zoomy-core 0.1.14__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- decorators/decorators.py +25 -0
- fvm/__init__.py +0 -0
- fvm/flux.py +52 -0
- fvm/nonconservative_flux.py +97 -0
- fvm/ode.py +55 -0
- fvm/solver_numpy.py +297 -0
- fvm/timestepping.py +13 -0
- mesh/__init__.py +0 -0
- mesh/mesh.py +1239 -0
- mesh/mesh_extrude.py +168 -0
- mesh/mesh_util.py +487 -0
- misc/__init__.py +0 -0
- misc/custom_types.py +6 -0
- misc/interpolation.py +140 -0
- misc/io.py +448 -0
- misc/logger_config.py +18 -0
- misc/misc.py +218 -0
- model/__init__.py +0 -0
- model/analysis.py +147 -0
- model/basefunction.py +113 -0
- model/basemodel.py +513 -0
- model/boundary_conditions.py +193 -0
- model/initial_conditions.py +171 -0
- model/model.py +65 -0
- model/models/GN.py +70 -0
- model/models/advection.py +53 -0
- model/models/basisfunctions.py +181 -0
- model/models/basismatrices.py +381 -0
- model/models/coupled_constrained.py +60 -0
- model/models/poisson.py +41 -0
- model/models/shallow_moments.py +757 -0
- model/models/shallow_moments_sediment.py +378 -0
- model/models/shallow_moments_topo.py +423 -0
- model/models/shallow_moments_variants.py +1509 -0
- model/models/shallow_water.py +266 -0
- model/models/shallow_water_topo.py +111 -0
- model/models/shear_shallow_flow.py +594 -0
- model/models/sme_turbulent.py +613 -0
- model/models/vam.py +455 -0
- postprocessing/__init__.py +0 -0
- postprocessing/plotting.py +244 -0
- postprocessing/postprocessing.py +75 -0
- preprocessing/__init__.py +0 -0
- preprocessing/openfoam_moments.py +453 -0
- transformation/__init__.py +0 -0
- transformation/helpers.py +25 -0
- transformation/to_amrex.py +241 -0
- transformation/to_c.py +185 -0
- transformation/to_jax.py +14 -0
- transformation/to_numpy.py +118 -0
- transformation/to_openfoam.py +258 -0
- transformation/to_ufl.py +67 -0
- zoomy_core-0.1.14.dist-info/METADATA +52 -0
- zoomy_core-0.1.14.dist-info/RECORD +57 -0
- zoomy_core-0.1.14.dist-info/WHEEL +5 -0
- zoomy_core-0.1.14.dist-info/licenses/LICENSE +674 -0
- zoomy_core-0.1.14.dist-info/top_level.txt +8 -0
|
@@ -0,0 +1,757 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import numpy.polynomial.legendre as L
|
|
3
|
+
import numpy.polynomial.chebyshev as C
|
|
4
|
+
from scipy.optimize import least_squares as lsq
|
|
5
|
+
import sympy
|
|
6
|
+
from sympy import Matrix, Piecewise, sqrt
|
|
7
|
+
from sympy.abc import x
|
|
8
|
+
|
|
9
|
+
from sympy import integrate, diff
|
|
10
|
+
from sympy import legendre
|
|
11
|
+
from sympy import lambdify
|
|
12
|
+
|
|
13
|
+
from attrs import define, field
|
|
14
|
+
from typing import Union
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
from zoomy_core.model.basemodel import (
|
|
19
|
+
register_sympy_attribute,
|
|
20
|
+
eigenvalue_dict_to_matrix,
|
|
21
|
+
)
|
|
22
|
+
from zoomy_core.model.basemodel import Model
|
|
23
|
+
import zoomy_core.model.initial_conditions as IC
|
|
24
|
+
from zoomy_core.model.models.basismatrices import Basismatrices
|
|
25
|
+
from zoomy_core.model.models.basisfunctions import Legendre_shifted, Basisfunction
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
@define(frozen=True, slots=True, kw_only=True)
|
|
30
|
+
class ShallowMoments2d(Model):
|
|
31
|
+
dimension: int = 2
|
|
32
|
+
level: int
|
|
33
|
+
variables: Union[list, int] = field(init=False)
|
|
34
|
+
aux_variables: Union[list, int] = field(default=2)
|
|
35
|
+
basisfunctions: Union[Basisfunction, type[Basisfunction]] = field(default=Legendre_shifted)
|
|
36
|
+
basismatrices: Basismatrices = field(init=False)
|
|
37
|
+
|
|
38
|
+
_default_parameters: dict = field(
|
|
39
|
+
init=False,
|
|
40
|
+
factory=lambda: {"g": 9.81, "ex": 0.0, "ey": 0.0, "ez": 1.0}
|
|
41
|
+
)
|
|
42
|
+
|
|
43
|
+
def __attrs_post_init__(self):
|
|
44
|
+
object.__setattr__(self, "variables", ((self.level+1)*self.dimension)+1)
|
|
45
|
+
super().__attrs_post_init__()
|
|
46
|
+
aux_variables = self.aux_variables
|
|
47
|
+
aux_var_list = aux_variables.keys()
|
|
48
|
+
if not aux_variables.contains("dudx"):
|
|
49
|
+
aux_var_list += ["dudx"]
|
|
50
|
+
if self.dimension == 2 and not aux_variables.contains("dvdy"):
|
|
51
|
+
aux_var_list += ["dvdy"]
|
|
52
|
+
object.__setattr__(self, "aux_variables", register_sympy_attribute(aux_var_list, "qaux_"))
|
|
53
|
+
|
|
54
|
+
# Recompute basis matrices
|
|
55
|
+
object.__setattr__(self, "basisfunctions", self.basisfunctions(level=self.level))
|
|
56
|
+
basismatrices = Basismatrices(self.basisfunctions)
|
|
57
|
+
basismatrices.compute_matrices(self.level)
|
|
58
|
+
object.__setattr__(self, "basismatrices", basismatrices)
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
def project_2d_to_3d(self):
|
|
64
|
+
out = Matrix([0 for i in range(6)])
|
|
65
|
+
level = self.level
|
|
66
|
+
offset = level+1
|
|
67
|
+
x = self.position[0]
|
|
68
|
+
y = self.position[1]
|
|
69
|
+
z = self.position[2]
|
|
70
|
+
h = self.variables[0]
|
|
71
|
+
a = [self.variables[1+i]/h for i in range(offset)]
|
|
72
|
+
dhdx = self.aux_variables[0]
|
|
73
|
+
dadx = [self.aux_variables[1+i] for i in range(offset)]
|
|
74
|
+
|
|
75
|
+
psi = [self.basisfunctions.eval_psi(k, z) for k in range(level+1)]
|
|
76
|
+
phi = [self.basisfunctions.eval(k, z) for k in range(level+1)]
|
|
77
|
+
|
|
78
|
+
rho_w = 1000.
