xinference 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_compat.py +1 -0
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +4 -0
- xinference/core/model.py +23 -3
- xinference/core/supervisor.py +6 -0
- xinference/core/worker.py +54 -11
- xinference/model/llm/__init__.py +4 -2
- xinference/model/llm/core.py +1 -0
- xinference/model/llm/llama_cpp/core.py +6 -1
- xinference/model/llm/llm_family.json +117 -1
- xinference/model/llm/llm_family_modelscope.json +125 -1
- xinference/model/llm/reasoning_parser.py +3 -3
- xinference/model/llm/sglang/core.py +111 -13
- xinference/model/llm/transformers/core.py +1 -0
- xinference/model/llm/transformers/deepseek_vl.py +1 -1
- xinference/model/llm/transformers/deepseek_vl2.py +287 -0
- xinference/model/llm/utils.py +26 -14
- xinference/model/llm/vllm/core.py +149 -8
- xinference/model/llm/vllm/distributed_executor.py +314 -0
- xinference/model/rerank/core.py +16 -11
- xinference/thirdparty/deepseek_vl2/__init__.py +31 -0
- xinference/thirdparty/deepseek_vl2/models/__init__.py +26 -0
- xinference/thirdparty/deepseek_vl2/models/configuration_deepseek.py +210 -0
- xinference/thirdparty/deepseek_vl2/models/conversation.py +310 -0
- xinference/thirdparty/deepseek_vl2/models/modeling_deepseek.py +1975 -0
- xinference/thirdparty/deepseek_vl2/models/modeling_deepseek_vl_v2.py +697 -0
- xinference/thirdparty/deepseek_vl2/models/processing_deepseek_vl_v2.py +675 -0
- xinference/thirdparty/deepseek_vl2/models/siglip_vit.py +661 -0
- xinference/thirdparty/deepseek_vl2/serve/__init__.py +0 -0
- xinference/thirdparty/deepseek_vl2/serve/app_modules/__init__.py +0 -0
- xinference/thirdparty/deepseek_vl2/serve/app_modules/gradio_utils.py +83 -0
- xinference/thirdparty/deepseek_vl2/serve/app_modules/overwrites.py +81 -0
- xinference/thirdparty/deepseek_vl2/serve/app_modules/presets.py +115 -0
- xinference/thirdparty/deepseek_vl2/serve/app_modules/utils.py +333 -0
- xinference/thirdparty/deepseek_vl2/serve/assets/Kelpy-Codos.js +100 -0
- xinference/thirdparty/deepseek_vl2/serve/assets/avatar.png +0 -0
- xinference/thirdparty/deepseek_vl2/serve/assets/custom.css +355 -0
- xinference/thirdparty/deepseek_vl2/serve/assets/custom.js +22 -0
- xinference/thirdparty/deepseek_vl2/serve/assets/favicon.ico +0 -0
- xinference/thirdparty/deepseek_vl2/serve/assets/simsun.ttc +0 -0
- xinference/thirdparty/deepseek_vl2/serve/inference.py +197 -0
- xinference/thirdparty/deepseek_vl2/utils/__init__.py +18 -0
- xinference/thirdparty/deepseek_vl2/utils/io.py +80 -0
- xinference/web/ui/build/asset-manifest.json +3 -3
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/js/{main.3cea968e.js → main.5ca4eea1.js} +3 -3
- xinference/web/ui/build/static/js/main.5ca4eea1.js.map +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/0f0967acaec5df1d45b80010949c258d64297ebbb0f44b8bb3afcbd45c6f0ec4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/68249645124f37d01eef83b1d897e751f895bea919b6fb466f907c1f87cebc84.json +1 -0
- {xinference-1.4.0.dist-info → xinference-1.4.1.dist-info}/METADATA +4 -4
- {xinference-1.4.0.dist-info → xinference-1.4.1.dist-info}/RECORD +56 -31
- xinference/web/ui/build/static/js/main.3cea968e.js.map +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/7f59e45e3f268ab8a4788b6fb024cf8dab088736dff22f5a3a39c122a83ab930.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/dcd60488509450bfff37bfff56de2c096d51de17dd00ec60d4db49c8b483ada1.json +0 -1
- /xinference/web/ui/build/static/js/{main.3cea968e.js.LICENSE.txt → main.5ca4eea1.js.LICENSE.txt} +0 -0
- {xinference-1.4.0.dist-info → xinference-1.4.1.dist-info}/LICENSE +0 -0
- {xinference-1.4.0.dist-info → xinference-1.4.1.dist-info}/WHEEL +0 -0
- {xinference-1.4.0.dist-info → xinference-1.4.1.dist-info}/entry_points.txt +0 -0
- {xinference-1.4.0.dist-info → xinference-1.4.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,697 @@
|
|
|
1
|
+
from attrdict import AttrDict
|
|
2
|
+
from dataclasses import dataclass
|
|
3
|
+
import logging
|
|
4
|
+
import gc
|
|
5
|
+
|
|
6
|
+
from einops import rearrange, repeat
|
|
7
|
+
