-picture’ of the state of the system. Instead, information must be
|
3837
|
+
| communicated via spatial and temporal sampling.” [Mitchell 2009] Dynamically, the
|
3838
|
+
| mega-design process is progressing, and any snapshot is an incomplete view in a
|
3839
|
+
| changing context. This implies that the product directors can’t really direct or control
|
3840
|
+
| where the company is going: their role should only be to monitor the outputs and nascent
|
3841
|
+
| products, and guide the output (and rate of new product introduction and of upgrades) to
|
3842
|
+
| match the funding (requirements) source. This would balance control and efficiency.
|
3843
|
+
blank |
|
3844
|
+
|
|
3845
|
+
text | “Recently [in the field of biology] there has been a renewed effort to provide a
|
3846
|
+
| macroscopic theory for the origins of selection mechanisms. … This effort goes under
|
3847
|
+
| the name of niche construction. … [Here], the selective filter is partially constructed by
|
3848
|
+
| the organism itself, and exerts an influence over a locally reproducing population. … In
|
3849
|
+
| this way, adaptations lift themselves up by their own bootstraps.” [Krakauer 2011].
|
3850
|
+
blank |
|
3851
|
+
|
|
3852
|
+
|
|
3853
|
+
meta | 86
|
3854
|
+
text | This dynamic perspective implies that design communities can, and should, “construct
|
3855
|
+
| their own [evolutionary] selective constructs designed toward increasing mutual
|
3856
|
+
| information [within itself, and] between the organism and the environment” [Krakauer
|
3857
|
+
| 2011], for better computability or production of designs. In this case, the management
|
3858
|
+
| structure ought to also look at higher level abstractions, such as information transfer
|
3859
|
+
| efficiencies, in addition to process control (like design reviews), because looking at static
|
3860
|
+
| variables will not improve the evolutionary adaptation rate.
|
3861
|
+
blank |
|
3862
|
+
title | 6.3 Government Aerospace, Low-Price Procurement, and
|
3863
|
+
text | Overhead Rates
|
3864
|
+
| The stability of any implemented improvements is somewhat problematic given the
|
3865
|
+
| evolving environment, but especially given the counter-acting efforts of government
|
3866
|
+
| acquisition regulations and nominal management tendencies.
|
3867
|
+
blank |
|
3868
|
+
|
|
3869
|
+
text | Scale, synchronization, and economic nudges may be appropriate for personal scale
|
3870
|
+
| complices such as smartPhone apps, but the economic and scale factors are different from
|
3871
|
+
| government “apps”. A focus on lowest cost procurement, for government “apps” (mega-
|
3872
|
+
| systems), has side effects on the engineering design process. Financially speaking, and
|
3873
|
+
| for more effective mega-system development, the government should modify cost-
|
3874
|
+
| selection constraints to avoid extra effort to achieve a particular instance when any of a
|
3875
|
+
| set of instances is all that is needed. This would necessarily become somewhat non-
|
3876
|
+
| deterministic.
|
3877
|
+
blank |
|
3878
|
+
|
|
3879
|
+
text | Individual program managers will avoid this because it is locally inefficient and also
|
3880
|
+
| uncontrollable. However, according to game theory (prisoner’s dilemma [Morrow
|
3881
|
+
| 1994]), a Pareto optimal solution is better, and can be achieved with “external norms”
|
3882
|
+
| [Mitchell 2009]. The external norms could either be via company processes and
|
3883
|
+
| procedures or, better, by the government’s Federal Acquisition Regulations (FAR).
|
3884
|
+
blank |
|
3885
|
+
|
|
3886
|
+
|
|
3887
|
+
|
|
3888
|
+
meta | 87
|
3889
|
+
text | For instance, implementation at the government FAR level could be to assign 1% - 2% of
|
3890
|
+
| the value of programs over a certain size to internal efforts supporting adaptability and
|
3891
|
+
| risk reduction. For instance the Orion spacecraft program internally allocated $100M
|
3892
|
+
| (for a $4B program) to reduce schedule risk occurring from software integration. This is
|
3893
|
+
| the same scale as proposed, and was considered and approved as the correct engineering
|
3894
|
+
| approach. However, it was implemented without adjusting the encompassing process, so
|
3895
|
+
| savings could never be recaptured, nor future transitions eased. This fund would reduce
|
3896
|
+
| risk on the delivery of the initial system, and reduce cost of subsequent systems.
