xinference 1.4.0__py3-none-any.whl → 1.4.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_compat.py +1 -0
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +4 -0
- xinference/core/model.py +23 -3
- xinference/core/supervisor.py +6 -0
- xinference/core/worker.py +54 -11
- xinference/model/llm/__init__.py +4 -2
- xinference/model/llm/core.py +1 -0
- xinference/model/llm/llama_cpp/core.py +6 -1
- xinference/model/llm/llm_family.json +117 -1
- xinference/model/llm/llm_family_modelscope.json +125 -1
- xinference/model/llm/reasoning_parser.py +3 -3
- xinference/model/llm/sglang/core.py +111 -13
- xinference/model/llm/transformers/core.py +1 -0
- xinference/model/llm/transformers/deepseek_vl.py +1 -1
- xinference/model/llm/transformers/deepseek_vl2.py +287 -0
- xinference/model/llm/utils.py +26 -14
- xinference/model/llm/vllm/core.py +149 -8
- xinference/model/llm/vllm/distributed_executor.py +314 -0
- xinference/model/rerank/core.py +16 -11
- xinference/thirdparty/deepseek_vl2/__init__.py +31 -0
- xinference/thirdparty/deepseek_vl2/models/__init__.py +26 -0
- xinference/thirdparty/deepseek_vl2/models/configuration_deepseek.py +210 -0
- xinference/thirdparty/deepseek_vl2/models/conversation.py +310 -0
- xinference/thirdparty/deepseek_vl2/models/modeling_deepseek.py +1975 -0
- xinference/thirdparty/deepseek_vl2/models/modeling_deepseek_vl_v2.py +697 -0
- xinference/thirdparty/deepseek_vl2/models/processing_deepseek_vl_v2.py +675 -0
- xinference/thirdparty/deepseek_vl2/models/siglip_vit.py +661 -0
- xinference/thirdparty/deepseek_vl2/serve/__init__.py +0 -0
- xinference/thirdparty/deepseek_vl2/serve/app_modules/__init__.py +0 -0
- xinference/thirdparty/deepseek_vl2/serve/app_modules/gradio_utils.py +83 -0
- xinference/thirdparty/deepseek_vl2/serve/app_modules/overwrites.py +81 -0
- xinference/thirdparty/deepseek_vl2/serve/app_modules/presets.py +115 -0
- xinference/thirdparty/deepseek_vl2/serve/app_modules/utils.py +333 -0
- xinference/thirdparty/deepseek_vl2/serve/assets/Kelpy-Codos.js +100 -0
- xinference/thirdparty/deepseek_vl2/serve/assets/avatar.png +0 -0
- xinference/thirdparty/deepseek_vl2/serve/assets/custom.css +355 -0
- xinference/thirdparty/deepseek_vl2/serve/assets/custom.js +22 -0
- xinference/thirdparty/deepseek_vl2/serve/assets/favicon.ico +0 -0
- xinference/thirdparty/deepseek_vl2/serve/assets/simsun.ttc +0 -0
- xinference/thirdparty/deepseek_vl2/serve/inference.py +197 -0
- xinference/thirdparty/deepseek_vl2/utils/__init__.py +18 -0
- xinference/thirdparty/deepseek_vl2/utils/io.py +80 -0
- xinference/web/ui/build/asset-manifest.json +3 -3
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/js/{main.3cea968e.js → main.5ca4eea1.js} +3 -3
- xinference/web/ui/build/static/js/main.5ca4eea1.js.map +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/0f0967acaec5df1d45b80010949c258d64297ebbb0f44b8bb3afcbd45c6f0ec4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/68249645124f37d01eef83b1d897e751f895bea919b6fb466f907c1f87cebc84.json +1 -0
- {xinference-1.4.0.dist-info → xinference-1.4.1.dist-info}/METADATA +4 -4
- {xinference-1.4.0.dist-info → xinference-1.4.1.dist-info}/RECORD +56 -31
- xinference/web/ui/build/static/js/main.3cea968e.js.map +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/7f59e45e3f268ab8a4788b6fb024cf8dab088736dff22f5a3a39c122a83ab930.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/dcd60488509450bfff37bfff56de2c096d51de17dd00ec60d4db49c8b483ada1.json +0 -1
