xinference 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of xinference might be problematic. Click here for more details.

Files changed (59) hide show
  1. xinference/_compat.py +1 -0
  2. xinference/_version.py +3 -3
  3. xinference/api/restful_api.py +4 -0
  4. xinference/core/model.py +23 -3
  5. xinference/core/supervisor.py +6 -0
  6. xinference/core/worker.py +54 -11
  7. xinference/model/llm/__init__.py +4 -2
  8. xinference/model/llm/core.py +1 -0
  9. xinference/model/llm/llama_cpp/core.py +6 -1
  10. xinference/model/llm/llm_family.json +117 -1
  11. xinference/model/llm/llm_family_modelscope.json +125 -1
  12. xinference/model/llm/reasoning_parser.py +3 -3
  13. xinference/model/llm/sglang/core.py +111 -13
  14. xinference/model/llm/transformers/core.py +1 -0
  15. xinference/model/llm/transformers/deepseek_vl.py +1 -1
  16. xinference/model/llm/transformers/deepseek_vl2.py +287 -0
  17. xinference/model/llm/utils.py +26 -14
  18. xinference/model/llm/vllm/core.py +149 -8
  19. xinference/model/llm/vllm/distributed_executor.py +314 -0
  20. xinference/model/rerank/core.py +16 -11
  21. xinference/thirdparty/deepseek_vl2/__init__.py +31 -0
  22. xinference/thirdparty/deepseek_vl2/models/__init__.py +26 -0
  23. xinference/thirdparty/deepseek_vl2/models/configuration_deepseek.py +210 -0
  24. xinference/thirdparty/deepseek_vl2/models/conversation.py +310 -0
  25. xinference/thirdparty/deepseek_vl2/models/modeling_deepseek.py +1975 -0
  26. xinference/thirdparty/deepseek_vl2/models/modeling_deepseek_vl_v2.py +697 -0
  27. xinference/thirdparty/deepseek_vl2/models/processing_deepseek_vl_v2.py +675 -0
  28. xinference/thirdparty/deepseek_vl2/models/siglip_vit.py +661 -0
  29. xinference/thirdparty/deepseek_vl2/serve/__init__.py +0 -0
  30. xinference/thirdparty/deepseek_vl2/serve/app_modules/__init__.py +0 -0
  31. xinference/thirdparty/deepseek_vl2/serve/app_modules/gradio_utils.py +83 -0
  32. xinference/thirdparty/deepseek_vl2/serve/app_modules/overwrites.py +81 -0
  33. xinference/thirdparty/deepseek_vl2/serve/app_modules/presets.py +115 -0
  34. xinference/thirdparty/deepseek_vl2/serve/app_modules/utils.py +333 -0
  35. xinference/thirdparty/deepseek_vl2/serve/assets/Kelpy-Codos.js +100 -0
  36. xinference/thirdparty/deepseek_vl2/serve/assets/avatar.png +0 -0
  37. xinference/thirdparty/deepseek_vl2/serve/assets/custom.css +355 -0
  38. xinference/thirdparty/deepseek_vl2/serve/assets/custom.js +22 -0
  39. xinference/thirdparty/deepseek_vl2/serve/assets/favicon.ico +0 -0
  40. xinference/thirdparty/deepseek_vl2/serve/assets/simsun.ttc +0 -0
  41. xinference/thirdparty/deepseek_vl2/serve/inference.py +197 -0
  42. xinference/thirdparty/deepseek_vl2/utils/__init__.py +18 -0
  43. xinference/thirdparty/deepseek_vl2/utils/io.py +80 -0
  44. xinference/web/ui/build/asset-manifest.json +3 -3
  45. xinference/web/ui/build/index.html +1 -1
  46. xinference/web/ui/build/static/js/{main.3cea968e.js → main.5ca4eea1.js} +3 -3
  47. xinference/web/ui/build/static/js/main.5ca4eea1.js.map +1 -0
  48. xinference/web/ui/node_modules/.cache/babel-loader/0f0967acaec5df1d45b80010949c258d64297ebbb0f44b8bb3afcbd45c6f0ec4.json +1 -0
  49. xinference/web/ui/node_modules/.cache/babel-loader/68249645124f37d01eef83b1d897e751f895bea919b6fb466f907c1f87cebc84.json +1 -0
  50. {xinference-1.4.0.dist-info → xinference-1.4.1.dist-info}/METADATA +4 -4
  51. {xinference-1.4.0.dist-info → xinference-1.4.1.dist-info}/RECORD +56 -31
  52. xinference/web/ui/build/static/js/main.3cea968e.js.map +0 -1
  53. xinference/web/ui/node_modules/.cache/babel-loader/7f59e45e3f268ab8a4788b6fb024cf8dab088736dff22f5a3a39c122a83ab930.json +0 -1
  54. xinference/web/ui/node_modules/.cache/babel-loader/dcd60488509450bfff37bfff56de2c096d51de17dd00ec60d4db49c8b483ada1.json +0 -1
  55. /xinference/web/ui/build/static/js/{main.3cea968e.js.LICENSE.txt → main.5ca4eea1.js.LICENSE.txt} +0 -0
