zoomy-core 0.1.14__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- decorators/decorators.py +25 -0
- fvm/__init__.py +0 -0
- fvm/flux.py +52 -0
- fvm/nonconservative_flux.py +97 -0
- fvm/ode.py +55 -0
- fvm/solver_numpy.py +297 -0
- fvm/timestepping.py +13 -0
- mesh/__init__.py +0 -0
- mesh/mesh.py +1239 -0
- mesh/mesh_extrude.py +168 -0
- mesh/mesh_util.py +487 -0
- misc/__init__.py +0 -0
- misc/custom_types.py +6 -0
- misc/interpolation.py +140 -0
- misc/io.py +448 -0
- misc/logger_config.py +18 -0
- misc/misc.py +218 -0
- model/__init__.py +0 -0
- model/analysis.py +147 -0
- model/basefunction.py +113 -0
- model/basemodel.py +513 -0
- model/boundary_conditions.py +193 -0
- model/initial_conditions.py +171 -0
- model/model.py +65 -0
- model/models/GN.py +70 -0
- model/models/advection.py +53 -0
- model/models/basisfunctions.py +181 -0
- model/models/basismatrices.py +381 -0
- model/models/coupled_constrained.py +60 -0
- model/models/poisson.py +41 -0
- model/models/shallow_moments.py +757 -0
- model/models/shallow_moments_sediment.py +378 -0
- model/models/shallow_moments_topo.py +423 -0
- model/models/shallow_moments_variants.py +1509 -0
- model/models/shallow_water.py +266 -0
- model/models/shallow_water_topo.py +111 -0
- model/models/shear_shallow_flow.py +594 -0
- model/models/sme_turbulent.py +613 -0
- model/models/vam.py +455 -0
- postprocessing/__init__.py +0 -0
- postprocessing/plotting.py +244 -0
- postprocessing/postprocessing.py +75 -0
- preprocessing/__init__.py +0 -0
- preprocessing/openfoam_moments.py +453 -0
- transformation/__init__.py +0 -0
- transformation/helpers.py +25 -0
- transformation/to_amrex.py +241 -0
- transformation/to_c.py +185 -0
- transformation/to_jax.py +14 -0
- transformation/to_numpy.py +118 -0
- transformation/to_openfoam.py +258 -0
- transformation/to_ufl.py +67 -0
- zoomy_core-0.1.14.dist-info/METADATA +52 -0
- zoomy_core-0.1.14.dist-info/RECORD +57 -0
- zoomy_core-0.1.14.dist-info/WHEEL +5 -0
- zoomy_core-0.1.14.dist-info/licenses/LICENSE +674 -0
- zoomy_core-0.1.14.dist-info/top_level.txt +8 -0
|
@@ -0,0 +1,423 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import numpy.polynomial.legendre as L
|
|
3
|
+
import numpy.polynomial.chebyshev as C
|
|
4
|
+
from scipy.optimize import least_squares as lsq
|
|
5
|
+
import sympy
|
|
6
|
+
from sympy import Matrix, Piecewise
|
|
7
|
+
from sympy.abc import x
|
|
8
|
+
|
|
9
|
+
from sympy import integrate, diff
|
|
10
|
+
from sympy import legendre
|
|
11
|
+
from sympy import lambdify
|
|
12
|
+
|
|
13
|
+
from attrs import define, field
|
|
14
|
+
import attr
|
|
15
|
+
from typing import Union, Dict, List
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
from zoomy_core.model.basemodel import (
|
|
19
|
+
register_sympy_attribute,
|
|
20
|
+
eigenvalue_dict_to_matrix,
|
|
21
|
+
)
|
|
22
|
+
from zoomy_core.model.basemodel import Model
|
|
23
|
+
from zoomy_core.model.models.basismatrices import Basismatrices
|
|
24
|
+
from zoomy_core.model.models.basisfunctions import Legendre_shifted, Basisfunction