from typing import Optional, List, Tuple, Callable, Union
|
|
8
|
+
|
|
9
|
+
import torch
|
|
10
|
+
import torch.nn as nn
|
|
11
|
+
import torch.nn.functional as F
|
|
12
|
+
|
|
13
|
+
from transformers.utils import (
|
|
14
|
+
add_start_docstrings,
|
|
15
|
+
add_start_docstrings_to_model_forward,
|
|
16
|
+
)
|
|
17
|
+
from transformers.modeling_outputs import ModelOutput
|
|
18
|
+
from transformers.configuration_utils import PretrainedConfig
|
|
19
|
+
from transformers import (
|
|
20
|
+
AutoConfig,
|
|
21
|
+
AutoModelForCausalLM,
|
|
22
|
+
PreTrainedModel
|
|
23
|
+
)
|
|
24
|
+
from transformers.utils import logging
|
|
25
|
+
|
|
26
|
+
from .siglip_vit import VisionTransformer
|
|
27
|
+
from .configuration_deepseek import DeepseekV2Config
|
|
28
|
+
from .modeling_deepseek import DeepseekV2ForCausalLM
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
logger = logging.get_logger(__name__)
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
class MlpProjector(nn.Module):
|
|
35
|
+
|
|
36
|
+
def __init__(self, cfg):
|
|
37
|
+
|
|
38
|
+
super().__init__()
|
|
39
|
+
|
|
40
|
+
self.cfg = cfg
|
|
41
|
+
|
|
42
|
+
if cfg.projector_type == "identity":
|
|
43
|
+
modules = nn.Identity()
|
|
44
|
+
|
|
45
|
+
elif cfg.projector_type == "linear":
|
|
46
|
+
modules = nn.Linear(cfg.input_dim, cfg.n_embed)
|
|
47
|
+
|
|
48
|
+
elif cfg.projector_type == "mlp_gelu":
|
|
49
|
+
mlp_depth = cfg.depth
|
|
50
|
+
modules = [nn.Linear(cfg.input_dim, cfg.n_embed)]
|
|
51
|
+
for _ in range(1, mlp_depth):
|
|
52
|
+
modules.append(nn.GELU())
|
|
53
|
+
modules.append(nn.Linear(cfg.n_embed, cfg.n_embed))
|
|
54
|
+
modules = nn.Sequential(*modules)
|
|
55
|
+
|
|
56
|
+
elif cfg.projector_type == "downsample_mlp_gelu":
|
|
57
|
+
mlp_depth = cfg.depth
|
|
58
|
+
mlp_ratio = cfg.mlp_ratio
|
|
59
|
+
modules = [nn.Linear(cfg.input_dim * cfg.downsample_ratio * cfg.downsample_ratio, cfg.n_embed * mlp_ratio)]
|
|
60
|
+
for _ in range(1, mlp_depth - 1):
|
|
61
|
+
modules.append(nn.GELU())
|
|
62
|
+
modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed * mlp_ratio))
|
|
63
|
+
modules.append(nn.GELU())
|
|
64
|
+
modules.append(nn.Linear(cfg.n_embed * mlp_ratio, cfg.n_embed))
|
|
65
|
+
modules = nn.Sequential(*modules)
|
|
66
|
+
|
|
67
|
+
else:
|
|
68
|
+
raise ValueError(f"Unknown projector type: {cfg.projector_type}")
|
|
69
|
+
|
|
70
|
+
if cfg.token_pooling:
|
|
71
|
+
self.token_pooling_layer = nn.Linear(cfg.input_dim * 4, cfg.input_dim)
|
|
72
|
+
|
|
73
|
+
self.layers = modules
|
|
74
|
+
|
|
75
|
+
def forward(self, x):
|
|
76
|
+
if self.cfg.token_pooling:
|
|
77
|
+
batch_size, wxh, channels = x.shape
|
|
78
|
+
w = h = int(wxh ** 0.5)
|
|
79
|
+
x = x.view(batch_size, w, h, channels)
|
|
80
|
+
x = x.permute(0, 3, 1, 2)
|
|
81
|
+
# import ipdb; ipdb.set_trace()
|
|
82
|
+
patches = x.unfold(2, 2, 2).unfold(3, 2, 2)
|
|
83
|
+
batch_size, channels, h_patches, w_patches, _, _ = patches.size()
|
|
84
|
+
# 在通道维度上拼接
|
|
85
|
+
patches = patches.contiguous().view(batch_size, channels, h_patches * w_patches, -1)
|
|
86
|
+
|
|
87
|
+
# 通过线性层
|
|
88
|
+
patches = patches.permute(0, 2, 1, 3).contiguous()
|
|
89
|
+
patches = patches.view(batch_size, h_patches * w_patches, channels * 4)
|
|
90
|
+
|
|
91
|
+
x = self.token_pooling_layer(patches)
|
|
92
|
+
|
|
93
|
+
elif self.cfg.projector_type == 'downsample_mlp_gelu':
|
|
94
|
+
bs, hw, input_dim = x.shape
|
|
95
|
+
h = w = int((hw) ** 0.5)
|
|
96
|
+
|
|
97
|
+
"""compute padding"""
|
|
98
|
+
if h % self.cfg.downsample_ratio:
|
|
99
|
+
pad = self.cfg.downsample_ratio - h % self.cfg.downsample_ratio
|
|
100
|
+
else:
|
|
101
|
+
pad = 0
|
|
102
|
+
x = x.reshape(bs, h, w, input_dim)
|
|
103
|
+
if pad > 0:
|
|
104
|
+
x = F.pad(x, (0, 0, 0, pad, 0, pad), "constant", 0)
|
|
105
|
+
|
|
106
|
+
"""4 to 1 concat"""
|
|
107
|
+
x = x.permute(0, 3, 1, 2) # B, C, H, W
|
|
108
|
+
x = F.unfold(x, kernel_size=self.cfg.downsample_ratio, stride=self.cfg.downsample_ratio,
|
|
109
|
+
padding=0) # B, C*4, HW // 4
|
|
110
|
+
x = x.permute(0, 2, 1)
|
|
111
|
+
|
|
112
|
+