  56. {xinference-1.4.0.dist-info → xinference-1.4.1.dist-info}/LICENSE +0 -0
  57. {xinference-1.4.0.dist-info → xinference-1.4.1.dist-info}/WHEEL +0 -0
  58. {xinference-1.4.0.dist-info → xinference-1.4.1.dist-info}/entry_points.txt +0 -0
  59. {xinference-1.4.0.dist-info → xinference-1.4.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,210 @@
1
+ from transformers.configuration_utils import PretrainedConfig
2
+ from transformers.utils import logging
3
+
4
+ logger = logging.get_logger(__name__)
5
+
6
+ DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
7
+ class DeepseekV2Config(PretrainedConfig):
8
+ r"""
9
+ This is the configuration class to store the configuration of a [`DeepseekV2Model`]. It is used to instantiate an DeepSeek
10
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
11
+ defaults will yield a similar configuration to that of the DeepSeek-V2 with multi-latent attention.
12
+
13
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
14
+ documentation from [`PretrainedConfig`] for more information.
15
+
16
+
17
+ Args:
18
+ vocab_size (`int`, *optional*, defaults to 102400):
19
+ Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
20
+ `inputs_ids` passed when calling [`DeepseekV2Model`]
21
+ hidden_size (`int`, *optional*, defaults to 4096):
22
+ Dimension of the hidden representations.
23
+ intermediate_size (`int`, *optional*, defaults to 11008):
24
+ Dimension of the MLP representations.
25
+ moe_intermediate_size (`int`, *optional*, defaults to 1407):
26
+ Dimension of the MoE representations.
27
+ num_hidden_layers (`int`, *optional*, defaults to 32):
28
+ Number of hidden layers in the Transformer decoder.
29
+ num_attention_heads (`int`, *optional*, defaults to 32):
30
+ Number of attention heads for each attention layer in the Transformer decoder.
31
+ n_shared_experts (`int`, *optional*, defaults to None):
32
+ Number of shared experts, None means dense model.
33
+ n_routed_experts (`int`, *optional*, defaults to None):
34
+ Number of routed experts, None means dense model.
35
+ routed_scaling_factor (`float`, *optional*, defaults to 1.0):
36
+ Scaling factor or routed experts.
37
+ topk_method (`str`, *optional*, defaults to `gready`):
38
+ Topk method used in routed gate.
39
+ n_group (`int`, *optional*, defaults to None):
40
+ Number of groups for routed experts.
41
+ topk_group (`int`, *optional*, defaults to None):
42
+ Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
43
+ num_experts_per_tok (`int`, *optional*, defaults to None):
44
+ Number of selected experts, None means dense model.
45
+ moe_layer_freq (`int`, *optional*, defaults to 1):
46
+ The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
47
+ first_k_dense_replace (`int`, *optional*, defaults to 0):
48
+ Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
49
+ \--k dense layers--/
50
+ norm_topk_prob (`bool`, *optional*, defaults to False):
51
+ Whether to normalize the weights of the routed experts.
52
+ scoring_func (`str`, *optional*, defaults to 'softmax'):
53
+ Method of computing expert weights.
54
+ aux_loss_alpha (`float`, *optional*, defaults to 0.001):
55
+ Auxiliary loss weight coefficient.
56
+ seq_aux = (`bool`, *optional*, defaults to True):
57
+ Whether to compute the auxiliary loss for each individual sample.
58
+ num_key_value_heads (`int`, *optional*):
59
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
60
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
61
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
62
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
63
+ by meanpooling all the original heads within that group. For more details checkout [this
64
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
65
+ `num_attention_heads`.
66
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
67
+ The non-linear activation function (function or string) in the decoder.
