zoomy-core 0.1.14__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- decorators/decorators.py +25 -0
- fvm/__init__.py +0 -0
- fvm/flux.py +52 -0
- fvm/nonconservative_flux.py +97 -0
- fvm/ode.py +55 -0
- fvm/solver_numpy.py +297 -0
- fvm/timestepping.py +13 -0
- mesh/__init__.py +0 -0
- mesh/mesh.py +1239 -0
- mesh/mesh_extrude.py +168 -0
- mesh/mesh_util.py +487 -0
- misc/__init__.py +0 -0
- misc/custom_types.py +6 -0
- misc/interpolation.py +140 -0
- misc/io.py +448 -0
- misc/logger_config.py +18 -0
- misc/misc.py +218 -0
- model/__init__.py +0 -0
- model/analysis.py +147 -0
- model/basefunction.py +113 -0
- model/basemodel.py +513 -0
- model/boundary_conditions.py +193 -0
- model/initial_conditions.py +171 -0
- model/model.py +65 -0
- model/models/GN.py +70 -0
- model/models/advection.py +53 -0
- model/models/basisfunctions.py +181 -0
- model/models/basismatrices.py +381 -0
- model/models/coupled_constrained.py +60 -0
- model/models/poisson.py +41 -0
- model/models/shallow_moments.py +757 -0
- model/models/shallow_moments_sediment.py +378 -0
- model/models/shallow_moments_topo.py +423 -0
- model/models/shallow_moments_variants.py +1509 -0
- model/models/shallow_water.py +266 -0
- model/models/shallow_water_topo.py +111 -0
- model/models/shear_shallow_flow.py +594 -0
- model/models/sme_turbulent.py +613 -0
- model/models/vam.py +455 -0
- postprocessing/__init__.py +0 -0
- postprocessing/plotting.py +244 -0
- postprocessing/postprocessing.py +75 -0
- preprocessing/__init__.py +0 -0
- preprocessing/openfoam_moments.py +453 -0
- transformation/__init__.py +0 -0
- transformation/helpers.py +25 -0
- transformation/to_amrex.py +241 -0
- transformation/to_c.py +185 -0
- transformation/to_jax.py +14 -0
- transformation/to_numpy.py +118 -0
- transformation/to_openfoam.py +258 -0
- transformation/to_ufl.py +67 -0
- zoomy_core-0.1.14.dist-info/METADATA +52 -0
- zoomy_core-0.1.14.dist-info/RECORD +57 -0
- zoomy_core-0.1.14.dist-info/WHEEL +5 -0
- zoomy_core-0.1.14.dist-info/licenses/LICENSE +674 -0
- zoomy_core-0.1.14.dist-info/top_level.txt +8 -0
|
@@ -0,0 +1,613 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import numpy.polynomial.legendre as L
|
|
3
|
+
import numpy.polynomial.chebyshev as C
|
|
4
|
+
from scipy.optimize import least_squares as lsq
|
|
5
|
+
import sympy
|
|
6
|
+
from sympy import Matrix, Piecewise
|
|
7
|
+
from sympy.abc import x
|
|
8
|
+
|
|
9
|
+
from sympy import integrate, diff
|
|
10
|
+
from sympy import legendre
|
|
11
|
+
from sympy import lambdify
|
|
12
|
+
|
|
13
|
+
from attrs import define, field
|
|
14
|
+
import attr
|
|
15
|
+
from typing import Union, Dict, List
|
|
16
|
+
|
|
17
|
+
from sympy.functions.elementary.exponential import LambertW
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
from zoomy_core.model.basemodel import (
|
|
21
|
+
register_sympy_attribute,
|
|
22
|
+
eigenvalue_dict_to_matrix,
|
|
23
|
+
)
|
|
24
|
+
from zoomy_core.model.basemodel import Model
|
|
25
|
+
from zoomy_core.model.models.basismatrices import Basismatrices
|
|
26
|
+
from zoomy_core.model.models.basisfunctions import Legendre_shifted, Basisfunction
|
|
27
|
+
|
|
28
|
+
from sympy.integrals.quadrature import gauss_legendre
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
@define(frozen=True, slots=True, kw_only=True)
|
|
34
|
+
class SMET(Model):
|
|
35
|
+
dimension: int = 2
|
|
36
|
+
level: int
|
|
37
|
+
variables: Union[list, int] = field(init=False)
|
|
38
|
+
positive_variables: Union[List[int], Dict[str, int], None] = attr.ib(default=attr.Factory(lambda: [1]))
|
|
39
|
+
aux_variables: Union[list, int] = field(default=0)
|
|
40
|
+