|
|
79
|
+
g = 9.81
|
|
80
|
+
u_3d = self.basismatrices.basisfunctions.reconstruct_velocity_profile_at(a, z)
|
|
81
|
+
v_3d = 0
|
|
82
|
+
b = 0
|
|
83
|
+
dbdx = 0
|
|
84
|
+
def dot(a, b):
|
|
85
|
+
s = 0
|
|
86
|
+
for i in range(len(a)):
|
|
87
|
+
s += a[i] * b[i]
|
|
88
|
+
return s
|
|
89
|
+
w_3d = - dhdx * dot(a,psi) - h * dot(dadx,psi) + dot(a, phi) * (z * dhdx + dbdx)
|
|
90
|
+
if self.dimension == 2:
|
|
91
|
+
beta = [self.variables[1+offset+i]/h for i in range(offset)]
|
|
92
|
+
v_3d = self.basismatrices.basisfunctions.reconstruct_velocity_profile_at(beta, z)
|
|
93
|
+
|
|
94
|
+
b = 0
|
|
95
|
+
out[0] = b
|
|
96
|
+
out[1] = h
|
|
97
|
+
out[2] = u_3d
|
|
98
|
+
out[3] = v_3d
|
|
99
|
+
out[4] = w_3d
|
|
100
|
+
out[5] = rho_w * g * h * (1-z)
|
|
101
|
+
|
|
102
|
+
return out
|
|
103
|
+
|
|
104
|
+
def flux(self):
|
|
105
|
+
offset = self.level + 1
|
|
106
|
+
flux_x = Matrix([0 for i in range(self.n_variables)])
|
|
107
|
+
flux_y = Matrix([0 for i in range(self.n_variables)])
|
|
108
|
+
h = self.variables[0]
|
|
109
|
+
ha = self.variables[1 : 1 + self.level + 1]
|
|
110
|
+
p = self.parameters
|
|
111
|
+
flux_x[0] = ha[0]
|
|
112
|
+
flux_x[1] = p.g * p.ez * h * h / 2
|
|
113
|
+
for k in range(self.level + 1):
|
|
114
|
+
for i in range(self.level + 1):
|
|
115
|
+
for j in range(self.level + 1):
|
|
116
|
+
# TODO avoid devision by zero
|
|
117
|
+
flux_x[k + 1] += (
|
|
118
|
+
ha[i]
|
|
119
|
+
* ha[j]
|
|
120
|
+
/ h
|
|
121
|
+
* self.basismatrices.A[k, i, j] / self.basismatrices.M[k, k]
|
|
122
|
+
)
|
|
123
|
+
if self.dimension == 2:
|
|
124
|
+
hb = self.variables[1 + self.level + 1 : 1 + 2 * (self.level + 1)]
|
|
125
|
+
|
|
126
|
+
for k in range(self.level + 1):
|
|
127
|
+
for i in range(self.level + 1):
|
|
128
|
+
for j in range(self.level + 1):
|
|
129
|
+
# TODO avoid devision by zero
|
|
130
|
+
flux_x[k + 1 + offset] += (
|
|
131
|
+
hb[i]
|
|
132
|
+
* ha[j]
|
|
133
|
+
/ h
|
|
134
|
+
* self.basismatrices.A[k, i, j]/ self.basismatrices.M[k, k]
|
|
135
|
+
)
|
|
136
|
+
|
|
137
|
+
flux_y[0] = hb[0]
|
|
138
|
+
flux_y[1 + offset] = p.g * p.ez * h * h / 2
|
|
139
|
+
for k in range(self.level + 1):
|
|
140
|
+
for i in range(self.level + 1):
|
|
141
|
+
for j in range(self.level + 1):
|
|
142
|
+
# TODO avoid devision by zero
|
|
143
|
+
flux_y[k + 1] += (
|
|
144
|
+
hb[i]
|
|
145
|
+
* ha[j]
|
|
146
|
+
/ h
|
|
147
|
+
* self.basismatrices.A[k, i, j]/ self.basismatrices.M[k, k]
|
|
148
|
+
)
|
|
149
|
+
for k in range(self.level + 1):
|
|
150
|
+
for i in range(self.level + 1):
|
|
151
|
+
for j in range(self.level + 1):
|
|
152
|
+
# TODO avoid devision by zero
|
|
153
|
+
flux_y[k + 1 + offset] += (
|
|
154
|
+
hb[i]
|
|
155
|
+
* hb[j]
|
|
156
|
+
/ h
|
|
157
|
+
* self.basismatrices.A[k, i, j]/ self.basismatrices.M[k, k]
|
|
158
|
+
)
|
|
159
|
+
return [flux_x, flux_y]
|
|
160
|
+
|
|
161
|
+
def nonconservative_matrix(self):
|
|
162
|
+
offset = self.level + 1
|
|
163
|
+
nc_x = Matrix([[0 for i in range(self.n_variables)] for j in range(self.n_variables)])
|
|
164
|
+
nc_y = Matrix([[0 for i in range(self.n_variables)] for j in range(self.n_variables)])
|
|
165
|
+
h = self.variables[0]
|
|
166
|
+
ha = self.variables[1 : 1 + self.level + 1]
|
|
167
|
+
p = self.parameters
|
|
168
|
+
um = ha[0] / h
|
|
169
|
+
|
|
170
|
+
for k in range(1, self.level + 1):
|
|
171
|
+
nc_x[k + 1, k + 1] += um
|
|
172
|
+
for k in range(self.level + 1):
|
|
173
|
+
for i in range(1, self.level + 1):
|
|
174
|
+
for j in range(1, self.level + 1):
|
|
175
|
+