68
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
69
+ The maximum sequence length that this model might ever be used with.
70
+ initializer_range (`float`, *optional*, defaults to 0.02):
71
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
72
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
73
+ The epsilon used by the rms normalization layers.
74
+ use_cache (`bool`, *optional*, defaults to `True`):
75
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
76
+ relevant if `config.is_decoder=True`.
77
+ pad_token_id (`int`, *optional*):
78
+ Padding token id.
79
+ bos_token_id (`int`, *optional*, defaults to 1):
80
+ Beginning of stream token id.
81
+ eos_token_id (`int`, *optional*, defaults to 2):
82
+ End of stream token id.
83
+ pretraining_tp (`int`, *optional*, defaults to 1):
84
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
85
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
86
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
87
+ issue](https://github.com/pytorch/pytorch/issues/76232).
88
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
89
+ Whether to tie weight embeddings
90
+ rope_theta (`float`, *optional*, defaults to 10000.0):
91
+ The base period of the RoPE embeddings.
92
+ rope_scaling (`Dict`, *optional*):
93
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
94
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
95
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
96
+ `max_position_embeddings` to the expected new maximum.
97
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
98
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
99
+ attention_dropout (`float`, *optional*, defaults to 0.0):
100
+ The dropout ratio for the attention probabilities.
101
+ use_mla (`bool`, *optional*, defaults to `True`): Use multi-latent attention or multi-head attention. If True,
102
+ the model will use multi-latent attention, otherwise, it will use multi-head attention.
103
+
104
+ ```python
105
+ >>> from transformers import DeepseekV2Model, DeepseekV2Config
106
+
107
+ >>> # Initializing a Deepseek-V2 style configuration
108
+ >>> configuration = DeepseekV2Config()
109
+
110
+ >>> # Accessing the model configuration
111
+ >>> configuration = model.config
112
+ ```"""
113
+
114
+ model_type = "deepseek_v2"
115
+ keys_to_ignore_at_inference = ["past_key_values"]
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_size=102400,
120
+ hidden_size=4096,
121
+ intermediate_size=11008,
122
+ moe_intermediate_size = 1407,
123
+ num_hidden_layers=30,
124
+ num_attention_heads=32,
125
+ num_key_value_heads=32,
126
+ n_shared_experts = None,
127
+ n_routed_experts = None,
128
+ ep_size = 1,
129
+ routed_scaling_factor = 1.0,
130
+ kv_lora_rank = 512,
131
+ q_lora_rank = 1536,
132
+ qk_rope_head_dim = 64,
133
+ v_head_dim = 128,
134
+ qk_nope_head_dim = 128,
135
+ topk_method = 'gready',
136
+ n_group = None,
137
+ topk_group = None,
138
+ num_experts_per_tok = None,
139
+ moe_layer_freq = 1,
140
+ first_k_dense_replace = 0,
141
+ norm_topk_prob = False,
142
+ scoring_func = 'softmax',
143
+ aux_loss_alpha = 0.001,
144
+ seq_aux = True,
145
+ hidden_act="silu",
146
+ max_position_embeddings=2048,
147
+ initializer_range=0.02,
148
+ rms_norm_eps=1e-6,
149
+ use_cache=True,
150
+ pad_token_id=None,
151
+ bos_token_id=100000,
152
+ eos_token_id=100001,
153
+ pretraining_tp=1,
154
+ tie_word_embeddings=False,
