anystyle 1.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (82) hide show
  1. checksums.yaml +7 -0
  2. data/HISTORY.md +78 -0
  3. data/LICENSE +27 -0
  4. data/README.md +103 -0
  5. data/lib/anystyle.rb +71 -0
  6. data/lib/anystyle/dictionary.rb +132 -0
  7. data/lib/anystyle/dictionary/gdbm.rb +52 -0
  8. data/lib/anystyle/dictionary/lmdb.rb +67 -0
  9. data/lib/anystyle/dictionary/marshal.rb +27 -0
  10. data/lib/anystyle/dictionary/redis.rb +55 -0
  11. data/lib/anystyle/document.rb +264 -0
  12. data/lib/anystyle/errors.rb +14 -0
  13. data/lib/anystyle/feature.rb +27 -0
  14. data/lib/anystyle/feature/affix.rb +43 -0
  15. data/lib/anystyle/feature/brackets.rb +32 -0
  16. data/lib/anystyle/feature/canonical.rb +13 -0
  17. data/lib/anystyle/feature/caps.rb +20 -0
  18. data/lib/anystyle/feature/category.rb +70 -0
  19. data/lib/anystyle/feature/dictionary.rb +16 -0
  20. data/lib/anystyle/feature/indent.rb +16 -0
  21. data/lib/anystyle/feature/keyword.rb +52 -0
  22. data/lib/anystyle/feature/line.rb +39 -0
  23. data/lib/anystyle/feature/locator.rb +18 -0
  24. data/lib/anystyle/feature/number.rb +39 -0
  25. data/lib/anystyle/feature/position.rb +28 -0
  26. data/lib/anystyle/feature/punctuation.rb +22 -0
  27. data/lib/anystyle/feature/quotes.rb +20 -0
  28. data/lib/anystyle/feature/ref.rb +21 -0
  29. data/lib/anystyle/feature/terminal.rb +19 -0
  30. data/lib/anystyle/feature/words.rb +74 -0
  31. data/lib/anystyle/finder.rb +94 -0
  32. data/lib/anystyle/format/bibtex.rb +63 -0
  33. data/lib/anystyle/format/csl.rb +28 -0
  34. data/lib/anystyle/normalizer.rb +65 -0
  35. data/lib/anystyle/normalizer/brackets.rb +13 -0
  36. data/lib/anystyle/normalizer/container.rb +13 -0
  37. data/lib/anystyle/normalizer/date.rb +109 -0
  38. data/lib/anystyle/normalizer/edition.rb +16 -0
  39. data/lib/anystyle/normalizer/journal.rb +14 -0
  40. data/lib/anystyle/normalizer/locale.rb +30 -0
  41. data/lib/anystyle/normalizer/location.rb +24 -0
  42. data/lib/anystyle/normalizer/locator.rb +22 -0
  43. data/lib/anystyle/normalizer/names.rb +88 -0
  44. data/lib/anystyle/normalizer/page.rb +29 -0
  45. data/lib/anystyle/normalizer/publisher.rb +18 -0
  46. data/lib/anystyle/normalizer/pubmed.rb +18 -0
  47. data/lib/anystyle/normalizer/punctuation.rb +23 -0
  48. data/lib/anystyle/normalizer/quotes.rb +14 -0
  49. data/lib/anystyle/normalizer/type.rb +54 -0
  50. data/lib/anystyle/normalizer/volume.rb +26 -0
  51. data/lib/anystyle/parser.rb +199 -0
  52. data/lib/anystyle/support.rb +4 -0
  53. data/lib/anystyle/support/finder.mod +3234 -0
  54. data/lib/anystyle/support/finder.txt +75 -0
  55. data/lib/anystyle/support/parser.mod +15025 -0
  56. data/lib/anystyle/support/parser.txt +75 -0
  57. data/lib/anystyle/utils.rb +70 -0
  58. data/lib/anystyle/version.rb +3 -0
  59. data/res/finder/bb132pr2055.ttx +6803 -0
  60. data/res/finder/bb550sh8053.ttx +18660 -0
  61. data/res/finder/bb599nz4341.ttx +2957 -0
  62. data/res/finder/bb725rt6501.ttx +15276 -0
  63. data/res/finder/bc605xz1554.ttx +18815 -0
  64. data/res/finder/bd040gx5718.ttx +4271 -0
  65. data/res/finder/bd413nt2715.ttx +4956 -0
  66. data/res/finder/bd466fq0394.ttx +6100 -0
  67. data/res/finder/bf668vw2021.ttx +3578 -0
  68. data/res/finder/bg495cx0468.ttx +7267 -0
  69. data/res/finder/bg599vt3743.ttx +6752 -0
  70. data/res/finder/bg608dx2253.ttx +4094 -0
  71. data/res/finder/bh410qk3771.ttx +8785 -0
  72. data/res/finder/bh989ww6442.ttx +17204 -0
  73. data/res/finder/bj581pc8202.ttx +2719 -0
  74. data/res/parser/bad.xml +5199 -0
  75. data/res/parser/core.xml +7924 -0
  76. data/res/parser/gold.xml +2707 -0
  77. data/res/parser/good.xml +34281 -0
  78. data/res/parser/stanford-books.xml +2280 -0
  79. data/res/parser/stanford-diss.xml +726 -0
  80. data/res/parser/stanford-theses.xml +4684 -0
  81. data/res/parser/ugly.xml +33246 -0
  82. metadata +195 -0
@@ -0,0 +1,2957 @@
1
+ title | ESSAYS ON HORIZONTAL MERGERS AND ANTITRUST
2
+ blank |
3
+ |
4
+ |
5
+ |
6
+ text | A DISSERTATION
7
+ | SUBMITTED TO THE GRADUATE SCHOOL OF BUSINESS
8
+ | AND THE COMMITTEE ON GRADUATE STUDIES
9
+ | OF STANFORD UNIVERSITY
10
+ | IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
11
+ | FOR THE DEGREE OF
12
+ | DOCTOR OF PHILOSOPHY
13
+ blank |
14
+ |
15
+ |
16
+ |
17
+ text | Przemyslaw Jeziorski
18
+ | June 2010
19
+ | © 2010 by Przemyslaw Jeziorski. All Rights Reserved.
20
+ | Re-distributed by Stanford University under license with the author.
21
+ blank |
22
+ |
23
+ |
24
+ text | This work is licensed under a Creative Commons Attribution-
25
+ | Noncommercial 3.0 United States License.
26
+ | http://creativecommons.org/licenses/by-nc/3.0/us/
27
+ blank |
28
+ |
29
+ |
30
+ |
31
+ text | This dissertation is online at: http://purl.stanford.edu/bb599nz4341
32
+ blank |
33
+ |
34
+ |
35
+ |
36
+ meta | ii
37
+ text | I certify that I have read this dissertation and that, in my opinion, it is fully adequate
38
+ | in scope and quality as a dissertation for the degree of Doctor of Philosophy.
39
+ blank |
40
+ text | Peter Reiss, Primary Adviser
41
+ blank |
42
+ |
43
+ |
44
+ text | I certify that I have read this dissertation and that, in my opinion, it is fully adequate
45
+ | in scope and quality as a dissertation for the degree of Doctor of Philosophy.
46
+ blank |
47
+ text | Ali Yurukoglu
48
+ blank |
49
+ |
50
+ |
51
+ text | I certify that I have read this dissertation and that, in my opinion, it is fully adequate
52
+ | in scope and quality as a dissertation for the degree of Doctor of Philosophy.
53
+ blank |
54
+ text | C. Lanier Benkard
55
+ blank |
56
+ |
57
+ |
58
+ |
59
+ text | Approved for the Stanford University Committee on Graduate Studies.
60
+ | Patricia J. Gumport, Vice Provost Graduate Education
61
+ blank |
62
+ |
63
+ |
64
+ |
65
+ text | This signature page was generated electronically upon submission of this dissertation in
66
+ | electronic format. An original signed hard copy of the signature page is on file in
67
+ | University Archives.
68
+ blank |
69
+ |
70
+ |
71
+ |
72
+ meta | iii
73
+ title | Abstract
74
+ blank |
75
+ text | This thesis contributes to understanding the economics of mergers and acquisitions.
76
+ | It provides new empirical techniques to study these processes, based on structural,
77
+ | game theoretical models. In particular, it makes two main contributions. In Chapter
78
+ | 2, I study the issues arising when mergers take place in a two-sided market. In such
79
+ | markets, firms face two interrelated demand curves, which complicates the decision
80
+ | making process and makes standard merger models inapplicable. In Chapter 3, I
81
+ | provide a general framework to identify cost synergies from mergers without using
82
+ | cost data. The estimator is based on a dynamic model with endogenous mergers and
83
+ | product repositioning. Both chapters contain an abstract model that can be tailored
84
+ | to many markets, as well as a specific application to the merger wave in the U.S.
85
+ | radio industry.
86
+ blank |
87
+ |
88
+ |
89
+ |
90
+ meta | iv
91
+ title | Acknowledgments
92
+ blank |
93
+ text | I would like to thank my advisers Lanier Benkard and Peter Reiss for their guidance
94
+ | over the years, their patience and their constant feedback that helped me to consider-
95
+ | ably improve my work. Moreover, I would like to express my gratitude to numerous
96
+ | people I encountered who believed in me and supported me along my path to this
97
+ | degree. In particular, this thesis would have been impossible without my adviser
98
+ | Tomasz Szapiro at the Warsaw School of Economics. He motivated me and directly
99
+ | helped me to make my adventure in the United States possible. My interest in game
100
+ | theory and dynamic models was triggered by great conversations with my adviser
101
+ | Rabah Amir at the University of Arizona. I would like to thank him for his support
102
+ | and help while applying to Stanford GSB. Last but not least, I am grateful to all the
103
+ | community at Stanford University – professors, fellow students and casual friends –
104
+ | for creating a unique environment for my intellectual and personal development.
105
+ blank |
106
+ |
107
+ |
108
+ |
109
+ meta | v
110
+ title | Contents
111
+ blank |
112
+ text | Abstract iv
113
+ blank |
114
+ text | Acknowledgments v
115
+ blank |
116
+ text | 1 Introduction 1
117
+ blank |
118
+ text | 2 Mergers in two-sided markets: Case of U.S. radio industry 5
119
+ | 2.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
120
+ | 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
121
+ | 2.3 Radio as a two-sided market . . . . . . . . . . . . . . . . . . . . . . . 9
122
+ | 2.3.1 Industry setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
123
+ | 2.3.2 Listeners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
124
+ | 2.3.3 Advertisers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
125
+ | 2.3.4 Radio station owners . . . . . . . . . . . . . . . . . . . . . . . 16
126
+ | 2.4 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
127
+ | 2.5 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
128
+ | 2.5.1 First stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
129
+ | 2.5.2 Second stage . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
130
+ | 2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
131
+ | 2.6.1 Listeners’ demand . . . . . . . . . . . . . . . . . . . . . . . . . 23
132
+ | 2.6.2 Advertisers’ demand . . . . . . . . . . . . . . . . . . . . . . . 23
133
+ | 2.6.3 Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
134
+ | 2.7 Counterfactual experiments . . . . . . . . . . . . . . . . . . . . . . . 29
135
+ | 2.7.1 Impact of mergers on consumer surplus . . . . . . . . . . . . . 29
136
+ blank |
137
+ meta | vi
138
+ text | 2.7.2 Effects of product variety and market power . . . . . . . . . . 31
139
+ | 2.8 Robustness analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
140
+ | 2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
141
+ blank |
142
+ text | 3 Estimation of cost synergies from mergers without cost data: Ap-
143
+ | plication to U.S. radio 35
144
+ | 3.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
145
+ | 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
146
+ | 3.3 Merger and repositioning framework . . . . . . . . . . . . . . . . . . 38
147
+ | 3.3.1 Industry basics . . . . . . . . . . . . . . . . . . . . . . . . . . 38
148
+ | 3.3.2 Players’ actions . . . . . . . . . . . . . . . . . . . . . . . . . . 39
149
+ | 3.3.3 Payoffs and equilibrium . . . . . . . . . . . . . . . . . . . . . 41
150
+ | 3.4 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
151
+ | 3.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
152
+ | 3.4.2 Policy estimation . . . . . . . . . . . . . . . . . . . . . . . . . 43
153
+ | 3.4.3 Minimum distance estimator . . . . . . . . . . . . . . . . . . . 46
154
+ | 3.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
155
+ | 3.5.1 Industry and data description . . . . . . . . . . . . . . . . . . 48
156
+ | 3.5.2 Static profits . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
157
+ | 3.5.3 Estimation details . . . . . . . . . . . . . . . . . . . . . . . . . 51
158
+ | 3.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
159
+ | 3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
160
+ blank |
161
+ text | A Additional material to Chapter 2 57
162
+ | A.1 Advertising demand: Micro foundations . . . . . . . . . . . . . . . . . 57
163
+ | A.2 Numerical considerations . . . . . . . . . . . . . . . . . . . . . . . . . 59
164
+ blank |
165
+ text | B Additional material to Chapter 3 61
166
+ | B.1 Estimation without acquisition prices . . . . . . . . . . . . . . . . . . 61
167
+ | B.2 Radio acquisition and format switching algorithms . . . . . . . . . . . 62
168
+ | B.3 Policy function covariates . . . . . . . . . . . . . . . . . . . . . . . . 63
169
+ | B.4 First stage estimates: Dynamic model . . . . . . . . . . . . . . . . . . 65
170
+ blank |
171
+ |
172
+ meta | vii
173
+ text | Bibliography 68
174
+ blank |
175
+ |
176
+ |
177
+ |
178
+ meta | viii
179
+ title | List of Tables
180
+ blank |
181
+ text | 2.1 Simple example of advertising weights . . . . . . . . . . . . . . . . . . 15
182
+ | 2.2 Panel data descriptive statistics . . . . . . . . . . . . . . . . . . . . . 18
183
+ | 2.3 Estimates of mean and random effects of demand for radio program-
184
+ | ming. Stars indicate parameter significance when testing with 0.1, 0.05
185
+ | and 0.01 test sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
186
+ | 2.4 Interaction terms between listeners’ demographics and taste for radio
187
+ | programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
188
+ | 2.5 Product closeness matrices for chosen markets . . . . . . . . . . . . . 26
189
+ | 2.6 Slope of the inverse demand for ads θ2A , by market size . . . . . . . . 27
190
+ | 2.7 Estimated marginal cost (in dollars per minute of broadcasted advertis-
191
+ | ing) and profit margins (before subtracting the fixed cost) for a chosen
192
+ | set of markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
193
+ | 2.8 Counterfactuals for all markets . . . . . . . . . . . . . . . . . . . . . 29
194
+ | 2.9 Counterfactuals for small markets (less than 500k people) . . . . . . . 30
195
+ | 2.10 Counterfactuals for large markets (more than 2,000k people) . . . . . 30
196
+ | 2.11 Slope of the inverse demand for ads θ2A , by market size . . . . . . . . 33
197
+ | 2.12 Robustness of counterfactuals . . . . . . . . . . . . . . . . . . . . . . 33
198
+ blank |
199
+ text | 3.1 Change in the local ownership caps introduced by the 1996 Telecom Act. 49
200
+ | 3.2 Savings when two stations are owned by the same firm vs. operating
201
+ | separately . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
202
+ | 3.3 Total cost savings created by mergers after 1996, compared to demand
203
+ | effects from Jeziorski (2010) . . . . . . . . . . . . . . . . . . . . . . . 55
204
+ | 3.4 Format switching cost for chosen markets . . . . . . . . . . . . . . . . 55
205
+ blank |
206
+ meta | ix
207
+ text | B.1 Covariates for the format switching strategy multinomial logic regression. 63
208
+ | B.2 Covariates for the purchase strategy logic regression. . . . . . . . . . 64
209
+ | B.3 Station purchase policy estimates - buyer/seller dummies . . . . . . . 65
210
+ | B.4 Station purchase policy estimates - other variables . . . . . . . . . . . 65
211
+ | B.5 Format switching policy estimates - format dynamics . . . . . . . . . 66
212
+ | B.6 Format switching policy estimates - current demographics . . . . . . . 66
213
+ | B.7 Format switching policy estimates - demographic dynamics . . . . . . 67
214
+ blank |
215
+ |
216
+ |
217
+ |
218
+ meta | x
219
+ title | List of Figures
220
+ blank |
221
+ text | 3.1 Dynamics of station acquisition and format switching . . . . . . . . . 50
222
+ blank |
223
+ |
224
+ |
225
+ |
226
+ meta | xi
227
+ | Chapter 1
228
+ blank |
229
+ title | Introduction
230
+ blank |
231
+ text | A horizontal merger occurs when two or more competing companies combine to jointly
232
+ | operate. Both the European Commission (2004) and the U.S. Department of Justice
233
+ | (1997) recognize that such mergers may lessen competition and thereby harm con-
234
+ | sumers. Therefore, in order to prevent anti-competitive conduct, both bodies employ
235
+ | a set of analytical tools that predict and analyze the consequences of mergers. The
236
+ | dominant paradigm from the 1950s and through the 1970s was the structure-conduct-
237
+ | performance approach (see Bain (1968)). It assumes that market power is directly
238
+ | related to market concentration, and proposes using concentration indexes (e.g. the
239
+ | Herfindahl-Hirschman Index) for merger enforcement. This approach however, does
240
+ | not explicitly explain the conduct of firms and ignores many important issues, for
241
+ | example product differentiation, and heterogeneity of consumers or cost synergies.
242
+ | In contrast, modern industrial organization has developed new techniques, based on
243
+ | game theory, that endogenize the behavior of companies and allow for more detailed
244
+ | and robust evaluation of mergers.
245
+ | Current analysis of horizontal mergers in markets with differentiated products is
246
+ | based on a static supply and demand approach (e.g. Nevo (2000)). It is usually
247
+ | done in two steps. In the first step, one estimates a flexible demand system (e.g.
248
+ | Deaton and Muellbauer (1980), Ackerberg and Rysman (2005), Berry (1994), Berry,
249
+ | Levinsohn, and Pakes (1995)) and supply system. The demand system is a function of
250
+ | product characteristics, prices and heterogeneous consumer preferences. The supply
251
+ blank |
252
+ |
253
+ meta | 1
254
+ | CHAPTER 1. INTRODUCTION 2
255
+ blank |
256
+ |
257
+ |
258
+ text | system is determined by the equilibrium behavior of firms that maximize their profits.
259
+ | In the second step, one exogenously imposes a hypothetical merger and solves for the
260
+ | post-merger equilibrium using the estimates from the first step. The new equilibrium
261
+ | provides predictions about post-merger prices and quantities that can be used to
262
+ | identify the short-run impact of the merger on consumer and producer surplus. This
263
+ | thesis provides two extensions to this framework. First, it develops a new supply and
264
+ | demand system that encompasses the merger analysis of two-sided markets. Second,
265
+ | it proposes a dynamic framework in which mergers and product repositioning are
266
+ | endogenous. It allows for long-run predictions, including evaluation of possible fixed
267
+ | cost synergies of mergers. These methods are applied to analyze the 1996-2006 merger
268
+ | wave in the U.S. radio industry.
269
+ | In the chapter 2 of this thesis, I focus on how mergers affect two-sided markets. In a
270
+ | two-sided market, firms provide services to two types of consumers and facilitate their
271
+ | interaction via a platform. This creates cross-consumer externalities; thus, the profits
272
+ | of a firm operating a platform depend on sales to both types of consumers. Examples
273
+ | of such markets include the following: radio, in which stations sell ads and provide
274
+ | programming to listeners; credit cards, in which firms connect merchants and credit
275
+ | card holders; operating systems, in which revenue comes from hardware buyers and
276
+ | application developers. Antitrust analysis in these markets is complicated and it must
277
+ | take into account the market specific economic features (Armstrong (2006), Rochet
278
+ | and Tirole (2006), Evans (2002)). In particular, in the case of a merger, a firm has
279
+ | incentives to exercise market power on both sides of the market. These incentives are
280
+ | often conflicting. For example, in the radio market, stations sell advertising knowing
281
+ | it negatively impacts their listenership. On the one hand, a merged firm might sell
282
+ | more advertising in order to exercise market power on listeners. On the other hand, it
283
+ | might sell less advertising in order to exercise market power on advertisers. Chapter 2
284
+ | investigates this conflict by estimating a model of supply and demand for advertising
285
+ | and radio programming. Using this model, it performs counterfactual experiments
286
+ | that predict the post-merger advertising quantity supplied and the new division of
287
+ | surplus between listeners and advertisers. I find that mergers decrease the amount of
288
+ | advertising supplied, thereby increasing listener welfare by 1%. However, at the same
289
+ meta | CHAPTER 1. INTRODUCTION 3
290
+ blank |
291
+ |
292
+ |
293
+ text | time the decrease in ad supply raises prices and lowers advertiser welfare by $300m
294
+ | per year.
295
+ | A static analysis does not recognize that firms may adjust their product portfolio
296
+ | after a merger. In theory, mergers could increase or decrease product variety. On
297
+ | the one hand, they can increase the variety because a merged firm wants to avoid
298
+ | cannibalization. On the other hand, the firm might crowd products together to
299
+ | prevent entry. In the former case, if consumers prefer more variety, it is possible that
300
+ | repositioning could alleviate the negative effects of the merger (Berry and Waldfogel
301
+ | (2001), Sweeting (2008)). Chapter 2 provides a method to disaggregate the total
302
+ | impact of the merger on consumer surplus into changes in product variety and in
303
+ | supplied quantity. The same method can be used to predict whether extra variety
304
+ | could alleviate negative market power effects for a hypothetical merger. In the case
305
+ | of radio, extra variety alone leads to a 1.3% increase in listener welfare and decreases
306
+ | advertiser welfare by $147m per year. I find that product ownership consolidation
307
+ | and repositioning are followed by advertising quantity readjustments. I estimate that
308
+ | this effect alone leads to a 0.3% decrease in listener welfare (with the variety effect it
309
+ | sums to a 1% increase) and an additional $153m decrease in advertiser welfare (with
310
+ | the variety effect it totals $300m). While extra variety mitigates the negative effects
311
+ | of mergers on listeners, it increases the negative impact on advertisers.
312
+ | Chapter 3 deals with a dynamic merger analysis. The current empirical litera-
313
+ | ture on mergers and repositioning assumes that the market structure is exogenous
314
+ | (Nevo (2000), Pinkse and Slade (2004), Ivaldi and Verboven (2005)). This approach
315
+ | does not take into account dynamic processes like post-merger repositioning, follow-
316
+ | up mergers, and fixed cost synergies, that could potentially lower prices and provide
317
+ | consumers with other non-price benefits. Moreover, the assumption that mergers are
318
+ | exogenous may create a selection bias that results in overestimation of cost synergies
319
+ | (for example the estimator might pick up other unobserved components correlated
320
+ | with the propensity to merge). This thesis provides a new, dynamic framework in
321
+ | which decisions to merge and to reposition products are endogenous. Such an ap-
322
+ | proach provides consistent estimates of the long-run effects of mergers. In addition, it
323
+ | allows for the estimation of cost synergies without any data on cost. The framework
324
+ meta | CHAPTER 1. INTRODUCTION 4
325
+ blank |
326
+ |
327
+ |
328
+ text | is straightforward, easy to implement, and computationally tractable. Application to
329
+ | radio reveals that the 1996-2006 merger wave provided $2.5b per year of cost syn-
330
+ | ergies, which constitutes about 10% of total industry revenue. The scale of those
331
+ | efficiencies is a an order of magnitude higher than loss in surplus for advertisers.