nc_x[k + 1, i + 1] -= (
|
|
176
|
+
ha[j]
|
|
177
|
+
/ h
|
|
178
|
+
* self.basismatrices.B[k, i, j]/ self.basismatrices.M[k, k]
|
|
179
|
+
)
|
|
180
|
+
|
|
181
|
+
|
|
182
|
+
if self.dimension == 2:
|
|
183
|
+
hb = self.variables[1 + offset : 1 + offset + self.level + 1]
|
|
184
|
+
vm = hb[0] / h
|
|
185
|
+
for k in range(1, self.level + 1):
|
|
186
|
+
nc_y[k + 1, k + 1 + offset] += um
|
|
187
|
+
for k in range(self.level + 1):
|
|
188
|
+
for i in range(1, self.level + 1):
|
|
189
|
+
for j in range(1, self.level + 1):
|
|
190
|
+
nc_y[k + 1, i + 1 + offset] -= (
|
|
191
|
+
ha[j]
|
|
192
|
+
/ h
|
|
193
|
+
* self.basismatrices.B[k, i, j]/ self.basismatrices.M[k, k]
|
|
194
|
+
)
|
|
195
|
+
|
|
196
|
+
for k in range(1, self.level + 1):
|
|
197
|
+
nc_x[k + 1 + offset, k + 1] += vm
|
|
198
|
+
nc_y[k + 1 + offset, k + 1 + offset] += vm
|
|
199
|
+
for k in range(self.level + 1):
|
|
200
|
+
for i in range(1, self.level + 1):
|
|
201
|
+
for j in range(1, self.level + 1):
|
|
202
|
+
nc_x[k + 1 + offset, i + 1] -= (
|
|
203
|
+
hb[j]
|
|
204
|
+
/ h
|
|
205
|
+
* self.basismatrices.B[k, i, j]
|
|
206
|
+
)
|
|
207
|
+
nc_y[k + 1 + offset, i + 1 + offset] -= (
|
|
208
|
+
hb[j]
|
|
209
|
+
/ h
|
|
210
|
+
* self.basismatrices.B[k, i, j]/ self.basismatrices.M[k, k]
|
|
211
|
+
)
|
|
212
|
+
return [-nc_x, -nc_y]
|
|
213
|
+
|
|
214
|
+
def eigenvalues(self):
|
|
215
|
+
# we delete heigher order moments (level >= 2) for analytical eigenvalues
|
|
216
|
+
offset = self.level + 1
|
|
217
|
+
A = self.normal[0] * self.quasilinear_matrix()[0]
|
|
218
|
+
for d in range(1, self.dimension):
|
|
219
|
+
A += self.normal[d] * self.quasilinear_matrix()[d]
|
|
220
|
+
alpha_erase = self.variables[2 : 2 + self.level]
|
|
221
|
+
beta_erase = self.variables[2 + offset : 2 + offset + self.level]
|
|
222
|
+
for alpha_i in alpha_erase:
|
|
223
|
+
A = A.subs(alpha_i, 0)
|
|
224
|
+
for beta_i in beta_erase:
|
|
225
|
+
A = A.subs(beta_i, 0)
|
|
226
|
+
return eigenvalue_dict_to_matrix(A.eigenvals())
|
|
227
|
+
|
|
228
|
+
|
|
229
|
+
def source(self):
|
|
230
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
231
|
+
return out
|
|
232
|
+
|
|
233
|
+
def gravity(self):
|
|
234
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
235
|
+
out[1] = -self.parameters.g * self.parameters.ex * self.variables[0]
|
|
236
|
+
if self.dimension == 2:
|
|
237
|
+
offset = self.level + 1
|
|
238
|
+
out[1 + offset] = -self.parameters.g * self.parameters.ey * self.variables[0]
|
|
239
|
+
return out
|
|
240
|
+
|
|
241
|
+
def newtonian_turbulent(self):
|
|
242
|
+
p = self.parameters
|
|
243
|
+
nut1 = [
|
|
244
|
+
1.06245397e-05,
|
|
245
|
+
-8.64966128e-06,
|
|
246
|
+
-4.24655215e-06,
|
|
247
|
+
1.51861028e-06,
|
|
248
|
+
2.25140517e-06,
|
|
249
|
+
1.81867029e-06,
|
|
250
|
+
-1.02154323e-06,
|
|
251
|
+
-1.78795289e-06,
|
|
252
|
+
-5.07515843e-07,
|
|
253
|
+
]
|
|
254
|
+
nut2 = np.array(
|
|
255
|
+
[
|
|
256
|
+
0.21923893,
|
|
257
|
+
-0.04171894,
|
|
258
|
+
-0.05129916,
|
|
259
|
+
-0.04913612,
|
|
260
|
+
-0.03863209,
|
|
261
|
+
-0.02533469,
|
|
262
|
+
-0.0144186,
|
|
263
|
+
-0.00746847,
|
|
264
|
+
-0.0031811,
|
|
265
|
+
-0.00067986,
|
|
266
|
+
0.0021782,
|
|
267
|
+
]
|
|
268
|
+
)
|
|
269
|
+
nut2 = nut2 / nut2[0] * 1.06245397 * 10 ** (-5)
|
|
270
|
+
nut3 = [
|
|
271
|
+
1.45934315e-05,
|
|
272
|
+
-1.91969629e-05,
|
|
273
|
+
5.80456268e-06,
|
|
274
|
+
-5.13207491e-07,
|
|
275
|
+
2.29489571e-06,
|
|
276
|
+
-1.24361978e-06,
|
|
277
|
+
-2.78720732e-06,
|
|
278
|
+
-2.01469118e-07,
|
|
279
|
+