|
3897
|
+
blank |
|
3898
|
+
|
|
3899
|
+
text | Such a fund could also be allocated for application to follow-on project development, and
|
3900
|
+
| coordination of supporting technology and product development. Note that this would
|
3901
|
+
| avoid aliasing effects from Federally Funded Research and Development Companies
|
3902
|
+
| (FFRDCs) in their information transfer efforts, and would greatly improve technology
|
3903
|
+
| transfer from government labs to industry and society.
|
3904
|
+
blank |
|
3905
|
+
|
|
3906
|
+
|
|
3907
|
+
|
|
3908
|
+
meta | 88
|
3909
|
+
title | 6.4 Additional Research Vectors
|
3910
|
+
text | Several areas of this model could be extended based on related supporting theoretical
|
3911
|
+
| areas, including organizational memory, the effects of different engineering tools, and
|
3912
|
+
| evaluation of sub-networks in large communities. These are briefly discussed below.
|
3913
|
+
blank |
|
3914
|
+
title | 6.4.1 Organizational Memory
|
3915
|
+
text | Including memory as a communication channel with a “long” time constant is a straight-
|
3916
|
+
| forward addition. Efficient internal communication is similar to having some global
|
3917
|
+
| memory with time constant t0. This provides our organism (design community) the best
|
3918
|
+
| combination of a Von Neumann architecture and a cellular automata.
|
3919
|
+
blank |
|
3920
|
+
title | 6.4.2 Engineering Tools
|
3921
|
+
text | An area for future investigation as it is indicated by this analysis. Engineering design
|
3922
|
+
| tools play a large role in communicating knowledge and techniques.
|
3923
|
+
blank |
|
3924
|
+
title | 6.4.3 Long-Scale Neural Training of Sub-Networks
|
3925
|
+
text | Adjusting variety takes time like a single neuron in a network with different time
|
3926
|
+
| constants. The existence of Bifurcative channels in large communities needs additional
|
3927
|
+
| structure as the evolutionary time scale of the channels does not match that of the actors.
|
3928
|
+
blank |
|
3929
|
+
|
|
3930
|
+
|
|
3931
|
+
|
|
3932
|
+
meta | 89
|
3933
|
+
title | 7 Appendix A – Research Background
|
3934
|
+
text | Design Community Responses to Recognition of Complexity
|
3935
|
+
| There are two inter-twined facets of large scale engineering organizations: the large
|
3936
|
+
| organization itself, required to design, build, and operate the product, and the processes
|
3937
|
+
| they follow to produce their mega-products. Mega-organizations were covered in
|
3938
|
+
| Section 1. Here we address the internal design processes that guide the organizational
|
3939
|
+
| information development and transfer.
|
3940
|
+
blank |
|
3941
|
+
title | 7.1 Evolutionary Design
|
3942
|
+
text | Evolutionary design includes functions of complex systems that allow us to discover,
|
3943
|
+
| measure, and implement design activities during the entire life cycle of a system. It
|
3944
|
+
| assumes that we cannot know all the functions of deployed complex systems, and that an
|
3945
|
+
| evolutionary approach to design, is required. Several unique design methods were added
|
3946
|
+
| to the system engineering repertoire, including incremental engineering by which
|
3947
|
+
| portions of the system are redesigned and operate in parallel to other parts of the system.