332
+ meta | Chapter 2
333
+ blank |
334
+ title | Mergers in two-sided markets:
335
+ | Case of U.S. radio industry
336
+ blank |
337
+ title | 2.1 Preface
338
+ text | This chapter studies the consequences of mergers in two-sided markets by estimating a
339
+ | structural supply and demand model and performing counterfactual experiments. The
340
+ | analysis is performed on the example of a merger wave in U.S. radio; however, it is applicable
341
+ | to other two-sided markets like credit cards, trading platforms or computer games. There
342
+ | are two main contributions from this chapter. First, I identify the conflicting incentives of
343
+ | merged firms to exercise market power on both sides of the market (listeners and advertisers
344
+ | in the case of radio). Second, I disaggregate the effect of mergers on consumers into changes
345
+ | in product variety and changes in supplied ad quantity.
346
+ | The model is estimated using data on 13,000 radio stations from 1996 to 2006. I find that
347
+ | firms have moderate market power over listeners in all markets, extensive market power over
348
+ | advertisers in small markets and no market power over advertisers in large markets. Coun-
349
+ | terfactuals reveal that extra product variety created by post-merger repositioning increased
350
+ | listeners’ welfare by 1.3% and decreased advertisers’ welfare by about $160m per-year. How-
351
+ | ever, subsequent changes in supplied ad quantity decreased listener welfare by 0.4% (for a
352
+ | total impact of +0.9%) and advertiser welfare by an additional $140m (for a total impact
353
+ | of -$300m).
354
+ blank |
355
+ |
356
+ meta | 5
357
+ | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS 6
358
+ blank |
359
+ |
360
+ |
361
+ title | 2.2 Introduction
362
+ text | Between 1996 and 2006, the U.S. radio industry experienced an unprecedented merger
363
+ | wave due to the 1996 Telecommucation Act, which raised ownership caps in local
364
+ | markets and abolished cross-market ownership restrictions. At the height of merger
365
+ | activity, about 30% of stations changed ownership each year and about 20% changed
366
+ | the format of broadcasted programming. In this paper, I use this merger wave to
367
+ | study the consequences of consolidation in two-sided markets. I make two main
368
+ | contributions. First, I identify conflicting incentives for stations to exercise market
369
+ | power on both sides of the market (in the case of radio, the two sides are advertisers
370
+ | and listeners). In particular, I separate the impact of consolidation on listener and
371
+ | advertiser surplus. Second, I decompose this impact into effects of changes on product
372
+ | variety and market power. As a result, I ask whether extra variety can mitigate the
373
+ | negative effects of a decrease in competition. Similar issues arise in other two-sided
374
+ | markets such as credit cards, newspapers or computer hardware. The framework
375
+ | proposed in this paper can be easily adjusted to analyze any of these industries.
376
+ | In two-sided markets, firms face two interrelated demand curves from two distinct
377
+ | types of consumers. These demands give merging firms conflicting incentives because
378
+ | exercising market power in one market lowers profits in the other market. In the case
379
+ | of radio, a company provides free programming to listeners but draws revenue from
380
+ | selling advertising that is priced on a per-listener basis. In the listener market, a
381
+ | merged firm would like to increase post-merger advertising because it captures some
382
+ | switching listeners. This advertising decreases the welfare of listeners and increases
383
+ | the welfare of advertisers. However, from the perspective of the advertising market,
384
+ | the merged firm would like to supply less advertising, which has the exact opposite
385
+ | impact on listener and advertiser welfare. The firm’s ultimate decision, which deter-
386
+ | mines the impact of consolidation on the welfare of both consumer groups, depends
387
+ | on the relative demand elasticities in both markets.
388
+ | In this paper, I separately estimate elasticities for both consumer groups using a
389
+ | structural model of the demand and supply of radio programming and advertising.
390
+ | Using those estimates, I perform counterfactual policy experiments that quantify the
391
+ meta | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS 7
392
+ blank |
393
+ |
394
+ |
395
+ text | impact of consolidation on listener and advertiser surplus. I find that market power
396
+ | on the listener side is similar across geographical markets. In contrast, the amount
397
+ | of market power on the advertiser side depends on market population. In particular,
398
+ | firms have a considerable control over advertising price in smaller markets; however,
399
+ | they are price takers in larger markets. Consequently, mergers result in firms lowering
400
+ | advertising quantity in small markets (less than 500 thousand people) by about 13%,
401
+ | which leads to a 6% per-listener increase in ad prices. Mergers increase listener
402
+ | surplus by 2.5% but at the same time decrease advertiser surplus by $235m per
403
+ | year. Conversely, in large markets (more than 2 million people) mergers lead to
404
+ | a 5.5% increase in total advertising minutes while per-listener price stays constant.
405
+ | This results in a 0.3% decrease in listener welfare as well as a slight decrease in
406
+ | advertiser welfare ($0.1m per year). The aggregate national impact of the merger
407
+ | wave amounted to a listener welfare gain of 1% and a $300m per year advertiser
408
+ | welfare loss. I conclude that listeners benefited and advertisers were disadvantaged
409
+ | by the 1996 Telecom Act.
410
+ | My work is related to several theoretical papers studying complexity of pricing
411
+ | strategies in two-sided markets. The closest studies related to this paper are: Arm-
412
+ | strong (2006), Rochet and Tirole (2006), Evans (2002) and Dukes (2004). The general
413
+ | conclusion in this literature is that using a standard supply and demand framework
414
+ | of single-sided markets might be not sufficient to capture the economics of two-sided
415
+ | markets. Additionally, there have been several empirical studies on this topic. For
416
+ | example Kaiser and Wright (2006), Argentesi and Filistrucchi (2007) and Chandra
417
+ | and Collard-Wexler (2009) develop empirical models that recognize the possibility of
418
+ | market power in both sides of the market. They use a form of the Hotelling model pro-
419
+ | posed by Armstrong (2006) to deal with product heterogeneity. I build on their work,
420
+ | incorporating recent advances in the literature on demand with differentiated prod-
421
+ | ucts. This allows me to incorporate richer consumer heterogeneity and substitution
422
+ | patterns (e.g. Berry, Levinsohn, and Pakes (1995), and Nevo (2000)) that are neces-
423
+ | sary to capture complicated consumer preferences for radio programing. Moreover, I
424
+ | supplement reduced form results on market power with out-of-sample counterfactuals
425
+ | that explicitly predict changes in supplied ad quantity and consumer welfare.
426
+ meta | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS 8
427
+ blank |
428
+ |
429
+ |
430
+ text | The second contribution of this paper is the decomposition of the total impact of
431
+ | mergers on consumer surplus into changes in product variety and effects of exercising
432
+ | extra market power from joint ownership. This exercise is motivated by the fact
433
+ | that in most cases consumers have preference for variety, so it is possible that extra
434
+ | variety created by mergers might mitigate the negative effects of extra market power.
435
+ | In order to verify the above claim, I quantify consumers’ value for extra variety and
436
+ | compare it to the loss in surplus coming from the extra market power. This approach
437
+ | relates to Kim, Allenby, and Rossi (2002), who compute the compensating variation
438
+ | for the changes of variety in tastes of yogurt and Brynjolfsson, Hu, and Smith (2003)
439
+ | who do the same for the variety of books offered in on-line bookstores. These papers
440
+ | assume away the fact that changes in variety will be followed by readjustments in
441
+ | equilibrium prices. In this paper, taking their analysis one step forward, I incorporate
442
+ | such strategic responses by performing counterfactual experiments.
443
+ | Berry and Waldfogel (2001) and Sweeting (2008) document that the post-1996
444
+ | merger wave resulted in an increase in product variety. I investigate their claim using
445
+ | a structural utility model and conclude that extra variety alone leads to a $1.3%
446
+ | increase in listener welfare. However, because product repositioning softened com-
447
+ | petition in the advertising market and caused some stations to switch to a “Dark“
448
+ | format 1 , advertiser welfare decreased by $147m per year. Additionally, I find that
449
+ | product ownership consolidation and repositioning are followed by advertising quan-
450
+ | tity readjustments. I estimate, that effect alone leads to a 0.3% decrease in listener
451
+ | welfare (with the variety effect it totals to the 1% increase) and an additional $153m
452
+ | decrease in advertiser welfare (with the variety effect it totals $300m). While ex-
453
+ | tra variety mitigates the negative effects of mergers on listeners, it strengthens the
454
+ | negative impact on advertisers.
455
+ | This paper is organized as follows. Section 2 outlines the questions investigated
456
+ | in the paper in a formal way and describes the structural model of the industry.
457
+ | Section 3 contains the description of the data. Estimation techniques used to identify
458
+ | the parameters of the model are described in Section 4. Results of the structural
459
+ meta | 1
460
+ text | When in “dark” format, the station holds the frequency so that other stations cannot use it.
461
+ | “Dark” stations typically do not broadcast or broadcast very little non-commercial programming.
462
+ meta | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS 9
463
+ blank |
464
+ |
465
+ |
466
+ text | estimation are presented in Section 5. Section 6 describes the results of counterfactual
467
+ | experiments. Robustness checks of different modeling assumptions are contained in
468
+ | Section 7. Section 8 provides the conclusion.
469
+ blank |
470
+ |
471
+ title | 2.3 Radio as a two-sided market
472
+ text | The radio industry is an example of a two-sided market (other examples include
473
+ | advertising platforms, credit cards or video games). Such markets are usually char-
474
+ | acterized by the existence of three types of agents: two types of consumers and
475
+ | a platform provider. What distinguishes this setup from a standard differentiated
476
+ | product oligopoly is that the platform provider is unable to set prices for each type of
477
+ | consumer separately. Instead, the demand curves are interrelated through a feedback
478
+ | loop in such a way that quantity sold to one consumer determines the market clearing
479
+ | price for the other consumer. In this subsection I argue that this feedback makes it
480
+ | complicated to determine whether the supplied quantities are strategic substitutes
481
+ | or complements (as defined in Bulow, Geanakoplos, and Klemperer (1985)). This
482
+ | creates important trade-offs in the case of a merger and affects the division of surplus
483
+ | between both types of consumers. The remainder of this subsection discusses this
484
+ | mechanism in detail using the example of radio; however, the discussion applies to
485
+ | the majority of other two-sided markets.
486
+ | In the case of radio there are three types of agents: radio stations, listeners,
487
+ | and advertisers. Radio stations provide free programming for listeners and draw
488
+ | revenue from selling advertising slots. First, consider the demand curve for radio
489
+ | programming. The listener market share of the radio station j is given by
490
+ blank |
491
+ text | rj = rj (q|s, d, θL ) (2.1)
492
+ blank |
493
+ text | where q is the vector of advertising quantities, s are observable and unobservable
494
+ | characteristics of all active stations, d are market covariates and θL are parameters
495
+ | of the listener demand. Since radio programming is free, there is no explicit price in
496
+ | this equation. However, because listeners have disutility for advertising, its effect is
497
+ meta | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS 10
498
+ blank |
499
+ |
500
+ text | ∂rj
501
+ | similar to price, i.e. ∂qj
502
+ | < 0.
503
+ | The market clearing price of an advertising slot in station j depends on the amount
504
+ | of advertising supplied and the number of listeners to station j. Therefore, the inverse
505
+ | demand curve for advertising slots is
506
+ blank |
507
+ text | pj = pj (q, rj (q)|s, d, θA ) (2.2)
508
+ blank |
509
+ text | where θA are parameters. Note that the advertising quantity affects the advertising
510
+ | price in two ways: directly through the first argument and indirectly through the
511
+ | listener demand feedback loop (the second argument).
512
+ | Suppose for now that each owner owns a single station and there is no marginal
513
+ | cost (I relax these assumptions later). In equilibrium, each radio station chooses their
514
+ | optimal ad quantity, keeping the quantities of the other stations fixed, i.e.
515
+ blank |
516
+ text | max pj (q, rj (q)|q−j )qj (2.3)
517
+ | qj
518
+ blank |
519
+ |
520
+ text | In contrast to a differentiated products oligopoly, the firm has just one control (ad
521
+ | quantity) that determines the equilibrium point on both demand curves simultane-
522
+ | ously. The first order conditions for profit maximization are given by
523
+ blank |
524
+ text | ∂pj ∂pj ∂rj
525
+ | qj + qj + pj = 0
526
+ | ∂qj ∂rj ∂qj
527
+ blank |
528
+ text | The important fact is that this condition shares features with both the Cournot and
529
+ | Bertrand models. On the one hand, the first term represents the direct effect of
530
+ | quantity on price, and it is reminiscent of the standard quantity setting equilibrium
531
+ | (Cournot). On the other hard, the second component represents the listener feedback
532
+ | loop and is reminiscent of the price setting model (Bertrand), because ad quantities
533
+ | function like prices in the demand for programming.
534
+ | In order to determine the impact of a merger on the equilibrium ad quantities
535
+ | supplied we need to know if they are strategic complements or substitutes. The
536
+ | duality described in the previous paragraph make it ambiguous. This is because
537
+ | in the Cournot model quantities are strategic substitutes and in the differentiated
538
+ meta | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS 11
539
+ blank |
540
+ |
541
+ |
542
+ text | product Bertrand model prices are strategic complements. Without knowing the
543
+ | relative strengths of the direct effects and the feedback loop, we cannot conclude
544
+ | whether a merger leads to an increase or decrease in ad quantity on the margin.
545
+ | Moreover, in the borderline case in which the effects cancel each other, a merger does
546
+ | not effect quantity at all; in this case, even though companies have market power
547
+ | over both consumers, they are unable to exercise it. Measuring these effects is critical
548
+ | for predicting the split of surplus between advertisers and listeners. When the direct
549
+ | effect is stronger, mergers lead to contraction in the ad quantity supplied and higher
550
+ | prices. This will benefit listeners but hurt advertisers. However, if the feedback loop
551
+ | is stronger than the direct effect then merger leads to more advertising and lower
552
+ | prices, benefiting advertisers and hurting listeners.
553
+ | Because the theory does not give a clear prediction about the split of surplus, I
554
+ | investigate this question empirically using a structural model. In the remainder of
555
+ | this section I put more structure on equations (2.1), (2.2) and (2.3), enabling separate
556
+ | identification of both sets of demand elasticities. I discover the relative strength of
557
+ | the direct and feedback effects and perform counterfactuals that quantify the extent
558
+ | of surplus reallocation.
559
+ blank |
560
+ |
561
+ title | 2.3.1 Industry setup
562
+ text | During each period t, the industry consists of M geographical markets that are char-
563
+ | acterized by a set of demographic covariates d ∈ Dm . Each market m can have up to
564
+ | Jm active radio stations and Km active owners. Each radio station is characterized by
565
+ | one of F possible programming formats. Station formats include the so-called “dark”
566
+ | format when a station is not operational The set of all station/format configurations
567
+ | m
568
+ | is given by FJ . Ownership structure is defined as a Km -element partition of sta-
569
+ | m
570
+ | tion/format configuration smt ∈ FJ . In an abuse of notation, I will consider smt
571
+ | to be a station/format configuration for market m at time t, as well as an owner-
572
+ | ship partition. Each member of the ownership partition (denoted as sk ) specifies the
573
+ | portfolio of stations owned by firm k.
574
+ meta | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS 12
575
+ blank |
576
+ |
577
+ |
578
+ text | The quality of the programming of radio station j is fully characterized by a one-
579
+ | dimensional quality measure ξj ∈ Ξ ⊂ R. The state of the industry at time time t
580
+ | in market m is therefore fully characterized by: a station/format configuration and
581
+ | ownership structure stm , vector of station quality measures ξ tm and market covariates
582
+ | dtm . In the next subsections I present a detailed model of listener demand, advertiser
583
+ | demand, and supply side. Throughout the description I take the triple (stm , ξ tm , dtm )
584
+ | as given and frequently omit market or time subscripts to simplify the notation.
585
+ blank |
586
+ |
587
+ title | 2.3.2 Listeners
588
+ text | This subsection describes the details of the demand for listenership introduced in
589
+ | equation (2.1). The model will be a variation on the random coefficient discrete
590
+ | choice setup proposed by Berry, Levinsohn, and Pakes (1995).
591
+ | I assume that each listener chooses only one radio station to listen to at a particular
592
+ | moment. Suppose that s is a set of active stations in the current market at a particular
593
+ | time. For any radio station j ∈ s, I define a vector ιj = (0, . . . , 1, . . . , 0) where 1 is
594
+ | placed in a position that indicates the format of station j.
595
+ | The utility of listener i listening to station j ∈ s is given by
596
+ blank |
597
+ text | L L
598
+ | uij = θ1i ιj − θ2i qj + θ3L FMj + ξj + ji (2.4)
599
+ blank |
600
+ text | L
601
+ | where θ2i is the individual listener’s demand sensitivity to adverting, qj the amount
602
+ | of advertising, ξj the unobserved station quality, ji an unobserved preference shock
603
+ | L
604
+ | (distributed type-1 extreme value), and finally θ1i is a vector of the individual listener’s
605
+ | random effects representing preferences for formats.
606
+ | I assume that the random coefficients can be decomposed as
607
+ blank |
608
+ text | L
609
+ | θ1i = θ1L + ΠDi + ν1i , Di ∼ Fm (Di |d), ν1i ∼ N (0, Σ1 )
610
+ blank |
611
+ text | and
612
+ | L
613
+ | θ2i = θ2L + ν2i , ν2i ∼ N (0, Σ2 )
614
+ blank |
615
+ text | where Σ1 is a diagonal matrix, Fm (Di |d) is an empirical distribution of demographic
616
+ meta | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS 13
617
+ blank |
618
+ |
619
+ |
620
+ text | characteristics, νi is unobserved taste shock, and Π is the matrix representing the
621
+ | correlation between demographic characteristics and format preferences. I assume
622
+ | that draws for νi are uncorrelated across time and markets.
623
+ | The random effects model allows for fairly flexible substitution patterns. For
624
+ | example, if a particular rock station increases its level of advertising, the model
625
+ | allows for consumers to switch proportionally to other rock stations depending on
626
+ | demographics.
627
+ | Following Berry, Levinsohn, and Pakes (1995), I can decompose the utility into a
628
+ | part that does not vary with consumer characteristics
629
+ blank |
630
+ text | δj = δ(qj |ιj , ξj , θL ) = θ1L ιi − θ2L qj + θ3L FMj + ξj
631
+ blank |
632
+ text | an interaction part
633
+ blank |
634
+ text | µji = µ(ιj , qj , ΠDi , νi ) = (ΠDi + ν1i )ιj + ν2i qj
635
+ blank |
636
+ text | and error term ji .
637
+ | Given this specification, and the fact that ji is distributed as an extreme value,
638
+ | one can derive the expected station rating conditional on a vector of advertising levels
639
+ | q, market structure s, a vector of unobserved station characteristics ξ, and market
640
+ | demographic characteristics d,
641
+ | Z Z
642
+ | L exp[δj + µji ]
643
+ | rj (q|s, ξ, d, θ ) = P dF (νi )dFm (Di |d)
644
+ | j 0 ∈s exp[δj 0 + µj 0 i ]
645
+ blank |
646
+ |
647
+ title | 2.3.3 Advertisers
648
+ text | In this subsection I present the details of the demand for advertising introduced in
649
+ | equation (2.2). The model captures several important features specific to the radio
650
+ | industry. In particular, the pricing is done on a per-listener basis, so that the price
651
+ | for a 60sec slot of advertising is a product of cost-per-point (CPP) and station rating
652
+ | (market share in percents). Moreover, radio stations have a direct market power over
653
+ | advertisers, so that CPP is a decreasing function of the ad quantities offered by a
654
+ meta | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS 14
655
+ blank |
656
+ |
657
+ |
658
+ text | station and its competitors. The simplest model that captures these features and is
659
+ | a good approximation of the industry is a linear inverse demand for advertising, such
660
+ | as !
661
+ | X
662
+ | pj = θ1A rj 1 − θ2A ωfmf 0 qf 0 (2.5)
663
+ | f 0 ∈F
664
+ blank |
665
+ text | where f is a format of station j, θ1A is a scaling factor for value of advertising, θ2A is
666
+ | a market power indicator and ωf f 0 ∈ Ω are weights indicating competition closeness,
667
+ | between formats f and f 0 .
668
+ | The weights ω are a key factor determining competition between formats and thus
669
+ | market power. They reflect the fact that some formats are further and others are closer
670
+ | substitutes for advertisers because of differences in the demographic composition of
671
+ | their listeners. In principle, one could proceed by estimating these weights from
672
+ | the data. However, here it is not feasible to do that because the available data
673
+ | do not contain radio station level advertising prices. Instead, I make additional
674
+ | assumptions that will enable me to compute the weights using publicly available data.
675
+ | The reminder of this subsection discusses the formula for the weights and provides
676
+ | an example supporting this intuition. The formal micro-model is given in Appendix
677
+ | A.1.
678
+ | Let there be A types of advertisers. Each type a ∈ A targets a certain demographic
679
+ | group(s) a. I.e. advertiser of type a gets positive utility only if a listener of type a
680
+ | hears an ad. Denote rf |a to be the probability that a listener of type a chooses format
681
+ | f and ra|f to be the probability that a random listener of format f is of type a.
682
+ | Advertisers take these numbers, along with station ratings rj , as given and decide on
683
+ | which station to advertise. This assumption is is motivated by the fact that about
684
+ | 75% is purchased by small local firms. Such firms’ advertising decisions are unlikely
685
+ | to influence prices and station ratings in the short run.
686
+ | This decision problem results in an inverse demand for advertising with weights
687
+ | ωjj 0 , that are given by
688
+ blank |
689
+ text | 1 X 
690
+ | ωf f 0 = P 2
691
+ | ra|f ra|f rf 0 |a (2.6)
692
+ | a∈A ra|f a∈A
693
+ meta | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS 15
694
+ blank |
695
+ |
696
+ |
697
+ text | The formal justification and derivation of this equation is given in Appendix A.1. The
698
+ | intuition behind it is that the total impact on the per-listener price of an ad in format
699
+ | f is a weighted average of impacts on the per-listener value of an ad for different types
700
+ | of advertisers. The weighting is done by the advertisers’ arrival rates, which are equal
701
+ | to the listeners’ arrival rates ra|f . For each advertiser of type a the change of value
702
+ | of an ad in format f , in response to a change of total quantity supplied in format f 0 ,
703
+ | is affected by two things: it is proportional to the probability of correct targeting in
704
+ | format f , given by ra|f , because advertisers are expected utility maximizers; and it
705
+ | is proportional to the share of advertising purchased by this advertiser in format f 0 ,
706
+ | given by rf 0 |a . Assembling these pieces together and normalizing the weights to sum
707
+ | to 1 gives equation (2.6).