1.24957663e-06,
|
|
280
|
+
]
|
|
281
|
+
nut4 = [
|
|
282
|
+
1.45934315e-05,
|
|
283
|
+
-1.45934315e-05 * 3 / 4,
|
|
284
|
+
-1.45934315e-05 * 1 / 4,
|
|
285
|
+
0,
|
|
286
|
+
0,
|
|
287
|
+
0,
|
|
288
|
+
0,
|
|
289
|
+
0,
|
|
290
|
+
0,
|
|
291
|
+
0,
|
|
292
|
+
0,
|
|
293
|
+
0,
|
|
294
|
+
]
|
|
295
|
+
nut5 = [p.nut, -p.nut * 3 / 4, -p.nut * 1 / 4, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
|
296
|
+
nut = nut5
|
|
297
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
298
|
+
h = self.variables[0]
|
|
299
|
+
ha = self.variables[1 : 1 + self.level + 1]
|
|
300
|
+
p = self.parameters
|
|
301
|
+
for k in range(1 + self.level):
|
|
302
|
+
for i in range(1 + self.level):
|
|
303
|
+
for j in range(1 + self.level):
|
|
304
|
+
out[1 + k] += (
|
|
305
|
+
-p.c_nut
|
|
306
|
+
* nut[j]
|
|
307
|
+
/ h
|
|
308
|
+
* ha[i]
|
|
309
|
+
/ h
|
|
310
|
+
* self.basismatrices.DT[k, i, j]/ self.basismatrices.M[k, k]
|
|
311
|
+
)
|
|
312
|
+
return out
|
|
313
|
+
|
|
314
|
+
def newtonian_boundary_layer_classic(self):
|
|
315
|
+
assert "nu" in vars(self.parameters)
|
|
316
|
+
assert "eta" in vars(self.parameters)
|
|
317
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
318
|
+
h = self.variables[0]
|
|
319
|
+
ha = self.variables[1 : 1 + self.level + 1]
|
|
320
|
+
p = self.parameters
|
|
321
|
+
phi_0 = [
|
|
322
|
+
self.basismatrices.basisfunctions.eval(i, 0.0)
|
|
323
|
+
for i in range(self.level + 1)
|
|
324
|
+
]
|
|
325
|
+
dphidx_0 = [
|
|
326
|
+
(diff(self.basismatrices.basisfunctions.eval(i, x), x)).subs(x, 0.0)
|
|
327
|
+
for i in range(self.level + 1)
|
|
328
|
+
]
|
|
329
|
+
tau_bot = 0
|
|
330
|
+
for i in range(1 + self.level):
|
|
331
|
+
tau_bot += ha[i] / h * dphidx_0[i]
|
|
332
|
+
for k in range(1 + self.level):
|
|
333
|
+
out[k + 1] = (
|
|
334
|
+
-p.c_bl
|
|
335
|
+
* p.eta
|
|
336
|
+
* (p.nu + p.nut_bl)
|
|
337
|
+
/ h
|
|
338
|
+
* tau_bot
|
|
339
|
+
* phi_0[k]/ self.basismatrices.M[k, k]
|
|
340
|
+
)
|
|
341
|
+
return out
|
|
342
|
+
|
|
343
|
+
def newtonian(self):
|
|
344
|
+
assert "nu" in vars(self.parameters)
|
|
345
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
346
|
+
offset = self.level + 1
|
|
347
|
+
h = self.variables[0]
|
|
348
|
+
ha = self.variables[1 : 1 + self.level + 1]
|
|
349
|
+
p = self.parameters
|
|
350
|
+
for k in range(1 + self.level):
|
|
351
|
+
for i in range(1 + self.level):
|
|
352
|
+
out[1 + k] += (
|
|
353
|
+
-p.nu
|
|
354
|
+
/ h
|
|
355
|
+
* ha[i]
|
|
356
|
+
/ h
|
|
357
|
+
* self.basismatrices.D[i, k]/ self.basismatrices.M[k, k]
|
|
358
|
+
)
|
|
359
|
+
if self.dimension == 2:
|
|
360
|
+
hb = self.variables[1 + offset : 1 + self.level + 1 + offset]
|
|
361
|
+
for k in range(1 + self.level):
|
|
362
|
+
for i in range(1 + self.level):
|
|
363
|
+
out[1 + k + offset] += (
|
|
364
|
+
-p.nu
|
|
365
|
+
/ h
|
|
366
|
+
* hb[i]
|
|
367
|
+
/ h
|
|
368
|
+
* self.basismatrices.D[i, k]/ self.basismatrices.M[k, k]
|
|
369
|
+
)
|
|
370
|
+
|
|
371
|
+
return out
|
|
372
|
+
|
|
373
|
+
def newtonian_turbulent_algebraic(self):
|
|
374
|
+
assert "nu" in vars(self.parameters)
|
|
375
|
+
assert "l_bl" in vars(self.parameters)
|
|
376
|
+
assert "l_turb" in vars(self.parameters)
|
|
377
|
+
assert "kappa" in vars(self.parameters)
|
|
378
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
379
|
+
offset = self.level + 1
|
|
380
|
+
h = self.variables[0]
|
|
381
|
+
a = [_ha / h for _ha in self.variables[1 : 1 + self.level + 1]]
|
|
382
|
+
p = self.parameters
|
|
383
|
+
dU_dx = a[0] / (p.l_turb * h)
|
|
384
|
+