return self.layers(x)
|
|
113
|
+
|
|
114
|
+
|
|
115
|
+
class VisionEncoderConfig(PretrainedConfig):
|
|
116
|
+
model_type: str = "vision"
|
|
117
|
+
|
|
118
|
+
model_name: str = "siglip_large_patch16_384"
|
|
119
|
+
image_size: int = 384
|
|
120
|
+
patch_size: int = 16
|
|
121
|
+
width: int = 1024
|
|
122
|
+
layers: int = 24
|
|
123
|
+
heads: int = 16
|
|
124
|
+
mlp_ratio: int = 4
|
|
125
|
+
global_pool: str = "map"
|
|
126
|
+
ignore_head: bool = True
|
|
127
|
+
class_token: bool = False
|
|
128
|
+
num_classes: int = 0
|
|
129
|
+
use_checkpoint: bool = False
|
|
130
|
+
weight_init: str = "skip"
|
|
131
|
+
deterministic: bool = False
|
|
132
|
+
num_recomputing_layers: int = 0
|
|
133
|
+
|
|
134
|
+
def __init__(
|
|
135
|
+
self,
|
|
136
|
+
model_name: str = "siglip_large_patch16_384",
|
|
137
|
+
image_size: int = 384,
|
|
138
|
+
patch_size: int = 16,
|
|
139
|
+
width: int = 1024,
|
|
140
|
+
layers: int = 24,
|
|
141
|
+
heads: int = 16,
|
|
142
|
+
mlp_ratio: int = 4,
|
|
143
|
+
global_pool: str = "map",
|
|
144
|
+
ignore_head: bool = True,
|
|
145
|
+
class_token: bool = False,
|
|
146
|
+
num_classes: int = 0,
|
|
147
|
+
use_checkpoint: bool = False,
|
|
148
|
+
**kwargs
|
|
149
|
+
):
|
|
150
|
+
self.model_name = model_name
|
|
151
|
+
self.image_size = image_size
|
|
152
|
+
self.patch_size = patch_size
|
|
153
|
+
self.width = width
|
|
154
|
+
self.layers = layers
|
|
155
|
+
self.heads = heads
|
|
156
|
+
self.mlp_ratio = mlp_ratio
|
|
157
|
+
self.global_pool = global_pool
|
|
158
|
+
self.ignore_head = ignore_head
|
|
159
|
+
self.class_token = class_token
|
|
160
|
+
self.num_classes = num_classes
|
|
161
|
+
self.use_checkpoint = use_checkpoint
|
|
162
|
+
|
|
163
|
+
super().__init__(**kwargs)
|
|
164
|
+
|
|
165
|
+
|
|
166
|
+
class MlpProjectorConfig(PretrainedConfig):
|
|
167
|
+
model_type = "mlp_projector"
|
|
168
|
+
projector_type: str = "downsample_mlp_gelu"
|
|
169
|
+
input_dim: int = 1152
|
|
170
|
+
n_embed: int = 2048
|
|
171
|
+
depth: int = 2
|
|
172
|
+
mlp_ratio: int = 1
|
|
173
|
+
downsample_ratio: int = 2
|
|
174
|
+
token_pooling: bool = False
|
|
175
|
+
|
|
176
|
+
def __init__(
|
|
177
|
+
self,
|
|
178
|
+
projector_type: str = "downsample_mlp_gelu",
|
|
179
|
+
input_dim: int = 1152,
|
|
180
|
+
n_embed: int = 2048,
|
|
181
|
+
depth: int = 2,
|
|
182
|
+
mlp_ratio: int = 1,
|
|
183
|
+
downsample_ratio: int = 2,
|
|
184
|
+
**kwargs
|
|
185
|
+
):
|
|
186
|
+
self.projector_type = projector_type
|
|
187
|
+
self.input_dim = input_dim
|
|
188
|
+
self.n_embed = n_embed
|
|
189
|
+
self.depth = depth
|
|
190
|
+
self.mlp_ratio = mlp_ratio
|
|
191
|
+
self.downsample_ratio = downsample_ratio
|
|
192
|
+
|
|
193
|
+
super().__init__(**kwargs)
|
|
194
|
+
|
|
195
|
+
|
|
196
|
+
@dataclass
|
|
197
|
+
class DeepSeekVLV2CausalLMOutputWithPast(ModelOutput):
|
|
198
|
+
"""
|
|
199
|
+
Base class for DeepSeek-VL2 causal language model (or autoregressive) outputs.
|
|
200
|
+
|
|
201
|
+
Args:
|
|
202
|
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
|
203
|
+
Language modeling loss (for next-token prediction).
|
|
204
|
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
|
205
|
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
|
206
|
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
|
207
|
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
|
208
|
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
|
209
|
+
|
|
210
|
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
|
211
|
+
`past_key_values` input) to speed up sequential decoding.
|
|
212
|
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
|
213
|
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
|
214
|
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
|
215
|
+
|
|
216
|
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
|
217
|
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
|
218
|
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
|
219
|
+
sequence_length)`.
|
|
220
|
+
|
|
221
|
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
|
222
|
+
heads.