|
3948
|
+
| Bar-Yam suggests that spiral development is an instantiation, (although simplified), of
|
3949
|
+
| evolutionary acquisition and design. “Recent extensions that adopt some complex
|
3950
|
+
| systems ideas include spiral development and evolutionary acquisition and adaptive
|
3951
|
+
| programming. A complex systems perspective provides a large conceptual framework –
|
3952
|
+
| evolution-from which to understand how incremental change can enable rapid
|
3953
|
+
| innovation.” [Bar-Yam 2003].
|
3954
|
+
blank |
|
3955
|
+
|
|
3956
|
+
text | Evolutionary design implies that since we cannot iteratively account for all functions and
|
3957
|
+
| processes of complex systems, we must provide a design process which allows us to
|
3958
|
+
| inductively determine system behaviors and processes, after the system is fielded. Spiral
|
3959
|
+
| design engineering, is really just a traditional design methodology which is repeated
|
3960
|
+
| recursively over the entire life cycle of the system. But it does account for all the
|
3961
|
+
| interfaces, transactions, and controls of a complex system that cannot be known during
|
3962
|
+
| initial design. Through this process, we can apply traditional methods in changing small
|
3963
|
+
| parts of complex systems, during its life cycle, rather than trying to change the “whole
|
3964
|
+
blank |
|
3965
|
+
|
|
3966
|
+
|
|
3967
|
+
meta | 90
|
3968
|
+
text | system”. And, that through the process of acquiring knowledge of self-organizing
|
3969
|
+
| systems, parts of the system may be known and tested, and replaced through traditional
|
3970
|
+
| planning, specification and implementation. Evolutionary design implies that on-going
|
3971
|
+
| discovery and re-design is a life cycle function of the system. The system must have a
|
3972
|
+
| means of monitoring its own “state”. An example of this, might be the modern
|
3973
|
+
| application of prognostics in complex platforms, where system states can be collected,
|
3974
|
+
| analyzed, and understood to the extent that we are provided the “patterns of system
|
3975
|
+
| behavior” to be able to predict and/or design out system failures, failure modes, and use
|
3976
|
+
| cases that the system may not have been designed for [sic]. [Bobinis 2006]
|
3977
|
+
blank |
|
3978
|
+
title | 7.2 Engineering Systems
|
3979
|
+
text | Rhodes and Hasting, in their paper The Case for Evolving Systems Engineering as a
|
3980
|
+
| Field within Engineering Systems, propose a more holistic systems engineering practice
|
3981
|
+
| which not only encompasses the boundaries of the system under development, but also a
|
3982
|
+
| broader context which includes the environment the system must co-exist in, including
|
3983
|
+
| the evolution of the system in the broader context.
|
3984
|
+
| “When taking the classical view, a major fault cited with Systems engineering is that it
|
3985
|
+
| does not take an adequate holistic perspective and is too introspective. Additionally, it is
|
3986
|
+
| often viewed as taking too much of a top-down approach…Further, Systems Engineering
|
3987
|
+
| is sometimes criticized for focusing too extensively on requirements and not enough on
|
3988
|
+
| system properties and behaviors.” [Rhodes 2004]. It recognizes that the Systems
|
3989
|
+
| Engineering discipline, ontology, and associated epistemology must be revised to account
|
3990
|
+
| for increasingly complex and self-organizing systems. It alludes to a process which
|
3991
|
+
| includes not only traditional engineering disciplines, but also a cross disciplinary
|
3992
|
+
| approach that includes the ability to understand the “human system”, the “environment”,
|
3993
|
+
| and the “community” as part of the context of the overall system, as “determinate
|
3994
|
+
| interfaces”.
|
3995
|
+
blank |
|
3996
|
+
|
|
3997
|
+
|
|
3998
|
+
|
|
3999
|
+
meta | 91
|
4000
|
+
title | 7.3 Flow-Service-Quality Engineering
|
4001
|
+
text | Carnegie Mellon, in response to study commissioned by the U.S. Air Force, has
|
4002
|
+
| developed a methodology to address large scale network centric systems design. “These
|
4003
|
+
| systems are characterized by changing and often unknown boundaries and components,
|
4004
|
+
| constantly varying function and usage, and complexities of pervasive asynchronous
|
4005
|
+
| operations. Their complexity challenges human intellectual control…”[Linger 2002 p.v].