basisfunctions: Union[Basisfunction, type[Basisfunction]] = field(default=Legendre_shifted)
|
|
41
|
+
basismatrices: Basismatrices = field(init=False)
|
|
42
|
+
order_numerical_integration: int = 4
|
|
43
|
+
|
|
44
|
+
_default_parameters: dict = field(
|
|
45
|
+
init=False,
|
|
46
|
+
factory=lambda: {"g": 9.81, "ex": 0.0, "ey": 0.0, "ez": 1.0, "eps_low_water": 1e-6, "rho": 1000., 'nu': 1e-6, 'kappa': 0.41, 'B': 5.2, 'Cs': 0.17, 'yp': 0.1, 'CsW': 0.5, 'Ks': 0.001},
|
|
47
|
+
)
|
|
48
|
+
|
|
49
|
+
def __attrs_post_init__(self):
|
|
50
|
+
object.__setattr__(self, "variables", ((self.level+1)*self.dimension)+2)
|
|
51
|
+
# [dQ_dx, dQ_dy, deltaX, user-defined]
|
|
52
|
+
object.__setattr__(self, "aux_variables", 2*((self.level+1)*self.dimension+2)+1+self.aux_variables)
|
|
53
|
+
super().__attrs_post_init__()
|
|
54
|
+
aux_variables = self.aux_variables
|
|
55
|
+
aux_var_list = aux_variables.keys()
|
|
56
|
+
object.__setattr__(self, "aux_variables", register_sympy_attribute(aux_var_list, "qaux_"))
|
|
57
|
+
|
|
58
|
+
# Recompute basis matrices
|
|
59
|
+
object.__setattr__(self, "basisfunctions", self.basisfunctions(level=self.level))
|
|
60
|
+
basismatrices = Basismatrices(self.basisfunctions)
|
|
61
|
+
basismatrices.compute_matrices(self.level)
|
|
62
|
+
object.__setattr__(self, "basismatrices", basismatrices)
|
|
63
|
+
|
|
64
|
+
def get_primitives(self):
|
|
65
|
+
offset = self.level + 1
|
|
66
|
+
b = self.variables[0]
|
|
67
|
+
h = self.variables[1]
|
|
68
|
+
hinv = 1/h
|
|
69
|
+
ha = self.variables[2 : 2 + self.level + 1]
|
|
70
|
+
alpha = [ha[i] * hinv for i in range(offset)]
|
|
71
|
+
if self.dimension == 1:
|
|
72
|
+
hb = [0 for i in range(self.level+1)]
|
|
73
|
+
else:
|
|
74
|
+
hb = self.variables[2 + offset : 2 + offset + self.level + 1]
|
|
75
|
+
beta = [hb[i] * hinv for i in range(offset)]
|
|
76
|
+
return [b, h, alpha, beta, hinv]
|
|
77
|
+
|
|
78
|
+
def get_gradient(self):
|
|
79
|
+
offset = self.level + 1
|
|
80
|
+
z = sympy.Symbol('z')
|
|
81
|
+
phi = [self.basisfunctions.eval(k, z) for k in range(self.level+1)]
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
if self.dimension == 1:
|
|
85
|
+
grad_b = [self.aux_variables[0]]
|
|
86
|
+
grad_h = [self.aux_variables[1]]
|
|
87
|
+
dalpha_dx = self.aux_variables[2:2+offset]
|
|
88
|
+
dU_dx = sum([dalpha_dx[k] * phi[k] for k in range(self.level+1)])
|
|
89
|
+
grad_alpha = [dalpha_dx]
|
|
90
|
+
grad_beta = [0 for i in range(offset)]
|
|
91
|
+
grad_U = [[dU_dx, 0], [0, 0]]
|
|
92
|
+
elif self.dimension == 2:
|
|
93
|
+
gradient_offset = self.n_variables
|
|
94
|
+
grad_b = [self.aux_variables[0], self.aux_variables[0+gradient_offset]]
|
|
95
|
+
grad_h = [self.aux_variables[1], self.aux_variables[1+gradient_offset]]
|
|
96
|
+
dalpha_dx = self.aux_variables[2:2+offset]
|
|
97
|
+
dalpha_dy = self.aux_variables[2+gradient_offset: 2+gradient_offset+offset]
|
|
98
|
+
dU_dx = sum([dalpha_dx[k] * phi[k] for k in range(self.level+1)])
|
|
99
|
+
dU_dy = sum([dalpha_dy[k] * phi[k] for k in range(self.level+1)])
|
|
100
|
+
grad_alpha = [dalpha_dx, dalpha_dy]
|
|
101
|
+
|
|
102
|
+
dbeta_dx = self.aux_variables[2+offset: 2+2*offset]
|
|
103
|
+
dbeta_dy = self.aux_variables[2+offset+gradient_offset: 2+2*offset+gradient_offset]
|
|
104
|
+
dV_dx = sum([dbeta_dx[k] * phi[k] for k in range(self.level+1)])
|
|
105
|
+
dV_dy = sum([dbeta_dy[k] * phi[k] for k in range(self.level+1)])
|
|
106
|
+
grad_beta = [dbeta_dx, dbeta_dy]
|
|
107
|
+
grad_U = [[dU_dx, dU_dy], [dV_dx, dV_dy]]
|
|
108
|
+
else:
|
|
109
|
+
assert False
|
|
110
|
+
|
|
111
|
+
|
|
112
|
+
|
|
113
|
+
return grad_b, grad_h, grad_alpha, grad_beta, grad_U
|
|
114
|
+
|
|