abs_dU_dx = sympy.Piecewise((dU_dx, dU_dx >=0), (-dU_dx, True))
|
|
385
|
+
for k in range(1 + self.level):
|
|
386
|
+
out[1 + k] += (
|
|
387
|
+
-(p.nu + p.kappa * sympy.sqrt(p.nu * abs_dU_dx) * p.l_bl * ( 1-p.l_bl)) * dU_dx * self.basismatrices.phib[k] / h/ self.basismatrices.M[k, k]
|
|
388
|
+
)
|
|
389
|
+
for i in range(1 + self.level):
|
|
390
|
+
out[1 + k] += (
|
|
391
|
+
-p.nu
|
|
392
|
+
/ h
|
|
393
|
+
* a[i]
|
|
394
|
+
* self.basismatrices.D[i, k]/ self.basismatrices.M[k, k]
|
|
395
|
+
)
|
|
396
|
+
out[1 + k] += (
|
|
397
|
+
-p.kappa * sympy.sqrt(p.nu * abs_dU_dx)
|
|
398
|
+
/ h
|
|
399
|
+
* a[i]
|
|
400
|
+
* (self.basismatrices.Dxi[i, k] - self.basismatrices.Dxi2[i, k])/ self.basismatrices.M[k, k]
|
|
401
|
+
)
|
|
402
|
+
if self.dimension == 2:
|
|
403
|
+
b = [_hb / h for _hb in self.variables[1 + offset : 1 + self.level + 1 + offset] ]
|
|
404
|
+
dV_dy = b[0] / (p.l_turb * h)
|
|
405
|
+
abs_dV_dy = sympy.Piecewise((dV_dy, dV_dy >=0), (-dV_dy, True))
|
|
406
|
+
for k in range(1 + self.level):
|
|
407
|
+
out[1 + k + offset] += (
|
|
408
|
+
-(p.nu + p.kappa * sympy.sqrt(p.nu * abs_dV_dy) * p.l_bl * ( 1-p.l_bl)) * dV_dy * self.basismatrices.phib[k] / h/ self.basismatrices.M[k, k]
|
|
409
|
+
)
|
|
410
|
+
for i in range(1 + self.level):
|
|
411
|
+
out[1 + k + offset] += (
|
|
412
|
+
-p.nu
|
|
413
|
+
/ h
|
|
414
|
+
* b[i]
|
|
415
|
+
* self.basismatrices.D[i, k]/ self.basismatrices.M[k, k]
|
|
416
|
+
)
|
|
417
|
+
out[1 + k + offset] += (
|
|
418
|
+
-p.kappa * sympy.sqrt(p.nu * abs_dV_dy)
|
|
419
|
+
/ h
|
|
420
|
+
* b[i]
|
|
421
|
+
* (self.basismatrices.Dxi[i, k] - self.basismatrices.Dxi2[i, k])/ self.basismatrices.M[k, k]
|
|
422
|
+
)
|
|
423
|
+
|
|
424
|
+
return out
|
|
425
|
+
|
|
426
|
+
def regress_against_power_profile(self):
|
|
427
|
+
"""
|
|
428
|
+
:gui:
|
|
429
|
+
- requires_parameter: ('lamda', 0.0)
|
|
430
|
+
- requires_parameter: ('rho', 1.0)
|
|
431
|
+
"""
|
|
432
|
+
assert "r_pp" in vars(self.parameters)
|
|
433
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
434
|
+
offset = self.level+1
|
|
435
|
+
h = self.variables[0]
|
|
436
|
+
ha = self.variables[1 : 1 + self.level + 1]
|
|
437
|
+
p = self.parameters
|
|
438
|
+
ub = 0
|
|
439
|
+
Z = np.linspace(0,1,100)
|
|
440
|
+
U = 1-(1-Z)**8
|
|
441
|
+
power_profile_coefs = self.basisfunctions.project_onto_basis(U)
|
|
442
|
+
for i in range(1 + self.level):
|
|
443
|
+
ub += ha[i] / h
|
|
444
|
+
for k in range(1, 1 + self.level):
|
|
445
|
+
out[1 + k] += (
|
|
446
|
+
-p.r_pp * sympy.Piecewise((ub, ub >=0), (-ub, True)) * (ha[i] - ha[0]*power_profile_coefs[i])/ self.basismatrices.M[k, k]
|
|
447
|
+
)
|
|
448
|
+
return out
|
|
449
|
+
|
|
450
|
+
def slip_mod(self):
|
|
451
|
+
"""
|
|
452
|
+
:gui:
|
|
453
|
+
- requires_parameter: ('lamda', 0.0)
|
|
454
|
+
- requires_parameter: ('rho', 1.0)
|
|
455
|
+
"""
|
|
456
|
+
assert "lamda" in vars(self.parameters)
|
|
457
|
+
assert "rho" in vars(self.parameters)
|
|
458
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
459
|
+
offset = self.level+1
|
|
460
|
+
h = self.variables[0]
|
|
461
|
+
ha = self.variables[1 : 1 + self.level + 1]
|
|
462
|
+
p = self.parameters
|
|
463
|
+
ub = 0
|
|
464
|
+
for i in range(1 + self.level):
|
|
465
|
+
ub += ha[i] / h
|
|
466
|
+
for k in range(1, 1 + self.level):
|
|
467
|
+
out[1 + k] += (
|
|
468
|
+
-p.c_slipmod / p.lamda / p.rho * ub / self.basismatrices.M[k, k]
|
|
469
|
+
)
|
|
470
|
+
if self.dimension == 2:
|
|
471
|
+
hb = self.variables[1+offset : 1+offset + self.level + 1]
|
|
472
|
+
vb = 0