708
+ | To illustrate how these weights work in practice, consider the following example.
709
+ | Suppose that there are only two possible formats of programming: Talk and Hits, and
710
+ | two types of consumers: Teens and Adults. Teens like mostly Hits format and Adults
711
+ | like Talk format. However, Adults like Hits more than Teens like Talk. Hypothetical
712
+ | numerical values of rf |a and ra|f are given in Table 2.1.
713
+ blank |
714
+ text | rf |a ra|f Ω
715
+ | Talk Hits Teens Adults Talk Hits
716
+ | Teens 1/5 4/5 Talk 1/4 3/4 Talk 0.56 0.44
717
+ | Adults 3/5 2/5 Hits 2/3 1/3 Hits 0.28 0.72
718
+ | Table 2.1: Simple example of advertising weights
719
+ blank |
720
+ text | In Table 2.1, the impact of Hits on the price of Talk is greater than the impact of
721
+ | Talk on the price of Hits. This is due to the fact that the quantity supplied in the Hits
722
+ | format affects Adult-targeting advertisers (who drive the price of the Talk format)
723
+ | to a much greater extent than ad quantity in Talk affects Teen-targeting advertisers
724
+ | (who drive the price of the Hits format). Moreover, because the weights sum up to
725
+ | 1, it must be that the own effect of Talk is weaker than that of Hits. This is exactly
726
+ | the essence of the mechanism behind Equation (2.6). More examples from the data
727
+ | with an extensive discussion are given in Section 2.6.
728
+ | In the next section I will combine demand for programming and advertising to
729
+ meta | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS 16
730
+ blank |
731
+ |
732
+ |
733
+ text | compose the profits of the radio station owners.
734
+ blank |
735
+ |
736
+ title | 2.3.4 Radio station owners
737
+ text | In this subsection I will describe a profit maximizing problem for the radio station
738
+ | owners. It will be a version of equation (2.3) that allows for non-zero cost in selling
739
+ | advertising and common radio station ownership. Given the advertising quantity
740
+ | choices of competing owners q−k , the profit of radio station owner k is given by
741
+ | X
742
+ | π̄k (qk |q−k , ξ, θ) = max rj (q|ξ, θL )pj qj − MCj (qj ) =
743
+ | {qj ;j∈sk }
744
+ | j∈sk
745
+ blank |
746
+ text | X X
747
+ | ! (2.7)
748
+ | = θ1A max L
749
+ | qj rj (q|ξ, θ ) 1 − θ2A ωfmf 0 qf 0 A C
750
+ | + Cj (qj |θ , θ )
751
+ | {qj ;j∈sk }
752
+ | j∈sk f 0 ∈F
753
+ blank |
754
+ |
755
+ text | where Cj (qj ) is the total cost of selling advertising. I assume constant marginal cost
756
+ | and allow for a firm level of unobserved cost heterogeneity ηj , i.e. Cj (qj |θA , θC ) =
757
+ | θ1A [θC + ηj ]qj .
758
+ | I assume that the markets are in a Cournot Nash Equilibrium. The first order
759
+ | conditions for profit optimization become
760
+ blank |  
761
+ text | X ∂rj 0
762
+ | rj pj + qj 0 A m
763
+ | pj 0 − rj 0 θ2 ωjj 0 − θC − ηj = 0 ∀k and j ∈ sk (2.8)
764
+ | j 0 ∈s
765
+ | ∂qj
766
+ | k
767
+ blank |
768
+ |
769
+ |
770
+ text | Additionally, I assume that station unobserved quality is exogenous but serially cor-
771
+ | related. It evolves according an AR(1) process such that
772
+ blank |
773
+ text | ξjt = ρξjt−1 + ζjt (2.9)
774
+ blank |
775
+ text | where ζjt is an exogenous innovation to station quality.
776
+ meta | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS 17
777
+ blank |
778
+ |
779
+ |
780
+ title | 2.4 Data description
781
+ text | I have constructed a panel of data on radio stations and radio station ownership
782
+ | merging data from two sources: BIA Financial Network Inc. and the SQAD Media
783
+ | Market Guide.
784
+ | BIAfn provided me data on: radio station ownership, revenues, market shares and
785
+ | formats. The data are a 1996-2006 panel covering each radio station in the market
786
+ | in 2006. The data are incomplete in the sense that I do not observe all the stations
787
+ | that exited the market between 1996 and 2006. According to Sweeting (2007) there
788
+ | were only 50 stations that exited during this period, mostly due to violations of FCC
789
+ | regulations. Because this number is small relative to the 11,000 stations in the sample,
790
+ | this omission is unlikely to significantly influence the results.
791
+ | The BIAfn data are supplemented with data on aggregate advertising prices. Un-
792
+ | fortunately, price data at the station level are not available. SQAD instead provides
793
+ | estimates of market prices that are obtained using proprietary formulas. According
794
+ | to anecdotal evidence, those estimates are widely recognized as the industry standard
795
+ | and are the best available data on market prices. Radio market prices are reported
796
+ | as a Cost per Rating Point (CPP). CPP is the cost of advertising per 1 percent of
797
+ | listenership. SQAD provides CPP broken down into daytime and demographic cat-
798
+ | egories. We will estimate station level prices from SQAD CPPs using radio station
799
+ | ratings that are broken down by time of day and demographics.
800
+ | An observation in my data is a radio station operating in a specific half-year and
801
+ | in a specific market. BIAfn and SQAD use Arbitron market definitions. An Arbitron
802
+ | market is in most cases a county or a metropolitan area. According to the surveys
803
+ | conducted by CRA International (2007) for the Canadian market (which is similar to
804
+ | the US market): “The majority of radio advertisers are local. They are only interested
805
+ | in advertising in their local area since most of their customers and potential buyers
806
+ | live in or very near their city.” In our analysis, I assume no interdependence between
807
+ | markets. To further assure that there is no overlap between markets, I use only the
808
+ | 88 market sub-selection that was developed in Sweeting (2007). Table 2.7 presents a
809
+ | list of the 88 markets, along with their populations.
810
+ meta | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS 18
811
+ blank |
812
+ |
813
+ text | 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
814
+ | Number of
815
+ | 26.75 26.92 27.25 27.53 27.66 27.89 28.48 28.61 28.72 28.78 28.86
816
+ | stations
817
+ | Number of
818
+ | 16.58 15.55 14.94 14.21 13.29 13.03 13.16 12.96 12.73 12.52 12.48
819
+ | owners
820
+ | C3 0.77 0.83 0.88 0.91 0.97 0.95 0.93 0.93 0.93 0.93 0.90
821
+ | Number of
822
+ | 4.43 5.10 5.66 5.94 6.58 6.32 6.31 6.34 6.42 6.38 6.28
823
+ | stations owned
824
+ | Fraction of
825
+ | stations that 0.12 0.12 0.10 0.11 0.12 0.03 0.04 0.03 0.03 0.03 NaN
826
+ | changed ownership
827
+ | Fraction of
828
+ | stations that 0.11 0.11 0.13 0.12 0.12 0.13 0.10 0.11 0.11 0.11 NaN
829
+ | changed format
830
+ | Ad quantity 23.19 25.85 26.12 28.45 30.31 24.71 28.37 24.54 28.16 28.30 26.95
831
+ | Price divided by
832
+ | 1.00 0.96 1.08 1.10 1.26 1.51 1.42 1.51 1.39 1.37 1.43
833
+ | price in 1996
834
+ blank |
835
+ text | Table 2.2: Panel data descriptive statistics
836
+ blank |
837
+ text | To achieve a sharper identification of the random effects covariance matrix, I use
838
+ | listenership shares of different demographic groups in each of the formats that has
839
+ | been aggregated from the 100 biggest markets 2 . I observe listenership shares of
840
+ | different age/gender groups within each station format between 1998 and 2006, and
841
+ | shares for income, race and education groups between 2003 and 2006. Unfortunately,
842
+ | I do not observe a full matrix of market shares for all the combinations of demographic
843
+ | variables. For example, I do not see what the share of rock stations is among black,
844
+ | educated males. Instead I have shares for blacks, educated people, and males.
845
+ | Table 2.2 contains some basic aggregate statistics about the industry. The top
846
+ | part of the table documents changes in concentration of radio station ownership.
847
+ | The average number of stations owned in our dataset grew from 4.43 in 1996 to
848
+ | 6.28 in 2006. This ownership consolidation resulted in growth of the market share
849
+ | of the 3 biggest owners (C3) from 77% in 1996 to 90% in 2006, peaking at 97% in
850
+ | 2000. The middle part of the table contains the average percentages of stations that
851
+ | switched owners and that switched formats. Between 1996 and 2000 more than 10%
852
+ | of stations switched owners yearly. After 2000 the number dropped to below 4%.
853
+ | Greater concentration activity in the 1996-2000 period was also associated with more
854
+ | format switching. The percentage of stations that switched format peaked in 1998
855
+ | and 2001 at 13%.
856
+ meta | 2
857
+ text | Source: Arbitron Format Trends Report
858
+ meta | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS 19
859
+ blank |
860
+ |
861
+ |
862
+ title | 2.5 Estimation
863
+ text | The estimation of the model is done in two steps. In the first step, I estimate the
864
+ | demand model that includes parameters of the consumer utility θL (see equation
865
+ | (2.4)) and the unobserved station quality lag parameter ρ (see equation (3.1)). In
866
+ | the second step, we recover parameters of the inverse demand for advertising θA , wjj 0
867
+ | (see equation (2.5)) and cost parameters θC (see equation (2.7)).
868
+ blank |
869
+ |
870
+ title | 2.5.1 First stage
871
+ text | This stage provides the estimates of demand for radio programming θL . Estimation is
872
+ | done using the generalized method of simulated moments. I use two sets of moment
873
+ | conditions. The first set is based on the fact that innovation to station unobserved
874
+ | quality ξj has a mean of zero conditional on the instruments:
875
+ blank |
876
+ text | E[ξjt − ρξjt−1 |Z1 , θL ] = 0 (2.10)
877
+ blank |
878
+ text | This moment condition follows Berry, Levinsohn, and Pakes (1995) and extends it by
879
+ | explicitly introducing auto-correlation of ξ. I use instruments for advertising quantity
880
+ | since it is likely to be correlated with unobserved station quality. My instruments
881
+ | include: lagged mean and second central moment of competitors’ advertising quantity,
882
+ | lagged market HHIs and lagged number and cumulative market share of other stations
883
+ | in the same format. These are valid instruments under the assumption that ξt follows
884
+ | an AR(1) process and the fact that decisions about portfolio selection are made before
885
+ | decisions about advertising.
886
+ | A second set of moment conditions is based on demographic listenership data.
887
+ | Let Rf c be the national market share of format f among listeners possessing certain
888
+ | demographic characteristics c. The population moment conditions are
889
+ blank |
890
+ text | exp[δjmt + µmt ji ]
891
+ | Z Z Z
892
+ | P mt mt
893
+ | t
894
+ | dF (νi )dFct (Dic , m)dt = Rf c (2.11)
895
+ | t t ,m)
896
+ | (Dic νi 0
897
+ | j ∈s mt exp[δ j 0 + µ ij 0 ]
898
+ blank |
899
+ text | where Fct (Di , m) is a national distribution of people who possess characteristic c at
900
+ meta | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS 20
901
+ blank |
902
+ |
903
+ |
904
+ text | time t. Each person is characterized by the demographic characteristics Di and the
905
+ | market m they belong to.
906
+ | For each time t and demographic characteristic c, I draw I observation pairs
907
+ | t
908
+ | (Dic , m) from the nationally aggregated CPS. Let g = (g1 , g2 ) represent the empirical
909
+ | moments and W be a weighting matrix. I estimate the model by using the constrained
910
+ | optimization procedure:
911
+ blank |
912
+ text | min g 0 W g
913
+ | θL ,ξ,g
914
+ blank |
915
+ text | Subject to:
916
+ | r̂jmt (qmt |smt , ξmt , dmt , θL ) = rjmt ∀t, m
917
+ | (2.12)
918
+ | exp[δjmt + µmt ji ]
919
+ | Z
920
+ | 1 X X
921
+ | P mt mt
922
+ | dF (νi ) − Rf c = g1 ∀c
923
+ | TI t t ν i j 0 ∈smt exp[δ j 0 + µ ij 0 ]
924
+ | (Dic ,m)
925
+ | 1
926
+ | Z1 (ξ − ρLξ) = g2
927
+ | size of ξ
928
+ blank |
929
+ text | where L is a lag operator that converts the vector ξ into one-period lagged values. If
930
+ | the radio station did not exist in the previous period, the lag operator has a value of
931
+ | zero. Integration with respect to demographics when calculating the first constraint is
932
+ | obtained by drawing from the CPS in the particular market and period. This way of
933
+ | integrating allows us to maintain proper correlations between possessed demographic
934
+ | characteristics. The same is true when obtaining the data set Dict . When computing
935
+ | the interaction terms µ in the second constraint, I draw one vector νi from the normal
936
+ | distribution for each Dict .
937
+ blank |
938
+ |
939
+ title | 2.5.2 Second stage
940
+ text | The second stage of the estimation obtains the competition matrix Ω and the pa-
941
+ | rameters of demand for advertising θA . The estimation is done separately for every
942
+ | market, thereby allowing for different Ω and θA .
943
+ | To compute the matrices Ωm for each market I use the specification layed out in
944
+ meta | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS 21
945
+ blank |
946
+ |
947
+ |
948
+ text | section 2.3.3. The elements of the matrix Ω are specified as
949
+ blank |
950
+ text | 1 X 
951
+ | ωf f 0 = P 2
952
+ | ra|f ra|f rf 0 |a
953
+ | a∈A ra|f a∈A
954
+ blank |
955
+ |
956
+ text | following equation (2.6). The rf |a are advertisers’ beliefs about listeners’ preferences
957
+ | for formats. These are constant across markets. To recognize that advertisers know
958
+ | the demographic composition of each market I allow for market specific listener arrival
959
+ | rates for each format rfm|a . However, I assume that the advertisers compute those
960
+ | values by using Radio Today reports and the Current Population Survey. After
961
+ | computing weights, I treat Ωm as exogenous and fixed in all of the following steps 3 .
962
+ | After computing matrices Ω, I estimate θA . Using estimates of demand for radio
963
+ | programming θL from the first stage, I compute ratings for each station conditioned
964
+ | on the counterfactual advertising quantities. I use the set of 3M moment conditions
965
+ blank |
966
+ text | Em [η m |Z2 , θA , θC ] = 0 ∀m ∈ M (2.13)
967
+ blank |
968
+ text | where the integral is taken with respect to time and stations in each market. ηjtm is
969
+ | an unobserved shock to marginal cost defined in equation (2.5). The Z2 are three
970
+ | instruments: a column of ones, the AM/FM dummy and number of competitors in
971
+ | the same format. They are uncorrelated with η m under the IID assumption, but
972
+ | are correlated with the current choice of quantity because they describe the market
973
+ | structure.
974
+ | We back out ηjtm using FOCs for owner’s profit maximization (see equation (2.7))
975
+ blank |
976
+ text | ∂rjt 0 t
977
+ | X  
978
+ | ηjt = rjt ptj + qjt 0 A t m C
979
+ | p 0 − θ2m rj 0 ωf f 0 − θm ∀t ∈ T, k ∈ Ktm , j ∈ stm (2.14)
980
+ | ∂qjt j k
981
+ | j 0 ∈stm
982
+ | k
983
+ blank |
984
+ |
985
+ text | A A C
986
+ | Since the equation does not depend on θ1m , I can use it to estimate θ2m and θm . During
987
+ | the estimation, I allow for a different value of marginal cost for each market. I allow
988
+ meta | 3
989
+ text | Such an approach potentially ignores possible variance of the Ωm estimator. The source of
990
+ | this variance might come from the finiteness of the CPS dataset and the distribution of Arbitron
991
+ | estimates.
992
+ meta | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS 22
993
+ blank |
994
+ |
995
+ |
996
+ text | for 3 different values for the slope of inverse demand depending on the population of
997
+ | the market (up to 500 people, between 500 and 1500, and 1500 or more). Ratings
998
+ | and derivatives of ratings in the equation (2.14) are calculated using the estimates of
999
+ | θL and ξ from the first stage. Demographic draws are taken from the CPS and are
1000
+ | A
1001
+ | independent of those used in the first stage. Given the estimates of θ2m and θC , I
1002
+ | A
1003
+ | can back out θ1m by equating the observed average revenue in each market with its
1004
+ | predicted counterpart.
1005
+ | Next I discuss a variation in the data that identifies parameters θA and θC . The
1006
+ | intuition for such identification is that estimating Equation 2.14 can be regarded as a
1007
+ | C
1008
+ | linear regression in which θm is an intercept and θ2A is a coefficient of a variable that
1009
+ | is a function of supplied quantity. In this case, the mean deviation of FOCs from zero
1010
+ | C
1011
+ | in each market identifies the intercept θm . The slope parameter θ2A is identified by the
1012
+ | size of the response of the firm to changes in quantity supplied by its competitors due
1013
+ | to change in the market structure or demographics. Such a response, as mentioned
1014
+ | in Section 2.3, is composed of listeners’ demand feedback and the direct effect of
1015
+ | quantity on CPP. Elasticity of listeners’ demand, that determines the strength of the
1016
+ | feedback, is consistently estimated in the first step. Therefore, one can subtract the
1017
+ | difference out the feedback effect from the total response observed in the data. This
1018
+ | allows to obtain the strength of the direct effect that directly identifies the slope of
1019
+ | the CPP, θ2A . For example, if we look at the response of ad quantity reacting to the
1020
+ | merger, the slope of listeners’ demand alone predicts large increases in ad quantity.
1021
+ | However in the data, we observe smaller increases or even decrease in the quantity
1022
+ | supplied, depending on the market. Those differences are rationalized by a negative
1023
+ | value of CPP slope, θ2A .
1024
+ blank |
1025
+ |
1026
+ title | 2.6 Results
1027
+ text | This section presents estimates of the structural parameters. The next subsection
1028
+ | discusses listeners’ demand parameters. This is followed by results concerning adver-
1029
+ | tisers’ demand and marker power. The last subsection contains estimates of marginal
1030
+ | cost and profit margin (before subtracting fixed cost).
1031
+ meta | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS 23
1032
+ blank |
1033
+ |
1034
+ |
1035
+ title | 2.6.1 Listeners’ demand
1036
+ text | Table 2.3 contains estimates of demand parameters for radio programming. The esti-
1037
+ | mate of the mean effect of advertising on listeners’ utility is negative and statistically
1038
+ | significant. This is consistent with the belief that radio listeners have a disutility for
1039
+ | advertising. When it comes to the mean effects of programming formats, Contempo-
1040
+ | rary Hit Radio format gives the most utility, while the News/Talk format gives the
1041
+ | least.
1042
+ | The second column of Table 2.3 contains variances of random effects for station
1043
+ | formats. The higher a format’s variance, the more persistent are the tastes of listeners
1044
+ | for that format. For example, in response to an increased amount of advertising, if
1045
+ | the variance of the random effect for that format is high, listeners tend to switch
1046
+ | to a station of the same format. The estimates also suggest that tastes for the
1047
+ | Alternative/Urban format are the most persistent.
1048
+ | Table 2.4 contains estimates of interactions between listener characteristics and
1049
+ | format dummies. The majority of the parameters are consistent with intuition. For
1050
+ | example, younger people are more willing to choose a CHR format while older people
1051
+ | go for News/Talk. The negative coefficients on the interaction of Hispanic format
1052
+ | with education and income suggests that less educated Hispanic people with lower
1053
+ | income are more willing to listen to Hispanic stations. For blacks, I find a disutility
1054
+ | for Country, Rock and Hispanic, and a high utility for Urban. This is consistent
1055
+ | with the the fact that Urban radio stations play mostly rap, hip-hop and soul music
1056
+ | performed by black artists.
1057
+ blank |
1058
+ |
1059
+ title | 2.6.2 Advertisers’ demand
1060
+ text | Tables 2.5 presents the weights for selected markets representing large, medium and
1061
+ | small listener populations. They were computed using the 1999 edition of Radio
1062
+ | Today publication and Common Population Survey aggregated from 1996 to 2006.
1063
+ | It is interesting to compute a total impact coefficient that is the sum of all the
1064
+ | columns of the table for each format. Not surprisingly, general interest formats like
1065
+ | AC and News/Talk have the biggest impact on the price of advertising, while Spanish
1066
+ meta | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS 24
1067
+ blank |
1068
+ |
1069
+ |
1070
+ |
1071
+ text | Mean Effects (θ1L ) Random Effects (Σ1 )
1072
+ | −1.106∗∗∗ 0.030∗∗∗
1073
+ | Advertising (0.002) (0.009)
1074
+ | 0.861∗∗∗
1075
+ | AM/FM (0.000)
1076
+ | -
1077
+ | AC,
1078
+ | SmoothJazz, −2.431∗∗∗ 0.043∗∗∗
1079
+ | (0.008) (0.004)
1080
+ | and New AC
1081
+ | ∗∗∗
1082
+ | Rock −1.559 0.004
1083
+ | (0.140) (0.020)
1084
+ blank |
1085
+ text | −0.179∗∗∗ 0.009∗
1086
+ | CHR (0.025) (0.006)
1087
+ | ∗∗∗
1088
+ | Alternative −2.339 0.348∗∗∗
1089
+ | Urban (0.026) (0.008)
1090
+ | ∗∗∗
1091
+ | −4.678 0.024∗∗∗
1092
+ | News/Talk (0.010) (0.002)
1093
+ blank |
1094
+ text | Country −2.301∗∗∗ 0.011∗∗∗
1095
+ | (0.006) (0.003)
1096
+ blank |
1097
+ text | Spanish −1.619∗∗∗ 0.011∗∗∗
1098
+ | (0.004) (0.001)
1099
+ blank |
1100
+ text | −4.657∗∗∗ 0.005∗∗∗
1101
+ | Other (0.004) (0.002)
1102
+ blank |
1103
+ text | 0.568∗∗∗
1104
+ | ρ (0.091)
1105
+ | -
1106
+ blank |
1107
+ |
1108
+ |
1109
+ text | Table 2.3: Estimates of mean and random effects of demand for radio programming.
1110
+ | Stars indicate parameter significance when testing with 0.1, 0.05 and 0.01 test sizes.