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
@define(frozen=True, slots=True, kw_only=True)
|
|
30
|
+
class ShallowMomentsTopo(Model):
|
|
31
|
+
dimension: int = 2
|
|
32
|
+
level: int
|
|
33
|
+
variables: Union[list, int] = field(init=False)
|
|
34
|
+
positive_variables: Union[List[int], Dict[str, int], None] = attr.ib(default=attr.Factory(lambda: [1]))
|
|
35
|
+
aux_variables: Union[list, int] = field(default=0)
|
|
36
|
+
basisfunctions: Union[Basisfunction, type[Basisfunction]] = field(default=Legendre_shifted)
|
|
37
|
+
basismatrices: Basismatrices = field(init=False)
|
|
38
|
+
|
|
39
|
+
_default_parameters: dict = field(
|
|
40
|
+
init=False,
|
|
41
|
+
factory=lambda: {"g": 9.81, "ex": 0.0, "ey": 0.0, "ez": 1.0, "eps_low_water": 1e-6, "rho": 1000},
|
|
42
|
+
)
|
|
43
|
+
|
|
44
|
+
def __attrs_post_init__(self):
|
|
45
|
+
object.__setattr__(self, "variables", ((self.level+1)*self.dimension)+2)
|
|
46
|
+
object.__setattr__(self, "aux_variables", 2*((self.level+1)*self.dimension+2))
|
|
47
|
+
super().__attrs_post_init__()
|
|
48
|
+
aux_variables = self.aux_variables
|
|
49
|
+
aux_var_list = aux_variables.keys()
|
|
50
|
+
object.__setattr__(self, "aux_variables", register_sympy_attribute(aux_var_list, "qaux_"))
|
|
51
|
+
|
|
52
|
+
# Recompute basis matrices
|
|
53
|
+
object.__setattr__(self, "basisfunctions", self.basisfunctions(level=self.level))
|
|
54
|
+
basismatrices = Basismatrices(self.basisfunctions)
|
|
55
|
+
basismatrices.compute_matrices(self.level)
|
|
56
|
+
object.__setattr__(self, "basismatrices", basismatrices)
|
|
57
|
+
|
|
58
|
+
def get_primitives(self):
|
|
59
|
+
offset = self.level + 1
|
|
60
|
+
b = self.variables[0]
|
|
61
|
+
h = self.variables[1]
|
|
62
|
+
hinv = 1/h
|
|
63
|
+
ha = self.variables[2 : 2 + self.level + 1]
|
|
64
|
+
alpha = [ha[i] * hinv for i in range(offset)]
|
|
65
|
+
if self.dimension == 1:
|
|
66
|
+
hb = [0 for i in range(self.level+1)]
|
|
67
|
+
else:
|
|
68
|
+
hb = self.variables[2 + offset : 2 + offset + self.level + 1]
|
|
69
|
+
beta = [hb[i] * hinv for i in range(offset)]
|
|
70
|
+
return [b, h, alpha, beta, hinv]
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
def project_2d_to_3d(self):
|
|
74
|
+
out = Matrix([0 for i in range(6)])
|
|
75
|
+
level = self.level
|
|
76
|
+
offset = level+1
|
|
77
|
+
offset_aux = self.n_variables
|
|
78
|
+
x = self.position[0]
|
|
79
|
+
y = self.position[1]
|
|
80
|
+
z = self.position[2]
|
|
81
|
+
|
|
82
|
+
b, h, alpha, beta, hinv = self.get_primitives()
|
|
83
|
+
dbdx = self.aux_variables[0]
|
|
84
|
+
dhdx = self.aux_variables[1]
|
|
85
|
+
dbdy = self.aux_variables[offset_aux]
|
|
86
|
+
dhdy = self.aux_variables[1+offset_aux]
|
|
87
|
+
dalphadx = [self.aux_variables[2+i] for i in range(offset)]
|
|
88
|
+
if self.dimension == 2:
|
|
89
|
+
dbetady = [self.aux_variables[2+i+offset_aux] for i in range(offset)]
|
|
90
|
+
|
|
91
|
+
psi = [self.basisfunctions.eval_psi(k, z) for k in range(level+1)]
|
|
92
|
+
phi = [self.basisfunctions.eval(k, z) for k in range(level+1)]
|
|
93
|
+
|
|
94
|
+
rho_w = 1000.