115
|
+
def get_Up(self):
|
|
116
|
+
b, h, alpha, beta, hinv = self.get_primitives()
|
|
117
|
+
phi = self.basisfunctions.basis
|
|
118
|
+
z = sympy.Symbol('z')
|
|
119
|
+
|
|
120
|
+
# velocity components at bottom (z=0)
|
|
121
|
+
Up = sum(alpha[k] * phi[k].subs(z, 0) for k in range(self.level + 1))
|
|
122
|
+
Vp = 0
|
|
123
|
+
if self.dimension == 2:
|
|
124
|
+
Vp = sum(beta[k] * phi[k].subs(z, 0) for k in range(self.level + 1))
|
|
125
|
+
return [Up, Vp]
|
|
126
|
+
|
|
127
|
+
def get_ustar(self):
|
|
128
|
+
p = self.parameters
|
|
129
|
+
b, h, alpha, beta, hinv = self.get_primitives()
|
|
130
|
+
phi = self.basisfunctions.basis
|
|
131
|
+
z = sympy.Symbol('z')
|
|
132
|
+
|
|
133
|
+
[Up, Vp] = self.get_Up()
|
|
134
|
+
|
|
135
|
+
# magnitude
|
|
136
|
+
Umag = sympy.sqrt(Up**2 + Vp**2)
|
|
137
|
+
ReU = (Umag * p.yp) / p.nu
|
|
138
|
+
|
|
139
|
+
|
|
140
|
+
# smooth-wall fallback if Ks ~ 0
|
|
141
|
+
smooth = (p.Ks < 1e-8)
|
|
142
|
+
|
|
143
|
+
u_star = sympy.Piecewise(
|
|
144
|
+
# viscous sublayer
|
|
145
|
+
(sympy.sqrt(Umag * p.nu / p.yp), ReU < 30),
|
|
146
|
+
# rough wall (OpenFOAM form)
|
|
147
|
+
(p.kappa * Umag / sympy.log((p.yp * p.CsW) / p.Ks), sympy.Not(smooth)),
|
|
148
|
+
# smooth wall (Lambert W)
|
|
149
|
+
(p.kappa * Umag / sympy.LambertW((p.kappa * Umag * p.yp / p.nu)
|
|
150
|
+
* sympy.exp(p.kappa * p.B)), True)
|
|
151
|
+
)
|
|
152
|
+
|
|
153
|
+
|
|
154
|
+
return u_star
|
|
155
|
+
|
|
156
|
+
|
|
157
|
+
def get_taub(self):
|
|
158
|
+
|
|
159
|
+
p = self.parameters
|
|
160
|
+
b, h, alpha, beta, hinv = self.get_primitives()
|
|
161
|
+
phi = self.basisfunctions.basis
|
|
162
|
+
z = sympy.Symbol('z')
|
|
163
|
+
|
|
164
|
+
[Up, Vp] = self.get_Up()
|
|
165
|
+
Umag = sympy.sqrt(Up**2 + Vp**2)
|
|
166
|
+
|
|
167
|
+
u_star = self.get_ustar()
|
|
168
|
+
|
|
169
|
+
eps = 1e-12
|
|
170
|
+
# tangential direction (normalized velocity vector)
|
|
171
|
+
t_hat_x = Up / (Umag + eps)
|
|
172
|
+
t_hat_y = Vp / (Umag + eps)
|
|
173
|
+
|
|
174
|
+
# shear stress components (vector form)
|
|
175
|
+
tau_zx = - u_star**2 * t_hat_x
|
|
176
|
+
tau_zy = - u_star**2 * t_hat_y
|
|
177
|
+
|
|
178
|
+
# tau_zx = - 1e-4 * (Up - 0) /0.001
|
|
179
|
+
# tau_zy = - 1e-4 * (Vp - 0) /0.001
|
|
180
|
+
return [tau_zx, tau_zy]
|
|
181
|
+
|
|
182
|
+
def get_taub_linear_gradient(self):
|
|
183
|
+
|
|
184
|
+
p = self.parameters
|
|
185
|
+
b, h, alpha, beta, hinv = self.get_primitives()
|
|
186
|
+
phi = self.basisfunctions.basis
|
|
187
|
+
z = sympy.Symbol('z')
|
|
188
|
+
|
|
189
|
+
[Up, Vp] = self.get_Up()
|
|
190
|
+
|
|
191
|
+
tau_zx = - (p.nu + self.lm().subs(z, 0) * self.abs_Sij().subs(z, 0)) * (Up - 0) / p.yp
|
|
192
|
+
tau_zy = - (p.nu + self.lm().subs(z, 0) * self.abs_Sij().subs(z,0)) * (Vp - 0) / p.yp
|
|
193
|
+
return [tau_zx, tau_zy]
|
|
194
|
+
|
|
195
|
+
|
|
196
|
+
def get_deltaX(self):
|
|
197
|
+
gradient_offset = self.n_variables
|
|
198
|
+
return self.aux_variables[2*gradient_offset]
|
|
199
|
+
|
|
200
|
+
|
|
201
|
+
def project_2d_to_3d(self):
|
|
202
|
+
out = Matrix([0 for i in range(6)])
|
|
203
|
+
level = self.level
|
|
204
|
+
offset = level+1
|
|
205
|
+
offset_aux = self.n_aux_variables
|
|
206
|
+
x = self.position[0]
|
|
207
|
+
y = self.position[1]
|
|
208
|
+
z = self.position[2]
|
|
209
|
+
|
|
210
|
+
b, h, alpha, beta, hinv = self.get_primitives()
|
|
211
|
+
grad_b, grad_h, grad_alpha, grad_beta, grad_U = self.get_gradient()
|
|
212
|
+
|
|
213
|
+
psi = [self.basisfunctions.eval_psi(k, z) for k in range(level+1)]
|
|
214
|
+
phi = [self.basisfunctions.eval(k, z) for k in range(level+1)]
|
|
215
|
+
|
|
216
|
+
rho_w = 1000.