1111
+ meta | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS 25
1112
+ blank |
1113
+ |
1114
+ text | Demographics characteristics (Π)
1115
+ | Age Sex Education Income Black Spanish
1116
+ | AC,
1117
+ | SmoothJazz, −0.171∗∗∗ −0.341∗∗∗ 0.602∗∗∗ −0.024∗∗∗ 0.121∗∗∗ −1.014∗∗∗
1118
+ | (0.001) (0.064) (0.013) (0.003) (0.012) (0.008)
1119
+ | and New AC
1120
+ | Rock −0.645∗∗∗ 0.399∗∗∗ 0.861∗∗∗ −0.147∗∗∗ −1.359∗∗∗ −1.643∗∗∗
1121
+ | (0.072) (0.031) (0.006) (0.045) (0.007) (0.003)
1122
+ blank |
1123
+ text | −2.541∗∗∗ 0.477∗∗∗ 1.772∗∗∗ −0.291∗∗∗ 1.946∗∗∗ 0.463∗∗∗
1124
+ | CHR (0.015) (0.080) (0.006) (0.005) (0.015) (0.001)
1125
+ | ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗
1126
+ | Alternative −0.817 1.350 0.583 −0.141 3.152 0.267∗∗∗
1127
+ | Urban (0.008) (0.018) (0.025) (0.002) (0.005) (0.027)
1128
+ blank |
1129
+ |
1130
+ text | News/Talk 0.329∗∗∗ 1.228∗∗∗ 0.237∗∗∗ 0.093∗∗∗ −0.321∗∗∗ −1.649∗∗∗
1131
+ | (0.002) (0.012) (0.009) (0.005) (0.001) (0.005)
1132
+ blank |
1133
+ text | Country 0.062∗∗∗ −0.149∗∗∗ 0.133∗∗∗ −0.125∗∗∗ −1.548∗∗∗ −1.717∗∗∗
1134
+ | (0.004) (0.022) (0.004) (0.003) (0.009) (0.002)
1135
+ blank |
1136
+ text | −0.024∗ −0.908∗∗∗ −0.328∗∗∗ −1.140∗∗∗ −2.560∗∗∗ 0.797∗∗∗
1137
+ | Spanish (0.013) (0.012) (0.018) (0.002) (0.004) (0.003)
1138
+ blank |
1139
+ text | 0.263 0.624∗∗∗ 0.338∗∗∗ −0.031 0.498∗∗∗ 0.238∗∗∗
1140
+ | Other (0.373) (0.003) (0.006) (0.063) (0.001) (0.002)
1141
+ blank |
1142
+ |
1143
+ |
1144
+ |
1145
+ text | Table 2.4: Interaction terms between listeners’ demographics and taste for radio
1146
+ | programming.
1147
+ blank |
1148
+ text | format has the smallest. The values on the diagonals of the matrices represent the
1149
+ | formats’ own effect of the quantity of advertising supplied on per-listener price. They
1150
+ | are usually bigger than the off-diagonal values, that suggests that it is mostly the
1151
+ | ad quantity in the same format that influences a per-listener price. In accord with
1152
+ | an intuition, the formats with the most demographically homogenous listener pools,
1153
+ | Urban/Alternative and Spanish, have the highest values of the own effects. On the
1154
+ | other hand, general interest formats like CHR and Rock are charaterized by the
1155
+ | smallest values of the own effect, measuring the fact that their target population of
1156
+ | listeners is more dispersed across other formats. For cross effects, one notices that
1157
+ | News/Talk is close to AC and Urban is close to CHR. This can be explained by, for
1158
+ | example, the age of the listeners. In the former case the formats appeal to an older
1159
+ | population while in the latter case to a younger one.
1160
+ | Estimates of the slope of inverse demand are presented in Table 2.6. In mar-
1161
+ | kets with less than 0.5m people radio stations have considerable control over the
1162
+ | per-listener price. However, such control significantly drops in markets from 0.5m
1163
+ meta | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS 26
1164
+ blank |
1165
+ |
1166
+ text | Los Angeles, CA
1167
+ | AC
1168
+ | Alternative
1169
+ | SmoothJazz Rock CHR News/Talk Country Spanish Other
1170
+ | Urban
1171
+ | New AC
1172
+ | AC
1173
+ | SmoothJazz 0.22 0.10 0.11 0.09 0.17 0.14 0.00 0.17
1174
+ | New AC
1175
+ | Rock 0.15 0.21 0.12 0.09 0.16 0.13 0.01 0.12
1176
+ | CHR 0.18 0.12 0.16 0.16 0.10 0.13 0.03 0.13
1177
+ | Alternative
1178
+ | 0.11 0.05 0.17 0.44 0.06 0.05 0.00 0.12
1179
+ | Urban
1180
+ | News/Talk 0.17 0.10 0.05 0.05 0.30 0.13 0.00 0.21
1181
+ | Country 0.16 0.10 0.09 0.07 0.15 0.22 0.01 0.21
1182
+ | Spanish 0.03 0.04 0.11 0.02 0.01 0.03 0.72 0.04
1183
+ | Other 0.18 0.07 0.06 0.08 0.20 0.17 0.00 0.23
1184
+ | Total impact 1.20 0.79 0.87 0.99 1.15 1.00 0.77 1.23
1185
+ blank |
1186
+ |
1187
+ text | Atlanta, GA
1188
+ | AC
1189
+ | Alternative
1190
+ | SmoothJazz Rock CHR News/Talk Country Spanish Other
1191
+ | Urban
1192
+ | New AC
1193
+ | AC
1194
+ | SmoothJazz 0.20 0.10 0.12 0.09 0.14 0.18 0.00 0.18
1195
+ | New AC
1196
+ | Rock 0.14 0.21 0.13 0.10 0.12 0.17 0.01 0.13
1197
+ | CHR 0.17 0.13 0.17 0.14 0.09 0.17 0.01 0.13
1198
+ | Alternative
1199
+ | 0.11 0.06 0.16 0.40 0.06 0.08 0.00 0.13
1200
+ | Urban
1201
+ | News/Talk 0.16 0.10 0.05 0.05 0.25 0.17 0.00 0.22
1202
+ | Country 0.15 0.09 0.08 0.06 0.13 0.26 0.01 0.22
1203
+ | Spanish 0.04 0.04 0.12 0.02 0.01 0.03 0.71 0.03
1204
+ | Other 0.16 0.07 0.06 0.07 0.16 0.23 0.01 0.25
1205
+ | Total impact 1.11 0.78 0.88 0.94 0.95 1.31 0.75 1.29
1206
+ blank |
1207
+ |
1208
+ text | Knoxville, TN
1209
+ | AC
1210
+ | Alternative
1211
+ | SmoothJazz Rock CHR News/Talk Country Spanish Other
1212
+ | Urban
1213
+ | New AC
1214
+ | AC
1215
+ | SmoothJazz 0.20 0.11 0.16 0.11 0.10 0.16 0.01 0.16
1216
+ | New AC
1217
+ | Rock 0.13 0.21 0.14 0.11 0.10 0.18 0.01 0.12
1218
+ | CHR 0.16 0.12 0.18 0.14 0.08 0.17 0.02 0.13
1219
+ | Alternative
1220
+ | 0.12 0.06 0.16 0.38 0.06 0.08 0.00 0.13
1221
+ | Urban
1222
+ | News/Talk 0.16 0.13 0.10 0.09 0.17 0.16 0.01 0.18
1223
+ | Country 0.15 0.13 0.14 0.10 0.09 0.22 0.01 0.16
1224
+ | Spanish 0.05 0.05 0.11 0.02 0.02 0.04 0.66 0.05
1225
+ | Other 0.17 0.09 0.11 0.12 0.12 0.18 0.01 0.21
1226
+ | Total impact 1.12 0.90 1.11 1.05 0.74 1.21 0.72 1.14
1227
+ blank |
1228
+ |
1229
+ |
1230
+ |
1231
+ text | Table 2.5: Product closeness matrices for chosen markets
1232
+ blank |
1233
+ text | to 2m people, and it disappears completely in markets with more than 2m people,
1234
+ | making radio stations essentially price takers. I suspect that this phenomenon can be
1235
+ meta | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS 27
1236
+ blank |
1237
+ |
1238
+ text | Market population less than .5m between .5m and 1.5m more than 1.5m
1239
+ | 1.34 (0.046) 0.35 (0.026) 0.00 (0.008)
1240
+ blank |
1241
+ text | Table 2.6: Slope of the inverse demand for ads θ2A , by market size
1242
+ blank |
1243
+ text | explained by the fact that in larger markets there are more outside options for radio
1244
+ | advertising. This can lead to tougher competition between media outlets, and make
1245
+ | the inverse demand for advertising flatter. However, in small markets radio might be
1246
+ | a primary advertising channel, because other media like the Internet or billboards are
1247
+ | not as widespread. This gives radio stations more control over price.
1248
+ blank |
1249
+ |
1250
+ title | 2.6.3 Supply
1251
+ text | The marginal costs of selling advertising minutes are presented in Table 2.7. The
1252
+ | values of this cost range from $356 per minute of advertising sold in Los Angeles,
1253
+ | CA to $11 in Ft. Myers, FL. 66% of the variation in marginal cost can be explained
1254
+ | by variation in market population. A population increase of one thousand translates
1255
+ | to about a 2 cent increase in marginal cost (with t-stat equal to 12). The high cor-
1256
+ | relation between population and marginal costs can be explained by the fact that
1257
+ | revenues per-minute of advertising are an increasing function of total market popula-
1258
+ | tion. Suppose this surplus is split between radio station owners and advertisers’ sales
1259
+ | people according to the Nash Bargaining solution. In this case, the high correlation
1260
+ | of revenue with population will translate into a high correlation of marginal cost with
1261
+ | population.
1262
+ | From the revenues and marginal cost estimates, I can calculate variable profit
1263
+ | margins. These are presented in the last last column of Table 2.7. The range is
1264
+ | from 92% in Shreveport, LA to 15% in Honolulu, HI and Reno, NV. It is interesting
1265
+ | that 38% of the profit margin variation can be explained by the variance in total ad
1266
+ | quantity supplied and markets with high profit margins firms supply more advertising.
1267
+ | The marginal effect of extra minute per day of broadcasted advertising translates into
1268
+ | 0.6% of extra profit margin.
1269
+ meta | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS
1270
+ text | Marginal Profit Marginal Profit
1271
+ | Market Population (mil) Market Population
1272
+ | cost ($ per-miute) margin cost margin
1273
+ | Los Angeles, CA 13,155 356.4 (5.15) 30% Tulsa, OK 856 72.8 (2.13) 21%
1274
+ | Chicago, IL 9,341 180.0 (2.70) 34% Knoxville, TN 785 54.3 (1.99) 27%
1275
+ | Dallas-Ft. Worth, TX 5,847 198.6 (5.60) 28% Albuquerque, NM 740 27.4 (1.04) 36%
1276
+ | Houston-Galveston, TX 5,279 199.7 (4.20) 28% Ft. Myers-Naples-Marco Island, FL 737 11.3 (0.94) 57%
1277
+ | Atlanta, GA 4,710 95.4 (3.37) 43% Omaha-Council Bluffs, NE-IA 728 48.0 (0.91) 28%
1278
+ | Boston, MA 4,532 172.2 (3.68) 33% Harrisburg-Lebanon-Carlisle, PA 649 29.7 (1.44) 42%
1279
+ | Miami-Ft, FL 4,174 134.3 (3.70) 28% El Paso, TX 619 41.8 (4.12) 20%
1280
+ | Seattle-Tacoma, WA 3,776 128.7 (2.21) 29% Quad Cities, IA-IL 618 51.3 (1.30) 23%
1281
+ | Phoenix, AZ 3,638 63.7 (1.84) 39% Wichita, KS 598 38.9 (0.85) 25%
1282
+ | Minneapolis-St. Paul, MN 3,155 160.8 (4.66) 26% Little Rock, AR 577 45.2 (1.64) 26%
1283
+ | St. Louis, MO 2,689 190.6 (5.38) 18% Columbia, SC 577 60.0 (2.10) 23%
1284
+ | Tampa-St, FL 2,649 102.7 (2.09) 26% Charleston, SC 569 59.6 (1.74) 19%
1285
+ | Denver-Boulder, CO 2,604 99.9 (1.40) 32% Des Moines, IA 564 21.3 (0.92) 40%
1286
+ | Portland, OR 2,352 48.6 (1.35) 41% Spokane, WA 540 24.5 (0.63) 28%
1287
+ | Cleveland, OH 2,134 170.6 (3.34) 24% Madison, WI 520 93.6 (3.02) 22%
1288
+ | Charlotte, NC-SC 2,127 67.1 (1.96) 38% Augusta, GA 510 30.9 (0.60) 24%
1289
+ | Sacramento, CA 2,100 47.6 (1.30) 42% Ft. Wayne, IN 509 37.8 (1.35) 27%
1290
+ | Salt Lake City, UT 1,924 58.1 (1.19) 26% Lexington-Fayette, KY 495 36.8 (1.59) 35%
1291
+ | San Antonio, TX 1,900 75.0 (2.27) 24% Chattanooga, TN 471 41.5 (2.53) 29%
1292
+ | Kansas City, MO-KS 1,871 152.5 (2.87) 19% Boise, ID 469 46.2 (3.73) 30%
1293
+ | Las Vegas, NV 1,752 47.7 (1.49) 32% Jackson, MS 453 18.6 (2.03) 59%
1294
+ | Milwaukee-Racine, WI 1,713 74.6 (1.27) 25% Eugene-Springfield, OR 439 27.4 (1.29) 31%
1295
+ | Orlando, FL 1,686 42.4 (1.77) 41% Reno, NV 400 99.7 (1.64) 15%
1296
+ | Columbus, OH 1,685 70.2 (1.53) 30% Shreveport, LA 359 19.8 (4.25) 92%
1297
+ | Indianapolis, IN 1,602 86.8 (2.32) 26% Fayetteville, NC 337 38.1 (2.48) 46%
1298
+ | Norfolk, VA 1,583 196.8 (4.64) 17% Springfield, MA 336 20.8 (0.87) 55%
1299
+ | Nashville, TN 1,342 40.5 (1.84) 38% Macon, GA 276 34.4 (2.29) 26%
1300
+ | Greensboro-Winston, NC 1,329 53.5 (2.34) 32% Binghamton, NY 255 37.5 (1.51) 27%
1301
+ | New Orleans, LA 1,294 91.2 (2.44) 24% Lubbock, TX 248 57.7 (1.98) 18%
1302
+ | Memphis, TN 1,278 53.2 (1.82) 30% Odessa-Midland, TX 231 21.4 (0.99) 27%
1303
+ | Jacksonville, FL 1,271 66.1 (1.64) 29% Fargo-Moorhead, ND-MN 200 48.6 (2.42) 25%
1304
+ | Oklahoma City, OK 1,268 75.6 (1.35) 25% Medford-Ashland, OR 184 27.7 (0.90) 28%
1305
+ | Buffalo-Niagara Falls, NY 1,150 141.5 (3.63) 19% Duluth-Superior, MN-WI 159 43.3 (0.79) 20%
1306
+ | Louisville, KY 1,100 92.9 (2.36) 21% Parkersburg-Marietta, WV-OH 157 31.7 (1.41) 21%
1307
+ | Richmond, VA 1,066 55.3 (1.47) 28% Abilene, TX 149 23.0 (1.14) 26%
1308
+ | Birmingham, AL 1,030 85.8 (2.50) 24% Eau Claire, WI 149 31.6 (2.77) 28%
1309
+ | Honolulu, HI 938 78.2 (2.39) 15% Williamsport, PA 130 31.0 (1.13) 23%
1310
+ | Albany, NY 909 113.9 (3.18) 16% Monroe, LA 124 14.2 (1.49) 64%
1311
+ | Grand Junction, CO 902 24.5 (0.67) 24% Sioux City, IA 118 26.1 (0.96) 24%
1312
+ | Tucson, AZ 870 41.1 (0.93) 27% San Angelo, TX 104 26.4 (1.36) 16%
1313
+ | Grand Rapids, MI 864 37.9 (0.79) 38% Bismarck, ND 99 32.8 (1.65) 22%
1314
+ blank |
1315
+ |
1316
+ text | Table 2.7: Estimated marginal cost (in dollars per minute of broadcasted advertising) and profit margins (before
1317
+ | subtracting the fixed cost) for a chosen set of markets
1318
+ blank |
1319
+ |
1320
+ |
1321
+ |
1322
+ meta | 28
1323
+ | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS 29
1324
+ blank |
1325
+ |
1326
+ text | Consumer Advertiser Mean price
1327
+ | Average ad load Advertising minutes
1328
+ | surplus surplus index
1329
+ | Impact of
1330
+ | ownership change and 6.6pdm -6.4pdm -158.3m -2,491min
1331
+ | +0.60%
1332
+ | format switching +1.3% -12.6% -16.3% -1.5%
1333
+ | No ad adjustment
1334
+ | Impact of -1.9pdm 1.6pdm -146.1m -9,838min
1335
+ | +2.09%
1336
+ | ad adjustment -0.4% +3.6% -18.0% -5.9%
1337
+ | Total impact of
1338
+ | ownership change 4.7pdm -4.8pdm -304.4m -12,329min
1339
+ | +2.67%
1340
+ | format switching and +0.9% -9.5% -31.4% -7.3%
1341
+ | ad adjustment
1342
+ blank |
1343
+ text | Table 2.8: Counterfactuals for all markets
1344
+ blank |
1345
+ title | 2.7 Counterfactual experiments
1346
+ text | In this section I investigate the impact of consolidation on listener and advertiser
1347
+ | welfare. First, I investigate the changes in the surplus of listeners and advertisers. In
1348
+ | particular, I calculate how much market power was exercised on both of those groups.
1349
+ | Second, I decompose market power into a variety component and extra market power
1350
+ | that is manifested in changes in quantity supplied.
1351
+ | Before performing counterfactual calculations, consider descriptive relationships
1352
+ | between concentration and prices. First, I regressed market Price Per Rating Point
1353
+ | on a market’s HHI, including market fixed effects. I find that higher concentration is
1354
+ | correlated with higher prices in the advertising market, suggesting that radio station
1355
+ | owners are exercising some amount of market power on advertisers. Second, I re-
1356
+ | gressed total advertising supplied on the market’s HHI with market dummies. Here I
1357
+ | get a coefficient of 1.65(0.3). This is evidence of market power in the listener market.
1358
+ | Because market power appears to be present in both market segments, I cannot defi-
1359
+ | nitely conclude who had more surplus extracted by radio station owners if I just use
1360
+ | quantities and prices. In the next subsection I present the structural counterfactuals
1361
+ | that answer this question.
1362
+ blank |
1363
+ |
1364
+ title | 2.7.1 Impact of mergers on consumer surplus
1365
+ text | To isolate the impact of the Telecom Act on a surplus division between advertisers
1366
+ | and listeners, I perform a counterfactual in which I recompute new equilibrium ad
1367
+ | quantities under the old 1996 ownership structure and 1996 formats. This calculation
1368
+ meta | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS 30
1369
+ blank |
1370
+ |
1371
+ text | Consumer Advertiser Mean price
1372
+ | Average ad load Advertising minutes
1373
+ | surplus surplus index
1374
+ | Impact of
1375
+ | ownership change and 11.7pdm -5.4pdm -118.1m -737min
1376
+ | +1.34%
1377
+ | format switching +2.5% -17.3% -15.8% -1.0%
1378
+ | No ad adjustment
1379
+ | Impact of 1.2pdm -2.2pdm -119.4m -8,216min
1380
+ | +5.66%
1381
+ | ad adjustment +0.3% -8.4% -19.0% -11.7%
1382
+ | Total impact of
1383
+ | ownership change 12.9pdm -7.5pdm -237.5m -8,953min
1384
+ | +6.99%
1385
+ | format switching and +2.8% -24.2% -31.8% -12.6%
1386
+ | ad adjustment
1387
+ blank |
1388
+ text | Table 2.9: Counterfactuals for small markets (less than 500k people)
1389
+ | Consumer Advertiser Mean price
1390
+ | Average ad load Advertising minutes
1391
+ | surplus surplus index
1392
+ | Impact of
1393
+ | ownership change and 2.6pdm -6.0pdm -1.0m -835min
1394
+ | +0.01%
1395
+ | format switching +0.5% -11.0% -12.8% -2.0%
1396
+ | No ad adjustment
1397
+ | Impact of -4.4pdm 4.6pdm 0.7m 3,081min
1398
+ | -0.02%
1399
+ | ad adjustment -0.8% +9.5% +9.9% +7.7%
1400
+ | Total impact of
1401
+ | ownership change -1.8pdm -1.4pdm -0.3m 2,245min
1402
+ | -0.01%
1403
+ | format switching and -0.3% -2.5% -4.2% +5.5%
1404
+ | ad adjustment
1405
+ blank |
1406
+ text | Table 2.10: Counterfactuals for large markets (more than 2,000k people)
1407
+ blank |
1408
+ text | is motivated by the fact that in 1996 many markets were at their ownership caps.
1409
+ | The total impact of consolidation on advertiser and listener welfare is presented
1410
+ | in the last row of Table 2.8. It turns out that mergers decrased total ad quantity
1411
+ | by roughtly 14 thousand minutes. That resulted in lowering average ad exposure
1412
+ | by 4.8 persons-day-minutes (pdm), which is about 10% of the total ad load. The
1413
+ | changes translated to about a 4.7 pdm increase in consumer welfare. Because we
1414
+ | do not observe dollar prices in the listenership market we cannot compute the dollar
1415
+ | value of this compensating variation. However, we can compute a rough estimate
1416
+ | using the prices for the satellite radio. If we assume people buy satelite radio just
1417
+ | to avoid advertising, we get a rough estimate of 1.5 cents per minute, or 730million
1418
+ | dollars for each person-day-minute per year. The total effect would amount to $3.5b.
1419
+ | This is of course a very loose upper bound on the overall welfare gain, however if
1420
+ | make a conservative assumption that only 10% of the value of satellite radio is lack
1421
+ | of advertising, we get $350m.
1422
+ | For advertisers, a decrease in quantity supplied leads to about 2.57% increase in
1423
+ meta | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS 31
1424
+ blank |
1425
+ |
1426
+ |
1427
+ text | per-listener prices, or a $300m decrease in advertiser surplus. I therefore conclude
1428
+ | that the Telecom Act lead to a reallocation of surplus from advertisers to listenerss.
1429
+ | Moreover, because the gain by listeners ($350m) is larger than the surplus lost by
1430
+ | advertisers, I find that the Act created new surplus. This increase can be explained
1431
+ | by the fact that listeners are more annoyed by ads than the value of an ad to the
1432
+ | advertisers.
1433
+ | A deeper story can be told by looking seperately at small versus large markets.
1434
+ | As mentioned in the previous section, radio stations have considerable control over
1435
+ | prices in small markets, and no control in the large markets. Motivated by this fact,
1436
+ | I present counterfactuals for markets with less than 0.5 population and more than
1437
+ | 2m population. In smaller markets (see Table 2.9), stations contract advertising to
1438
+ | exercise market power on advertisers. They supply more than 10,000 minutes less of
1439
+ | advertising. That translates into a 7.3pdm decrease in ad exposure, which increases
1440
+ | consumer surplus by 11.6pdm. However, prices rise by 6.4%, and cause a $230m
1441
+ | loss in advertiser surplus. On the other hand in large markets (see Table 2.10) firms
1442
+ | supply more than 2,000 extra minutes of advertising, which lowers consumer surplus
1443
+ | by almost 2pdm. On balance, this does not affect advertiser surplus. I conclude that
1444
+ | listeners gained form the Telecom Act only in small markets.