|
|
95
|
+
g = 9.81
|
|
96
|
+
u_3d = self.basismatrices.basisfunctions.reconstruct_velocity_profile_at(alpha, z)
|
|
97
|
+
v_3d = 0
|
|
98
|
+
def dot(a, b):
|
|
99
|
+
s = 0
|
|
100
|
+
for i in range(len(a)):
|
|
101
|
+
s += a[i] * b[i]
|
|
102
|
+
return s
|
|
103
|
+
w_3d = - dhdx * dot(alpha,psi) - h * dot(dalphadx,psi) + dot(alpha, phi) * (z * dhdx + dbdx)
|
|
104
|
+
if self.dimension == 2:
|
|
105
|
+
v_3d = self.basismatrices.basisfunctions.reconstruct_velocity_profile_at(beta, z)
|
|
106
|
+
w_3d += - dhdy * dot(beta,psi) - h * dot(dbetady,psi) + dot(beta, phi) * (z * dhdy + dbdy)
|
|
107
|
+
|
|
108
|
+
out[0] = b
|
|
109
|
+
out[1] = h
|
|
110
|
+
out[2] = u_3d
|
|
111
|
+
out[3] = v_3d
|
|
112
|
+
out[4] = w_3d
|
|
113
|
+
out[5] = rho_w * g * h * (1-z)
|
|
114
|
+
return out
|
|
115
|
+
|
|
116
|
+
def flux(self):
|
|
117
|
+
flux_x = Matrix([0 for i in range(self.n_variables)])
|
|
118
|
+
flux_y = Matrix([0 for i in range(self.n_variables)])
|
|
119
|
+
b, h, alpha, beta, hinv = self.get_primitives()
|
|
120
|
+
p = self.parameters
|
|
121
|
+
flux_x[1] = h * alpha[0]
|
|
122
|
+
flux_x[2] = p.g * p.ez * h * h / 2
|
|
123
|
+
for k in range(self.level + 1):
|
|
124
|
+
for i in range(self.level + 1):
|
|
125
|
+
for j in range(self.level + 1):
|
|
126
|
+
flux_x[k + 2] += (
|
|
127
|
+
h * alpha[i] * alpha[j]
|
|
128
|
+
* self.basismatrices.A[k, i, j]
|
|
129
|
+
/ self.basismatrices.M[k, k]
|
|
130
|
+
)
|
|
131
|
+
if self.dimension == 2:
|
|
132
|
+
offset = self.level + 1
|
|
133
|
+
p = self.parameters
|
|
134
|
+
for k in range(self.level + 1):
|
|
135
|
+
for i in range(self.level + 1):
|
|
136
|
+
for j in range(self.level + 1):
|
|
137
|
+
flux_x[1 + k + 1 + offset] += (
|
|
138
|
+
h * beta[i] * alpha[j]
|
|
139
|
+
* self.basismatrices.A[k, i, j]
|
|
140
|
+
/ self.basismatrices.M[k, k]
|
|
141
|
+
)
|
|
142
|
+
|
|
143
|
+
flux_y[1] = h * beta[0]
|
|
144
|
+
flux_y[2 + offset] = p.g * p.ez * h * h / 2
|
|
145
|
+
for k in range(self.level + 1):
|
|
146
|
+
for i in range(self.level + 1):
|
|
147
|
+
for j in range(self.level + 1):
|
|
148
|
+
flux_y[1 + k + 1] += (
|
|
149
|
+
h * beta[i] * alpha[j]
|
|
150
|
+
* self.basismatrices.A[k, i, j]
|
|
151
|
+
/ self.basismatrices.M[k, k]
|
|
152
|
+
)
|
|
153
|
+
for k in range(self.level + 1):
|
|
154
|
+
for i in range(self.level + 1):
|
|
155
|
+
for j in range(self.level + 1):
|
|
156
|
+
flux_y[1 + k + 1 + offset] += (
|
|
157
|
+
h * beta[i] * beta[j]
|
|
158
|
+
* self.basismatrices.A[k, i, j]
|
|
159
|
+
/ self.basismatrices.M[k, k]
|
|
160
|
+
)
|
|
161
|
+
return [flux_x, flux_y][:self.dimension]
|
|
162
|
+
|
|
163
|
+
def nonconservative_matrix(self):
|
|
164
|
+