|
|
223
|
+
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
|
224
|
+
The rope index difference between sequence length and multimodal rope.
|
|
225
|
+
"""
|
|
226
|
+
|
|
227
|
+
loss: Optional[torch.FloatTensor] = None
|
|
228
|
+
logits: torch.FloatTensor = None
|
|
229
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
|
230
|
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
|
231
|
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
|
232
|
+
rope_deltas: Optional[torch.LongTensor] = None
|
|
233
|
+
|
|
234
|
+
|
|
235
|
+
class DeepseekVLV2Config(PretrainedConfig):
|
|
236
|
+
model_type = "deepseek_vl_v2"
|
|
237
|
+
vision_config: VisionEncoderConfig
|
|
238
|
+
projector_config: MlpProjectorConfig
|
|
239
|
+
language_config: DeepseekV2Config
|
|
240
|
+
|
|
241
|
+
tile_tag: str = "2D"
|
|
242
|
+
global_view_pos: str = "head"
|
|
243
|
+
candidate_resolutions: Tuple[Tuple[int, int]] = ((384, 384),)
|
|
244
|
+
|
|
245
|
+
def __init__(
|
|
246
|
+
self,
|
|
247
|
+
tile_tag: str = "tile_tag",
|
|
248
|
+
global_view_pos: str = "head",
|
|
249
|
+
candidate_resolutions: Tuple[Tuple[int, int]] = ((384, 384),),
|
|
250
|
+
**kwargs
|
|
251
|
+
):
|
|
252
|
+
super().__init__(**kwargs)
|
|
253
|
+
|
|
254
|
+
vision_config = kwargs.get("vision_config", {})
|
|
255
|
+
self.vision_config = VisionEncoderConfig(**vision_config)
|
|
256
|
+
|
|
257
|
+
projector_config = kwargs.get("projector_config", {})
|
|
258
|
+
self.projector_config = MlpProjectorConfig(**projector_config)
|
|
259
|
+
|
|
260
|
+
language_config = kwargs.get("language_config", {})
|
|
261
|
+
if isinstance(language_config, DeepseekV2Config):
|
|
262
|
+
self.language_config = language_config
|
|
263
|
+
else:
|
|
264
|
+
self.language_config = DeepseekV2Config(**language_config)
|
|
265
|
+
|
|
266
|
+
self.tile_tag = tile_tag
|
|
267
|
+
self.global_view_pos = global_view_pos
|
|
268
|
+
self.candidate_resolutions = candidate_resolutions
|
|
269
|
+
|
|
270
|
+
|
|
271
|
+
class DeepseekVLV2PreTrainedModel(PreTrainedModel):
|
|
272
|
+
config_class = DeepseekVLV2Config
|
|
273
|
+
base_model_prefix = "deepseek_vl_v2"
|
|
274
|
+
_no_split_modules = []
|
|
275
|
+
_skip_keys_device_placement = "past_key_values"
|
|
276
|
+
|
|
277
|
+
|
|
278
|
+
class DeepseekVLV2ForCausalLM(DeepseekVLV2PreTrainedModel):
|
|
279
|
+
|
|
280
|
+
def __init__(self, config: DeepseekVLV2Config):
|
|
281
|
+
super().__init__(config)
|
|
282
|
+
|
|
283
|
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
|
284
|
+
|
|
285
|
+
# ----------- vision encoder ------------
|
|
286
|
+
vision_config = config.vision_config
|
|
287
|
+
self.vision = VisionTransformer(
|
|
288
|
+
img_size=vision_config.image_size,
|
|
289
|
+
patch_size=vision_config.patch_size,
|
|
290
|
+
embed_dim=vision_config.width,
|
|
291
|
+
depth=vision_config.layers,
|
|
292
|
+
num_heads=vision_config.heads,
|
|
293
|
+
mlp_ratio=vision_config.mlp_ratio,
|
|
294
|
+
class_token=vision_config.class_token,
|
|
295
|
+
global_pool=vision_config.global_pool,
|
|
296
|
+
ignore_head=vision_config.ignore_head,
|
|
297
|
+
weight_init=vision_config.weight_init,
|
|
298
|
+
num_classes=0,
|
|
299
|
+
deterministic=vision_config.deterministic,
|
|
300
|
+
num_recomputing_layers=vision_config.num_recomputing_layers
|
|
301
|
+
)
|
|
302
|
+
|
|
303
|
+
# ----------- vl projector ------------
|
|
304
|
+
projector_config = config.projector_config
|
|
305
|
+
self.projector = MlpProjector(projector_config)
|
|
306
|
+
|
|
307
|
+
# image token format 形式
|
|
308
|
+
# FIXME 目前tile tag & global_view_pos的默认取值都是之前的实验策略;后续应当去掉默认取值,改为没有取值就raise error
|
|
309
|
+
self.tile_tag = config.tile_tag
|
|
310
|
+
self.global_view_pos = config.global_view_pos
|
|
311
|
+
|
|
312
|
+
# 用于format image token sequence的特殊token
|
|
313
|
+
embed_std = 1 / torch.sqrt(torch.tensor(projector_config.n_embed, dtype=torch.float32))
|
|
314
|
+
if self.tile_tag == "2D":
|
|
315
|
+