|
|
217
|
+
g = 9.81
|
|
218
|
+
u_3d = self.basismatrices.basisfunctions.reconstruct_velocity_profile_at(alpha, z)
|
|
219
|
+
v_3d = 0
|
|
220
|
+
def dot(a, b):
|
|
221
|
+
s = 0
|
|
222
|
+
for i in range(len(a)):
|
|
223
|
+
s += a[i] * b[i]
|
|
224
|
+
return s
|
|
225
|
+
w_3d = - grad_h[0] * dot(alpha,psi) - h * dot(grad_alpha[0],psi) + dot(alpha, phi) * (z * grad_h[0] + grad_b[0])
|
|
226
|
+
if self.dimension == 2:
|
|
227
|
+
v_3d = self.basismatrices.basisfunctions.reconstruct_velocity_profile_at(beta, z)
|
|
228
|
+
w_3d += - grad_h[1] * dot(beta,psi) - h * dot(grad_beta[1],psi) + dot(beta, phi) * (z * grad_h[1] + grad_b[1])
|
|
229
|
+
|
|
230
|
+
out[0] = b
|
|
231
|
+
out[1] = h
|
|
232
|
+
out[2] = u_3d
|
|
233
|
+
out[3] = v_3d
|
|
234
|
+
out[4] = w_3d
|
|
235
|
+
out[5] = rho_w * g * h * (1-z)
|
|
236
|
+
return out
|
|
237
|
+
|
|
238
|
+
def flux(self):
|
|
239
|
+
flux_x = Matrix([0 for i in range(self.n_variables)])
|
|
240
|
+
flux_y = Matrix([0 for i in range(self.n_variables)])
|
|
241
|
+
b, h, alpha, beta, hinv = self.get_primitives()
|
|
242
|
+
p = self.parameters
|
|
243
|
+
flux_x[1] = h * alpha[0]
|
|
244
|
+
flux_x[2] = p.g * p.ez * h * h / 2
|
|
245
|
+
for k in range(self.level + 1):
|
|
246
|
+
for i in range(self.level + 1):
|
|
247
|
+
for j in range(self.level + 1):
|
|
248
|
+
flux_x[k + 2] += (
|
|
249
|
+
h * alpha[i] * alpha[j]
|
|
250
|
+
* self.basismatrices.A[k, i, j]
|
|
251
|
+
/ self.basismatrices.M[k, k]
|
|
252
|
+
)
|
|
253
|
+
if self.dimension == 2:
|
|
254
|
+
offset = self.level + 1
|
|
255
|
+
p = self.parameters
|
|
256
|
+
for k in range(self.level + 1):
|
|
257
|
+
for i in range(self.level + 1):
|
|
258
|
+
for j in range(self.level + 1):
|
|
259
|
+
flux_x[1 + k + 1 + offset] += (
|
|
260
|
+
h * beta[i] * alpha[j]
|
|
261
|
+
* self.basismatrices.A[k, i, j]
|
|
262
|
+
/ self.basismatrices.M[k, k]
|
|
263
|
+
)
|
|
264
|
+
|
|
265
|
+
flux_y[1] = h * beta[0]
|
|
266
|
+
flux_y[2 + offset] = p.g * p.ez * h * h / 2
|
|
267
|
+
for k in range(self.level + 1):
|
|
268
|
+
for i in range(self.level + 1):
|
|
269
|
+
for j in range(self.level + 1):
|
|
270
|
+
flux_y[1 + k + 1] += (
|
|
271
|
+
h * beta[i] * alpha[j]
|
|
272
|
+
* self.basismatrices.A[k, i, j]
|
|
273
|
+
/ self.basismatrices.M[k, k]
|
|
274
|
+
)
|
|
275
|
+
for k in range(self.level + 1):
|
|
276
|
+
for i in range(self.level + 1):
|
|
277
|
+
for j in range(self.level + 1):
|
|
278
|
+
flux_y[1 + k + 1 + offset] += (
|
|
279
|
+
h * beta[i] * beta[j]
|
|
280
|
+
* self.basismatrices.A[k, i, j]
|
|
281
|
+
/ self.basismatrices.M[k, k]
|
|
282
|
+
)
|
|
283
|
+
return [flux_x, flux_y][:self.dimension]
|
|
284
|
+
|
|
285
|
+
def nonconservative_matrix(self):
|
|
286
|
+
nc_x = Matrix([[0 for i in range(self.n_variables)] for j in range(self.n_variables)])
|
|
287
|
+
nc_y = Matrix([[0 for i in range(self.n_variables)] for j in range(self.n_variables)])
|
|
288
|
+
b, h, alpha, beta, hinv = self.get_primitives()
|
|
289
|
+
p = self.parameters
|
|
290
|
+
um = alpha[0]
|
|
291
|
+
for k in range(1, self.level + 1):
|
|
292
|
+
nc_x[1+k + 1, 1+k + 1] += um
|
|
293
|
+
for k in range(self.level + 1):
|
|
294
|
+
for i in range(1, self.level + 1):
|
|
295
|
+
for j in range(1, self.level + 1):
|
|
296
|
+
nc_x[1+k + 1, 1+i + 1] -= (
|
|
297
|
+
alpha[j]
|
|
298
|
+