nc_x = Matrix([[0 for i in range(self.n_variables)] for j in range(self.n_variables)])
|
|
165
|
+
nc_y = Matrix([[0 for i in range(self.n_variables)] for j in range(self.n_variables)])
|
|
166
|
+
b, h, alpha, beta, hinv = self.get_primitives()
|
|
167
|
+
p = self.parameters
|
|
168
|
+
um = alpha[0]
|
|
169
|
+
for k in range(1, self.level + 1):
|
|
170
|
+
nc_x[1+k + 1, 1+k + 1] += um
|
|
171
|
+
for k in range(self.level + 1):
|
|
172
|
+
for i in range(1, self.level + 1):
|
|
173
|
+
for j in range(1, self.level + 1):
|
|
174
|
+
nc_x[1+k + 1, 1+i + 1] -= (
|
|
175
|
+
alpha[j]
|
|
176
|
+
* self.basismatrices.B[k, i, j]
|
|
177
|
+
/ self.basismatrices.M[k, k]
|
|
178
|
+
)
|
|
179
|
+
if self.dimension == 2:
|
|
180
|
+
offset = self.level + 1
|
|
181
|
+
b, h, alpha, beta, hinv = self.get_primitives()
|
|
182
|
+
p = self.parameters
|
|
183
|
+
um = alpha[0]
|
|
184
|
+
vm = beta[0]
|
|
185
|
+
for k in range(1, self.level + 1):
|
|
186
|
+
nc_y[1+k + 1, 1+k + 1 + offset] += um
|
|
187
|
+
for k in range(self.level + 1):
|
|
188
|
+
for i in range(1, self.level + 1):
|
|
189
|
+
for j in range(1, self.level + 1):
|
|
190
|
+
nc_x[1+k + 1, 1+i + 1] -= (
|
|
191
|
+
alpha[j]
|
|
192
|
+
* self.basismatrices.B[k, i, j]
|
|
193
|
+
/ self.basismatrices.M[k, k]
|
|
194
|
+
)
|
|
195
|
+
nc_y[1+k + 1, 1+i + 1 + offset] -= (
|
|
196
|
+
alpha[j]
|
|
197
|
+
* self.basismatrices.B[k, i, j]
|
|
198
|
+
/ self.basismatrices.M[k, k]
|
|
199
|
+
)
|
|
200
|
+
|
|
201
|
+
for k in range(1, self.level + 1):
|
|
202
|
+
nc_x[1+k + 1 + offset, 1+k + 1] += vm
|
|
203
|
+
nc_y[1+k + 1 + offset, 1+k + 1 + offset] += vm
|
|
204
|
+
for k in range(self.level + 1):
|
|
205
|
+
for i in range(1, self.level + 1):
|
|
206
|
+
for j in range(1, self.level + 1):
|
|
207
|
+
nc_x[1+k + 1 + offset, 1+i + 1] -= (
|
|
208
|
+
beta[j]
|
|
209
|
+
* self.basismatrices.B[k, i, j]
|
|
210
|
+
/ self.basismatrices.M[k, k]
|
|
211
|
+
)
|
|
212
|
+
nc_y[1+k + 1 + offset, 1+i + 1 + offset] -= (
|
|
213
|
+
beta[j]
|
|
214
|
+
* self.basismatrices.B[k, i, j]
|
|
215
|
+
/ self.basismatrices.M[k, k]
|
|
216
|
+
)
|
|
217
|
+
return [-nc_x, -nc_y][:self.dimension]
|
|
218
|
+
|
|
219
|
+
def eigenvalues(self):
|
|
220
|
+
# we delete heigher order moments (level >= 2) for analytical eigenvalues
|
|
221
|
+
offset = self.level + 1
|
|
222
|
+
A = self.normal[0] * self.quasilinear_matrix()[0]
|
|
223
|
+
for d in range(1, self.dimension):
|
|
224
|
+
A += self.normal[d] * self.quasilinear_matrix()[d]
|
|
225
|
+
b, h, alpha, beta, hinv = self.get_primitives()
|
|
226
|
+
alpha_erase = alpha[1:] if self.level >= 2 else []
|
|
227
|
+
beta_erase = beta[1:] if self.level >= 2 else []
|
|
228
|
+
for alpha_i in alpha_erase:
|
|
229
|
+
A = A.subs(alpha_i, 0)
|