# <|view_separator|>, <|\n|>
|
|
316
|
+
self.image_newline = nn.Parameter(torch.randn(projector_config.n_embed) * embed_std)
|
|
317
|
+
# fix the typo: view_seperater
|
|
318
|
+
self.view_seperator = nn.Parameter(torch.randn(projector_config.n_embed) * embed_std)
|
|
319
|
+
elif self.tile_tag == "1D":
|
|
320
|
+
# <|tile_x|>, <|tile_global|>
|
|
321
|
+
candidate_resolutions = config.candidate_resolutions
|
|
322
|
+
if len(candidate_resolutions) == 0:
|
|
323
|
+
raise ValueError(
|
|
324
|
+
f"len(candidate_resolutions) should be larger than 0, but got {len(candidate_resolutions)}")
|
|
325
|
+
tile_variants_num = len(candidate_resolutions)
|
|
326
|
+
self.tile_indicators = nn.Parameter(
|
|
327
|
+
torch.randn(size=(tile_variants_num + 1, config.aligner.params.n_embed)) * embed_std
|
|
328
|
+
)
|
|
329
|
+
else:
|
|
330
|
+
raise ValueError(f"tile tag should be either 1D or 2D, but got {self.tile_tag}")
|
|
331
|
+
|
|
332
|
+
# ----------- language model ------------
|
|
333
|
+
language_config = config.language_config
|
|
334
|
+
self.language = DeepseekV2ForCausalLM(language_config)
|
|
335
|
+
|
|
336
|
+
def prepare_inputs_embeds(
|
|
337
|
+
self,
|
|
338
|
+
input_ids: torch.LongTensor,
|
|
339
|
+
images: Optional[torch.FloatTensor] = None,
|
|
340
|
+
images_seq_mask: Optional[torch.LongTensor] = None,
|
|
341
|
+
images_spatial_crop: Optional[torch.LongTensor] = None,
|
|
342
|
+
**ignore_kwargs
|
|
343
|
+
):
|
|
344
|
+
"""
|
|
345
|
+
|
|
346
|
+
Args:
|
|
347
|
+
input_ids (torch.LongTensor): [b, T]
|
|
348
|
+
images (torch.FloatTensor): [b, max_n_images, 3, height, width]
|
|
349
|
+
images_seq_mask (torch.BoolTensor): [b, T]
|
|
350
|
+
images_spatial_crop (torch.LongTensor): [b, max_n_images, 2]
|
|
351
|
+
|
|
352
|
+
Returns:
|
|
353
|
+
input_embeds (torch.Tensor): [b, T, D]
|
|
354
|
+
"""
|
|
355
|
+
|
|
356
|
+
if images is None or images_spatial_crop.sum() == 0:
|
|
357
|
+
return self.language.get_input_embeddings()(input_ids)
|
|
358
|
+
|
|
359
|
+
bs, max_n_images, _ = images_spatial_crop.shape
|
|
360
|
+
batch_num_tiles = [0 for _ in range(bs)]
|
|
361
|
+
total_tiles = []
|
|
362
|
+
for idx in range(bs):
|
|
363
|
+
for jdx in range(max_n_images):
|
|
364
|
+
num_width_tiles, num_height_tiles = images_spatial_crop[idx, jdx]
|
|
365
|
+
if num_width_tiles == 0 or num_height_tiles == 0:
|
|
366
|
+
break
|
|
367
|
+
batch_num_tiles[idx] += (1 + num_width_tiles * num_height_tiles)
|
|
368
|
+
|
|
369
|
+
total_tiles.append(images[idx, :batch_num_tiles[idx]])
|
|
370
|
+
|
|
371
|
+
# [batch_all_tiles, 3, height, width]
|
|
372
|
+
total_tiles = torch.cat(total_tiles, dim=0)
|
|
373
|
+
assert total_tiles.shape[0] == sum(batch_num_tiles)
|
|
374
|
+
if total_tiles.shape[0] == 0:
|
|
375
|
+
return self.language.get_input_embeddings()(input_ids)
|
|
376
|
+
|
|
377
|
+
# [batch_all_tiles, vit_seq_len, c]
|
|
378
|
+
images_feature = self.vision(total_tiles)
|
|
379
|
+
|
|
380
|
+
# [batch_all_tiles, hw, D]
|
|
381
|
+
images_embeds = self.projector(images_feature)
|
|
382
|
+
_, hw, n_dim = images_embeds.shape
|
|
383
|
+
h = w = int(hw ** 0.5)
|
|
384
|
+
|
|
385
|
+
# put image tokens into the input_embeds, [b, T, D]
|
|
386
|
+
input_embeds = self.language.get_input_embeddings()(input_ids)
|
|
387
|
+
|
|
388
|
+
# 根据self.tile_tag & self.global_view_pos填充image token sequence
|
|
389
|
+
tile_index = 0
|
|
390
|
+
for idx in range(images_spatial_crop.shape[0]):
|
|
391
|
+
images_in_this_batch = []
|
|
392
|
+
for jdx in range(images_spatial_crop.shape[1]):
|
|
393
|
+
|
|
394
|
+
# extra global & local features
|
|
395
|
+
num_width_tiles, num_height_tiles = images_spatial_crop[idx, jdx]
|
|
396
|
+
if num_width_tiles == 0 or num_height_tiles == 0:
|
|
397
|
+
break
|
|
398
|
+
|
|
399
|
+
num_tiles_in_image = num_width_tiles * num_height_tiles
|
|
400
|
+
|
|
401
|
+
# [hw, D]
|
|
402
|
+
global_features = images_embeds[tile_index]
|
|
403
|
+
|
|
404
|
+