* self.basismatrices.B[k, i, j]
|
|
299
|
+
/ self.basismatrices.M[k, k]
|
|
300
|
+
)
|
|
301
|
+
if self.dimension == 2:
|
|
302
|
+
offset = self.level + 1
|
|
303
|
+
b, h, alpha, beta, hinv = self.get_primitives()
|
|
304
|
+
p = self.parameters
|
|
305
|
+
um = alpha[0]
|
|
306
|
+
vm = beta[0]
|
|
307
|
+
for k in range(1, self.level + 1):
|
|
308
|
+
nc_y[1+k + 1, 1+k + 1 + offset] += um
|
|
309
|
+
for k in range(self.level + 1):
|
|
310
|
+
for i in range(1, self.level + 1):
|
|
311
|
+
for j in range(1, self.level + 1):
|
|
312
|
+
nc_x[1+k + 1, 1+i + 1] -= (
|
|
313
|
+
alpha[j]
|
|
314
|
+
* self.basismatrices.B[k, i, j]
|
|
315
|
+
/ self.basismatrices.M[k, k]
|
|
316
|
+
)
|
|
317
|
+
nc_y[1+k + 1, 1+i + 1 + offset] -= (
|
|
318
|
+
alpha[j]
|
|
319
|
+
* self.basismatrices.B[k, i, j]
|
|
320
|
+
/ self.basismatrices.M[k, k]
|
|
321
|
+
)
|
|
322
|
+
|
|
323
|
+
for k in range(1, self.level + 1):
|
|
324
|
+
nc_x[1+k + 1 + offset, 1+k + 1] += vm
|
|
325
|
+
nc_y[1+k + 1 + offset, 1+k + 1 + offset] += vm
|
|
326
|
+
for k in range(self.level + 1):
|
|
327
|
+
for i in range(1, self.level + 1):
|
|
328
|
+
for j in range(1, self.level + 1):
|
|
329
|
+
nc_x[1+k + 1 + offset, 1+i + 1] -= (
|
|
330
|
+
beta[j]
|
|
331
|
+
* self.basismatrices.B[k, i, j]
|
|
332
|
+
/ self.basismatrices.M[k, k]
|
|
333
|
+
)
|
|
334
|
+
nc_y[1+k + 1 + offset, 1+i + 1 + offset] -= (
|
|
335
|
+
beta[j]
|
|
336
|
+
* self.basismatrices.B[k, i, j]
|
|
337
|
+
/ self.basismatrices.M[k, k]
|
|
338
|
+
)
|
|
339
|
+
return [-nc_x, -nc_y][:self.dimension]
|
|
340
|
+
|
|
341
|
+
def eigenvalues(self):
|
|
342
|
+
# we delete heigher order moments (level >= 2) for analytical eigenvalues
|
|
343
|
+
offset = self.level + 1
|
|
344
|
+
A = self.normal[0] * self.quasilinear_matrix()[0]
|
|
345
|
+
for d in range(1, self.dimension):
|
|
346
|
+
A += self.normal[d] * self.quasilinear_matrix()[d]
|
|
347
|
+
b, h, alpha, beta, hinv = self.get_primitives()
|
|
348
|
+
alpha_erase = alpha[1:] if self.level >= 2 else []
|
|
349
|
+
beta_erase = beta[1:] if self.level >= 2 else []
|
|
350
|
+
for alpha_i in alpha_erase:
|
|
351
|
+
A = A.subs(alpha_i, 0)
|
|
352
|
+
for beta_i in beta_erase:
|
|
353
|
+
A = A.subs(beta_i, 0)
|
|
354
|
+
return eigenvalue_dict_to_matrix(A.eigenvals())
|
|
355
|
+
|
|
356
|
+
|
|
357
|
+
def Sij(self):
|
|
358
|
+
out = sympy.zeros(self.dimension, self.dimension)
|
|
359
|
+
|
|
360
|
+
grad_b, grad_h, grad_alpha, grad_beta, grad_U = self.get_gradient()
|
|
361
|
+
for d1 in range(self.dimension):
|
|
362
|
+
for d2 in range(self.dimension):
|
|
363
|
+
out[d1, d2] = 0.5 * (grad_U[d1][d2] + grad_U[d2][d1])
|
|
364
|
+
|
|
365
|
+
return out
|
|
366
|
+
|
|
367
|
+
def abs_Sij(self):
|
|
368
|
+
Sij = self.Sij()
|
|
369
|
+
out = 0
|
|
370
|
+
for i in range(self.dimension):
|
|
371
|
+
for j in range(self.dimension):
|
|
372
|
+
out += Sij[i,j]**2
|
|
373
|
+
out = sympy.sqrt(2 * out)
|
|
374
|
+
return out
|
|
375
|
+
|
|
376
|
+
def Szj(self):
|
|
377
|
+
out = sympy.zeros(self.dimension)
|
|
378
|
+
|
|
379
|
+
b, h, alpha, beta, hinv = self.get_primitives()
|
|
380
|
+
dphi_dz = self.basisfunctions.get_diff_basis()
|
|
381
|
+
|
|
382
|
+
for k in range(self.level+1):
|
|
383
|
+
out[0] += alpha[k] * dphi_dz[k]
|
|
384
|
+
if self.dimension == 2:
|
|
385
|
+
for k in range(self.level+1):