1445
+ blank |
1446
+ |
1447
+ title | 2.7.2 Effects of product variety and market power
1448
+ text | Berry and Waldfogel (2001) suggest that the negative effects of ownership consolida-
1449
+ | tion on listeners might be mitigated by format switching. They find that post-merger
1450
+ | repositioning results in spatial competition leading to more variety, which they as-
1451
+ | sume is beneficial for the listeners 4 . To quantify this effect, I compare surpluses
1452
+ | computed imposing 1996 ownership and formats with surpluses computed imposing
1453
+ | actual ownership and formats without ad quantity adjustments. That is, I fix ad
1454
+ | quantities computed with 1996 ownership and formats. The results of this experi-
1455
+ | ment are presented in the first row of Table 2.8. It turns out that if I do not account
1456
+ | for quantity changes, the assertion of Berry and Waldfogel (2001) is true. In this
1457
+ meta | 4
1458
+ text | Similar results obtained using direct analysis of station playlists can be found in Sweeting (2008).
1459
+ meta | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS 32
1460
+ blank |
1461
+ |
1462
+ |
1463
+ text | case, listeners have a 1.3% larger surplus (about 6.6pdm) after consolidation and for-
1464
+ | mat switching. Listener surplus grows because of two factors: increased variety and
1465
+ | decreased advertising exposure. The latter decreased even though I keep number of
1466
+ | ad minutes fixed. However, in the real world, repositioning changes firms’ incentives
1467
+ | to set ad quantity, because it softens competition in the advertising market. The im-
1468
+ | pact of quantity readjustments is presented in the middle row of Table 2.8. It turns
1469
+ | out that both listeners and advertisers are worse off due to quantity adjustments.
1470
+ | Listeners lose 1.9pdm and advetisers lose additional $150m in surplus.
1471
+ blank |
1472
+ |
1473
+ title | 2.8 Robustness analysis
1474
+ text | This section examines the robustness of my advertising model to different assumptions
1475
+ | about competition among station formats. This step is motivated by the fact that
1476
+ | the data concerning advertiser deals is incomplete. I deal with the incompleteness by
1477
+ | proposing a stilyzed decision model for advertisers that uses publicly available data
1478
+ | to predict substitution patterns between formats. These patterns directly detemine
1479
+ | the market power of stations over advertsers, and can potentially alter the results of
1480
+ | counterfactual experiments.
1481
+ | To investigate the robustness of the results, I reestimated the model under two
1482
+ | alternative assumptions. The first scenario represents the extreme situation in which
1483
+ | formats compete only between themselves. In particular, suppose that advertiser
1484
+ | types get utility from only one particular format. In this case, equation (2.6) has
1485
+ | ωf f = 1 and ωf f 0 = 0 if f 6= f 0 . The second scenario represents another extreme in
1486
+ | which formats are perfect substitutes, i.e., there is only one type of advertiser who
1487
+ | values all formats in the same way. Formally this means that ωf f 0 = 1/8, because
1488
+ | there are 8 possible formats. The estimated model is in a sense in-between the these
1489
+ | extreme alternatives, because it assumes that formats are imperfect substitutes.
1490
+ | Estimates of the inverse demand advertising slopes are presented in Table 2.11.
1491
+ | The estimates show that the baseline model lies between the two extremes. When we
1492
+ | assume oligopoly within a format, the estimated slope parameter θ2L is smaller than
1493
+ | the one in the baseline model. On the other hand in the perfect substitutes model,
1494
+ meta | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS 33
1495
+ blank |
1496
+ |
1497
+ text | Market population less than .5m between .5m and 1.5m more than 1.5m
1498
+ | Baseline model 1.34 (0.046) 0.35 (0.026) 0.00 (0.008)
1499
+ | Oligopoly within format 1.07 (0.036) 0.28 (0.061) 0.02 (0.009)
1500
+ | Perfect substitutes 1.44 (0.035) 0.32 (0.030) 0.01 (0.009)
1501
+ blank |
1502
+ text | Table 2.11: Slope of the inverse demand for ads θ2A , by market size
1503
+ | Consumer Advertiser Mean price
1504
+ | Average ad load Advertising minutes
1505
+ | surplus surplus index
1506
+ | 4.7pdm -4.8pdm -304.4m -12,329min
1507
+ | Baseline model +2.67%
1508
+ | +0.9% -9.5% -31.4% -7.3%
1509
+ | 4.4pdm -4.5pdm -253.4m -9,056min
1510
+ | Oligopoly within format +1.12%
1511
+ | +0.8% -9.0% -31.3% -5.6%
1512
+ | 4.9pdm -5.3pdm -314.7m -16,648min
1513
+ | Perfect substitutes +2.57%
1514
+ | +0.9% -10.3% -32.7% -9.0%
1515
+ blank |
1516
+ text | Table 2.12: Robustness of counterfactuals
1517
+ blank |
1518
+ text | the estimated slope tends to be higher. Despite the fact that there are statistical
1519
+ | differences between the different models, the main qualitative assertion, that stations
1520
+ | have more power in smaller markets, still holds. In order to assess the economic impli-
1521
+ | cation of those differences, I recomputed the estimated profit margin under different
1522
+ | models. It turns out that the model with format oligopoly predicts on average a 2.4%
1523
+ | higher profit margins than the baseline model. Conversely the model with perfect
1524
+ | substitutes predicts 2.1% lower profit margin.
1525
+ | To draw final conclusions about the strength of the assumption about weights, I
1526
+ | recomputed the main counterfactual using the alternative models. The results are
1527
+ | presented in Table 2.12. The baseline again lies between the new counterfactuals.
1528
+ | There is no qualitative change in the results. Moreover the percentage changes in
1529
+ | consumer and advertiser surplus are almost the same. Consequently, I conclude that
1530
+ | the results of the paper are not sensitive to changes in the assumption about substi-
1531
+ | tution between formats.
1532
+ blank |
1533
+ |
1534
+ title | 2.9 Conclusion
1535
+ text | In this paper I analyze mergers in two-sided markets on the example of the 1996-2006
1536
+ | consolidation wave in U.S. radio industry. The goal of this study is to describe and
1537
+ | quantify how mergers in the two-sided market differ from a differentiated product
1538
+ meta | CHAPTER 2. MERGERS IN TWO-SIDED MARKETS 34
1539
+ blank |
1540
+ |
1541
+ |
1542
+ text | oligopoly setting. I make two main contributions. First, I recognize the fact two-
1543
+ | sided markets consist of two types of consumers, who may be affected by the merger in
1544
+ | different ways. For example, if extra market power causes the radio station to increase
1545
+ | advertising, it will benefit consumers but hurt advertisers. Second, I disaggregate the
1546
+ | impact of a merger on consumers into changes in the variety of available products
1547
+ | and changes in supplied quantity of ads.
1548
+ | Radio is an important medium in the U.S., reaching about 94% of Americans
1549
+ | twelve years old or older each week. Moreover, the average consumer listens to about
1550
+ | 20h of radio per week and between 6am and 6pm more people use radio than TV
1551
+ | or print media5 . In 1996 the Telecommunication Act deregulated the industry by
1552
+ | raising local ownership caps. This deregulation caused a massive merger wave, that
1553
+ | reshaped the ownership structure, by moving from family based ownership into more
1554
+ | corporate structures. I estimate that this consolidation raised consumer surplus by
1555
+ | 1%, but lowered advertiser surplus by $300m. I find that the mergers created extra
1556
+ | variety that increased listener welfare by $1.3%. On the other hand they softened
1557
+ | competition and decreased advertiser welfare by $147m per year. Subsequent ad
1558
+ | quantity adjustments led to a 0.3% decrease in listener welfare (with the variety
1559
+ | effect it totals to the 1% increase) and an additional $153m decrease in advertiser
1560
+ | welfare (with the variety effect it totals $300m).
1561
+ blank |
1562
+ |
1563
+ |
1564
+ |
1565
+ meta | 5
1566
+ text | Source: A.Richter (2006)
1567
+ meta | Chapter 3
1568
+ blank |
1569
+ title | Estimation of cost synergies from
1570
+ | mergers without cost data:
1571
+ | Application to U.S. radio
1572
+ blank |
1573
+ title | 3.1 Preface
1574
+ text | This chapter develops a new way to estimate cost synergies from mergers without
1575
+ | using actual data on cost. The estimator uses a structural model in which companies
1576
+ | play a dynamic game with endogenous mergers and product repositioning decisions.
1577
+ | Such a formulation has several benefits over the widespread static merger analysis.
1578
+ | In particular, it corrects for sample selection of more profitable mergers and captures
1579
+ | follow-up mergers and post-merger product repositioning.
1580
+ | The framework is applied to estimate cost efficiencies after the deregulation of
1581
+ | U.S. radio in 1996. The procedure uses the data on radio station characteristics
1582
+ | and numerous acquisitions, without explicit need for cost data. It turns out that
1583
+ | between 1996 and 2006 additional ownership concentration generated $2.5b per-year
1584
+ | cost savings, which is about 10% of total industry revenue.
1585
+ blank |
1586
+ |
1587
+ |
1588
+ |
1589
+ meta | 35
1590
+ | CHAPTER 3. COST SYNERGIES FROM MERGERS 36
1591
+ blank |
1592
+ |
1593
+ |
1594
+ title | 3.2 Introduction
1595
+ text | The extent to which a potential merger generates cost efficiencies is often mentioned
1596
+ | by managers as a major motivation to merge. Moreover, potential fixed cost savings
1597
+ | generated by a merger are recognized by the Horizontal Merger Guidelines as a fac-
1598
+ | tor that can provide consumers with direct price-related as well as non-price-related
1599
+ | benefits. Thus, for antitrust purposes one should evaluate cost savings in addition
1600
+ | to measuring the decrease in competition. However, this approach is rarely used in
1601
+ | practice, because in most cases reliable cost data are unavailable. This paper pro-
1602
+ | vides a solution to this problem, by proposing a method to estimate cost synergies
1603
+ | without using any data on cost. This method requires only panel data on the own-
1604
+ | ership structure, product characteristics, and prices and quantities, information that
1605
+ | in most cases is easily accessible.
1606
+ | Evaluating the underlying causes of ownership consolidation requires a dynamic
1607
+ | model in which mergers are endogenous. However, most past empirical work analyzed
1608
+ | mergers in a static framework and treats market structure as given. Papers by Nevo
1609
+ | (2000), Pinkse and Slade (2004), Ivaldi and Verboven (2005) exogenously impose
1610
+ | changes in market structure on a static equilibrium model and calculate counterfactual
1611
+ | changes in prices and welfare. These models are very useful in addressing the short
1612
+ | run impacts of mergers but do not account for changes in market structure that
1613
+ | might happen as a result of a merger. Benkard, Bodoh-Creed, and Lazarev (2008)
1614
+ | evaluate the longer run effects of a merger on market structure, but still treat it
1615
+ | as an exogenous one-time event. Neither of these approaches allows for estimating
1616
+ | the supply side determinants of mergers, such as cost synergies. Furthermore, the
1617
+ | assumption that mergers are exogenous may create a selection bias that results in
1618
+ | overestimating the cost synergies (we might pick up other unobserved components
1619
+ | correlated with the propensity to merge). Furthermore, recent models assume away
1620
+ | follow-up mergers and post-merger repositioning of products.
1621
+ | To address these issues, I propose a dynamic model in the spirit of Gowrisankaran
1622
+ | (1999) in which mergers and product positioning are endogenous and are assumed to
1623
+ | happen sequentially. Such an approach enables me to estimate the cost efficiencies
1624
+ meta | CHAPTER 3. COST SYNERGIES FROM MERGERS 37
1625
+ blank |
1626
+ |
1627
+ |
1628
+ text | of consolidation without any data on cost. It also eliminates the shortcomings men-
1629
+ | tioned earlier, because it incorporates the dynamic processes directly into the model.
1630
+ | Moreover, endogenizing mergers allows for correction of sample selection by using a
1631
+ | procedure in the spirit of Heckman (1979), adjusted for a dynamic game environment.
1632
+ | The model is subsequently applied to analyze ownership consolidation in the U.S.
1633
+ | radio industry. The Telecommunications Act of 1996 increased local-market radio
1634
+ | station ownership caps, triggering an unprecedented merger wave that had the effect
1635
+ | of eliminating many small and independent radio owners. From 1996 to 2006, the
1636
+ | average Herfindahl-Hirschman Index (HHI) in local radio markets grew from 0.18
1637
+ | to 0.26, the average number of owners in the market dropped from 16.6 to 12.4,
1638
+ | and the average number of stations owned grew from 1.6 to 2.3. Such dramatic
1639
+ | changes to the market structure have raised concerns about anti-competitive aspects
1640
+ | of the deregulation (Leeper (1999), Drushel (1998), Klein (1997)). After estimating
1641
+ | the model using the method of Bajari, Benkard, and Levin (2004), I find that the
1642
+ | main incentives to merge in radio come from the cost side. Total cost side savings
1643
+ | amount to $2.5b per year, constituting about 10% of total industry revenue. Such
1644
+ | cost synergies are an order of magnitude higher than the anti-competetive effects of
1645
+ | these mergers identified by Jeziorski (2010). Moreover, the fact that consolidation
1646
+ | leads to substantial cost side synergies leads me to conclude that the Telecom Act
1647
+ | made radio advertising more competitive against other media, such as TV or the
1648
+ | Internet.
1649
+ | To my knowledge, Gowrisankaran (1999) is the only applied paper that uses a
1650
+ | dynamic framework to endogenize mergers. His analysis argued that merger dynamics
1651
+ | are very important. The main drawback of his analysis is that it was never fit to
1652
+ | real data. This was due in part to the complexity of his model and in part to
1653
+ | the lack of a good dataset. To solve the complexity problem, I utilize the latest
1654
+ | developments in the dynamic-games literature. These developments enable us to
1655
+ | estimate very complicated models without explicitly solving them (Bajari, Benkard,
1656
+ | and Levin (2004)). This paper also contributes to empirical literature on demand
1657
+ | and cost curve estimation (this started with Rosse (1970) and Rosse (1967)), by
1658
+ | accounting explicitly for the demand side incentives to merge. On the technical side,
1659
+ meta | CHAPTER 3. COST SYNERGIES FROM MERGERS 38
1660
+ blank |
1661
+ |
1662
+ |
1663
+ text | my model shares some similarities with Sweeting (2007). I concentrate on questions
1664
+ | about incentives to merge and the impact of consolidation on welfare, while Sweeting
1665
+ | focuses mainly on estimates of the format switching cost. My analysis also extends
1666
+ | his model by adding a model of ad quantity choices and endogenous mergers. Another
1667
+ | paper on a similar topic is O’Gorman and Smith (2008). They use a static oligopoly
1668
+ | model to estimate the cost curve in radio. They find that the fixed cost savings when
1669
+ | owning two stations is bounded between between 20% and 50% of per-station costs
1670
+ | (I estimate this number to be 20%). I supplement their estimates by accounting for
1671
+ | selection bias, follow-up mergers and post-merger repositioning as outlined above.
1672
+ | This chapter is organized as follows. Section 2 contains a flexible, structural
1673
+ | merger model that can applied to many industries. The estimation procedure is
1674
+ | discussed in Section 3. Section 4 describes the application of the framework to analyze
1675
+ | the merger wave in the U.S. radio industry. Section 5 concludes the paper.
1676
+ blank |
1677
+ |
1678
+ title | 3.3 Merger and repositioning framework
1679
+ text | This section presents the dynamic oligopoly model of an industry with differentiated
1680
+ | products in the spirit of Ericson and Pakes (1995). The industry is modeled as a
1681
+ | dynamic game and the players are companies holding portfolios of different products
1682
+ | (brands). The modeling effort emphasizes the actions of companies changing the
1683
+ | profolio of owned products, specifically rebranding and acquisitions. The model is
1684
+ | general enough to encompass a number of different industries and types of competi-
1685
+ | tion, by allowing for a large range of different single-period profit functions and cost
1686
+ | structures.
1687
+ blank |
1688
+ |
1689
+ title | 3.3.1 Industry basics
1690
+ text | The industry is composed of M different markets that operate in discrete time over
1691
+ | an infinite horizon. The payoff relevant market characteristics at time t are fully
1692
+ | characterized by a set of covariates dmt ∈ D that include demand shifters. In each
1693
+ | market m, there are up to Km operating firms and up to Jm active products. Let oj ∈
1694
+ meta | CHAPTER 3. COST SYNERGIES FROM MERGERS 39
1695
+ blank |
1696
+ |
1697
+ |
1698
+ text | Km be the owner of the product j. I assume that each product j ∈ Jm is characterized
1699
+ | by a triple stj = (fjt , ξjt , otj ). In particular, fjt ∈ F is a discrete characteristic, and
1700
+ | ξjt ∈ Ξ is a continuous characteristic of the product. The state of the industry at the
1701
+ | beginning of each period is therefore a duple (st , dt ) ∈ S × D.
1702
+ | To simplify the further exposition define Okt to be the number of products owned
1703
+ | t
1704
+ | by the firm k, and O−k to be the number of products owned by its competitors.
1705
+ blank |
1706
+ |
1707
+ title | 3.3.2 Players’ actions
1708
+ text | Firms can undertake two types of actions: product acquisitions and product repo-
1709
+ | sitioning. I assume that acquisitions take place first and the results are common
1710
+ | knowledge before the firms commence with repositioning.
1711
+ | In general, the product acquisition process can be very complicated. Firms can
1712
+ | acquire any subset of products owned by competitors, and multiple firms can bid to
1713
+ | acquire the same product. Therefore, the most general model of this process is likely to
1714
+ | be intractable both analytically and numerically. Additionally, the model of mergers
1715
+ | without additional structure is likely to generate multiple equilibria, which will sig-
1716
+ | nificantly complicate its estimation. To solve these problems, I follow Gowrisankaran
1717
+ | (1999) and I assume that the station acquisition process is sequential. Owners move
1718
+ | in a sequence specified by a function A : st 7→ i, where i is a permutation of the active
1719
+ | owners’ index {1, . . . , K}. In addition, for notational purposes, I set i(K +1) = K +1.
1720
+ | t
1721
+ | Let ωi(k) be the state of the industry observed by the k-th mover in the merger
1722
+ | t
1723
+ | process, before making acquisition decisions. ωi(1) is set to be equal to st . Addi-
1724
+ | tionally, every player observes a set of acquisition prices for all stations owned by
1725
+ | competitors
1726
+ | Pkt = {φtkj : otj 6= k}
1727
+ blank |
1728
+ text | These prices are the outcomes of a bargaining process that is only a function of the
1729
+ | t t
1730
+ | current observable state ωi(k) . This assumption holds if ωi(k) is the only payoff relevant
1731
+ | variable for both the acquirer and the acquiree and the prices are determined by a
1732
+ | Nash Bargaining Solution.
1733
+ | In addition to prices, the potential buyer observes a set of additive payoff/cost
1734
+ meta | CHAPTER 3. COST SYNERGIES FROM MERGERS 40
1735
+ blank |
1736
+ |
1737
+ |
1738
+ text | shocks from acquiring any competitor owned product φtk = {φtkj : otj 6= k} that is his
1739
+ | private information. A player’s i(k) action involves specifying which subset of stations
1740
+ | are to be acquired. I restrict attention to Markov strategies, so the acquisition policy
1741
+ | is a mapping
1742
+ | t t
1743
+ | ak : (ωi(k) , φtk , Pkt , dt ) 7→ {0, 1}O−k
1744
+ | t
1745
+ | After the decisions are made, a new ownership ωi(k+1) is determined, and it becomes
1746
+ | common knowledge. Player a(k + 1) proceeds with acquisitions, or if there are no
1747
+ | move active players, the game moves to product repositioning.
1748
+ | A product repositioning involves decisions about changing discrete characteristics
1749
+ | fjt of owned products, in exchange for paying a switching cost C(fj , fjt+1 ). It is,
1750
+ | similarly to acquisitions, a sequential process, and it is assumed that firms proceed
1751
+ | according to the same sequence i(k)1 .
1752
+ | The first mover i(1) in the repositioning process conditions his decision on the
1753
+ | t
1754
+ | state of the industry after the acquisitions, i.e., the observable state ω̃i(1) is equal
1755
+ | t
1756
+ | to ωi(K+1) . In the same way the k-th mover i(k) observers the repositionings done
1757
+ | t
1758
+ | by all the previous movers. This information is summarized in ω̃i(k) . In addition
1759
+ | t
1760
+ | to observing the state ω̃i(k) , the k-th mover observes payoff/cost shocks for all the
1761
+ | products of any potential type ψkt = {ψkjf
1762
+ | t
1763
+ | : otj = k, 1 ≥ f ≥ F }. The product
1764
+ | repositioning policy is a Markov strategy given by the mapping
1765
+ blank |
1766
+ text | t t
1767
+ | bk : (ω̃i(k) , ψkt , dt ) 7→ F Ok
1768
+ blank |
1769
+ text | t
1770
+ | When the choices of player i(k) are made a new industry state ω̃i(k+1) becomes a
1771
+ | common knowledge.
1772
+ | After repositioning the new industry state (st+1 , dt+1 ) is determined. st+1 is con-
1773
+ | t
1774
+ | structed by combining ω̃i(K+1) with the values of a new continuous product charac-
1775
+ | teristic ξ t+1 The following assumptions restrict the dynamics of ξ.
1776
+ blank |
1777
+ text | Assumption 3.3.1. ξjt evolves as an exogenous Markov process, for example
1778
+ blank |
1779
+ text | ξjt = ρξjt−1 + ζt (3.1)
1780
+ meta | 1
1781
+ text | This assumption is made for the simplicity of exposition and might be easily relaxed.
1782
+ meta | CHAPTER 3. COST SYNERGIES FROM MERGERS 41
1783
+ blank |
1784
+ |
1785
+ |
1786
+ text | where ζt is a mean zero IID random variable.
1787
+ blank |
1788
+ text | Moreover, market covariates are also assumed to be exogenous and Markov
1789
+ blank |
1790
+ text | Assumption 3.3.2. dt evolves as an exogenous Markov process.
1791
+ blank |
1792
+ text | These assumptions are made for simplicity of estimation. They could be poten-
1793
+ | tially relaxed if more data is available. For example, if ξ is a product quality, one
1794
+ | could assume that it is also a dynamic choice variable and estimate it directly from
1795
+ | the observed investment.
1796
+ | When the new industry state is (st+1 , dt+1 ) realized firms then play a static com-
1797
+ | petition game that yelds profits given by π̄k (st+1 , dt ).