|
4006
|
+
blank |
|
4007
|
+
|
|
4008
|
+
text | They attack the problem through the design of a “system services” function for these
|
4009
|
+
| types of systems as the “unifying”, and specifiable “function” of any system of systems.
|
4010
|
+
| It is the function wherein the myriad of users, systems, and subsystems interact, and
|
4011
|
+
| perform their unique transactions (interfaces).
|
4012
|
+
blank |
|
4013
|
+
|
|
4014
|
+
text | System Services is the primary hub for their analysis and methodology of control. It
|
4015
|
+
| directs, analyzes, stores, and measures all the transactional processes of the complex
|
4016
|
+
| system. It starts at a functional analysis of user based operations and interfaces the
|
4017
|
+
| system services function needs to support all users (human or other systems). By
|
4018
|
+
| mapping the interchanges with the supported “users”, the system services function can
|
4019
|
+
| analyze system, as well as sub-system, states. It also defines the standards and protocols
|
4020
|
+
| for the entire system and serves as the “super hub”.
|
4021
|
+
blank |
|
4022
|
+
|
|
4023
|
+
text | What is important here is not the architecture promoted in this study, but the fact that
|
4024
|
+
| there is both the recognition that all subsystem functions cannot be accounted for in the
|
4025
|
+
| design, and that the primary hub “system services” has specific sub-functions that
|
4026
|
+
| account for growth (new nodes), and reorganization (once added, the types of information
|
4027
|
+
| shared across nodes). It’s ability to account for nodes as they are added, the type of
|
4028
|
+
| requests of these unique nodes, the mapping and storage of system topology, in near real-
|
4029
|
+
| time, and the realization that as unique functional nodes are added to the system, they
|
4030
|
+
| must be accounted for, monitored, and measured, as they function within the system.
|
4031
|
+
blank |
|
4032
|
+
|
|
4033
|
+
text | “FSQ engineering provides systematic, scale-free semantic structures for requirements,
|
4034
|
+
| specification, design, verification and implementation…User flows of services and
|
4035
|
+
blank |
|
4036
|
+
|
|
4037
|
+
meta | 92
|
4038
|
+
text | quality attributes permit system development in terms of user views of services, as
|
4039
|
+
| opposed to strictly functional decomposition or object-based composition.” [Linger 2002
|
4040
|
+
| p.37]
|
4041
|
+
blank |
|
4042
|
+
|
|
4043
|
+
|
|
4044
|
+
title | 7.4 Engineering Tools
|
4045
|
+
text | Some studies that examined the engineering process have focused on tools developed to
|
4046
|
+
| improve product design by engineering teams [Leifer 1999]. Here the tools fall into three
|
4047
|
+
| classes: interpersonal communication, knowledge capture, and knowledge retrieval.
|
4048
|
+
| Productivity gains have been shown when design teams can begin from a better starting
|
4049
|
+
| point as a result of having access to learned information from previous designs.
|
4050
|
+
| “In larger organizations, the complexity is vastly different and the chance for deep
|
4051
|
+
| personal co-commitment is diminished. Ad hoc exchanges within one’s personal
|
4052
|
+
| network do happen, but systematic knowledge sharing usually requires brokering through
|
4053
|
+
| people or technology. Along with brokering come issues such as knowledge
|
4054
|
+
| identification, verification, and validation [Leifer 1999].”
|
4055
|
+
blank |
|
4056
|
+
|
|
4057
|
+
text | “[All organizations] can benefit from the implementation of a central knowledge capture
|
4058
|
+
| and re-use infrastructure, a core technology for sharing and learning from each other,
|
4059
|
+
| peer-to-peer. In large institutions (greater that 500 people) this infrastructure will have to
|
4060
|
+
| be explicit and managed separately from the design team support infrastructure [Leifer
|
4061
|
+
| 1999].”