|
|
386
|
+
out[1] += beta[k] * dphi_dz[k]
|
|
387
|
+
return out
|
|
388
|
+
|
|
389
|
+
def source(self):
|
|
390
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
391
|
+
out += self.mixing_length_vertical()
|
|
392
|
+
# out += self.mixing_length_vertical_linear_gradient()
|
|
393
|
+
out += self.smagorinsky_source()
|
|
394
|
+
return out
|
|
395
|
+
|
|
396
|
+
def source_implicit(self):
|
|
397
|
+
out = sympy.zeros(self.n_variables, self.n_variables)
|
|
398
|
+
# out += self.taub_implicit()
|
|
399
|
+
return out
|
|
400
|
+
|
|
401
|
+
def taub_implicit(self):
|
|
402
|
+
out = sympy.zeros(self.n_variables, self.n_variables)
|
|
403
|
+
b, h, alpha, beta, hinv = self.get_primitives()
|
|
404
|
+
phi = self.basisfunctions.basis
|
|
405
|
+
z = sympy.Symbol('z')
|
|
406
|
+
u_star = self.get_ustar()
|
|
407
|
+
Up = self.get_Up()
|
|
408
|
+
magU = sympy.sqrt(Up[0]**2 + Up[1]**2)
|
|
409
|
+
eps = 10**(-8)
|
|
410
|
+
for d in range(self.dimension):
|
|
411
|
+
term = u_star**2 / h /(magU+eps)
|
|
412
|
+
for k in range(self.level+1):
|
|
413
|
+
for i in range(self.level+1):
|
|
414
|
+
ik = 2 + k + d * (self.level + 1)
|
|
415
|
+
ii = 2 + i + d * (self.level + 1)
|
|
416
|
+
out[ik, ii] += term * phi[k].subs(z, 0) * phi[i].subs(z, 0) / self.basismatrices.M[k, k]
|
|
417
|
+
return out
|
|
418
|
+
|
|
419
|
+
def dflux(self):
|
|
420
|
+
return self.smagorinsky_dflux()
|
|
421
|
+
|
|
422
|
+
def smagorinsky_dflux(self):
|
|
423
|
+
"""
|
|
424
|
+
diffusive flux due to the Smagorinsky model
|
|
425
|
+
"""
|
|
426
|
+
assert "Cs" in vars(self.parameters)
|
|
427
|
+
|
|
428
|
+
dflux = [sympy.zeros(self.n_variables, 1) for d in range(self.dimension)]
|
|
429
|
+
z = sympy.Symbol('z')
|
|
430
|
+
level = self.level
|
|
431
|
+
offset = level+1
|
|
432
|
+
phi = [self.basisfunctions.eval(k, z) for k in range(level+1)]
|
|
433
|
+
dX = self.get_deltaX()
|
|
434
|
+
Cs = self.parameters.Cs
|
|
435
|
+
|
|
436
|
+
xi, wi = gauss_legendre(self.order_numerical_integration, 8)
|
|
437
|
+
xi = [0.5 * (x + 1) for x in xi]
|
|
438
|
+
wi = [0.5 * w for w in wi]
|
|
439
|
+
b, h, alpha, beta, hinv = self.get_primitives()
|
|
440
|
+
|
|
441
|
+
abs_Sij = self.abs_Sij()
|
|
442
|
+
Sij = self.Sij()
|
|
443
|
+
|
|
444
|
+
for i in range(len(xi)):
|
|
445
|
+
zi = xi[i]
|
|
446
|
+
for k in range(level+1):
|
|
447
|
+
for d1 in range(self.dimension):
|
|
448
|
+
for d2 in range(self.dimension):
|
|
449
|
+
dflux[d1][2 + d2 * offset + k, 0] += wi[i] * h* phi[k].subs(z, zi) * 2 * (Cs * dX)**2 * abs_Sij.subs(z, zi) * Sij[d1, d2].subs(z, zi)
|
|
450
|
+
for k in range(level+1):
|
|
451
|
+
for d in range(self.dimension):
|
|
452
|
+
dflux[d][2+k, 0] /= self.basismatrices.M[k, k]
|
|
453
|
+
return [dflux[d] for d in range(self.dimension)]
|
|
454
|
+
|
|
455
|
+
|
|
456
|
+
|
|
457
|
+
|
|
458
|
+
def smagorinsky_source(self):
|
|
459
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
460
|
+
z = sympy.Symbol('z')
|
|
461
|
+
level = self.level
|
|
462
|
+
offset = level+1
|
|
463
|
+
phi = self.basisfunctions.basis
|
|
464
|
+
dphi_dz = self.basisfunctions.get_diff_basis()
|
|
465
|
+
dX = self.get_deltaX()
|
|
466
|
+
Cs = self.parameters.Cs
|
|
467
|
+
|
|
468
|
+
xi, wi = gauss_legendre(self.order_numerical_integration, 8)
|
|
469
|
+
xi = [0.5 * (x + 1) for x in xi]
|
|
470
|
+