- /xinference/web/ui/build/static/js/{main.3cea968e.js.LICENSE.txt → main.5ca4eea1.js.LICENSE.txt} +0 -0
- {xinference-1.4.0.dist-info → xinference-1.4.1.dist-info}/LICENSE +0 -0
- {xinference-1.4.0.dist-info → xinference-1.4.1.dist-info}/WHEEL +0 -0
- {xinference-1.4.0.dist-info → xinference-1.4.1.dist-info}/entry_points.txt +0 -0
- {xinference-1.4.0.dist-info → xinference-1.4.1.dist-info}/top_level.txt +0 -0
|
@@ -13,12 +13,16 @@
|
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
15
|
import asyncio
|
|
16
|
+
import itertools
|
|
16
17
|
import json
|
|
17
18
|
import logging
|
|
18
19
|
import multiprocessing
|
|
19
20
|
import os
|
|
21
|
+
import sys
|
|
22
|
+
import threading
|
|
20
23
|
import time
|
|
21
24
|
import uuid
|
|
25
|
+
from functools import partial
|
|
22
26
|
from typing import (
|
|
23
27
|
TYPE_CHECKING,
|
|
24
28
|
Any,
|
|
@@ -27,10 +31,13 @@ from typing import (
|
|
|
27
31
|
List,
|
|
28
32
|
Optional,
|
|
29
33
|
Tuple,
|
|
34
|
+
Type,
|
|
30
35
|
TypedDict,
|
|
31
36
|
Union,
|
|
32
37
|
)
|
|
33
38
|
|
|
39
|
+
import xoscar as xo
|
|
40
|
+
|
|
34
41
|
from ....types import (
|
|
35
42
|
ChatCompletion,
|
|
36
43
|
ChatCompletionChunk,
|
|
@@ -73,6 +80,7 @@ class VLLMModelConfig(TypedDict, total=False):
|
|
|
73
80
|
guided_decoding_backend: Optional[str]
|
|
74
81
|
scheduling_policy: Optional[str]
|
|
75
82
|
reasoning_content: bool
|
|
83
|
+
model_quantization: Optional[str]
|
|
76
84
|
|
|
77
85
|
|
|
78
86
|
class VLLMGenerateConfig(TypedDict, total=False):
|
|
@@ -161,6 +169,7 @@ if VLLM_INSTALLED and vllm.__version__ >= "0.3.0":
|
|
|
161
169
|
VLLM_SUPPORTED_CHAT_MODELS.append("QwQ-32B")
|
|
162
170
|
VLLM_SUPPORTED_CHAT_MODELS.append("marco-o1")
|
|
163
171
|
VLLM_SUPPORTED_CHAT_MODELS.append("deepseek-r1-distill-qwen")
|
|
172
|
+
VLLM_SUPPORTED_CHAT_MODELS.append("fin-r1")
|
|
164
173
|
|
|
165
174
|
if VLLM_INSTALLED and vllm.__version__ >= "0.3.2":
|
|
166
175
|
VLLM_SUPPORTED_CHAT_MODELS.append("gemma-it")
|
|
@@ -248,15 +257,59 @@ class VLLMModel(LLM):
|
|
|
248
257
|
self.lora_modules = peft_model
|
|
249
258
|
self.lora_requests: List[LoRARequest] = []
|
|
250
259
|
self._xavier_config = None
|
|
260
|
+
# distributed inference
|
|
261
|
+
self._device_count = None
|
|
262
|
+
self._address = model_config.pop("address", None) # type: ignore
|
|
263
|
+
self._n_worker = model_config.pop("n_worker", 1) # type: ignore
|
|
264
|
+
self._shard = model_config.pop("shard", 0) # type: ignore
|
|
265
|
+
self._driver_info = model_config.pop("driver_info", None) # type: ignore
|
|
266
|
+
self._loading_thread: Optional[threading.Thread] = None
|
|
267
|
+
self._loading_error = None
|
|
268
|
+
# variables used for distributed inference and multiple GPUs
|
|
269
|
+
self._pool_addresses = None
|
|
270
|
+
self._worker_addresses: Optional[Dict[int, List[str]]] = None
|
|
271
|
+
self._all_worker_ready: Optional[threading.Event] = None
|
|
272
|
+
# used to call async
|
|
273
|
+
self._loop = None
|
|
251
274
|
|
|
252
275
|
def set_xavier_config(self, value: Optional[Dict]):
|
|
253
276
|
self._xavier_config = value # type: ignore
|
|
254
277
|
|
|
278
|
+
def set_worker_addresses(self, shard: int, worker_addresses: List[str]):
|
|
279
|
+
assert self._worker_addresses is not None
|
|
280
|
+
self._worker_addresses[shard] = worker_addresses
|
|
281
|
+
if (
|
|
282
|