1798
+ blank |
1799
+ |
1800
+ title | 3.3.3 Payoffs and equilibrium
1801
+ text | Given the realizations of (st , st+1 , P t , ψ t , φt , dt ) the per-period payoff for player k is
1802
+ | given by the equation
1803
+ | X
1804
+ | πk (st , st+1 ,P t , ψ t , φt , dt ) = π̄k (st+1 , dt ) − F (stk ) + (φtkj − Pkj
1805
+ | t
1806
+ | )+
1807
+ | j:otj 6=k,ot+1
1808
+ | j =k
1809
+ | X X h i (3.2)
1810
+ | t+1 t+1
1811
+ | + Pott+1 j + t t t
1812
+ | ψkjf t+1 − I(fj 6= fj )C(ff , fj )
1813
+ | j j
1814
+ | j:otj =k,ot+1
1815
+ | j 6=k j:ot+1
1816
+ | j =k
1817
+ blank |
1818
+ |
1819
+ text | where F (stk ) is the fixed cost of owning portfolio stk , and π̄k is a one-shot profit from
1820
+ | the portfolio.
1821
+ | Let g = (a1 , . . . , aK , b1 , . . . , bK ) be a Markov strategy profile. It can be shown that
1822
+ | this profile and an initial condition (s, d) determine the unique, controlled Markov
1823
+ | process over states, acquisition prices P , payoff shocks ψ and φ, and market covariates
1824
+ | d
1825
+ | P(g, s, d) ∈ ∆(S × P × Ψ × Φ × D × T )
1826
+ blank |
1827
+ text | where T is a time horizon, and ∆ is a set of probability measures. P is therefore a
1828
+ | discrete time stochastic process on S × P × Ψ × Φ × D. This process is also supplied
1829
+ | with a filtration, such that the strategy profile g is measurable.
1830
+ meta | CHAPTER 3. COST SYNERGIES FROM MERGERS 42
1831
+ blank |
1832
+ |
1833
+ |
1834
+ text | Each owner is maximizing the expected discounted sum of profits taking the strate-
1835
+ | gies of opponents g−k as given. The value function for player k is defined as
1836
+ blank |
1837
+ text | ∞
1838
+ | X
1839
+ | Vk (s, d|gk , g−k ) = EP(g,s,d) β t πk (st , st+1 , P t , ψ t , φt , dt ) (3.3)
1840
+ | t=0
1841
+ blank |
1842
+ |
1843
+ text | It is assumed that the markets are in a Markov Perfect Equilibrium, i.e., firms choose
1844
+ | strategy profile g∗ , such that for all k
1845
+ blank |
1846
+ text | Vk (s, d|g∗k , g∗−k ) ≥ Vk (s, d|gk , g∗−k ) ∀gk . (3.4)
1847
+ blank |
1848
+ text | For simplicity, I restrict my attention to symmetric equilibria. The next section
1849
+ | describes the estimation procedure.
1850
+ blank |
1851
+ |
1852
+ title | 3.4 Estimation
1853
+ text | Consider parameterizations of the fixed cost F (stk |θF ) and the switching cost
1854
+ | C(fjt , fjt+1 |θC ). This section outlines a procedure, based on Bajari, Benkard, and
1855
+ | Levin (2004), to obtain consistent estimators of θF and θC without using direct data
1856
+ | on cost.
1857
+ | The procedure has two stages. The fist stage infers equilibrium behavior from the
1858
+ | data on one or a set of similar industries. The second stage estimates the cost param-
1859
+ | eters for a particular industry by imposing the dynamic game equilibrium inequalities
1860
+ | 3.4. The following subsection describes the data needed for this procedure to work.
1861
+ blank |
1862
+ |
1863
+ title | 3.4.1 Data
1864
+ text | Consider an industry, or a set of similar industries, operating in M markets over the
1865
+ | discrete time span T . Data is given by the set X = {xtm : 1 ≤ m ≤ M, 1 ≤ t ≤ T }.
1866
+ | Each point in the data xtm describes the state of the industry at the beginning of
1867
+ | the period stm = (f tm , ξ tm , otm ), market covariates/demand shifters dtm , and a set of
1868
+ | transaction prices P mt . The data does not have to contain any direct information on
1869
+ meta | CHAPTER 3. COST SYNERGIES FROM MERGERS 43
1870
+ blank |
1871
+ |
1872
+ |
1873
+ text | the cost. This is convenient since most of the data on cost suffers from accounting
1874
+ | issues. Therefore direct cost estimates from the data might be unreliable.
1875
+ | To facilitate the inference process a standard assumption about the data gen-
1876
+ | erating process is made: that it is generated by a single MPE strategy profile g∗ .
1877
+ | Crucially, the dataset needs to contain a reasonable amount of within market acqui-
1878
+ | sitions and repositioning to allows it to identify equilibrium strategies. Sometimes it
1879
+ | is possible to obtain such datasets within one industry (see U.S. radio in the appli-
1880
+ | cation), however for most industries such datasets are unavailable. In this case, it is
1881
+ | possible to pool similar industries to construct one dataset. To make this work one
1882
+ | needs a slightly stronger assumption that equilibrium behavior is the same across the
1883
+ | pooled industries.
1884
+ | The transaction prices are helpful but not necessary to identify the cost parame-
1885
+ | ters. Estimation is possible without them but it requires more assumptions about the
1886
+ | bargaining process during the acquisition, as well as much more computing power.
1887
+ | The extra steps needed to proceed without the prices are mentioned in Appendix B.1.
1888
+ | In order to simplify the exposition all state variables are assumed to be observed.
1889
+ | However, the procedure also applies to problems in which some payoff relevant in-
1890
+ | formation is unobserved to the econometrician. In many cases one can infer the
1891
+ | unobserved state variable from a static estimation of the one-shot profit function π̄.
1892
+ | One example of such a case is Berry, Levinsohn, and Pakes (1995) estimator, which
1893
+ | uses differences of static market shares to identify unobserved product quality. More-
1894
+ | over, there are numerous ways to proceed in case one cannot directly infer all the
1895
+ | latent state variables. For example, one could supply the procedure from this chapter
1896
+ | with an EM algorithm proposed by Arcidiacono and Miller (2010).
1897
+ blank |
1898
+ |
1899
+ title | 3.4.2 Policy estimation
1900
+ text | For any strategy profile
1901
+ | g = (a1 , . . . , aK , b1 , . . . , bK )
1902
+ blank |
1903
+ text | let ProbM R
1904
+ | k (ak |ωk , dk ), and Probk (bk |ω̃k , dk ), be the probabilities of taking acquisition
1905
+ | and repositioning actions. The former is a probability measure on {0, 1}O−k , and the
1906
+ meta | CHAPTER 3. COST SYNERGIES FROM MERGERS 44
1907
+ blank |
1908
+ |
1909
+ |
1910
+ text | latter on {1, . . . , F }Ok . They are constructed by integrating out unobservable payoff
1911
+ | shocks φ and ψ. The goal of this subsection is to provide a procedure that allows us
1912
+ | to obtain the estimates of these probability measures. This procedure leverages on
1913
+ | the sequentiality assumptions made in the previous section.
1914
+ | The first step of the procedure is constructing an auxiliary dataset using a sequen-
1915
+ | tial structure of the acquisition and repositioning process. For each t, the predefined
1916
+ | sequence of player moves i = I(st ) specifies a mapping
1917
+ blank |
1918
+ text | (st , st+1 ) 7→ (ωi(1) , . . . , ωi(K) , ω̃i(1) , . . . ω̃i(K) )
1919
+ blank |
1920
+ text | This mapping is used to construct 3 sets. The first set describes the acquisition
1921
+ | dynamics
1922
+ blank |
1923
+ text | Y1 = {(ωktm , dtm , atm
1924
+ | k ) : 1 ≤ k ≤ K, 1 ≤ m ≤ M, 1 ≤ t ≤ T }
1925
+ blank |
1926
+ |
1927
+ text | where atm
1928
+ | k is a vector of zeros and ones that indicates acquisition decisions for player
1929
+ | k. The second set describes acquisition prices
1930
+ blank |
1931
+ text | Y2 = {(ωktm , dtm , Pktm ) : 1 ≤ k ≤ K, 1 ≤ m ≤ M, 1 ≤ t ≤ T }
1932
+ blank |
1933
+ text | where Pktm is a vector of prices for all acquisitions of player k. The last set describes
1934
+ | the repositioning
1935
+ blank |
1936
+ text | Y3 = {(ω̃ktm , dtm , Fkmt ) : 1 ≤ k ≤ K, 1 ≤ m ≤ M, 1 ≤ t ≤ T }
1937
+ blank |
1938
+ text | where Fkmt is a vector of chosen characteristics for products owned by firm k.
1939
+ | Set Y1 is used to estimate the acquisition probability distribution ProbM
1940
+ | k as a
1941
+ | function of (ω, d). In a perfect world, one would like to employ a form of non-
1942
+ | parametric multi-dimensional discrete choice estimator. However, in practice, the
1943
+ | researcher is likely to face two problems: the large dimensionality of covariates (ω, d)
1944
+ | and the large dimensionality of the ProbM
1945
+ | k support (due to a big number of active
1946
+ | products/companies that can be acquired).
1947
+ meta | CHAPTER 3. COST SYNERGIES FROM MERGERS 45
1948
+ blank |
1949
+ |
1950
+ |
1951
+ text | The solution to the first problem is to employ a flexible parametric form
1952
+ blank |
1953
+ text | M
1954
+ | [ k (ak |ωk , dk , θM )
1955
+ | Prob
1956
+ blank |
1957
+ text | that exhausts most of the information in the data. The asymptotics of such an
1958
+ | estimator are similar to the non-parametric estimators in which the dimensionality
1959
+ | of pseudo-parameters θM grow as the dataset becomes large.
1960
+ | The second problem is more severe and in most cases cannot be solved without
1961
+ | additional assumptions. The following examples suggest different possible approaches.
1962
+ blank |
1963
+ text | Example 3.4.1 (One acquisition per period). If the acquisitions in the data tend to
1964
+ | be rare, one could potentially assume that only one acquisition per owner is allowed
1965
+ | each period. This reduces the decision space to only one dimension and enables direct
1966
+ | application of any discrete choice model (for example logit or probit) on the data set
1967
+ | Y1 .
1968
+ blank |
1969
+ text | The second example suggests how to deal with multiple acquisitions
1970
+ blank |
1971
+ text | Example 3.4.2 (Independent acqusitions). In the case where the acquisition deci-
1972
+ | sions are uncorrelated conditional on ωk and dk one could employ a discrete choice
1973
+ | regression directly on Y1 , fixing ωktm for all decisions in ãtm
1974
+ | k .
1975
+ blank |
1976
+ |
1977
+ text | The next solution makes more assumptions about the structure of the acquisition
1978
+ | decision making within the firm.
1979
+ blank |
1980
+ text | Example 3.4.3 (Sequential acqusitions). Suppose that the acquisition decisions are
1981
+ | made in a sequence, i.e., after observing ψj for a particular product, the firm decides
1982
+ | about its acquisition without looking at the payoff shocks ψ for other stations. In
1983
+ | this case one could further expand dataset Y1 to incorporate the sequence of decisions
1984
+ | within the firm. Because of the additive structure of payoffs and the fact that ψj are
1985
+ | IID, one could consistently estimate ProbM
1986
+ | k by using a discrete choice estimator on
1987
+ | the extended dataset.
1988
+ blank |
1989
+ text | If one were to observe the acquisition prices one could estimate the pricing function
1990
+ | P (ωkst ) directly from the dataset Y2 . This could be achieved by employing the flexible
1991
+ meta | CHAPTER 3. COST SYNERGIES FROM MERGERS 46
1992
+ blank |
1993
+ |
1994
+ |
1995
+ text | parametric interpolation2 .
1996
+ | When estimating the repositioning probabilities ProbR
1997
+ | k one faces similar problems,
1998
+ | but additionally one has to deal with multinomial vs. binomial choice. The three
1999
+ | examples of solutions to that problem presented previously also apply here.
2000
+ | Additionally, one could endogenize the continuous characteristic ξ and estimate it
2001
+ | as a function of the state space using the methods presented in Bajari, Benkard, and
2002
+ | Levin (2004). Depending on the interpretation of ξ, this might involve an additional
2003
+ | model. In this paper however, ξ t as well as dt are treated as exogenous and Markov.
2004
+ | The transition in this case can be estimated as a flexible parametric auto-regressive
2005
+ | process.
2006
+ | In the next subsection I describe a second stage of the cost function estimator
2007
+ | that uses the estimators of equilibrium policy and the transition of ξ and dt obtained
2008
+ | in the first step above.
2009
+ blank |
2010
+ |
2011
+ title | 3.4.3 Minimum distance estimator
2012
+ text | For the second stage the parameters of the fixed cost θF and repositioning cost θR are
2013
+ | estimated using a minimum distance estimator. The estimator is constructed using
2014
+ | the MPE inequalities (3.4). The remainder of this section describes how I obtain
2015
+ | estimates of the value functions in those inequalities.
2016
+ | The value function Vk (defined on the equation (3.3)) can be separated into four
2017
+ | parts.
2018
+ | Vkt = Atk + θφ Bkt + θψ Ckt + Dkt
2019
+ blank |
2020
+ text | where ∞
2021
+ | X X X
2022
+ | Atk =E β r−t π̄k (st , dt ) + Porr+1 j − r
2023
+ | Pkj
2024
+ | j
2025
+ | r=t j:orj =k,or+1 6=k j:orj 6=k,or+1 =k
2026
+ | j j
2027
+ blank |
2028
+ meta | 2
2029
+ text | Sometimes the dataset on prices is sparse, i.e., one does not observe prices for every deal. In
2030
+ | this case more simplifying assumptions about the pricing process are needed.
2031
+ meta | CHAPTER 3. COST SYNERGIES FROM MERGERS 47
2032
+ blank |
2033
+ |
2034
+ |
2035
+ text | is the expected stream of advertising revenues,
2036
+ | ∞
2037
+ | X X
2038
+ | Bkt =E β r−t φrkj
2039
+ | r=t j:orj 6=k,or+1 =k
2040
+ | j
2041
+ blank |
2042
+ |
2043
+ |
2044
+ text | is the expected stream of acquisition payoff/cost shocks,
2045
+ blank |
2046
+ text | ∞
2047
+ | X X
2048
+ | Ckt = E β r−t t
2049
+ | ψkjf r+1
2050
+ | j
2051
+ | r=t j:or+1 =k
2052
+ | j
2053
+ blank |
2054
+ |
2055
+ |
2056
+ text | is the expected stream of repositioning payoff/cost shocks, and
2057
+ |  
2058
+ | ∞
2059
+ | X X
2060
+ | Dkt = E β r−t F (srk |θF ) + 1(fjr+1 6= fjr )C(fjr , fjr+1 |θC )
2061
+ |  
2062
+ | r=t j:or+1 =k
2063
+ | j
2064
+ blank |
2065
+ |
2066
+ |
2067
+ text | is the expected stream of fixed costs and repositioning costs. The extra parameters
2068
+ | θφ and θψ are needed because the first stage estimation requires normalization of the
2069
+ | variances of φ and ψ.
2070
+ | Accounting for Bkt in the simulation of profits from a merger takes care of selec-
2071
+ | tion on unobservables, as apposed to the usual static approach to mergers. Given
2072
+ | the merger decision atm tm tm
2073
+ | jk , the contribution of unobserved profits is θφ E[φjk |ajk ]. Be-
2074
+ | cause a company observes the payoff shock before making an acquisition, the merg-
2075
+ | ers that occur are selected for high value of φtm
2076
+ | jk When φ has zero mean, it is the
2077
+ | case that E[φtm tm
2078
+ | jk |ajk = 1] > 0. Failing to account for that (i.e. assuming that
2079
+ | E[φtm tm tm
2080
+ | jk |ajk = 1] = E[φjk ] = 0) would cause underestimation of profits from mergers
2081
+ | and overestimation of fixed cost synergies 3 . The same point can be made about the
2082
+ | selection on unobservables when repositioning products and inclusion of Ckt .
2083
+ | Note that only the last part of Dkt depends on the parameters of interest θF and θC
2084
+ | and the value function is linear θφ and θψ . Therefore, to compute the value function
2085
+ meta | 3
2086
+ text | When using any of the dynamic likelihood estimators proposed in the previous subsection and
2087
+ | assuming that φ is a difference of two independent Type I extreme value random variables, E[φ|a = 1]
2088
+ | can be reduced to − log(p) − 1−p p log(1 − p), where p is a probability of acquisition.
2089
+ meta | CHAPTER 3. COST SYNERGIES FROM MERGERS 48
2090
+ blank |
2091
+ |
2092
+ |
2093
+ text | for different parameter values one does not need to re-simulate the industry path
2094
+ | (st , dt ); moreover, one does not need to recompute any of Atk , Bkt , Ckt 4 . This saves
2095
+ | a large amount of processing power and makes the estimator feasible using today’s
2096
+ | computers.
2097
+ | Following the inequality (3.4), let Vkt be an equilibrium value function for player
2098
+ | k, Vk (·|g∗k , g∗−k ). Additionally, define a suboptimal value function Ṽkt to be Vk (·|gk , g∗k )
2099
+ | for some off-equilibrium strategy gk . In equilibrium, I know that max{Ṽtk −Vkt , 0} = 0
2100
+ | for the true values of θM and θR . Thus, I define a minimum distance estimator
2101
+ blank |
2102
+ text | 1 X 1
2103
+ | (θ̂M , θ̂R ) = argmin max{Ṽktm − Vktm , 0}
2104
+ | K × T × M k,t,m Atm
2105
+ | k
2106
+ blank |
2107
+ |
2108
+ text | According to the results in Bajari, Benkard, and Levin (2004) this estimator is con-
2109
+ | sistent and asymptotically normal. This finishes the description of the estimator. An
2110
+ | example of its application is contained in the next section.
2111
+ blank |
2112
+ |
2113
+ title | 3.5 Application
2114
+ text | In this section, I describe how to use above framework to estimate merger synergies
2115
+ | from ownership consolidation in the U.S. radio industry. In the next subsection I give
2116
+ | a brief review of the industry. The second subsection presents the tailored version of
2117
+ | the estimation algorithm. The last subsection presents and discusses the results.
2118
+ blank |
2119
+ |
2120
+ title | 3.5.1 Industry and data description
2121
+ text | Radio is an important medium in the U.S., reaching about 94% of Americans twelve
2122
+ | years old or older each week. Moreover, the average consumer listens to about 20
2123
+ | hours of radio per week and between 6am and 6pm more people use radio than TV
2124
+ | or print media5 . There are about 13,000 commercial radio stations that broadcast
2125
+ | in about 350 local markets nationwide. Before 1996, this industry had ownership
2126
+ meta | 4
2127
+ text | In most cases Atk is the hardest to compute because computing π̄ may involve solving a one-shot
2128
+ | Nash equilibrium price or a quantity setting game.
2129
+ meta | 5
2130
+ text | Source: A.Richter (2006)
2131
+ meta | CHAPTER 3. COST SYNERGIES FROM MERGERS 49
2132
+ blank |
2133
+ |
2134
+ text | # of active stations Old ownership cap New cap
2135
+ | 45+ 4 8
2136
+ | 30-44 4 7
2137
+ | 15-29 4 6
2138
+ | 0-14 3 5
2139
+ | Table 3.1: Change in the local ownership caps introduced by the 1996 Telecom Act.
2140
+ blank |
2141
+ |
2142
+ text | limitations both nationally and locally, preventing big corporations from entering
2143
+ | the market and thereby sustaining a large degree of family based ownership. This
2144
+ | situation changed with the Telecom Act of 1996 which, among other things, raised
2145
+ | the ownership caps in the local markets (see Table 3.1).
2146
+ | This triggered an unprecedented merger and product repositioning wave that com-
2147
+ | pletely reshaped the industry. Figure 3.1 contains the average percentage of stations
2148
+ | that switched owners and that switched formats. Between 1996 and 2000 more than
2149
+ | 10% of stations switched owners annually. After 2000 the number dropped to less
2150
+ | than 4%. Greater ownership concentration in the 1996-2000 period was also associ-
2151
+ | ated with more format switching. The percentage of stations that switched formats
2152
+ | peaked in 1998 and 2001 at 13%. In effect, the Herfindahl-Hirschman Index (HHI) in
2153
+ | the listenership market grew from 0.18 in 1996 to about 0.3 in 2006.
2154
+ | The impact of this consolidation on consumer surplus has been studied before
2155
+ | using a static demand and supply approach. For example Jeziorski (2010) (Chapter
2156
+ | 2 of this thesis), finds that consolidation of ownership in this industry was harmful
2157
+ | to advertisers, causing $300m loss in advertiser surplus, but beneficial to listeners,
2158
+ | raising the welfare by 1%.
2159
+ | In order to analyze the supply side effects of this consolidation, I compiled a
2160
+ | dataset 6 . on stations in the 88 markets studied by Jeziorski (2010). The data
2161
+ | contains ownership for each station oj , and station format fj . It uses the estimates of
2162
+ | station quality ξj , contained in Jeziorski (2010). I also observe each acquisition made
2163
+ | in this market and the average acquisition price.
2164
+ meta | 6
2165
+ text | Data is constructed using the software provided by BIA Financial Network Inc. and Media
2166
+ | Market Guides by SQAD
2167
+ meta | CHAPTER 3. COST SYNERGIES FROM MERGERS 50
2168
+ blank |
2169
+ |
2170
+ |
2171
+ |
2172
+ text | Figure 3.1: Dynamics of station acquisition and format switching
2173
+ blank |
2174
+ title | 3.5.2 Static profits
2175
+ text | The static profit function is taken directly from Jeziorski (2010). Radio station owners
2176
+ | draw their revenue from selling advertising and each advertising slot is priced on a
2177
+ | per listener basis. The total profit of the owner k is equal to
2178
+ | X
2179
+ | π̄k (s, d) = rj (q ∗ , s, d)pj (q ∗ , s, d)qj∗
2180
+ | j:oj =k
2181
+ blank |
2182
+ |
2183
+ text | where q ∗ are the equilibrium advertising quantities chosen in the static oligopoly
2184
+ | game, rj is the number of listeners and pj is the price per listener. In this paper, I
2185
+ | treat the estimates of this profit function as given; however, I do correct the standard
2186
+ | errors of the dynamic estimates by accounting for the noise introduced by estimating
2187
+ | profit function.
2188
+ | The only difference between the baseline model in Jeziorski (2010) and the profit
2189
+ | function used in this chapter is that the marginal cost of production is set to zero and
2190
+ | format substitution matrix Ω is assumed to be diagonal. I made these assumptions
2191
+ meta | CHAPTER 3. COST SYNERGIES FROM MERGERS 51
2192
+ blank |
2193
+ |
2194
+ |
2195
+ text | for computational reasons.