wi = [0.5 * w for w in wi]
|
|
471
|
+
b, h, alpha, beta, hinv = self.get_primitives()
|
|
472
|
+
grad_b, grad_h, grad_alpha, grad_beta, grad_U = self.get_gradient()
|
|
473
|
+
sigma = [grad_b[0] + z * grad_h[0], grad_b[1] + z * grad_h[1]]
|
|
474
|
+
|
|
475
|
+
|
|
476
|
+
abs_Sij = self.abs_Sij()
|
|
477
|
+
Sij = self.Sij()
|
|
478
|
+
|
|
479
|
+
taub = self.get_taub()
|
|
480
|
+
for d in range(self.dimension):
|
|
481
|
+
for k in range(1 + self.level):
|
|
482
|
+
out[2+k + d*offset] += sigma[d].subs(z, 0) * taub[d] * phi[k].subs(z, 0) / self.basismatrices.M[k, k]
|
|
483
|
+
|
|
484
|
+
|
|
485
|
+
for i in range(len(xi)):
|
|
486
|
+
zi = xi[i]
|
|
487
|
+
for k in range(level+1):
|
|
488
|
+
for d1 in range(self.dimension):
|
|
489
|
+
for d2 in range(self.dimension):
|
|
490
|
+
out[2 + d2 * offset + k] -= wi[i] * sigma[d1].subs(z, zi) * 2 * (Cs * dX)**2 * abs_Sij.subs(z, zi) * Sij[d1, d2].subs(z, zi) * dphi_dz[k].subs(z, zi) / self.basismatrices.M[k, k]
|
|
491
|
+
return out
|
|
492
|
+
|
|
493
|
+
def lm(self):
|
|
494
|
+
p = self.parameters
|
|
495
|
+
b, h, alpha, beta, hinv = self.get_primitives()
|
|
496
|
+
z = sympy.Symbol('z')
|
|
497
|
+
return p.kappa * (z + p.yp) * (1 - z)
|
|
498
|
+
|
|
499
|
+
def mixing_length_numerical_term(self):
|
|
500
|
+
assert "kappa" in vars(self.parameters)
|
|
501
|
+
out = 0
|
|
502
|
+
b, h, alpha, beta, hinv = self.get_primitives()
|
|
503
|
+
z = sympy.Symbol('z')
|
|
504
|
+
phi = [self.basisfunctions.eval(k, z) for k in range(self.level+1)]
|
|
505
|
+
u = sum([alpha[k] * phi[k] for k in range(self.level+1)])
|
|
506
|
+
v = sum([beta[k] * phi[k] for k in range(self.level+1)] )
|
|
507
|
+
U = [u,v][:self.dimension]
|
|
508
|
+
|
|
509
|
+
for d1 in range(self.dimension):
|
|
510
|
+
for d2 in range(self.dimension):
|
|
511
|
+
out += U[d1] * U[d2]
|
|
512
|
+
|
|
513
|
+
eps = 1e-10
|
|
514
|
+
out += eps
|
|
515
|
+
out = sympy.sqrt(out)
|
|
516
|
+
out *= (self.lm())**2
|
|
517
|
+
return out
|
|
518
|
+
|
|
519
|
+
|
|
520
|
+
def mixing_length_vertical(self):
|
|
521
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
522
|
+
offset = self.level + 1
|
|
523
|
+
b, h, alpha, beta, hinv = self.get_primitives()
|
|
524
|
+
p = self.parameters
|
|
525
|
+
z = sympy.Symbol('z')
|
|
526
|
+
phi = [self.basisfunctions.eval(k, z) for k in range(self.level+1)]
|
|
527
|
+
dphi_dz = self.basisfunctions.get_diff_basis()
|
|
528
|
+
|
|
529
|
+
Szj = self.Szj()
|
|
530
|
+
|
|
531
|
+
taub = self.get_taub()
|
|
532
|
+
for d in range(self.dimension):
|
|
533
|
+
for k in range(1 + self.level):
|
|
534
|
+
out[2+k + d*offset] += taub[d] * phi[k].subs(z, 0) / self.basismatrices.M[k, k]
|
|
535
|
+
|
|
536
|
+
xi, wi = gauss_legendre(self.order_numerical_integration, 8)
|
|
537
|
+
xi = [0.5 * (x + 1) for x in xi]
|
|
538
|
+
wi = [0.5 * w for w in wi]
|
|
539
|
+
|
|
540
|
+
for d in range(self.dimension):
|
|
541
|
+
for i in range(len(xi)):
|
|
542
|
+
for k in range(self.level+1):
|
|
543
|
+
out[2+k+d*offset] -= wi[i] * self.mixing_length_numerical_term().subs(z, xi[i]) * Szj[d].subs(z, xi[i]) * dphi_dz[k].subs(z, xi[i]) / self.basismatrices.M[k, k]
|
|
544
|
+
|
|
545
|
+
return out
|
|
546
|
+
|
|
547
|
+
def mixing_length_vertical_linear_gradient(self):
|
|
548
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
549
|
+
offset = self.level + 1