|
230
|
+
for beta_i in beta_erase:
|
|
231
|
+
A = A.subs(beta_i, 0)
|
|
232
|
+
return eigenvalue_dict_to_matrix(A.eigenvals())
|
|
233
|
+
|
|
234
|
+
def source(self):
|
|
235
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
236
|
+
return out
|
|
237
|
+
|
|
238
|
+
def newtonian(self):
|
|
239
|
+
assert "nu" in vars(self.parameters)
|
|
240
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
241
|
+
offset = self.level + 1
|
|
242
|
+
b, h, alpha, beta, hinv = self.get_primitives()
|
|
243
|
+
p = self.parameters
|
|
244
|
+
for k in range(1 + self.level):
|
|
245
|
+
for i in range(1 + self.level):
|
|
246
|
+
out[1+1 + k] += (
|
|
247
|
+
-p.nu
|
|
248
|
+
* alpha[i]
|
|
249
|
+
* hinv
|
|
250
|
+
* self.basismatrices.D[i, k]
|
|
251
|
+
/ self.basismatrices.M[k, k]
|
|
252
|
+
)
|
|
253
|
+
if self.dimension == 2:
|
|
254
|
+
out[1+1 + k + offset] += (
|
|
255
|
+
-p.nu
|
|
256
|
+
* beta[i]
|
|
257
|
+
* hinv
|
|
258
|
+
* self.basismatrices.D[i, k]
|
|
259
|
+
/ self.basismatrices.M[k, k]
|
|
260
|
+
)
|
|
261
|
+
return out
|
|
262
|
+
|
|
263
|
+
def slip_mod(self):
|
|
264
|
+
assert "lamda" in vars(self.parameters)
|
|
265
|
+
assert "rho" in vars(self.parameters)
|
|
266
|
+
assert "c_slipmod" in vars(self.parameters)
|
|
267
|
+
|
|
268
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
269
|
+
offset = self.level+1
|
|
270
|
+
b, h, alpha, beta, hinv = self.get_primitives()
|
|
271
|
+
p = self.parameters
|
|
272
|
+
ub = 0
|
|
273
|
+
vb = 0
|
|
274
|
+
for i in range(1 + self.level):
|
|
275
|
+
ub += alpha[i]
|
|
276
|
+
vb += beta[i]
|
|
277
|
+
for k in range(1, 1 + self.level):
|
|
278
|
+
out[2 + k] += (
|
|
279
|
+
-1.0 * p.c_slipmod / p.lamda / p.rho * ub / self.basismatrices.M[k, k]
|
|
280
|
+
)
|
|
281
|
+
if self.dimension == 2:
|
|
282
|
+
out[2+offset+k] += (
|
|
283
|
+
-1.0 * p.c_slipmod / p.lamda / p.rho * vb / self.basismatrices.M[k, k]
|
|
284
|
+
)
|
|
285
|
+
return out
|
|
286
|
+
|
|
287
|
+
|
|
288
|
+
def slip(self):
|
|
289
|
+
assert "lamda" in vars(self.parameters)
|
|
290
|
+
assert "rho" in vars(self.parameters)
|
|
291
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
292
|
+
offset = self.level + 1
|
|
293
|
+
b, h, alpha, beta, hinv = self.get_primitives()
|
|
294
|
+
p = self.parameters
|
|
295
|
+
for k in range(1 + self.level):
|
|
296
|
+
for i in range(1 + self.level):
|
|
297
|
+
out[1+1 + k] += (
|
|
298
|
+
-1.0 / p.lamda / p.rho * alpha[i] / self.basismatrices.M[k, k]
|
|
299
|
+
)
|
|
300
|
+
if self.dimension == 2:
|
|
301
|
+
out[1+1 + k + offset] += (
|
|
302
|
+
-1.0 / p.lamda / p.rho * beta[i] / self.basismatrices.M[k, k]
|
|
303
|
+
)
|
|
304
|
+
return out
|
|
305
|
+
|
|
306
|
+
def chezy(self):
|
|
307
|