|
4062
|
+
blank |
|
4063
|
+
|
|
4064
|
+
text | A separate explicit infrastructure however becomes problematic, especially on projects
|
4065
|
+
| with long time scales (~10 years). Issues arise that interfere with having a consistent
|
4066
|
+
| structure. The portfolio of projects across a large organization use different engineering
|
4067
|
+
| tools. This will always be true because of a mismatch of time frequencies between new
|
4068
|
+
| tools and new projects, and the fact you can’t and don’t want to update your tools all at
|
4069
|
+
| once on a preordained schedule. Also engineers bring different sets of tool knowledge
|
4070
|
+
| with them to new projects. It actually takes some finite time for a team to get
|
4071
|
+
| synchronized on common tools and data structures. Also most training is done on the job
|
4072
|
+
blank |
|
4073
|
+
|
|
4074
|
+
|
|
4075
|
+
meta | 93
|
4076
|
+
text | with no separate time allotment and no separate instructors, with the result that tools are
|
4077
|
+
| not always used as they were designed, nor to their full potential. Finally, retrieval of old
|
4078
|
+
| knowledge becomes problematic and time consuming, and may become moot as different
|
4079
|
+
| technologies advance at different rates, opening up new solution spaces for consideration.
|
4080
|
+
blank |
|
4081
|
+
|
|
4082
|
+
text | Another issue arising from large organizations that affects knowledge retention and
|
4083
|
+
| retrieval is that engineering team members do not usually follow a project from
|
4084
|
+
| conception through design, manufacture, production, maintenance, and growth.
|
4085
|
+
| Typically, engineers focus on one stage of design. Therefore the information associated
|
4086
|
+
| with a project bifurcates, with one instance progressing with the product as the product
|
4087
|
+
| “design” and “context”, and the other instance going with the engineer or data base to a
|
4088
|
+
| new product at a similar stage as “knowledge”.
|
4089
|
+
blank |
|
4090
|
+
|
|
4091
|
+
|
|
4092
|
+
|
|
4093
|
+
meta | 94
|
4094
|
+
title | 8 References
|
4095
|
+
ref | [Bais 2010] “The Physics of Information”, F. Alexander Bais and J. Doyne Farmer, SFI
|
4096
|
+
| Working Paper 07-08-029 to be included in “The Handbook on the Philosophy of
|
4097
|
+
| Information, to be published by Elsevier.
|
4098
|
+
blank |
|
4099
|
+
ref | [Barabasi 2003] Linked, Albert-Laszlo Barabasi, Plume, 2003.
|
4100
|
+
blank |
|
4101
|
+
ref | [Bar-Yam 2002] “Large Scale Engineering and Evolutionary Change: Useful Concepts
|
4102
|
+
| for Implementation of FORCEnet,” Bar-Yam, Yaneer, FORCEnet and the 21st
|
4103
|
+
| Century Warrior, USN Strategic Studies Group, Contract F30602-02-C-0158,
|
4104
|
+
| 2002.
|
4105
|
+
blank |
|
4106
|
+
ref | [Bar-Yam 2003] “When Systems Engineering Fails---Toward Complex Systems
|
4107
|
+
| Engineering”; Yaneer Bar-Yam, IEEE International Conference, 5-8 Oct. 2003,
|
4108
|
+
| Volume: 2, on page: 2022 vol.2
|
4109
|
+
blank |
|
4110
|
+
ref | [Bar-Yam 2004a] “A Mathematical Theory of Strong Emergence Using Multiscale
|
4111
|
+
| Variety,” Bar-Yam, Yaneer, in Complexity, Wiley Periodicals, vol. 9, no. 6,
|
4112
|
+
| 2004.
|
4113
|
+
blank |
|
4114
|
+
ref | [Bar-Yam 2004b] “About Engineering Complex Systems: Multiscale Analysis and
|
4115
|
+
| Evolutionary Engineering”, Yaneer Bar-Yam; ESOA 2004, LNCS 3464, pp. 16-
|
4116
|
+
| 31, 2005.