|
|
550
|
+
b, h, alpha, beta, hinv = self.get_primitives()
|
|
551
|
+
p = self.parameters
|
|
552
|
+
z = sympy.Symbol('z')
|
|
553
|
+
phi = [self.basisfunctions.eval(k, z) for k in range(self.level+1)]
|
|
554
|
+
dphi_dz = self.basisfunctions.get_diff_basis()
|
|
555
|
+
|
|
556
|
+
Szj = self.Szj()
|
|
557
|
+
|
|
558
|
+
taub = self.get_taub_linear_gradient()
|
|
559
|
+
for d in range(self.dimension):
|
|
560
|
+
for k in range(1 + self.level):
|
|
561
|
+
out[2+k + d*offset] += taub[d] * phi[k].subs(z, 0) / self.basismatrices.M[k, k]
|
|
562
|
+
|
|
563
|
+
xi, wi = gauss_legendre(self.order_numerical_integration, 8)
|
|
564
|
+
xi = [0.5 * (x + 1) for x in xi]
|
|
565
|
+
wi = [0.5 * w for w in wi]
|
|
566
|
+
|
|
567
|
+
for d in range(self.dimension):
|
|
568
|
+
for i in range(len(xi)):
|
|
569
|
+
for k in range(self.level+1):
|
|
570
|
+
out[2+k+d*offset] -= wi[i] * self.mixing_length_numerical_term().subs(z, xi[i]) * Szj[d].subs(z, xi[i]) * dphi_dz[k].subs(z, xi[i]) / self.basismatrices.M[k, k]
|
|
571
|
+
|
|
572
|
+
return out
|
|
573
|
+
|
|
574
|
+
|
|
575
|
+
|
|
576
|
+
@define(frozen=True, slots=True, kw_only=True)
|
|
577
|
+
class SMETNum(SMET):
|
|
578
|
+
ref_model: Model = field(init=False)
|
|
579
|
+
|
|
580
|
+
def __attrs_post_init__(self):
|
|
581
|
+
super().__attrs_post_init__()
|
|
582
|
+
object.__setattr__(self, "ref_model", SMET(level=self.level, dimension=self.dimension, boundary_conditions=self.boundary_conditions))
|
|
583
|
+
|
|
584
|
+
def flux(self):
|
|
585
|
+
return [self.substitute_precomputed_denominator(f, self.variables[1], self.aux_variables.hinv) for f in self.ref_model.flux()]
|
|
586
|
+
|
|
587
|
+
def nonconservative_matrix(self):
|
|
588
|
+
return [self.substitute_precomputed_denominator(f, self.variables[1], self.aux_variables.hinv) for f in self.ref_model.nonconservative_matrix()]
|
|
589
|
+
|
|
590
|
+
def quasilinear_matrix(self):
|
|
591
|
+
return [self.substitute_precomputed_denominator(f, self.variables[1], self.aux_variables.hinv) for f in self.ref_model.quasilinear_matrix()]
|
|
592
|
+
|
|
593
|
+
def source(self):
|
|
594
|
+
return self.substitute_precomputed_denominator(self.ref_model.source(), self.variables[1], self.aux_variables.hinv)
|
|
595
|
+
|
|
596
|
+
def source_implicit(self):
|
|
597
|
+
return self.substitute_precomputed_denominator(self.ref_model.source_implicit(), self.variables[1], self.aux_variables.hinv)
|
|
598
|
+
|
|
599
|
+
def residual(self):
|
|
600
|
+
return self.substitute_precomputed_denominator(self.ref_model.residual(), self.variables[1], self.aux_variables.hinv)
|
|
601
|
+
|
|
602
|
+
def left_eigenvectors(self):
|
|
603
|
+
return self.substitute_precomputed_denominator(self.ref_model.left_eigenvectors(), self.variables[1], self.aux_variables.hinv)
|
|
604
|
+
|
|
605
|
+
def right_eigenvectors(self):
|
|
606
|
+
return self.substitute_precomputed_denominator(self.ref_model.right_eigenvectors(), self.variables[1], self.aux_variables.hinv)
|
|
607
|
+
|
|
608
|
+
def eigenvalues(self):
|
|
609
|
+
h = self.variables[1]
|
|
610
|
+
evs = self.substitute_precomputed_denominator(self.ref_model.eigenvalues(), self.variables[1], self.aux_variables.hinv)
|
|
611
|
+
for i in range(self.n_variables):
|
|
612
|
+
evs[i] = Piecewise((evs[i], h > 1e-8), (0, True))
|
|
613
|
+
return evs
|