2196
+ blank |
2197
+ |
2198
+ title | 3.5.3 Estimation details
2199
+ text | The estimation is a direct application of the framework desribed in subsection 3.4.
2200
+ | The model endogenizes acquisition decisions and format switching decisions. The
2201
+ | dynamics in an unobserved radio station quality ξ is assumed to be exogenous.
2202
+ | The first piece of the model that needs to be specified is the function I(st , dt ),
2203
+ | that prescribes the sequence of moves firms make in the merger and repositioning
2204
+ | process. Following Gowrisankaran (1999), I assume that firms with the biggest total
2205
+ | market shares move first. This is motivated by the fact that the bigger players in the
2206
+ | market might a have first-mover advantage over smaller players. The acquisition price
2207
+ | is assumed to be constant within market and equal to the observed mean acquisition
2208
+ | price.
2209
+ | To estimate the merger probability I use the method outlined in the Example
2210
+ | 3.4.3. Each owner considers, one at a time, stations to acquire, starting from the
2211
+ | one with the highest quality measure ξj , and moving down according to ξj 7 . A flow
2212
+ | chart of the merger process is presented in the Appendix B.2. Such structure enables
2213
+ | expanding the data structure on acquisitions within the firm
2214
+ blank |
2215
+ text | Ot
2216
+ | (ωkt , atk ) 7→ (ωjk
2217
+ | t
2218
+ | , atjk )j=1
2219
+ | −k
2220
+ blank |
2221
+ |
2222
+ |
2223
+ |
2224
+ text | t
2225
+ | where O−k is the number of stations owned by competitors. If we assume that ψ is a
2226
+ | difference of two extreme value distributions and is also revealed in a sequence, one
2227
+ | can consistently estimate a probability of merger ProbM
2228
+ | k , by running a regular logit
2229
+ | regression on this extended dataset.
2230
+ | The covariates in the logit regression should reflect the information about the state
2231
+ | space contained in the data. In a perfect world one would use a very flexible index
2232
+ | function of the state space variables. However, because of high dimensionality of
2233
+ | the state space, such an approach requires too many degrees of freedom, and quickly
2234
+ meta | 7
2235
+ text | Choice of ξj as an ordering characteristic is motivated by the fact that it is a vertical measure
2236
+ | of profitability.
2237
+ meta | CHAPTER 3. COST SYNERGIES FROM MERGERS 52
2238
+ blank |
2239
+ |
2240
+ |
2241
+ text | exhausts all the information available in the data. To overcome this problem, I use
2242
+ | a linear index function of several statistics about the state space computed from the
2243
+ | data 8 . The full set of covariates can be found in Table B.1 in Appendix B.3.
2244
+ | A similar strategy can be employed to estimate the format switching process. The
2245
+ | flow chart describing this process is contained in Appendix B.2. Assuming that firms
2246
+ | switch formats sequentially dictates the following dataset expansion
2247
+ blank |
2248
+ text | Ot
2249
+ | t
2250
+ | (ωkt , atk ) 7→ (ωjk , atjk )j=1
2251
+ | −k
2252
+ blank |
2253
+ |
2254
+ |
2255
+ |
2256
+ text | Using this auxiliary dataset one can apply a multinomial logit model to estimate
2257
+ | the format switching probabilities ProbR
2258
+ | k . The restriction on the index function also
2259
+ | applies in this case, so I use only a limited set of covariates (given in Table B.2 in
2260
+ | Appendix B.3).
2261
+ | In the second stage of the estimation, I parametrize the fixed cost function
2262
+ blank |
2263
+ text | F (stm tm
2264
+ | k ) = θC1 × POPm × nk θC2 (3.5)
2265
+ blank |
2266
+ text | where POPm is a population of the market m and nkt is the number of stations
2267
+ | owned by player k at time t. Parameter θC2 dictates the amount of cost synergies
2268
+ | from owning multiple stations. I also assume a constant format switching cost that
2269
+ | is proportional to the population. Those assumptions are motivated by the fact that
2270
+ | Jeziorski (2010) finds that most of the variation in marginal cost of radio operations
2271
+ | between can be explained by the variation in total population.
2272
+ | In the second stage, I simulate the value function only for the owner with the
2273
+ | biggest market share at each data point (stm , dtm ). These simulations are done ac-
2274
+ | cording to the Algorithms 2 and 3. The suboptimal value function Ṽk is obtained
2275
+ | by multiplying the merger and format switching probability by a uniform [.95, 1.05]
2276
+ | random variable. When choosing the size of the perturbations one faces a bias and
2277
+ | variance trade-off. When the size is too small the estimator start picking up the
2278
+ | noise from the simulations instead of the sub-optimality of the strategy, decreasing
2279
+ meta | 8
2280
+ text | a similar approach can be found in Sweeting (2007), Ryan (2005), Ryan and Tucker (2006), and
2281
+ | Ellickson and Arie (2005).
2282
+ meta | CHAPTER 3. COST SYNERGIES FROM MERGERS 53
2283
+ blank |
2284
+ |
2285
+ |
2286
+ text | the efficiency of the estimator. When the size is chosen to be too big, the bounds of
2287
+ | the estimator become very large creating potential bias. The chosen perturbation is
2288
+ | a compromise between those two factors.
2289
+ blank |
2290
+ |
2291
+ title | 3.5.4 Results
2292
+ text | This subsection describes the results of the estimation. The exposition is divided into
2293
+ | two parts. First, I present the policy function estimates. Then, I report the main
2294
+ | results on fixed cost and switching cost synergies.
2295
+ blank |
2296
+ title | First stage: Policy function
2297
+ blank |
2298
+ text | Tables B.3 and B.4 report coefficients from a purchase strategy probit approxima-
2299
+ | tion. They reveal that owners with larger market shares are more likely to purchase
2300
+ | new stations and are less likely to sell. Also, there are synergies when purchasing
2301
+ | multiple stations. The coefficient on the first purchase dummy PUR0 is negative while
2302
+ | coefficients on dummies for multiple purchases are positive. This indicates that it
2303
+ | is easier to negotiate the purchase of many stations, or even an entire company at
2304
+ | once, than a single station. The number of owned stations in the format (the FORMAT
2305
+ | variable in the table) has a negative influence on purchase decisions. This is evidence
2306
+ | for diversification. The coefficient of station quality is positive which suggests that
2307
+ | stations with higher quality are purchased more often.
2308
+ | Table B.5 presents the influence on future format of the following covariates:
2309
+ | change of ownership dummy, AM/FM status, and previous format. The negative
2310
+ | coefficient of a Spanish format in the first row of the table suggests that when a
2311
+ | station is purchased it is less likely to switch to Spanish format. On the other hard,
2312
+ | the positive coefficient of AC tells us that change in ownership is correlated with
2313
+ | switching to the Adult Contemporary format. The second column of the table shows
2314
+ | that FM stations are likely be of Rock or CHR format, and not so likely to be of
2315
+ | News/Talk format. The remaining rows of the table describe the Markov dynamics
2316
+ | of formats. The diagonal cells have much higher numbers than the off-diagonal ones,
2317
+ | which reflects the fact that staying in the current format is much more probable than
2318
+ meta | CHAPTER 3. COST SYNERGIES FROM MERGERS 54
2319
+ blank |
2320
+ |
2321
+ |
2322
+ text | switching.
2323
+ | Table B.6 presents the relationship between the current demographic composition
2324
+ | of the market format switching decisions. In addition, Table B.7 contains similar
2325
+ | information concerning the dynamics of the demographics (the difference between
2326
+ | two consecutive periods) and format switching. One can observe many patterns that
2327
+ | suggest firms respond to the current state of population demographics as well as to the
2328
+ | dynamics of population demographics. For example, a larger current population and
2329
+ | growth of the Hispanic population is ralated to the stations switching to a Hispanic
2330
+ | format. One can observe a similar pattern for Blacks and the Urban format, as well as
2331
+ | for older people and the News/Talk format. Those patters largely reflect correlations
2332
+ | between tastes for formats and demographics described in Jeziorski (2010).
2333
+ blank |
2334
+ title | Second stage: Fixed and switching cost
2335
+ blank |
2336
+ text | The estimated parameters of the fixed cost equation (3.5) are as follows: θ̂C1 = 0.69
2337
+ | and θ̂C2 = 0.59. Table 3.2 interprets the economic significance of these parameters in
2338
+ | terms the amount of saved fixed costs per year if two stations are commonly owned
2339
+ | compared to being separate companies. Since the amount of cost synergies depends on
2340
+ | the market population, only three representative markets are presented. Los Angeles
2341
+ | is the biggest market in the sample and the cost savings in that market amount to
2342
+ | about $4.4m per-year (roughly 10% of the revenue of a big station). Knoxville is
2343
+ | representative of medium markets and has about $0.23m of such cost savings, and
2344
+ | Bismark, a small market, has about $34k of savings. Table 3.3 presents total cost
2345
+ | savings from all mergers after the Telecom Act was passed. It turns out that the
2346
+ | merger activity lowered the fixed cost of providing radio programming by almost
2347
+ | $2.5b, amounting to almost 10% of the total revenue of the industry. Compared to
2348
+ | that, the impact on advertiser surplus identified in Jeziorski (2010) is very small. This
2349
+ | leads me to conclude that the deregulation of 1996 provided substantial operational
2350
+ | efficients that outweigh negative impacts on advertiser welfare.
2351
+ | The last set of estimates concern the product repositioning costs. The estimate of
2352
+ | the cost parameter θ̂C is 2.1. The repositioning cost for each market is the population
2353
+ | of that market multiplied θ̂C . Examples of this cost are given in Table 3.4. The
2354
+ meta | CHAPTER 3. COST SYNERGIES FROM MERGERS 55
2355
+ blank |
2356
+ |
2357
+ text | Market Los Angeles Knoxville Bismarck
2358
+ | Population 13m .7m 100k
2359
+ | Savings per year $4.4m $.23m $34k
2360
+ blank |
2361
+ |
2362
+ text | Table 3.2: Savings when two stations are owned by the same firm vs. operating
2363
+ | separately
2364
+ blank |
2365
+ text | Consumer Advertiser Fixed
2366
+ | Surplus Surplus Cost
2367
+ | Impact of
2368
+ | +1% -$300m -$2.450m
2369
+ | Telecom Act
2370
+ blank |
2371
+ |
2372
+ text | Table 3.3: Total cost savings created by mergers after 1996, compared to demand
2373
+ | effects from Jeziorski (2010)
2374
+ blank |
2375
+ text | table suggests this cost is about the yearly revenue of a big station. Such a huge
2376
+ | repositioning cost can justify some of the behavior found when analyzing the merger
2377
+ | probabilities; namely, stations tend to stay away from purchasing the formats they
2378
+ | already have. If the format switching costs were low, the optimal thing to do would
2379
+ | be to purchase stations close to your portfolio to get rid of competition and rebrand
2380
+ | them to avoid cannibalization. However, if the switching costs are high, it might be
2381
+ | optimal to avoid paying them and purchase a station further away. The previous
2382
+ | subsection and Sweeting (2008) presest the evidence of the latter type of behavior,
2383
+ | reinforcing the finding of high switching cost estimates.
2384
+ blank |
2385
+ text | Market Los Angeles Knoxville Bismarck
2386
+ | Switching cost $27m $1.5m $0.2m
2387
+ blank |
2388
+ |
2389
+ text | Table 3.4: Format switching cost for chosen markets
2390
+ meta | CHAPTER 3. COST SYNERGIES FROM MERGERS 56
2391
+ blank |
2392
+ |
2393
+ |
2394
+ title | 3.6 Conclusions
2395
+ text | This paper proposed a new estimator of a production cost curve that enables the
2396
+ | identification of cost synergies from mergers. The estimation uses inequalities rep-
2397
+ | resenting an equilibrium of a dynamic game with endogenous mergers and product
2398
+ | repositioning decisions.
2399
+ | The biggest advantage of this estimator is that it enables the identification of
2400
+ | the cost curve just from merger decisions, without using cost data. Since reliable
2401
+ | cost data is very hard to obtain, the cost side analysis of mergers was very hard to
2402
+ | perform. This method is able to solve this problem, and provides a powerful tool for
2403
+ | policy makers to improve their merger assessments.
2404
+ | Since the proposed method is based on a fully dynamic framework, it additionally
2405
+ | solves many of the problems of static merger analysis. First of all, endogenizing the
2406
+ | merger decision allows for sample selection on unobservables in the estimation and
2407
+ | correcting for the fact that only the most profitable mergers are carried out. Moreover,
2408
+ | I allow for follow-up mergers and merger waves. Additionally, endogenizing product
2409
+ | characteristics enables correction for post-merger product repositioning.
2410
+ | The estimator belongs to a class of indirect estimators proposed by Hotz, Miller,
2411
+ | Sanders, and Smith (1994) and Bajari, Benkard, and Levin (2004). Therefore, it
2412
+ | shares all the benefits of those estimators, such as conceptual simplicity of imple-
2413
+ | mentation and computational feasibility, because it avoids the computation of an
2414
+ | equilibrium. However, it also shares their downsides, such as a loss in efficiency.
2415
+ | The estimator was applied to analyze the cost side benefits of a deregulation of the
2416
+ | U.S. radio industry. It turns out that the consolidation wave in that industry between
2417
+ | 1996 and 2006 provided substantial cost synergies. These amounted to about 2 billion
2418
+ | dollars per, year and constitute about 10% of industry revenue. Such benefits are an
2419
+ | order of magnitude larger than potential losses in advertiser welfare found by Jeziorski
2420
+ | (2010). This provides a significant argument for the supporters of a deregulation bill,
2421
+ | and serves as an example of how cost curve estimation can provide additional insights
2422
+ | supplementing traditional merger analysis.
2423
+ meta | Appendix A
2424
+ blank |
2425
+ title | Additional material to Chapter 2
2426
+ blank |
2427
+ title | A.1 Advertising demand: Micro foundations
2428
+ text | In this section I present a model that rationalizes inverse demand for advertising (2.5)
2429
+ | Assume that there are A types of advertisers. Each type a ∈ A targets a certain
2430
+ | demographic group(s) da . Let γ2 be a total mass of advertisers and ASa be a share of
2431
+ | advertisers of type a in market m. Advertisers are also heterogeneous in their value
2432
+ | of the ad slot in format f , and I assume that those values are distributed uniformly
2433
+ | on the interval [0, γ1f ]. An advertiser of type a gets utility only if a listener of type da
2434
+ | hears an ad. To compute the exact expected value of an advertising slot, advertisers
2435
+ | need to know the demographic composition of each station in the market. Because
2436
+ | advertisers are small, and such detailed data is not offered by Arbitron, it seems
2437
+ | unlikely that they would be able to do that. Instead, I assume that they approximate
2438
+ | those calculations using publicly available data contained in Arbitron’s Radio Today
2439
+ | publications. These publications provide nation-wide conditional probabilities rf |a
2440
+ | of a consumer of type da choosing format f conditional on listening to the radio.
2441
+ | Advertisers take these conditional probabilities as given and compute the market
2442
+ | specific probabilities of obtaining correct listeners when advertising in each format.
2443
+ | Such computations can be done by Bayes’ Rule, i.e.
2444
+ blank |
2445
+ text | rf |a LSa
2446
+ | ra|f =
2447
+ | rf
2448
+ blank |
2449
+ meta | 57
2450
+ | APPENDIX A. ADDITIONAL MATERIAL TO CHAPTER 2 58
2451
+ blank |
2452
+ |
2453
+ text | P
2454
+ | where rf = c rf |a LSa and LSa is the population share of demographic group da ,
2455
+ | which is assumed to be known to the advertiser. Having listeners’ distributions ra|f
2456
+ | and station ratings rj (available on Arbitron’s website) at hand, advertisers compute
2457
+ | the probability of successful targeting at station j to be rj ra|f , where f is a format of
2458
+ | station j.
2459
+ | Radio stations quote costs-per-point CPPaf individually for each advertiser type
2460
+ | and format. Advertisers decide if they want to purchase advertising after observing
2461
+ | the CPPs and station ratings. Because advertisers are small and likely do not have
2462
+ | much market power over radio station owners, I assume that they are price and rating
2463
+ | takers1 . Advertisers can purchase advertising from several stations at once; however,
2464
+ | I assume away any potential complementarities.
2465
+ | In equilibrium, advertisers purchase advertising as long as their expected value is
2466
+ | above price. Let qa be the amount of advertising purchased by advertisers of type a.
2467
+ | A marginal advertiser must be indifferent between purchasing advertising or not, so
2468
+ | the clearing per-listener prices are given by
2469
+ blank |  
2470
+ text | 1
2471
+ | CPPaf = γ1f ra|f 1− qa
2472
+ | γ2 ASa
2473
+ blank |
2474
+ text | Given the clearing prices CPPaf , advertisers are indifferent when choosing between
2475
+ | formats, so I assume that advertising is purchased proportionally to the target lis-
2476
+ | P
2477
+ | teners’ tastes i.e. qa = ASa f rf |a qf . If I make the simplifying assumption that
2478
+ | ASa ≈ LSa , then the arrival probability of an advertiser of type a at a station of
2479
+ | format f would be equal to ra|f . Therefore, expected per-listener price in format f is
2480
+ | given by
2481
+ | !
2482
+ | X
2483
+ | 2 1 X
2484
+ | CPPf = (ra|f ) γ1f 1 − rf 0 |a qf 0 =
2485
+ | a
2486
+ | γ2 f 0
2487
+ | ! !−1 
2488
+ | X 1 X X X
2489
+ | = γ1f (ra|f )2 1 − qf 0 (ra|f )2 (ra|f )2 rf 0 |a  .
2490
+ | a
2491
+ | γ 2
2492
+ | f0 a a
2493
+ blank |
2494
+ meta | 1
2495
+ text | This assumption is is motivated by the fact that about 75% is purchased by small local firms.
2496
+ | Such firms’ advertising decisions are unlikely to influence prices and station ratings in the short run.
2497
+ meta | APPENDIX A. ADDITIONAL MATERIAL TO CHAPTER 2 59
2498
+ blank |
2499
+ |
2500
+ |
2501
+ text | Finally, I obtain Equation (2.5)
2502
+ | !
2503
+ | X
2504
+ | A
2505
+ | pj = θ1f rj 1 − θ2A ωfmf 0 qf 0
2506
+ | f 0 ∈F
2507
+ blank |
2508
+ |
2509
+ text | 2 −1 1
2510
+ | P  P 2 A
2511
+ | by setting ωjj 0 = a (ra|f ) a (ra|f ) rf 0 |a , θ2 = γ2 and assuming that θ1 =
2512
+ | γ1f a (ra|f )2 for all f . The last assumption basically means that niche formats (with
2513
+ | P
2514
+ blank |
2515
+ text | listenership concentrated in one demographic bin) are less profitable for advertisers
2516
+ | than general interest formats.
2517
+ | The presented model is only one of a number of ways to rationalize the weighted
2518
+ | price equation (2.5) in which competition between formats is channeled though demo-
2519
+ | graphics. Other possibilities include: a local monopoly in which each advertiser type
2520
+ | draws utility only from advertising on one particular station, and a format-monopoly
2521
+ | in which each advertiser type targets only one format.
2522
+ blank |
2523
+ |
2524
+ title | A.2 Numerical considerations
2525
+ text | To solve the optimization problem (2.12), I used a version of the Gauss-Newton
2526
+ | method implemented in the commercial solver KNITRO. Using this state-of-the-art
2527
+ | solver avoids certain convergence problems that are common to many non-linear es-
2528
+ | timators.
2529
+ | The iteration step of the KNITRO solver requires computing constraints, a Jaco-
2530
+ | bian of the constraint, and an inverse of the inner product of this Jacobian (used to
2531
+ | compute the approximate Hessian of the Lagrangian). The objective function and its
2532
+ | Jacobian come essentially for free because of their simple nature.
2533
+ | To compute the constraints and their Jacobian, I employed a piece of highly opti-
2534
+ | mized parallel C code. This allows the use a fairly large dataset (about 42,000 obser-
2535
+ | vations) and many draws (500 draws from Normal and CPS per date/market) when
2536
+ | computing the constraints. When parallelizing the code, I was careful to maintain
2537
+ | independence of the draws within and between threads. To achieve this, I imple-
2538
+ | mented a version of a pseudo-random number generator (described in (L’Ecuyer and
2539
+ meta | APPENDIX A. ADDITIONAL MATERIAL TO CHAPTER 2 60
2540
+ blank |
2541
+ |
2542
+ |
2543
+ text | Andres 1997). This generator enables us to create a desired number of independent
2544
+ | pseudo-random feeds for each thread.
2545
+ | One iteration of the solver takes about two to three minutes on an 8-Core 3Ghz
2546
+ | Intel Xeon processor and uses about 4GB of memory. About 90% of this computation
2547
+ | is the inversion of a Hessian estimator within the KNITRO solver. This inversion
2548
+ | cannot be parallelized because it is done inside the solver, without the user’s control.
2549
+ meta | Appendix B
2550
+ blank |
2551
+ title | Additional material to Chapter 3
2552
+ blank |
2553
+ title | B.1 Estimation without acquisition prices
2554
+ text | r
2555
+ | In case the pricing function P̂jk cannot be estimated in the first state because of data
2556
+ | constraint, one could employ a bargaining model for infer it. Suppose one employs
2557
+ | a parametrization P̂ (ω|θP ). For an initial value of parameters θP0 one could compute
2558
+ | a surplus from acquisition of the product j by an owner k using simulated V̂kt and
2559
+ | V̂kt0 where k 0 is the current owner of product j. Then using a bargaining model
2560
+ | one could infer prices and fit a new parametrization θP1 . If repeating this procedure
2561
+ | leads to convergence, then obtain a parametrization θ̂P and value functions V̂kt that
2562
+ | are consistent with eachother. The detailed description of this procedure is given
2563
+ | in the Algorithm 1. The big dowside of this approch is that one needs resolve this
2564
+ | procedure for any set of cost parameters and cannot take advantage of linearing
2565
+ | of the value function. It makes the procedure infeasible to use for large datasets
2566
+ | because of computational burden. However, given the rapid hardware development
2567
+ | it is reasonable to think it it would be feasible in the near future.
2568
+ blank |
2569
+ |
2570
+ |
2571
+ |
2572
+ meta | 61
2573
+ | APPENDIX B. ADDITIONAL MATERIAL TO CHAPTER 3 62
2574
+ blank |
2575
+ |
2576
+ |
2577
+ text | Algorithm 1: Estimator without price data
2578
+ | Take any θP0 ;
2579
+ | Let r = 0;
2580
+ | repeat
2581
+ | Simulate the value functions V̂ r using pricing process P̂ (ω|θPr );
2582
+ | Compute surplus from any acquisition using the simulated value functions;
2583
+ | Compute acquisition prices P̂jm by applying any bargaining game;
2584
+ | Fit new parameters θPr+1 using P̂jm ;
2585
+ | until convergence of θPr ;
2586
+ blank |
2587
+ |
2588
+ title | B.2 Radio acquisition and format switching algo-
2589
+ | rithms
2590
+ text | This section of the appendix contains a detailed flows of the algorithms used to
2591
+ | simulate the value function from section 3.5.