|
|
473
|
+
for i in range(1 + self.level):
|
|
474
|
+
vb += hb[i] / h
|
|
475
|
+
for k in range(1, 1 + self.level):
|
|
476
|
+
out[1+offset+k] += (
|
|
477
|
+
-1.0 * p.c_slipmod / p.lamda / p.rho * vb/ self.basismatrices.M[k, k]
|
|
478
|
+
)
|
|
479
|
+
return out
|
|
480
|
+
|
|
481
|
+
def newtonian_boundary_layer(self):
|
|
482
|
+
assert "nu" in vars(self.parameters)
|
|
483
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
484
|
+
offset = self.level + 1
|
|
485
|
+
h = self.variables[0]
|
|
486
|
+
ha = self.variables[1 : 1 + self.level + 1]
|
|
487
|
+
p = self.parameters
|
|
488
|
+
phi_0 = [self.basismatrices.eval(i, 0.0) for i in range(self.level + 1)]
|
|
489
|
+
dphidx_0 = [
|
|
490
|
+
(diff(self.basismatrices.eval(i, x), x)).subs(x, 0.0)
|
|
491
|
+
for i in range(self.level + 1)
|
|
492
|
+
]
|
|
493
|
+
for k in range(1 + self.level):
|
|
494
|
+
for i in range(1 + self.level):
|
|
495
|
+
out[1 + k] += (
|
|
496
|
+
-p.nu
|
|
497
|
+
/ h
|
|
498
|
+
* ha[i]
|
|
499
|
+
/ h
|
|
500
|
+
* phi_0[k]
|
|
501
|
+
* dphidx_0[i]/ self.basismatrices.M[k, k]
|
|
502
|
+
)
|
|
503
|
+
if self.dimension==2:
|
|
504
|
+
hb = self.variables[1 + offset : 1 + self.level + 1 + offset]
|
|
505
|
+
for k in range(1 + self.level):
|
|
506
|
+
for i in range(1 + self.level):
|
|
507
|
+
out[1 + k + offset] += (
|
|
508
|
+
-p.nu
|
|
509
|
+
/ h
|
|
510
|
+
* hb[i]
|
|
511
|
+
/ h
|
|
512
|
+
* phi_0[k]
|
|
513
|
+
* dphidx_0[i]/ self.basismatrices.M[k, k]
|
|
514
|
+
)
|
|
515
|
+
return out
|
|
516
|
+
|
|
517
|
+
def sindy(self):
|
|
518
|
+
assert "nu" in vars(self.parameters)
|
|
519
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
520
|
+
offset = self.level + 1
|
|
521
|
+
h = self.variables[0]
|
|
522
|
+
ha = self.variables[1 : 1 + self.level + 1]
|
|
523
|
+
hb = self.variables[1 + offset : 1 + self.level + 1 + offset]
|
|
524
|
+
p = self.parameters
|
|
525
|
+
out[1] += (
|
|
526
|
+
p.C1 * sympy.Abs(ha[0] / h)
|
|
527
|
+
+ p.C2 * sympy.Abs(ha[1] / h)
|
|
528
|
+
+ p.C3 * sympy.Abs(ha[0] / h) ** (7 / 3)
|
|
529
|
+
+ p.C4 * sympy.Abs(ha[1] / h) ** (7 / 3)
|
|
530
|
+
)
|
|
531
|
+
out[2] += (
|
|
532
|
+
p.C5 * sympy.Abs(ha[0] / h)
|
|
533
|
+
+ p.C6 * sympy.Abs(ha[1] / h)
|
|
534
|
+
+ p.C7 * sympy.Abs(ha[0] / h) ** (7 / 3)
|
|
535
|
+
+ p.C8 * sympy.Abs(ha[1] / h) ** (7 / 3)
|
|
536
|
+
)
|
|
537
|
+
out[3] += (
|
|
538
|
+
p.C1 * sympy.Abs(ha[0] / h)
|
|
539
|
+
+ p.C2 * sympy.Abs(ha[1] / h)
|
|
540
|
+
+ p.C3 * sympy.Abs(ha[0] / h) ** (7 / 3)
|
|
541
|
+
+ p.C4 * sympy.Abs(ha[1] / h) ** (7 / 3)
|
|
542
|
+
)
|
|
543
|
+
out[4] += (
|
|
544
|
+
p.C5 * sympy.Abs(ha[0] / h)
|
|
545
|
+
+ p.C6 * sympy.Abs(ha[1] / h)
|
|
546
|
+
+ p.C7 * sympy.Abs(ha[0] / h) ** (7 / 3)
|
|
547
|
+
+ p.C8 * sympy.Abs(ha[1] / h) ** (7 / 3)
|
|
548
|
+
)
|
|
549
|
+
return out
|
|
550
|
+
|
|
551
|
+
def slip(self):
|
|
552
|
+
assert "lamda" in vars(self.parameters)
|
|
553
|
+
assert "rho" in vars(self.parameters)
|
|
554
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
555
|
+
offset = self.level + 1
|
|
556
|
+
h = self.variables[0]
|
|
557
|
+
h = self.variables[0]
|
|
558
|
+
ha = self.variables[1 : 1 + self.level + 1]
|
|
559
|
+
p = self.parameters
|
|
560
|
+
for k in range(1 + self.level):
|
|
561
|
+
for i in range(1 + self.level):
|
|
562
|
+
out[1 + k] += (
|
|
563
|
+
-1.0 / p.lamda / p.rho * ha[i] / h / self.basismatrices.M[k, k]
|
|
564
|
+
)
|
|
565
|
+
|
|
566
|
+
if self.dimension == 2:
|
|
567
|
+
hb = self.variables[1 + offset : 1 + self.level + 1 + offset]
|
|
568
|
+