+
assert "C" in vars(self.parameters)
|
|
308
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
309
|
+
offset = self.level + 1
|
|
310
|
+
b, h, alpha, beta, hinv = self.get_primitives()
|
|
311
|
+
p = self.parameters
|
|
312
|
+
tmp = 0
|
|
313
|
+
for i in range(1 + self.level):
|
|
314
|
+
for j in range(1 + self.level):
|
|
315
|
+
tmp += alpha[i] * alpha[j] + beta[i] * beta[j]
|
|
316
|
+
sqrt = sympy.sqrt(tmp)
|
|
317
|
+
for k in range(1 + self.level):
|
|
318
|
+
for l in range(1 + self.level):
|
|
319
|
+
out[1 + k] += (
|
|
320
|
+
-1.0 / (p.C**2 * self.basismatrices.M[k, k]) * alpha[l] * sqrt
|
|
321
|
+
)
|
|
322
|
+
if self.dimension == 2:
|
|
323
|
+
out[1 + k + offset] += (
|
|
324
|
+
-1.0 / (p.C**2 * self.basismatrices.M[k, k]) * beta[l] * sqrt
|
|
325
|
+
)
|
|
326
|
+
return out
|
|
327
|
+
|
|
328
|
+
def gravity(self):
|
|
329
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
330
|
+
out[2] = -self.parameters.g * self.parameters.ex * self.variables[0]
|
|
331
|
+
if self.dimension == 2:
|
|
332
|
+
offset = self.level + 1
|
|
333
|
+
out[2 + offset] = -self.parameters.g * self.parameters.ey * self.variables[0]
|
|
334
|
+
return out
|
|
335
|
+
|
|
336
|
+
def newtonian_turbulent_algebraic(self):
|
|
337
|
+
assert "nu" in vars(self.parameters)
|
|
338
|
+
assert "l_bl" in vars(self.parameters)
|
|
339
|
+
assert "l_turb" in vars(self.parameters)
|
|
340
|
+
assert "kappa" in vars(self.parameters)
|
|
341
|
+
out = Matrix([0 for i in range(self.n_variables)])
|
|
342
|
+
offset = self.level + 1
|
|
343
|
+
|
|
344
|
+
b, h, a, b, hinv = self.get_primitives()
|
|
345
|
+
|
|
346
|
+
p = self.parameters
|
|
347
|
+
dU_dx = a[0] / (p.l_turb * h)
|
|
348
|
+
abs_dU_dx = sympy.Piecewise((dU_dx, dU_dx >=0), (-dU_dx, True))
|
|
349
|
+
for k in range(1 + self.level):
|
|
350
|
+
out[1 + k] += (
|
|
351
|
+
-(p.nu + p.kappa * sympy.sqrt(p.nu * abs_dU_dx) * p.l_bl * ( 1-p.l_bl)) * dU_dx * self.basismatrices.phib[k] * hinv
|
|
352
|
+
)
|
|
353
|
+
for i in range(1 + self.level):
|
|
354
|
+
out[1 + k] += (
|
|
355
|
+
-p.nu * hinv
|
|
356
|
+
* a[i]
|
|
357
|
+
* self.basismatrices.D[i, k]
|
|
358
|
+
)
|
|
359
|
+
out[1 + k] += (
|
|
360
|
+
-p.kappa * sympy.sqrt(p.nu * abs_dU_dx) * hinv
|
|
361
|
+
* a[i]
|
|
362
|
+
* (self.basismatrices.Dxi[i, k] - self.basismatrices.Dxi2[i, k])
|
|
363
|
+
)
|
|
364
|
+
if self.dimension == 2:
|
|
365
|
+
dV_dy = b[0] / (p.l_turb * h)
|
|
366
|
+
abs_dV_dy = sympy.Piecewise((dV_dy, dV_dy >=0), (-dV_dy, True))
|
|
367
|
+
for k in range(1 + self.level):
|
|
368
|
+
out[1 + k + offset] += (
|
|
369
|
+
-(p.nu + p.kappa * sympy.sqrt(p.nu * abs_dV_dy) * p.l_bl * ( 1-p.l_bl)) * dV_dy * self.basismatrices.phib[k] *hinv
|
|
370
|
+
)