+
self._all_worker_ready is not None
|
|
283
|
+
and len(self._worker_addresses) == self._n_worker
|
|
284
|
+
):
|
|
285
|
+
self._all_worker_ready.set()
|
|
286
|
+
|
|
287
|
+
@property
|
|
288
|
+
def driver_info(self) -> Optional[dict]:
|
|
289
|
+
return self._driver_info
|
|
290
|
+
|
|
291
|
+
@property
|
|
292
|
+
def need_create_pools(self):
|
|
293
|
+
return True
|
|
294
|
+
|
|
295
|
+
def set_pool_addresses(self, pool_addresses: List[str]):
|
|
296
|
+
self._pool_addresses = pool_addresses # type: ignore
|
|
297
|
+
|
|
298
|
+
def get_pool_addresses(self) -> Optional[List[str]]:
|
|
299
|
+
return self._pool_addresses
|
|
300
|
+
|
|
301
|
+
def set_loop(self, loop: asyncio.AbstractEventLoop):
|
|
302
|
+
# loop will be passed into XinferenceDistributedExecutor,
|
|
303
|
+
# to call aynsc method with asyncio.run_coroutine_threadsafe
|
|
304
|
+
self._loop = loop # type: ignore
|
|
305
|
+
|
|
255
306
|
def load(self):
|
|
256
307
|
try:
|
|
257
308
|
import vllm
|
|
309
|
+
from vllm.config import VllmConfig
|
|
258
310
|
from vllm.engine.arg_utils import AsyncEngineArgs
|
|
259
311
|
from vllm.engine.async_llm_engine import AsyncLLMEngine
|
|
312
|
+
from vllm.executor.executor_base import ExecutorBase
|
|
260
313
|
from vllm.lora.request import LoRARequest
|
|
261
314
|
except ImportError:
|
|
262
315
|
error_message = "Failed to import module 'vllm'"
|
|
@@ -275,6 +328,7 @@ class VLLMModel(LLM):
|
|
|
275
328
|
# we need to set it to fork to make cupy NCCL work
|
|
276
329
|
multiprocessing.set_start_method("fork", force=True)
|
|
277
330
|
|
|
331
|
+
self._device_count = self._get_cuda_count()
|
|
278
332
|
self._model_config = self._sanitize_model_config(self._model_config)
|
|
279
333
|
reasoning_content = self._model_config.pop("reasoning_content")
|
|
280
334
|
|
|
@@ -320,6 +374,83 @@ class VLLMModel(LLM):
|
|
|
320
374
|
self._engine = XavierEngine.from_engine_args(
|
|
321
375
|
engine_args, xavier_config=self._xavier_config
|
|
322
376
|
)
|
|
377
|
+
elif self._n_worker > 1 or (
|
|
378
|
+
self._device_count > 1 and vllm.__version__ >= "0.7.0"
|
|
379
|
+
):
|
|
380
|
+
from .distributed_executor import XinferenceDistributedExecutor
|
|
381
|
+
|
|
382
|
+
# model across multiple workers or GPUs
|
|
383
|
+
engine_args = AsyncEngineArgs(
|
|
384
|
+
model=self.model_path,
|
|
385
|
+
enable_lora=enable_lora,
|
|
386
|
+
max_loras=max_loras,
|
|
387
|
+
**self._model_config,
|
|
388
|
+
)
|
|
389
|
+
|
|
390
|
+
assert self._loop is not None
|
|
391
|
+
self._worker_addresses = {}
|
|
392
|
+
|
|
393
|
+
def _load():
|
|
394
|
+
try:
|
|
395
|
+
assert self._pool_addresses
|
|
396
|
+
|
|
397
|
+
if self._shard > 0:
|
|
398
|
+
assert self._driver_info
|
|
399
|
+
address = self._driver_info["address"]
|
|
400
|
+
|
|
401
|
+
coro = xo.actor_ref(address, self.raw_model_uid)
|
|
402
|
+
model_ref = asyncio.run_coroutine_threadsafe(
|
|
403
|
+
coro, self._loop
|
|
404
|
+
).result()
|
|
405
|
+
coro = model_ref.set_worker_addresses(
|
|
406
|
+
self._shard, self._pool_addresses
|
|
407
|
+
)
|
|
408
|
+
asyncio.run_coroutine_threadsafe(coro, self._loop).result()
|
|
409
|
+
else:
|
|
410
|
+
self.set_worker_addresses(0, self._pool_addresses)
|
|
411
|
+
self._driver_info = {"address": self._address}
|
|
412
|
+
|
|
413
|
+
if self._n_worker > 1:
|
|
414
|
+
self._all_worker_ready = threading.Event()
|
|
415
|
+