# [num_height_tiles * num_width_tiles, hw, D]
|
|
405
|
+
local_features = images_embeds[tile_index + 1: tile_index + 1 + num_tiles_in_image]
|
|
406
|
+
|
|
407
|
+
tile_index += num_tiles_in_image + 1
|
|
408
|
+
|
|
409
|
+
# format global and local features
|
|
410
|
+
if self.tile_tag == "2D":
|
|
411
|
+
|
|
412
|
+
# ----------------- global view add newline -----------------
|
|
413
|
+
# [hw, D] -> [h, w, D]
|
|
414
|
+
global_features = global_features.view(h, w, n_dim)
|
|
415
|
+
# [D] -> [h, 1, D]
|
|
416
|
+
new_lines_in_global = repeat(self.image_newline, "d -> h 1 d", h=h)
|
|
417
|
+
# cat([h, w, D], [h, 1, D], dim=1) -> [h, w + 1, D]
|
|
418
|
+
global_features = torch.cat([global_features, new_lines_in_global], dim=1)
|
|
419
|
+
# [h, w + 1, D] -> [h * (w + 1), D]
|
|
420
|
+
global_features = global_features.view(-1, n_dim)
|
|
421
|
+
|
|
422
|
+
# ----------------- local view add newline -----------------
|
|
423
|
+
# [num_height_tiles * num_width_tiles, h * w, D] -> [num_height_tiles * h, num_width_tiles * w, D]
|
|
424
|
+
local_features = rearrange(
|
|
425
|
+
local_features,
|
|
426
|
+
"(th tw) (h w) d -> (th h) (tw w) d",
|
|
427
|
+
th=num_height_tiles,
|
|
428
|
+
tw=num_width_tiles,
|
|
429
|
+
h=h,
|
|
430
|
+
w=w
|
|
431
|
+
)
|
|
432
|
+
|
|
433
|
+
# [D] -> [num_height_tiles * h, 1, D]
|
|
434
|
+
new_lines_in_local = repeat(
|
|
435
|
+
self.image_newline,
|
|
436
|
+
"d -> (th h) 1 d",
|
|
437
|
+
th=num_height_tiles,
|
|
438
|
+
h=h
|
|
439
|
+
)
|
|
440
|
+
|
|
441
|
+
# [num_height_tiles * h, num_width_tiles * w + 1, D]
|
|
442
|
+
local_features = torch.cat([local_features, new_lines_in_local], dim=1)
|
|
443
|
+
|
|
444
|
+
# [num_height_tiles * h, num_width_tiles * w + 1, D]
|
|
445
|
+
# --> [(num_height_tiles * h) * (num_width_tiles * w + 1), D]
|
|
446
|
+
local_features = local_features.view(-1, n_dim)
|
|
447
|
+
|
|
448
|
+
# ----------------- merge global and local tiles -----------------
|
|
449
|
+
if self.global_view_pos == "head":
|
|
450
|
+
global_local_features = torch.cat(
|
|
451
|
+
[global_features, self.view_seperator[None, :], local_features], dim=0)
|
|
452
|
+
else:
|
|
453
|
+
global_local_features = torch.cat(
|
|
454
|
+
[local_features, self.view_seperator[None, :], global_features], dim=0)
|
|
455
|
+
|
|
456
|
+
else:
|
|
457
|
+
# abandoned,实际上不会走这个逻辑
|
|
458
|
+
global_features = torch.cat(
|
|
459
|
+
[self.tile_indicators[0:1], global_features], dim=0
|
|
460
|
+
)
|
|
461
|
+
local_features = torch.cat(
|
|
462
|
+
[self.tile_indicators[1:num_tiles_in_image + 1].unsqueeze(1), local_features], dim=1
|
|
463
|
+
)
|
|
464
|
+
local_features = rearrange(local_features, 'crop_num hw d -> (crop_num hw) d')
|
|
465
|
+
|
|
466
|
+
if self.global_view_pos == "head":
|
|
467
|
+
global_local_features = torch.cat([global_features, local_features], dim=0)
|
|
468
|
+
else:
|
|
469
|
+
global_local_features = torch.cat([local_features, global_features], dim=0)
|
|
470
|
+
|
|
471
|
+
images_in_this_batch.append(global_local_features)
|
|
472
|
+
|
|
473
|
+
if len(images_in_this_batch) > 0:
|
|
474
|
+
images_in_this_batch = torch.cat(images_in_this_batch, dim=0)
|
|
475
|
+
input_embeds[idx].masked_scatter_(images_seq_mask[idx].unsqueeze(-1), images_in_this_batch)
|
|
476
|
+
|
|
477
|
+
return input_embeds
|
|
478
|
+
|
|
479
|
+
@torch.no_grad()
|
|
480
|
+
def incremental_prefilling(
|
|
481
|
+
self,
|
|
482
|
+
input_ids: Optional[torch.LongTensor] = None,
|
|
483
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
484
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
485
|
+
|
|
486
|
+
images: Optional[torch.FloatTensor] = None,
|
|
487
|
+
images_seq_mask: Optional[torch.LongTensor] = None,
|
|
488
|
+
images_spatial_crop: Optional[torch.LongTensor] = None,
|
|
489
|
+
chunk_size: int = 1024
|
|
490
|
+
):
|
|
491
|
+
if inputs_embeds is None:
|
|
492
|
+
inputs_embeds = self.prepare_inputs_embeds(
|
|
493
|
+