|
4117
|
+
blank |
|
4118
|
+
ref | [Bar-Yam 2005] “About Engineering Complex Systems: Multiscale Analysis and
|
4119
|
+
| Evolutionary Engineering,” Bar-Yam, Yaneer, ESOA 2004, LNCS3464, S.
|
4120
|
+
| Brueckner et al (Eds), Springer-Verlag, 2005.
|
4121
|
+
blank |
|
4122
|
+
ref | [Bobinis 2006] “Complex Self-Organizing Systems And Their Effect on the Systems
|
4123
|
+
| Engineering Paradigm”, Joe Bobinis, 2006.
|
4124
|
+
blank |
|
4125
|
+
ref | [Bonissone 2006] “Evolutionary Algorithms plus Domain Knowledge equals Real-World
|
4126
|
+
| Evolutionary Computation,” Bonissone, Piero P., Subbu, Raj, Eklund, Neil, and
|
4127
|
+
blank |
|
4128
|
+
|
|
4129
|
+
|
|
4130
|
+
|
|
4131
|
+
meta | 95
|
4132
|
+
ref | Kiehl, Thomas R., IEEE Transactions on Evolutionary Computation, vol. 10, no.
|
4133
|
+
| 3, June 2006.
|
4134
|
+
blank |
|
4135
|
+
ref | [Braha 2007] “The Statistical Mechanics of Complex Product Development: Empirical
|
4136
|
+
| and Analytical Results,” Dan Braha and Yaneer Bar-Yam, Management Science,
|
4137
|
+
| Special Issue on Complex Systems; Volume 53, number 7, July 2007.
|
4138
|
+
blank |
|
4139
|
+
ref | [Byler 2000] “Cultivating the Growth of Complex Systems Using Emergent Behaviours
|
4140
|
+
| of Engineering Processes,” International Conference on Complex Systems:
|
4141
|
+
| Control and Modeling; Russian Academy of Sciences; Samara Russia, June
|
4142
|
+
| 2000.
|
4143
|
+
blank |
|
4144
|
+
ref | [Capaccio 2011] Tony Capaccio, "Cost Overruns Plague One-Third Of Pentagon's
|
4145
|
+
| Biggest Programs”, Bloomberg Government, March 29, 2011.
|
4146
|
+
blank |
|
4147
|
+
ref | [Clouse 1999] Clouse, Raja Laifa and Waldron, Manjula. “Effect of History to Achieve
|
4148
|
+
| Self Adaptation”. Center for Integrated Design, Ohio State University,
|
4149
|
+
| manuscript in progress 1999.
|
4150
|
+
blank |
|
4151
|
+
ref | [Crutchfield 2011] James P. Crutchfield and Jon Machta, “Introduction to Focus Issue on
|
4152
|
+
| Randomness, Structure, and Causality: Measures of Complexity from Theory to
|
4153
|
+
| Applications,” Chaos, An Interdisciplinary Journal on Nonlinear Science;
|
4154
|
+
| American Institute of Physics, 2011.
|
4155
|
+
blank |
|
4156
|
+
ref | [de Smith 2008] “Simulation/Modelling (s/m) Systems for Agent-Based Modelling,” de
|
4157
|
+
| Smith, Goodchild, Longley, Geospatial Analysis – a Comprehensive Guide, 2nd
|
4158
|
+
| edition, 2008.
|
4159
|
+
blank |
|
4160
|
+
ref | [Flack 2011] Jessica C. Flack and David C. Krakauer, “Challenges for Complexity
|
4161
|
+
| Measures: A perspective from social dynamics and collective social
|
4162
|
+
| computation,” Chaos, An Interdisciplinary Journal on Nonlinear Science;
|
4163
|
+
| American Institute of Physics, 2011.