155
+ rope_theta=10000.0,
156
+ rope_scaling=None,
157
+ attention_bias=False,
158
+ attention_dropout=0.0,
159
+ use_mla=True,
160
+ **kwargs,
161
+ ):
162
+ self.vocab_size = vocab_size
163
+ self.max_position_embeddings = max_position_embeddings
164
+ self.hidden_size = hidden_size
165
+ self.intermediate_size = intermediate_size
166
+ self.moe_intermediate_size = moe_intermediate_size
167
+ self.num_hidden_layers = num_hidden_layers
168
+ self.num_attention_heads = num_attention_heads
169
+ self.n_shared_experts = n_shared_experts
170
+ self.n_routed_experts = n_routed_experts
171
+ self.ep_size = ep_size
172
+ self.routed_scaling_factor = routed_scaling_factor
173
+ self.kv_lora_rank = kv_lora_rank
174
+ self.q_lora_rank = q_lora_rank
175
+ self.qk_rope_head_dim = qk_rope_head_dim
176
+ self.v_head_dim = v_head_dim
177
+ self.qk_nope_head_dim = qk_nope_head_dim
178
+ self.topk_method = topk_method
179
+ self.n_group = n_group
180
+ self.topk_group = topk_group
181
+ self.num_experts_per_tok = num_experts_per_tok
182
+ self.moe_layer_freq = moe_layer_freq
183
+ self.first_k_dense_replace = first_k_dense_replace
184
+ self.norm_topk_prob = norm_topk_prob
185
+ self.scoring_func = scoring_func
186
+ self.aux_loss_alpha = aux_loss_alpha
187
+ self.seq_aux = seq_aux
188
+ # for backward compatibility
189
+ if num_key_value_heads is None:
190
+ num_key_value_heads = num_attention_heads
191
+
192
+ self.num_key_value_heads = num_key_value_heads
193
+ self.hidden_act = hidden_act
194
+ self.initializer_range = initializer_range
195
+ self.rms_norm_eps = float(rms_norm_eps)
196
+ self.pretraining_tp = pretraining_tp
197
+ self.use_cache = use_cache
198
+ self.rope_theta = rope_theta
199
+ self.rope_scaling = rope_scaling
200
+ self.attention_bias = attention_bias
201
+ self.attention_dropout = attention_dropout
202
+ self.use_mla = use_mla
203
+
204
+ super().__init__(
205
+ pad_token_id=pad_token_id,
206
+ bos_token_id=bos_token_id,
207
+ eos_token_id=eos_token_id,
208
+ tie_word_embeddings=tie_word_embeddings,
209
+ **kwargs,
210
+ )
@@ -0,0 +1,310 @@
1
+ """
2
+ From https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
3
+ """
4
+
5
+ import dataclasses
6
+ from enum import IntEnum, auto
7
+ from typing import Any, Dict, List
8
+
9
+
10
+ class SeparatorStyle(IntEnum):
11
+ """Separator styles."""
12
+
13
+ DeepSeek = auto()
14
+ DeepSeekV2 = auto()
15
+ PLAIN = auto()
16
+ ALIGNMENT = auto()
17
+
18
+
19
+ @dataclasses.dataclass
20
+ class Conversation:
21
+ """A class that manages prompt templates and keeps all conversation history."""
22
+
23
+ # The name of this template
24
+ name: str
25
+ # The template of the system prompt
26
+ system_template: str = "{system_message}"
27
+ # The system message
28
+ system_message: str = ""
29
+ # The names of two roles
30
+ roles: List[str] = (("USER", "ASSISTANT"),)
31
+ # All messages. Each item is (role, message).
32
+ messages: List[List[str]] = ()
33
+ # The number of few shot examples
34
+ offset: int = 0
35
+ # The separator style and configurations
36
+ sep_style: SeparatorStyle = SeparatorStyle.DeepSeek
37
+ sep: str = "\n"
38
+ sep2: str = None
39
+ # Stop criteria (the default one is EOS token)
40
+ stop_str: str = None
41
+ # Stops generation if meeting any token in this list
42
+ stop_token_ids: List[int] = None
43
+
44
+ def get_prompt(self) -> str:
45
+ """Get the prompt for generation."""