input_ids=input_ids,
|
|
494
|
+
images=images,
|
|
495
|
+
images_seq_mask=images_seq_mask,
|
|
496
|
+
images_spatial_crop=images_spatial_crop,
|
|
497
|
+
)
|
|
498
|
+
|
|
499
|
+
del images
|
|
500
|
+
del images_seq_mask
|
|
501
|
+
del images_spatial_crop
|
|
502
|
+
|
|
503
|
+
if attention_mask is not None:
|
|
504
|
+
attention_mask = attention_mask.to(inputs_embeds.device)
|
|
505
|
+
|
|
506
|
+
self._clear_cuda_cache()
|
|
507
|
+
|
|
508
|
+
bzs, seq_len, _ = inputs_embeds.shape
|
|
509
|
+
past_key_values = None
|
|
510
|
+
|
|
511
|
+
# remain the last token for the next forward
|
|
512
|
+
prefilling_len = seq_len - 1
|
|
513
|
+
for i in range(0, prefilling_len, chunk_size):
|
|
514
|
+
chunk_start = i
|
|
515
|
+
chunk_end = min(i + chunk_size, prefilling_len)
|
|
516
|
+
chunk_inputs_embeds = inputs_embeds[:, chunk_start: chunk_end]
|
|
517
|
+
chunk_attention_mask = attention_mask[:, 0: chunk_end]
|
|
518
|
+
# print(f"start = {chunk_start}, end = {chunk_end}, prefilling_len = {prefilling_len}, seq_len = {seq_len}")
|
|
519
|
+
|
|
520
|
+
# compute position_ids
|
|
521
|
+
if past_key_values is not None:
|
|
522
|
+
position_ids = torch.arange(
|
|
523
|
+
chunk_start,
|
|
524
|
+
chunk_end,
|
|
525
|
+
dtype=torch.long,
|
|
526
|
+
device=inputs_embeds.device
|
|
527
|
+
).unsqueeze(0)
|
|
528
|
+
past_key_values = self._move_past_key_values_to_gpu(past_key_values, inputs_embeds.device)
|
|
529
|
+
else:
|
|
530
|
+
position_ids = None
|
|
531
|
+
|
|
532
|
+
# chunk-forward
|
|
533
|
+
with torch.no_grad():
|
|
534
|
+
outputs = self.forward(
|
|
535
|
+
inputs_embeds=chunk_inputs_embeds,
|
|
536
|
+
attention_mask=chunk_attention_mask,
|
|
537
|
+
past_key_values=past_key_values,
|
|
538
|
+
position_ids=position_ids,
|
|
539
|
+
use_cache=True,
|
|
540
|
+
)
|
|
541
|
+
# update past_key_values
|
|
542
|
+
past_key_values = outputs.past_key_values
|
|
543
|
+
past_key_values = self._move_past_key_values_to_cpu(past_key_values)
|
|
544
|
+
|
|
545
|
+
del outputs, position_ids
|
|
546
|
+
self._clear_cuda_cache()
|
|
547
|
+
|
|
548
|
+
prefilling_key_values = []
|
|
549
|
+
for layer_past in past_key_values:
|
|
550
|
+
prefilling_key_values.append(
|
|
551
|
+
(
|
|
552
|
+
layer_past[0][:, :, 0: prefilling_len, ...].to(inputs_embeds.device),
|
|
553
|
+
layer_past[1][:, :, 0: prefilling_len, ...].to(inputs_embeds.device),
|
|
554
|
+
)
|
|
555
|
+
)
|
|
556
|
+
|
|
557
|
+
return inputs_embeds, prefilling_key_values
|
|
558
|
+
|
|
559
|
+
def forward(
|
|
560
|
+
self,
|
|
561
|
+
input_ids: Optional[torch.LongTensor] = None,
|
|
562
|
+
|
|
563
|
+
attention_mask: Optional[torch.Tensor] = None,
|
|
564
|
+
position_ids: Optional[torch.LongTensor] = None,
|
|
565
|
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
566
|
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
567
|
+
|
|
568
|
+
images: Optional[torch.FloatTensor] = None,
|
|
569
|
+
images_seq_mask: Optional[torch.LongTensor] = None,
|
|
570
|
+
images_spatial_crop: Optional[torch.LongTensor] = None,
|
|
571
|
+
|
|
572
|
+
labels: Optional[torch.LongTensor] = None,
|
|
573
|
+
use_cache: Optional[bool] = None,
|
|
574
|
+
output_attentions: Optional[bool] = None,
|
|
575
|
+
output_hidden_states: Optional[bool] = None,
|
|
576
|
+
return_dict: Optional[bool] = None,
|
|
577
|
+
cache_position: Optional[torch.LongTensor] = None,
|
|
578
|
+
):
|
|
579
|
+
|
|
580
|
+
output_attentions = (
|
|
581
|
+
output_attentions
|
|
582
|
+
if output_attentions is not None
|
|
583
|
+
else self.config.output_attentions
|
|
584
|
+
)
|
|
585
|
+
output_hidden_states = (
|
|
586
|
+
output_hidden_states
|
|
587
|
+
if output_hidden_states is not None
|
|
588
|
+
else self.config.output_hidden_states
|
|
589
|
+
)
|
|
590
|
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
591
|
+
|
|
592
|
+
return_dict = (
|
|
593
|
+
return_dict if return_dict is not None else self.config.use_return_dict
|
|
594
|
+
)
|
|
595