|
4164
|
+
blank |
|
4165
|
+
ref | [Flecker 2011] Benjamin Flecker, Wesley Alford, John M. Beggs, Paul L. Williams, and
|
4166
|
+
| Randall D. Beer, “Partial Information Decomposition as a Spatio-temporal Filter,”
|
4167
|
+
| Chaos, An Interdisciplinary Journal on Nonlinear Science; American Institute of
|
4168
|
+
| Physics, 2011.
|
4169
|
+
blank |
|
4170
|
+
|
|
4171
|
+
meta | 96
|
4172
|
+
ref | [Hofstadter] Hofstadter, Douglas. “Godel, Escher, Bach: an Eternal Golden Braid”, Basic
|
4173
|
+
| Books, 1979.
|
4174
|
+
blank |
|
4175
|
+
ref | [Hogg 2001] “Controlling Smart Matter”, Tad Hogg and Bernardo A. Huberman; Xerox
|
4176
|
+
| Palo Alto Research Center, June 1, 2001
|
4177
|
+
blank |
|
4178
|
+
ref | [Holland 1998] Holland, John B. “Emergence: From Chaos to Order”, Addison-Wesley,
|
4179
|
+
| 1998.
|
4180
|
+
blank |
|
4181
|
+
ref | [Howley 1999] Howley, Brian. Discussions on Design Agent Models at the Stanford
|
4182
|
+
| Center for Design Research, 1999.
|
4183
|
+
blank |
|
4184
|
+
ref | [Kleene 1956] Kleene, S.C., “Representation of Events in Nerve Nets and Finite
|
4185
|
+
| Automata” // Automata Studies, Shannon & McCarthy eds. Princeton University
|
4186
|
+
| Press, 1956.
|
4187
|
+
blank |
|
4188
|
+
ref | [Krakauer 2011] David C. Krakauer, “Darwinian Demons, evolutionary complexity, and
|
4189
|
+
| information maximization,” Chaos, An Interdisciplinary Journal on Nonlinear
|
4190
|
+
| Science; American Institute of Physics, 2011.
|
4191
|
+
blank |
|
4192
|
+
ref | [Leifer 1999] Leifer, Liang, Cannon, Mabogunje, Yen, and Yang. “Experience Capture
|
4193
|
+
| and Reuse for Complex System Design-Deployment” // Proceedings of the
|
4194
|
+
| International Conference on Complex Systems: Control and Modeling Problems,
|
4195
|
+
| Myasnikov, Kuznetsov, and Vittikh eds., Samara, Russia, 1999.
|
4196
|
+
blank |
|
4197
|
+
ref | [Linger 2002] “Flow–Service–Quality (FSQ) Engineering: Foundations for Network
|
4198
|
+
| System Analysis and Development”; Richard Linger, Mark Pleszkoch,
|
4199
|
+
| Gwendolyn Walton, & Alan Hevner, Carnegie Mellon University in performance
|
4200
|
+
| of Federal Government contract number F19628-00-C-0003, 2002, pg. v.
|
4201
|
+
blank |
|
4202
|
+
ref | [Metzler 2003] Metzler, Bar-Yam, & Kardar, “Information Flow through a Chaotic
|
4203
|
+
| Channel: Prediction and Postdiction at Finite Resolution”, 2003; section IV A, pg
|
4204
|
+
| 9.
|
4205
|
+
blank |
|
4206
|
+
ref | [Metzler 2005] “Multiscale Complexity of Correlated Gaussians,” Metzler, Richard, and
|
4207
|
+
| Yaneer, Bar-Yam, Physical Review E71 046114, The American Physical Society,
|
4208
|
+
| 2005.
|
4209
|
+
blank |
|
4210
|
+
|
|
4211
|
+
|
|
4212
|
+
meta | 97
|
4213
|
+
ref | [Miller 2007] John H. Miller and Scott E. Page, “Complex Adaptive Systems, an
|
4214
|
+
| Introduction to Computational Models of Social Life”, Princeton University
|
4215
|
+
| Press, 2007, pp 72-73.