46
+ system_prompt = self.system_template.format(system_message=self.system_message)
47
+ if self.sep_style == SeparatorStyle.DeepSeek:
48
+ seps = [self.sep, self.sep2]
49
+ if system_prompt == "" or system_prompt is None:
50
+ ret = ""
51
+ else:
52
+ ret = system_prompt + seps[0]
53
+ for i, (role, message) in enumerate(self.messages):
54
+ if message:
55
+ ret += role + ": " + message + seps[i % 2]
56
+ else:
57
+ ret += role + ":"
58
+ return ret
59
+ elif self.sep_style == SeparatorStyle.DeepSeekV2:
60
+ seps = [self.sep, self.sep2]
61
+ if system_prompt == "" or system_prompt is None:
62
+ ret = ""
63
+ else:
64
+ ret = system_prompt + seps[0]
65
+ for i, (role, message) in enumerate(self.messages):
66
+ if message:
67
+ if role == "User":
68
+ ret += "<|sft▁begin|>\n" + message + self.sep #<|sft▁begin|>User Input<|sft▁end|>\nResponse<|end▁of▁sentence|>
69
+ else:
70
+ ret += message + self.sep2
71
+ else:
72
+ ret = ret
73
+ return ret
74
+
75
+ elif self.sep_style == SeparatorStyle.PLAIN:
76
+ seps = [self.sep, self.sep2]
77
+ ret = ""
78
+ for i, (role, message) in enumerate(self.messages):
79
+ if message:
80
+ if type(message) is tuple:
81
+ message, _, _ = message
82
+ if i % 2 == 0:
83
+ ret += message + seps[i % 2]
84
+ else:
85
+ ret += message + seps[i % 2]
86
+ else:
87
+ ret += ""
88
+ return ret
89
+ elif self.sep_style == SeparatorStyle.ALIGNMENT:
90
+ seps = [self.sep, self.sep2]
91
+ ret = ""
92
+ for i, (role, message) in enumerate(self.messages):
93
+ if message:
94
+ if type(message) is tuple:
95
+ message, _, _ = message
96
+ if i % 2 == 0:
97
+ ret += '<image>\n' + seps[i % 2]
98
+ else:
99
+ ret += message + seps[i % 2]
100
+ else:
101
+ ret += ""
102
+ return ret
103
+ else:
104
+ raise ValueError(f"Invalid style: {self.sep_style}")
105
+
106
+ def set_system_message(self, system_message: str):
107
+ """Set the system message."""
108
+ self.system_message = system_message
109
+
110
+ def append_message(self, role: str, message: str):
111
+ """Append a new message."""
112
+ self.messages.append([role, message])
113
+
114
+ def update_last_message(self, message: str):
115
+ """Update the last output.
116
+
117
+ The last message is typically set to be None when constructing the prompt,
118
+ so we need to update it in-place after getting the response from a model.
119
+ """
120
+ self.messages[-1][1] = message
121
+
122
+ def reset_message(self):
123
+ """Reset a new message."""
124
+ self.messages = []
125
+
126
+ def to_gradio_chatbot(self):
127
+ """Convert the conversation to gradio chatbot format."""
128
+ ret = []
129
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
130
+ if i % 2 == 0:
131
+ ret.append([msg, None])
132
+ else:
133
+ ret[-1][-1] = msg
134
+ return ret
135
+
136
+ def to_openai_api_messages(self):
137
+ """Convert the conversation to OpenAI chat completion format."""
138
+ system_prompt = self.system_template.format(system_message=self.system_message)
139
+ ret = [{"role": "system", "content": system_prompt}]
140
+
141
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
142
+ if i % 2 == 0:
143
+ ret.append({"role": "user", "content": msg})
144
+ else:
145
+ if msg is not None:
146
+ ret.append({"role": "assistant", "content": msg})
147
+ return ret
148
+
149
+ def copy(self):
150
+ return Conversation(
151
+ name=self.name,
152
+ system_template=self.system_template,
153
+ system_message=self.system_message,
154
+ roles=self.roles,
155
+ messages=[[x, y] for x, y in self.messages],
156
+ offset=self.offset,
157
+ sep_style=self.sep_style,
158
+ sep=self.sep,
159
+ sep2=self.sep2,
160
+ stop_str=self.stop_str,
161
+ stop_token_ids=self.stop_token_ids,
162
+ )
163
+
164
+ def dict(self):
165
+ return {
166
+ "template_name": self.name,
167
+ "system_message": self.system_message,
168
+ "roles": self.roles,
169
+ "messages": self.messages,
170
+ "offset": self.offset,
171
+ }
172
+
173
+
174
+ # A global registry for all conversation templates
175
+ conv_templates: Dict[str, Conversation] = {}
176
+
177
+
178
+ def register_conv_template(template: Conversation, override: bool = False):
179
+ """Register a new conversation template."""
180
+ if not override:
181
+ assert template.name not in conv_templates, f"{template.name} has been registered."
182
+
183
+ conv_templates[template.name] = template
184
+
185
+
186
+ def get_conv_template(name: str) -> Conversation:
187
+ """Get a conversation template."""