2592
+ | Algorithm 2: Merger algorithm
2593
+ | Let ω1r = sr ;
2594
+ | foreach firm k in a sequence I(sr ) do
2595
+ | Let J−k be a set of stations not owned by k sorted by ξjr ;
2596
+ | foreach station j in J−k do
2597
+ | r
2598
+ | Set purchase price Pjk = P̄ m ;
2599
+ | M
2600
+ | Compute acquisition probability Prob[ (ω r , dt );
2601
+ | k
2602
+ | Draw a random number u from U [0, 1];
2603
+ | M
2604
+ | if u ≤ Prob
2605
+ | [ then
2606
+ | Increase Arold owner by β r−t Pjk
2607
+ | r
2608
+ | ;
2609
+ | r r−t r
2610
+ | Decrease Ak by β Pjk ;
2611
+ | Update ωkr for acqusition;
2612
+ | Increase Bkr by β r−t E[φ|acquisition];
2613
+ | end
2614
+ | end
2615
+ | r
2616
+ | Let ωk+1 = ωkr ;
2617
+ | end
2618
+ meta | APPENDIX B. ADDITIONAL MATERIAL TO CHAPTER 3 63
2619
+ blank |
2620
+ |
2621
+ |
2622
+ text | Algorithm 3: Format switching algorithm
2623
+ | Let ω̃1r = ωK+1
2624
+ | r
2625
+ | ;
2626
+ | foreach firm k in a sequence I(sr ) do
2627
+ | Let Jk be a set of stations owned by k sorted by ξjr ;
2628
+ | foreach station j in Jk do
2629
+ | R
2630
+ | [ k (ω̃ r , dr );
2631
+ | Compute repositioning probabilities Prob k
2632
+ | Simulate the future characteristic fjr+1 ;
2633
+ | Increase Ckr by β r−t E[ψ|fjr ];
2634
+ | if the fj changed then
2635
+ | Update ω̃kr ;
2636
+ | Remember the repositioning for a computation of Dkr ;
2637
+ | end
2638
+ | end
2639
+ | tm
2640
+ | Let ω̃k+1 = ω̃ktm ;
2641
+ | end
2642
+ blank |
2643
+ |
2644
+ |
2645
+ |
2646
+ title | B.3 Policy function covariates
2647
+ text | This section of the appendix contains tables of covariates used in the first stage in
2648
+ | the estimation in section 3.5.
2649
+ | Format switching strategy
2650
+ | PUR Dummy equal to 1 if station was recently purchased
2651
+ | FM AM/FM dummy, equals to 1 if considered station is FM
2652
+ | FORMAT Past format dummies
2653
+ | PORT F Number of stations owner in format F
2654
+ | PORT COMPJ F Number of stations competitor J owns in format F, competitors of
2655
+ | ranking 4 or higher are pooled
2656
+ | XI PORT F Average quality of stations owner in format F
2657
+ | XI PORT COMPJ F Average quality of stations competitor J owns in format F, competi-
2658
+ | tors of ranking 4 or higher are pooled
2659
+ | - Demographic characteristics of the market
2660
+ blank |
2661
+ text | Table B.1: Covariates for the format switching strategy multinomial logic regression.
2662
+ meta | APPENDIX B. ADDITIONAL MATERIAL TO CHAPTER 3
2663
+ text | Purchase strategy
2664
+ | OWNER1. . . OWNER4 Dummies that are equal to the ranking of the player in terms of total market share of
2665
+ | owned stations. If ranking is lower that 4 we activate the fourth dummy
2666
+ | PAST OWNER1. . . PAST OWNER4 Ranking of the previous owner of the station amongst the competitors.
2667
+ | TRIAL Describes how many stations did this player considered to purchase already this period.
2668
+ | For explanation of sequential purchase decision process look in Section 3.5.3
2669
+ | PUR0. . . PUR3 Dummies describing number of stations already purchased
2670
+ | FORMAT Number of stations owned in the format of considered station
2671
+ | FORMAT COMP1. . . FORMAT COMP4 Number of stations owned by competitors in the considered station, by ranking.
2672
+ | FORMAT COMP4 are pooled competitors with ranking of 4 or higher
2673
+ | FM AM/FM dummy, equals to 1 if considered station is FM
2674
+ | PORT F Number of stations owner in format F
2675
+ | PORT COMPJ F Number of stations competitor J owns in format F, competitors of ranking 4 or higher
2676
+ | are pooled
2677
+ | XI Average quality of stations owned in the format of considered station
2678
+ | XI COMP1. . . XI COMP4 Average quality of stations owned by competitors in the considered station, by ranking.
2679
+ | XI COMP4 are pooled competitors with ranking of 4 or higher
2680
+ | XI PORT F Average quality of stations owner in format F
2681
+ | XI PORT COMPJ F Average quality of stations competitor J owns in format F, competitors of ranking 4 or
2682
+ | higher are pooled
2683
+ | - Dummies of the format of considered station interacted with demographic characteris-
2684
+ | tics of the market
2685
+ blank |
2686
+ text | Table B.2: Covariates for the purchase strategy logic regression.
2687
+ blank |
2688
+ |
2689
+ |
2690
+ |
2691
+ meta | 64
2692
+ | APPENDIX B. ADDITIONAL MATERIAL TO CHAPTER 3 65
2693
+ blank |
2694
+ |
2695
+ |
2696
+ title | B.4 First stage estimates: Dynamic model
2697
+ blank |
2698
+ text | Top 1 Owner Top 2 Owner Top 3 Owner
2699
+ | Buyer 0.5127 0.3423 0.2608
2700
+ | Seller −0.3772 −0.2792 −0.0257
2701
+ blank |
2702
+ text | Table B.3: Station purchase policy estimates - buyer/seller dummies
2703
+ blank |
2704
+ |
2705
+ |
2706
+ text | Estimator
2707
+ | PUR0 −2.6082
2708
+ | PUR1 0.7548
2709
+ | PUR2 0.4279
2710
+ | PUR3 0.2463
2711
+ | FORMAT −0.0534
2712
+ | FORMAT COMP1 −0.0038
2713
+ | FORMAT COMP2 −0.0556
2714
+ | FORMAT COMP3 0.0728
2715
+ | FORMAT COMP4 −0.0428
2716
+ | FM 0.0151
2717
+ | STATION XI −0.1069
2718
+ | XI 0.0596
2719
+ | XI COMP1 0.0270
2720
+ | XI COMP2 0.0712
2721
+ | XI COMP3 0.0767
2722
+ | XI COMP4 −0.0117
2723
+ blank |
2724
+ text | Table B.4: Station purchase policy estimates - other variables
2725
+ meta | APPENDIX B. ADDITIONAL MATERIAL TO CHAPTER 3 66
2726
+ blank |
2727
+ |
2728
+ |
2729
+ |
2730
+ text | AC Rock CHR Urban News Country Spanish Other
2731
+ | Alt. Talk
2732
+ | PURCHASE 0.30 −0.14 0.04 −0.07 0.05 0.03 −0.23 −0.22
2733
+ | FM 1.26 1.54 1.35 1.06 −0.25 1.31 0.56 0.85
2734
+ | AC 3.70 −0.47 −0.34 −0.86 −0.43 0.37 −0.66 −0.44
2735
+ | Rock −0.27 4.41 −0.58 −0.18 −0.10 0.48 −0.32 −0.21
2736
+ | CHR −0.24 −0.42 4.38 −0.06 −0.19 0.00 −0.14 −0.35
2737
+ | Urban −0.49 0.05 −0.35 4.06 −0.17 0.48 −0.15 −0.22
2738
+ | Alt.
2739
+ | News −1.00 −0.84 −0.82 −1.29 3.89 0.25 −0.80 −0.93
2740
+ | Talk
2741
+ | Country −1.14 −1.01 −1.06 −1.35 −0.63 4.76 −0.73 −1.15
2742
+ | Spanish −1.61 −1.45 −1.30 −1.61 −1.20 −0.29 3.10 −1.42
2743
+ | Other −0.89 −1.07 −1.31 −1.27 −0.86 0.00 −1.22 3.02
2744
+ | Dark −2.18 −2.42 −2.50 −2.62 −1.61 −0.72 −1.60 −1.31
2745
+ blank |
2746
+ text | Table B.5: Format switching policy estimates - format dynamics
2747
+ blank |
2748
+ |
2749
+ |
2750
+ |
2751
+ text | AC Rock CHR Urban News Country Spanish Other
2752
+ | Alt. Talk
2753
+ | Age 12-17 0.00 −0.27 0.04 −0.50 −0.33 −0.67 −0.50 −0.32
2754
+ | Age 18-24 0.00 −0.31 −0.26 −0.69 0.31 0.00 −0.42 −0.36
2755
+ | Age 25-34 −0.54 0.00 0.02 −0.37 −0.14 −0.99 −0.06 −0.32
2756
+ | Age 35-44 −0.48 −0.00 −0.20 −0.32 −0.06 −1.17 −0.42 −0.08
2757
+ | Age 45-49 −0.46 0.00 −0.93 −0.61 0.23 −0.89 −0.81 −0.09
2758
+ | Age 50-54 −0.44 −0.41 −1.36 −0.67 0.42 −0.82 −0.62 −0.09
2759
+ | Age 55-64 0.00 −0.64 −1.49 −0.68 0.34 −0.77 −0.42 −0.16
2760
+ | Gender −0.41 −0.23 −0.43 −0.54 −0.00 −0.84 −0.34 −0.21
2761
+ | Some HS −0.38 −0.49 −0.41 −0.33 −0.27 −0.13 0.06 0.02
2762
+ | HS Grad. 0.19 0.00 −0.52 −0.32 −0.84 −0.29 −0.90 −0.19
2763
+ | Some College −0.12 −0.34 −0.72 −0.70 0.23 −0.45 −0.45 −0.03
2764
+ | Income 0-25k −0.16 −0.83 −0.32 −0.13 −0.35 −0.43 −0.52 −0.03
2765
+ | Income 25k-50k −0.06 −0.54 0.14 −0.39 −0.33 −0.34 −0.13 0.00
2766
+ | Income 50k-75k −0.07 −0.02 −0.54 −0.22 0.21 −0.39 −1.10 −0.17
2767
+ | Black −0.99 −0.58 0.00 1.25 −0.44 −1.11 −0.54 −0.26
2768
+ | Hispanic −0.55 0.19 −0.36 −0.06 −0.49 −0.20 2.42 −0.56
2769
+ blank |
2770
+ text | Table B.6: Format switching policy estimates - current demographics
2771
+ meta | APPENDIX B. ADDITIONAL MATERIAL TO CHAPTER 3 67
2772
+ blank |
2773
+ |
2774
+ |
2775
+ |
2776
+ text | AC Rock CHR Urban News Country Spanish Other
2777
+ | Alt. Talk
2778
+ | Age 12-17 0.00 0.00 0.00 6.69 −5.06 0.00 9.33 0.00
2779
+ | Age 18-24 −7.73 3.44 17.89 0.00 0.00 −12.76 0.00 6.06
2780
+ | Age 25-34 4.29 0.00 0.00 0.00 −1.35 5.23 4.32 −3.59
2781
+ | Age 35-44 2.65 0.00 5.23 1.83 −4.83 0.00 2.67 1.73
2782
+ | Age 45-49 −3.31 0.00 9.04 0.00 2.31 −3.45 −2.98 2.59
2783
+ | Age 50-54 −3.27 0.00 −2.60 −1.95 1.63 0.04 −3.37 0.00
2784
+ | Age 55-64 −4.57 −3.19 −7.50 0.00 7.73 0.00 −1.12 0.00
2785
+ | Gender 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2786
+ | Some HS −0.03 −0.06 1.14 0.33 1.08 −0.06 −0.34 −1.09
2787
+ | HS Grad. −0.56 0.00 1.18 0.90 0.84 −0.16 −0.31 −0.47
2788
+ | Some College −0.40 −0.64 0.50 0.24 0.36 0.00 1.33 −0.89
2789
+ | Income 0-25k 0.43 0.37 0.05 0.20 0.32 0.33 −0.63 0.18
2790
+ | Income 25k-50k −0.01 0.61 −0.19 −0.49 0.18 −0.36 −1.11 −0.44
2791
+ | Income 50k-75k 0.32 0.64 0.51 −0.02 −0.01 −0.01 0.17 0.41
2792
+ | Black 4.09 −21.64 −49.49 3.51 0.00 8.71 0.00 5.16
2793
+ | Hispanic −2.86 −1.55 −3.64 0.77 −0.24 −1.65 4.84 0.00
2794
+ blank |
2795
+ text | Table B.7: Format switching policy estimates - demographic dynamics
2796
+ title | Bibliography
2797
+ blank |
2798
+ ref | Ackerberg, D. A., and M. Rysman (2005): “Unobserved Product Differentia-
2799
+ | tion in Discrete-Choice Models: Estimating Price Elasticities and Welfare Effects,”
2800
+ | RAND Journal of Economics, 36(4), 771–788.
2801
+ blank |
2802
+ ref | Arcidiacono, P., and R. Miller (2010): “CCP Estimation of Dynamic Discrete
2803
+ | Choice Models with Unobserved Heterogeneity,” Discussion paper, Duke Univer-
2804
+ | sity.
2805
+ blank |
2806
+ ref | Argentesi, E., and L. Filistrucchi (2007): “Estimating market power in a two-
2807
+ | sided market: The case of newspapers,” Journal of Applied Econometrics, 22(7),
2808
+ | 1247–1266.
2809
+ blank |
2810
+ ref | A.Richter, W. (2006): Radio: Complete Guide to the Industry. Peter Lang Pub-
2811
+ | lishing.
2812
+ blank |
2813
+ ref | Armstrong, M. (2006): “Competition in Two-Sided Markets,” The RAND Journal
2814
+ | of Economics, 37(3), 668–691.
2815
+ blank |
2816
+ ref | Bain, J. (1968): Industrial organization. John Wiley & Sons.
2817
+ blank |
2818
+ ref | Bajari, P., C. L. Benkard, and J. Levin (2004): “Estimating Dynamic Models
2819
+ | of Imperfect Competition,” NBER Working Papers 10450, National Bureau of
2820
+ | Economic Research, Inc.
2821
+ blank |
2822
+ ref | Benkard, C. L., A. Bodoh-Creed, and J. Lazarev (2008): “Simulating the
2823
+ | Dynamic Effects of Horizontal Mergers: U.S. Airlines,” Discussion paper, Stanford
2824
+ | University.
2825
+ blank |
2826
+ meta | 68
2827
+ | BIBLIOGRAPHY 69
2828
+ blank |
2829
+ |
2830
+ |
2831
+ ref | Berry, S., J. Levinsohn, and A. Pakes (1995): “Automobile Prices in Market
2832
+ | Equilibrium,” Econometrica, 63(4), 841–90.
2833
+ blank |
2834
+ ref | Berry, S. T. (1994): “Estimating Discrete-Choice Models of Product Differentia-
2835
+ | tion,” RAND Journal of Economics, 25(2), 242–262.
2836
+ blank |
2837
+ ref | Berry, S. T., and J. Waldfogel (2001): “Do Mergers Increase Product Variety?
2838
+ | Evidence From Radio Broadcasting,” The Quarterly Journal of Economics, 116(3),
2839
+ | 1009–1025.
2840
+ blank |
2841
+ ref | Brynjolfsson, E., Y. J. Hu, and M. D. Smith (2003): “Consumer Surplus in
2842
+ | the Digital Economy: Estimating the Value of Increased Product Variety at Online
2843
+ | Booksellers,” Manage. Sci., 49(11), 1580–1596.
2844
+ blank |
2845
+ ref | Bulow, J. I., J. D. Geanakoplos, and P. D. Klemperer (1985): “Multimar-
2846
+ | ket Oligopoly: Strategic Substitutes and Complements,” The Journal of Political
2847
+ | Economy, 93(3), 488–511.
2848
+ blank |
2849
+ ref | Chandra, A., and A. Collard-Wexler (2009): “Mergers in Two-Sided Markets:
2850
+ | An Application to the Canadian Newspaper Industry,” Journal of Economics &
2851
+ | Management Strategy, 18, 1045–1070.
2852
+ blank |
2853
+ ref | CRA International (2007): “Expost Merger Review: An Evaluation of Three
2854
+ | Competition Bureau Merger Assessments,” Discussion paper, CRA International.
2855
+ blank |
2856
+ ref | Deaton, A., and J. Muellbauer (1980): “An Almost Ideal Demand System,”
2857
+ | The American Economic Review, 70(3), 312–326.
2858
+ blank |
2859
+ ref | Department of Justice (1997): “Horizontal Merger Guidelines,” Discussion pa-
2860
+ | per, Department of Justice.
2861
+ blank |
2862
+ ref | Drushel, B. E. (1998): “The Telecommunications Act of 1996 and Radio Market
2863
+ | Structure,” Journal of Media Economics, 11.
2864
+ blank |
2865
+ ref | Dukes, A. (2004): “The Advertising Market in a Product Oligopoly,” Journal of
2866
+ | Industrial Economics, 52(3), 327–348.
2867
+ meta | BIBLIOGRAPHY 70
2868
+ blank |
2869
+ |
2870
+ |
2871
+ ref | Ellickson, P., and B. Arie (2005): “The Dynamics of Retail Oligopolies,” 2005
2872
+ | Meeting Papers 829, Society for Economic Dynamics.
2873
+ blank |
2874
+ ref | Ericson, R., and A. Pakes (1995): “Markov-Perfect Industry Dynamics: A Frame-
2875
+ | work for Empirical Work,” Review of Economic Studies, 62(1), 53–82.
2876
+ blank |
2877
+ ref | European Commission (2004): “Guidelines on the assessment of horizontal merg-
2878
+ | ers,” Discussion paper, European Commission.
2879
+ blank |
2880
+ ref | Evans, D. S. (2002): “The Antitrust Economics of Two-Sided Markets,” SSRN
2881
+ | eLibrary.
2882
+ blank |
2883
+ ref | Gowrisankaran, G. (1999): “A Dynamic Model of Endogenous Horizonal Merg-
2884
+ | ers,” RAND Journal of Economics, 30(1), 56–83.
2885
+ blank |
2886
+ ref | Heckman, J. J. (1979): “Sample Selection Bias as a Specification Error,” Econo-
2887
+ | metrica, 47(1), 153–161.
2888
+ blank |
2889
+ ref | Hotz, V. J., R. A. Miller, S. Sanders, and J. Smith (1994): “A Simula-
2890
+ | tion Estimator for Dynamic Models of Discrete Choice,” The Review of Economic
2891
+ | Studies, 61(2), 265–289.
2892
+ blank |
2893
+ ref | Ivaldi, M., and F. Verboven (2005): “Quantifying the effects from horizontal
2894
+ | mergers in European competition policy,” International Journal of Industrial Or-
2895
+ | ganization, 23(9-10), 669–691.
2896
+ blank |
2897
+ ref | Jeziorski, P. (2010): “Impact of mergers and changes in product diversity on split
2898
+ | of surplus in two-sided markets: Case of U.S. radio industry,” Discussion paper,
2899
+ | Stanford University, Working Paper.
2900
+ blank |
2901
+ ref | Kaiser, U., and J. Wright (2006): “Price structure in two-sided markets: Evi-
2902
+ | dence from the magazine industry,” International Journal of Industrial Organiza-
2903
+ | tion, 24(1), 1 – 28.
2904
+ blank |
2905
+ ref | Kim, J., G. M. Allenby, and P. E. Rossi (2002): “Modeling Consumer Demand
2906
+ | for Variety,” Marketing Science, 21(3), 229–250.
2907
+ meta | BIBLIOGRAPHY 71
2908
+ blank |
2909
+ |
2910
+ |
2911
+ ref | Klein, J. I. (1997): “DOJ Analysis of Radio Mergers,” speech delivered in Wash-
2912
+ | ington DC,
2913
+ | http://www.usdoj.gov/atr/public/speeches/1055.pdf.
2914
+ blank |
2915
+ ref | L’Ecuyer, P., and T. H. Andres (1997): “A Random Number Generator Based
2916
+ | on the Combination of Four LCGs,” in Mathematics and Computers in Simulation,
2917
+ | pp. 99–107.
2918
+ blank |
2919
+ ref | Leeper, S. E. (1999): “Game of Radiopoly: An Antitrust Perspective of Consoli-
2920
+ | dation in the Radio Industry,” Fed. Comm. L.J., 52(473).
2921
+ blank |
2922
+ ref | Nevo, A. (2000): “Mergers with Differentiated Products: The Case of the Ready-
2923
+ | to-Eat Cereal Industry,” RAND Journal of Economics, 31(3), 395–421.
2924
+ blank |
2925
+ ref | O’Gorman, C., and H. Smith (2008): “Efficiency Gain from Ownership Deregula-
2926
+ | tion: Estimates for the Radio Industry,” CEPR Discussion Papers 6699, C.E.P.R.
2927
+ | Discussion Papers.
2928
+ blank |
2929
+ ref | Pinkse, J., and M. E. Slade (2004): “Mergers, brand competition, and the price
2930
+ | of a pint,” European Economic Review, 48(3), 617 – 643.
2931
+ blank |
2932
+ ref | Rochet, J.-C., and J. Tirole (2006): “Two-Sided Markets: A Progress Report,”
2933
+ | The RAND Journal of Economics, 37(3), 645–667.
2934
+ blank |
2935
+ ref | Rosse, J. N. (1967): “Daily Newspapers, Monopolistic Competition, and Economies
2936
+ | of Scale,” The American Economic Review, 57(2), 522–533.
2937
+ blank |
2938
+ ref | (1970): “Estimating Cost Function Parameters without Using Cost Data:
2939
+ | Illustrated Methodology,” Econometrica, 38(2), 256–75.
2940
+ blank |
2941
+ ref | Ryan, S. (2005): “The Costs of Environmental Regulation in a Concentrated In-
2942
+ | dustry,” Working Papers 0510, Massachusetts Institute of Technology, Center for
2943
+ | Energy and Environmental Policy Research.
2944
+ blank |
2945
+ ref | Ryan, S., and C. Tucker (2006): “Heterogeneity and the Dynamics of Technology
2946
+ | Adoption,” Working Papers 06-26, NET Institute.
2947
+ meta | BIBLIOGRAPHY 72
2948
+ blank |
2949
+ |
2950
+ |
2951
+ ref | Sweeting, A. (2007): “Dynamic Product Repositioning in Differentiated Product
2952
+ | Markets: The Case of Format Switching in the Commercial Radio Industry,” NBER
2953
+ | Working Papers 13522, National Bureau of Economic Research, Inc.
2954
+ blank |
2955
+ ref | (2008): “The Effects of Horizontal Mergers on Product Positioning: Evi-
2956
+ | dence from the Music Radio Industry,” working paper, Duke University.
2957
+ blank |