|
+
if inputs_embeds is None:
|
|
596
|
+
inputs_embeds = self.prepare_inputs_embeds(
|
|
597
|
+
input_ids=input_ids,
|
|
598
|
+
images=images,
|
|
599
|
+
images_seq_mask=images_seq_mask,
|
|
600
|
+
images_spatial_crop=images_spatial_crop,
|
|
601
|
+
)
|
|
602
|
+
|
|
603
|
+
if attention_mask is not None:
|
|
604
|
+
attention_mask = attention_mask.to(inputs_embeds.device)
|
|
605
|
+
|
|
606
|
+
# print(inputs_embeds.shape)
|
|
607
|
+
outputs = self.language.forward(
|
|
608
|
+
input_ids=None,
|
|
609
|
+
attention_mask=attention_mask,
|
|
610
|
+
position_ids=position_ids,
|
|
611
|
+
past_key_values=past_key_values,
|
|
612
|
+
inputs_embeds=inputs_embeds,
|
|
613
|
+
labels=labels,
|
|
614
|
+
use_cache=use_cache,
|
|
615
|
+
output_attentions=output_attentions,
|
|
616
|
+
output_hidden_states=output_hidden_states,
|
|
617
|
+
return_dict=return_dict,
|
|
618
|
+
cache_position=cache_position
|
|
619
|
+
)
|
|
620
|
+
|
|
621
|
+
return outputs
|
|
622
|
+
|
|
623
|
+
def _clear_cuda_cache(self):
|
|
624
|
+
"""clear CUDA memory cache"""
|
|
625
|
+
gc.collect()
|
|
626
|
+
if torch.cuda.is_available():
|
|
627
|
+
torch.cuda.empty_cache()
|
|
628
|
+
torch.cuda.synchronize()
|
|
629
|
+
|
|
630
|
+
def _move_past_key_values_to_cpu(self, past_key_values):
|
|
631
|
+
# print(f"past_key_values -> cpu")
|
|
632
|
+
if past_key_values is None:
|
|
633
|
+
return None
|
|
634
|
+
return tuple(tuple(t.cpu() for t in layer) for layer in past_key_values)
|
|
635
|
+
|
|
636
|
+
def _move_past_key_values_to_gpu(self, past_key_values, device="cuda:0"):
|
|
637
|
+
# print(f"past_key_values -> gpu")
|
|
638
|
+
if past_key_values is None:
|
|
639
|
+
return None
|
|
640
|
+
return tuple(tuple(t.to(device) for t in layer) for layer in past_key_values)
|
|
641
|
+
|
|
642
|
+
def prepare_inputs_for_generation(
|
|
643
|
+
self,
|
|
644
|
+
input_ids,
|
|
645
|
+
past_key_values=None,
|
|
646
|
+
inputs_embeds=None,
|
|
647
|
+
|
|
648
|
+
images: Optional[torch.FloatTensor] = None,
|
|
649
|
+
images_seq_mask: Optional[torch.LongTensor] = None,
|
|
650
|
+
images_spatial_crop: Optional[torch.LongTensor] = None,
|
|
651
|
+
|
|
652
|
+
attention_mask=None,
|
|
653
|
+
cache_position=None,
|
|
654
|
+
|
|
655
|
+
pixel_values=None,
|
|
656
|
+
image_sizes=None,
|
|
657
|
+
num_logits_to_keep=None,
|
|
658
|
+
**kwargs,
|
|
659
|
+
):
|
|
660
|
+
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
|
|
661
|
+
model_inputs = self.language.prepare_inputs_for_generation(
|
|
662
|
+
input_ids,
|
|
663
|
+
past_key_values=past_key_values,
|
|
664
|
+
inputs_embeds=inputs_embeds,
|
|
665
|
+
attention_mask=attention_mask,
|
|
666
|
+
cache_position=cache_position,
|
|
667
|
+
num_logits_to_keep=num_logits_to_keep,
|
|
668
|
+
**kwargs,
|
|
669
|
+
)
|
|
670
|
+
|
|
671
|
+
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
|
|
672
|
+
# Otherwise we need pixel values to be passed to model
|
|
673
|
+
cache_position = model_inputs["cache_position"]
|
|
674
|
+
if cache_position[0] == 0:
|
|
675
|
+
model_inputs["images"] = images
|
|
676
|
+
model_inputs["images_seq_mask"] = images_seq_mask
|
|
677
|
+
model_inputs["images_spatial_crop"] = images_spatial_crop
|
|
678
|
+
|
|
679
|
+
return model_inputs
|
|
680
|
+
|
|
681
|
+
@staticmethod
|
|
682
|
+
def _reorder_cache(past_key_values, beam_idx):
|
|
683
|
+
reordered_past = ()
|
|
684
|
+
for layer_past in past_key_values:
|
|
685
|
+
reordered_past += (
|
|
686
|
+
tuple(
|
|
687
|
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
|
688
|
+
for past_state in layer_past
|
|
689
|
+
),
|
|
690
|
+
)
|
|
691
|
+
return reordered_past
|
|
692
|
+
|
|
693
|
+
|
|
694
|
+
AutoConfig.register("vision", VisionEncoderConfig)
|
|
695
|
+
AutoConfig.register("mlp_projector", MlpProjectorConfig)
|
|
696
|
+
AutoConfig.register("deepseek_vl_v2", DeepseekVLV2Config)
|
|
697
|
+
AutoModelForCausalLM.register(DeepseekVLV2Config, DeepseekVLV2ForCausalLM)
|