|
|
371
|
+
for i in range(1 + self.level):
|
|
372
|
+
out[1 + k + offset] += (
|
|
373
|
+
-p.nu
|
|
374
|
+
/ h
|
|
375
|
+
* b[i]
|
|
376
|
+
* self.basismatrices.D[i, k]
|
|
377
|
+
)
|
|
378
|
+
out[1 + k + offset] += (
|
|
379
|
+
-p.kappa * sympy.sqrt(p.nu * abs_dV_dy) * hinv
|
|
380
|
+
* b[i]
|
|
381
|
+
* (self.basismatrices.Dxi[i, k] - self.basismatrices.Dxi2[i, k])
|
|
382
|
+
)
|
|
383
|
+
|
|
384
|
+
return out
|
|
385
|
+
|
|
386
|
+
@define(frozen=True, slots=True, kw_only=True)
|
|
387
|
+
class ShallowMomentsTopoNumerical(ShallowMomentsTopo):
|
|
388
|
+
ref_model: Model = field(init=False)
|
|
389
|
+
|
|
390
|
+
def __attrs_post_init__(self):
|
|
391
|
+
super().__attrs_post_init__()
|
|
392
|
+
object.__setattr__(self, "ref_model", ShallowMomentsTopo(level=self.level, dimension=self.dimension, boundary_conditions=self.boundary_conditions))
|
|
393
|
+
|
|
394
|
+
def flux(self):
|
|
395
|
+
return [self.substitute_precomputed_denominator(f, self.variables[1], self.aux_variables.hinv) for f in self.ref_model.flux()]
|
|
396
|
+
|
|
397
|
+
def nonconservative_matrix(self):
|
|
398
|
+
return [self.substitute_precomputed_denominator(f, self.variables[1], self.aux_variables.hinv) for f in self.ref_model.nonconservative_matrix()]
|
|
399
|
+
|
|
400
|
+
def quasilinear_matrix(self):
|
|
401
|
+
return [self.substitute_precomputed_denominator(f, self.variables[1], self.aux_variables.hinv) for f in self.ref_model.quasilinear_matrix()]
|
|
402
|
+
|
|
403
|
+
def source(self):
|
|
404
|
+
return self.substitute_precomputed_denominator(self.ref_model.source(), self.variables[1], self.aux_variables.hinv)
|
|
405
|
+
|
|
406
|
+
def source_implicit(self):
|
|
407
|
+
return self.substitute_precomputed_denominator(self.ref_model.source_implicit(), self.variables[1], self.aux_variables.hinv)
|
|
408
|
+
|
|
409
|
+
def residual(self):
|
|
410
|
+
return self.substitute_precomputed_denominator(self.ref_model.residual(), self.variables[1], self.aux_variables.hinv)
|
|
411
|
+
|
|
412
|
+
def left_eigenvectors(self):
|
|
413
|
+
return self.substitute_precomputed_denominator(self.ref_model.left_eigenvectors(), self.variables[1], self.aux_variables.hinv)
|
|
414
|
+
|
|
415
|
+
def right_eigenvectors(self):
|
|
416
|
+
return self.substitute_precomputed_denominator(self.ref_model.right_eigenvectors(), self.variables[1], self.aux_variables.hinv)
|
|
417
|
+
|
|
418
|
+
def eigenvalues(self):
|
|
419
|
+
h = self.variables[1]
|
|
420
|
+
evs = self.substitute_precomputed_denominator(self.ref_model.eigenvalues(), self.variables[1], self.aux_variables.hinv)
|
|
421
|
+
for i in range(self.n_variables):
|
|
422
|
+
evs[i] = Piecewise((evs[i], h > 1e-8), (0, True))
|
|
423
|
+
return evs
|