188
+ return conv_templates[name].copy()
189
+
190
+
191
+ # register_conv_template(
192
+ # Conversation(
193
+ # name="deepseek",
194
+ # system_template="{system_message}",
195
+ # # system_message="You are a helpful assistant. Please answer truthfully and write out your "
196
+ # # "thinking step by step to be sure you get the right answer.",
197
+ # system_message="",
198
+ # roles=("User", "Assistant"),
199
+ # messages=(),
200
+ # offset=0,
201
+ # sep_style=SeparatorStyle.DeepSeek,
202
+ # sep="\n\n",
203
+ # sep2="<|end▁of▁sentence|>",
204
+ # stop_token_ids=[100001],
205
+ # stop_str=["User:", "<|end▁of▁sentence|>"]
206
+ # )
207
+ # )
208
+ register_conv_template(
209
+ Conversation(
210
+ name="deepseek",
211
+ system_template="{system_message}",
212
+ # system_message="You are a helpful assistant. Please answer truthfully and write out your "
213
+ # "thinking step by step to be sure you get the right answer.",
214
+ system_message="",
215
+ roles=("<|User|>", "<|Assistant|>"),
216
+ messages=(),
217
+ offset=0,
218
+ sep_style=SeparatorStyle.DeepSeek,
219
+ sep="\n\n",
220
+ sep2="<|end▁of▁sentence|>",
221
+ stop_token_ids=[100001],
222
+ stop_str=["User:", "<|end▁of▁sentence|>"]
223
+ )
224
+ )
225
+ # register_conv_template(
226
+ # Conversation(
227
+ # name="deepseekv2",
228
+ # system_template="{system_message}",
229
+ # system_message="",
230
+ # roles=("User", "Assistant"),
231
+ # messages=(),
232
+ # offset=0,
233
+ # sep_style=SeparatorStyle.DeepSeekV2,
234
+ # sep="\n<|sft▁end|>",
235
+ # sep2="<|end▁of▁sentence|>",
236
+ # stop_token_ids=[100001],
237
+ # stop_str=["User:", "<|end▁of▁sentence|>"]
238
+ # )
239
+ # )
240
+ register_conv_template(
241
+ Conversation(
242
+ name="deepseekv2",
243
+ system_template="{system_message}",
244
+ system_message="",
245
+ roles=("|<User>|", "|<Assistant>|"),
246
+ messages=(),
247
+ offset=0,
248
+ sep_style=SeparatorStyle.DeepSeekV2,
249
+ sep="\n<|sft▁end|>",
250
+ sep2="<|end▁of▁sentence|>",
251
+ stop_token_ids=[100001],
252
+ stop_str=["User:", "<|end▁of▁sentence|>"]
253
+ )
254
+ )
255
+
256
+
257
+ register_conv_template(
258
+ Conversation(
259
+ name="plain",
260
+ system_template="",
261
+ system_message="",
262
+ roles=("", ""),
263
+ messages=(),
264
+ offset=0,
265
+ sep_style=SeparatorStyle.PLAIN,
266
+ sep="",
267
+ sep2="",
268
+ stop_token_ids=[100001],
269
+ stop_str=['</s>'],
270
+ )
271
+ )
272
+
273
+
274
+ register_conv_template(
275
+ Conversation(
276
+ name="alignment",
277
+ system_template="",
278
+ system_message="",
279
+ roles=("", ""),
280
+ messages=(),
281
+ offset=0,
282
+ sep_style=SeparatorStyle.ALIGNMENT,
283
+ sep="",
284
+ sep2="",
285
+ stop_token_ids=[100001],
286
+ stop_str=['</s>'],
287
+ )
288
+ )
289
+
290
+
291
+ if __name__ == "__main__":
292
+ print("deepseek template:")
293
+ conv = get_conv_template("deepseek")
294
+ conv.append_message(conv.roles[0], "Hello!")
295
+ conv.append_message(conv.roles[1], "Hi! This is Tony.")
296
+ conv.append_message(conv.roles[0], "Who are you?")
297
+ conv.append_message(conv.roles[1], "I am a helpful assistant.")
298
+ conv.append_message(conv.roles[0], "How are you?")
299
+ conv.append_message(conv.roles[1], None)
300
+ print(conv.get_prompt())
301
+
302
+ print("deepseekv2 template:")
303
+ conv = get_conv_template("deepseekv2")
304
+ conv.append_message(conv.roles[0], "Hello!")
305
+ conv.append_message(conv.roles[1], "Hi! This is Tony.")
306
+ conv.append_message(conv.roles[0], "Who are you?")
307
+ conv.append_message(conv.roles[1], "I am a helpful assistant.")
308
+ conv.append_message(conv.roles[0], "How are you?")
309
+ conv.append_message(conv.roles[1], None)
310
+ print(conv.get_prompt())