for k in range(1 + self.level):
|
|
569
|
+
for i in range(1 + self.level):
|
|
570
|
+
out[1 + k + offset] += (
|
|
571
|
+
-1.0 / p.lamda / p.rho/ self.basismatrices.M[k, k]
|
|
572
|
+
)
|
|
573
|
+
return out
|
|
574
|
+
|
|
575
|
+
def chezy(self):
|
|
576
|
+
assert "C" in vars(self.parameters)
|
|
577
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
578
|
+
h = self.variables[0]
|
|
579
|
+
ha = self.variables[1 : 1 + self.level + 1]
|
|
580
|
+
p = self.parameters
|
|
581
|
+
tmp = 0
|
|
582
|
+
if self.dimension == 1:
|
|
583
|
+
for i in range(1 + self.level):
|
|
584
|
+
for j in range(1 + self.level):
|
|
585
|
+
tmp += ha[i] * ha[j] / h / h
|
|
586
|
+
sqrt = sympy.sqrt(tmp)
|
|
587
|
+
for k in range(1 + self.level):
|
|
588
|
+
for l in range(1 + self.level):
|
|
589
|
+
out[1 + k] += (
|
|
590
|
+
-1.0 / (p.C**2) * ha[l] * sqrt / h/ self.basismatrices.M[k, k]
|
|
591
|
+
)
|
|
592
|
+
if self.dimension == 2:
|
|
593
|
+
offset = self.level + 1
|
|
594
|
+
hb = self.variables[1 + offset : 1 + self.level + 1 + offset]
|
|
595
|
+
for i in range(1 + self.level):
|
|
596
|
+
for j in range(1 + self.level):
|
|
597
|
+
tmp += ha[i] * ha[j] / h / h + hb[i] * hb[j] / h / h
|
|
598
|
+
sqrt = sympy.sqrt(tmp)
|
|
599
|
+
for k in range(1 + self.level):
|
|
600
|
+
for l in range(1 + self.level):
|
|
601
|
+
out[1 + k] += (
|
|
602
|
+
-1.0 / (p.C**2) * ha[l] * sqrt / h/ self.basismatrices.M[k, k]
|
|
603
|
+
)
|
|
604
|
+
out[1 + k + offset] += (
|
|
605
|
+
-1.0 / (p.C**2) * hb[l] * sqrt / h/ self.basismatrices.M[k, k]
|
|
606
|
+
)
|
|
607
|
+
|
|
608
|
+
return out
|
|
609
|
+
|
|
610
|
+
|
|
611
|
+
def reconstruct_uvw(Q, grad, lvl, phi, psi):
|
|
612
|
+
"""
|
|
613
|
+
returns functions u(z), v(z), w(z)
|
|
614
|
+
"""
|
|
615
|
+
offset = lvl + 1
|
|
616
|
+
h = Q[0]
|
|
617
|
+
alpha = Q[1 : 1 + offset] / h
|
|
618
|
+
beta = Q[1 + offset : 1 + 2 * offset] / h
|
|
619
|
+
dhalpha_dx = grad[1 : 1 + offset, 0]
|
|
620
|
+
dhbeta_dy = grad[1 + offset : 1 + 2 * offset, 1]
|
|
621
|
+
|
|
622
|
+
def u(z):
|
|
623
|
+
u_z = 0
|
|
624
|
+
for i in range(lvl + 1):
|
|
625
|
+
u_z += alpha[i] * phi(z)[i]
|
|
626
|
+
return u_z
|
|
627
|
+
|
|
628
|
+
def v(z):
|
|
629
|
+
v_z = 0
|
|
630
|
+
for i in range(lvl + 1):
|
|
631
|
+
v_z += beta[i] * phi(z)[i]
|
|
632
|
+
return v_z
|
|
633
|
+
|
|
634
|
+
def w(z):
|
|
635
|
+
basis_0 = psi(0)
|
|
636
|
+
basis_z = psi(z)
|
|
637
|
+
u_z = 0
|
|
638
|
+
v_z = 0
|
|
639
|
+
grad_h = grad[0, :]
|
|
640
|
+
# grad_hb = grad[-1, :]
|
|
641
|
+
grad_hb = np.zeros(grad[0, :].shape)
|
|
642
|
+
result = 0
|
|
643
|
+
for i in range(lvl + 1):
|
|
644
|
+
u_z += alpha[i] * basis_z[i]
|
|
645
|
+
v_z += beta[i] * basis_z[i]
|
|
646
|
+
for i in range(lvl + 1):
|
|
647
|
+
result -= dhalpha_dx[i] * (basis_z[i] - basis_0[i])
|
|
648
|
+
result -= dhbeta_dy[i] * (basis_z[i] - basis_0[i])
|
|
649
|
+
|
|
650
|
+
result += u_z * (z * grad_h[0] + grad_hb[0])
|
|
651
|
+
result += v_z * (z * grad_h[1] + grad_hb[1])
|
|
652
|
+
return result
|
|
653
|
+
|
|
654
|
+
return u, v, w
|
|
655
|
+
|
|
656
|
+
|
|
657
|
+
def generate_velocity_profiles(
|
|
658
|
+
Q,
|
|
659
|
+
centers,
|
|
660
|
+
model: Model,
|
|
661
|
+
list_of_positions: list[np.ndarray],
|
|
662
|
+
):
|
|
663
|
+
def find_closest_element(centers, pos):
|
|
664
|
+
assert centers.shape[1] == np.array(pos).shape[0]
|
|
665
|
+
return np.argmin(np.linalg.norm(centers - pos, axis=1))
|
|
666
|
+
|
|
667
|
+
# find the closest element to the given position
|
|
668
|
+
vertices = []
|
|
669
|
+
for pos in list_of_positions:
|
|
670
|
+
vertex = find_closest_element(centers, pos)
|
|
671
|
+
vertices.append(vertex)
|
|
672
|
+
|
|
673
|
+
Z = np.linspace(0, 1, 100)
|
|
674
|
+
list_profiles = []
|
|
675
|
+
list_means = []
|
|
676
|
+
level = int((model.n_variables - 1) / model.dimension) - 1
|
|
677
|
+
offset = level + 1
|
|
678
|
+
list_h = []
|
|
679
|
+
for vertex in vertices:
|
|
680
|
+
profiles = []
|
|
681
|
+
means = []
|
|
682
|
+
for d in range(model.dimension):
|
|
683
|
+
q = Q[vertex, :]
|
|
684
|
+
h = q[0]
|
|
685
|
+
coefs = q[1 + d * offset : 1 + (d + 1) * offset] / h
|
|
686
|
+
profile = model.basis.basis.reconstruct_velocity_profile(coefs, Z=Z)
|
|
687
|
+
mean = coefs[0]
|
|
688
|
+
profiles.append(profile)
|
|
689
|
+
means.append(mean)
|
|
690
|
+
list_profiles.append(profiles)
|
|
691
|
+
list_means.append(means)
|
|
692
|
+
list_h.append(h)
|
|
693
|
+
return list_profiles, list_means, list_of_positions, Z, list_h
|
|
694
|
+
|
|
695
|
+
|
|
696
|
+
if __name__ == "__main__":
|
|
697
|
+
# basis = Legendre_shifted(1)
|
|
698
|
+
# basis = Spline()
|
|
699
|
+
# basis = OrthogonalSplineWithConstant(degree=2, knots=[0, 0.1, 0.3,0.5, 1,1])
|
|
700
|
+
# basis=OrthogonalSplineWithConstant(degree=1, knots=[0,0, 0.02, 0.04, 0.06, 0.08, 0.1, 1])
|
|
701
|
+
# basis=OrthogonalSplineWithConstant(degree=1, knots=[0,0, 0.1, 1])
|
|
702
|
+
# basis.plot()
|
|
703
|
+
|
|
704
|
+
# basis = Legendre_shifted(basis=Legendre_shifted(order=8))
|
|
705
|
+
# f = basis.enforce_boundary_conditions()
|
|
706
|
+
# q = np.array([[1., 0.1, 0., 0., 0., 0.], [1., 0.1, 0., 0., 3., 0.]])
|
|
707
|
+
# print(f(q))
|
|
708
|
+
|
|
709
|
+
# basis =Legendre_shifted(order=8)
|
|
710
|
+
# basis.plot()
|
|
711
|
+
# z = np.linspace(0,1,100)
|
|
712
|
+
# f = basis.get_lambda(1)
|
|
713
|
+
# print(f(z), f(1.0))
|
|
714
|
+
# f = basis.get_lambda(1)
|
|
715
|
+
# print(f(z))
|
|
716
|
+
|
|
717
|
+
# X = np.linspace(0,1,100)
|
|
718
|
+
# coef = np.array([0.2, -0.01, -0.1, -0.05, -0.04])
|
|
719
|
+
# U = basis.basis.reconstruct_velocity_profile(coef, Z=X)
|
|
720
|
+
# coef2 = coef*2
|
|
721
|
+
# factor = 1.0 / 0.2
|
|
722
|
+
# coef3 = coef * factor
|
|
723
|
+
# U2 = basis.basis.reconstruct_velocity_profile(coef2, Z=X)
|
|
724
|
+
# U3 = basis.basis.reconstruct_velocity_profile(coef3, Z=X)
|
|
725
|
+
# fig, ax = plt.subplots()
|
|
726
|
+
# ax.plot(U, X)
|
|
727
|
+
# ax.plot(U2, X)
|
|
728
|
+
# ax.plot(U3, X)
|
|
729
|
+
# plt.show()
|
|
730
|
+
|
|
731
|
+
# X = np.linspace(0,1,100)
|
|
732
|
+
# nut = 10**(-5)
|
|
733
|
+
# coef = np.array([nut, -nut, 0, 0, 0, 0, 0 ])
|
|
734
|
+
# U = basis.basis.reconstruct_velocity_profile(coef, Z=X)
|
|
735
|
+
# fig, ax = plt.subplots()
|
|
736
|
+
# ax.plot(U, X)
|
|
737
|
+
# plt.show()
|
|
738
|
+
|
|
739
|
+
# nut = np.load('/home/ingo/Git/sms/nut_nut2.npy')
|
|
740
|
+
# y = np.load('/home/ingo/Git/sms/nut_y2.npy')
|
|
741
|
+
# coef = basis.basis.reconstruct_alpha(nut, y)
|
|
742
|
+
# coef_offset = np.sum(coef)
|
|
743
|
+
# coef[0] -= coef_offset
|
|
744
|
+
# print(coef)
|
|
745
|
+
# X = np.linspace(0,1,100)
|
|
746
|
+
# _nut = basis.basis.reconstruct_velocity_profile(coef, Z=X)
|
|
747
|
+
# fig, ax = plt.subplots()
|
|
748
|
+
# ax.plot(_nut, X)
|
|
749
|
+
# plt.show()
|
|
750
|
+
|
|
751
|
+
basis = Legendre_shifted(basis=Legendre_shifted(level=2))
|
|
752
|
+
basis.compute_matrices(2)
|
|
753
|
+
print(basis.D)
|
|
754
|
+
|
|
755
|
+
@define(frozen=True, slots=True, kw_only=True)
|
|
756
|
+
class ShallowMoments(ShallowMoments2d):
|
|
757
|
+
dimension: int = 1
|