|
4216
|
+
blank |
|
4217
|
+
ref | [Minar 1996] Minar, Burkhart, Langton, and Askenazi. “The SWARM Simulation
|
4218
|
+
| System: A Toolkit for building Multi-Agent Simulations”,
|
4219
|
+
| <http://www.swarm.org>, June, 1996.
|
4220
|
+
blank |
|
4221
|
+
ref | [Mitchell 1992] Complexity: The Emerging Science at the Edge of Order and Chaos, M.
|
4222
|
+
| Mitchell Waldrop, Simon & Schuster, 1992.
|
4223
|
+
blank |
|
4224
|
+
ref | [Mitchell 2009] “Complexity: A Guided Tour”, Melanie Mitchell; p180; Oxford
|
4225
|
+
| University Press, 2009.
|
4226
|
+
blank |
|
4227
|
+
ref | [Morrow 1994] Game Theory for Political Scientists, James D. Morrow, Princeton
|
4228
|
+
| University Press, 1994.
|
4229
|
+
blank |
|
4230
|
+
ref | [Omerod 1999] Ormerod, Paul. “Butterfly Economics: A New General Theory of Social
|
4231
|
+
| and Economic Behavior”, Pantheon, 1999.
|
4232
|
+
blank |
|
4233
|
+
ref | [Park 1995] Park, Hisup. “Modeling of Collaborative Design Processes for Agent-
|
4234
|
+
| Assisted Product Design”, Stanford Doctoral Thesis, March 1995.
|
4235
|
+
blank |
|
4236
|
+
ref | [Petrie 1996] Petrie, Charles J. “Agent-Based Engineering, the Web, and Intelligence” //
|
4237
|
+
| IEEE Expert, December 1996.
|
4238
|
+
blank |
|
4239
|
+
ref | [Railsback 2006] “Agent-based Simulation Platforms: Review and Development
|
4240
|
+
| Recommendations,” Railsback, Steven F.,Lytinen, Steven L., and Jackson,
|
4241
|
+
| Stephen K., in press at Simlation, Santa Fe Institute, 2006.
|
4242
|
+
blank |
|
4243
|
+
ref | [Rhodes 2004] “The Case for Evolving Systems Engineering as a Field within
|
4244
|
+
| Engineering Systems”; Donna Rhodes & Daniel Hastings, MIT Engineering
|
4245
|
+
| Systems Symposium, March 2004, pg. 3.
|
4246
|
+
blank |
|
4247
|
+
ref | [Ruffini 2007] Information, Complexity, Brains, and Reality (Kolmogorov Manifesto),
|
4248
|
+
| Giulio Ruffini, Starlab Technical Note TN00054, 2007.
|
4249
|
+
blank |
|
4250
|
+
|
|
4251
|
+
|
|
4252
|
+
|
|
4253
|
+
meta | 98
|
4254
|
+
ref | [Sangiovanni 2006] “A framework for modeling the distributed deployment of
|
4255
|
+
| synchronous designs”, Formal methods in systems design - an international
|
4256
|
+
| journal, Springer-Verlag, Vol. 28, No. 2.
|
4257
|
+
blank |
|
4258
|
+
ref | [Shannon 1948] C. E. Shannon, The Bell System Technical Journal 27, 379 (1948).
|
4259
|
+
blank |
|
4260
|
+
ref | [Strader 1998] Strader, Lin, and Shaw. “Simulation of Order Fulfillment in Divergent
|
4261
|
+
| Assembly Supply Chains” // Journal of Artificial Societies and Social Simulation,
|
4262
|
+
| vol. 1, no. 2, <http://www.soc.surrey.ac.uk/JASSS/1/2/5.html> March 1998.
|
4263
|
+
blank |
|
4264
|
+
ref | [Verhulst 1838] “Notice sur la loi que la population poursuit dans son accroissement”,
|
4265
|
+
| Correspondance mathematique et physique 10: 113-121, 1838.
|
4266
|
+
blank |
|
4267
|
+
|
|
4268
|
+
|
|
4269
|
+
|
|
4270
|
+
meta | 99
|
4271
|
+
blank |
|