# if model across workers, wait for other workers ready
|
|
416
|
+
self._all_worker_ready.wait()
|
|
417
|
+
|
|
418
|
+
# gather all worker addresses
|
|
419
|
+
worker_addresses = list(
|
|
420
|
+
itertools.chain(
|
|
421
|
+
*[
|
|
422
|
+
self._worker_addresses[shard]
|
|
423
|
+
for shard in range(self._n_worker)
|
|
424
|
+
]
|
|
425
|
+
)
|
|
426
|
+
)
|
|
427
|
+
assert worker_addresses
|
|
428
|
+
loop = self._loop
|
|
429
|
+
|
|
430
|
+
class XinferenceAsyncLLMEngine(AsyncLLMEngine):
|
|
431
|
+
@classmethod
|
|
432
|
+
def _get_executor_cls(
|
|
433
|
+
cls, engine_config: VllmConfig
|
|
434
|
+
) -> Type[ExecutorBase]:
|
|
435
|
+
return partial( # type: ignore
|
|
436
|
+
XinferenceDistributedExecutor,
|
|
437
|
+
pool_addresses=worker_addresses,
|
|
438
|
+
n_worker=self._n_worker,
|
|
439
|
+
loop=loop,
|
|
440
|
+
)
|
|
441
|
+
|
|
442
|
+
self._engine = XinferenceAsyncLLMEngine.from_engine_args(
|
|
443
|
+
engine_args
|
|
444
|
+
)
|
|
445
|
+
except:
|
|
446
|
+
logger.exception("Creating vllm engine failed")
|
|
447
|
+
self._loading_error = sys.exc_info()
|
|
448
|
+
|
|
449
|
+
self._loading_thread = threading.Thread(target=_load)
|
|
450
|
+
self._loading_thread.start()
|
|
451
|
+
# wait some time for init finish
|
|
452
|
+
if self._shard == 0:
|
|
453
|
+
self._loading_thread.join(1)
|
|
323
454
|
else:
|
|
324
455
|
engine_args = AsyncEngineArgs(
|
|
325
456
|
model=self.model_path,
|
|
@@ -332,7 +463,14 @@ class VLLMModel(LLM):
|
|
|
332
463
|
self._check_health_task = None
|
|
333
464
|
if hasattr(self._engine, "check_health"):
|
|
334
465
|
# vLLM introduced `check_health` since v0.4.1
|
|
335
|
-
self._check_health_task =
|
|
466
|
+
self._check_health_task = self._loop.create_task(self._check_healthy())
|
|
467
|
+
|
|
468
|
+
def wait_for_load(self):
|
|
469
|
+
if self._loading_thread:
|
|
470
|
+
self._loading_thread.join()
|
|
471
|
+
if self._loading_error:
|
|
472
|
+
_, err, tb = self._loading_error
|
|
473
|
+
raise err.with_traceback(tb)
|
|
336
474
|
|
|
337
475
|
def stop(self):
|
|
338
476
|
# though the vLLM engine will shutdown when deleted,
|
|
@@ -341,9 +479,10 @@ class VLLMModel(LLM):
|
|
|
341
479
|
logger.info("Stopping vLLM engine")
|
|
342
480
|
if self._check_health_task:
|
|
343
481
|
self._check_health_task.cancel()
|
|
344
|
-
if
|
|
345
|
-
model_executor.
|
|
346
|
-
|
|
482
|
+
if self._engine:
|
|
483
|
+
if model_executor := getattr(self._engine.engine, "model_executor", None):
|
|
484
|
+
model_executor.shutdown()
|
|
485
|
+
self._engine = None
|
|
347
486
|
|
|
348
487
|
async def init_xavier(self):
|
|
349
488
|
await self._engine.init_xavier()
|
|
@@ -374,16 +513,18 @@ class VLLMModel(LLM):
|
|
|
374
513
|
if model_config is None:
|
|
375
514
|
model_config = VLLMModelConfig()
|
|
376
515
|
|
|
377
|
-
cuda_count = self._get_cuda_count()
|
|
378
|
-
|
|
379
516
|
model_config.setdefault("tokenizer_mode", "auto")
|
|
380
517
|
model_config.setdefault("trust_remote_code", True)
|
|
381
|
-
model_config.setdefault("tensor_parallel_size",
|
|
518
|
+
model_config.setdefault("tensor_parallel_size", self._device_count) # type: ignore
|
|
519
|
+
model_config.setdefault("pipeline_parallel_size", self._n_worker) # type: ignore
|
|
382
520
|
model_config.setdefault("block_size", 16)
|
|
383
521
|
model_config.setdefault("swap_space", 4)
|
|
384
522
|
model_config.setdefault("gpu_memory_utilization", 0.90)
|
|
385
523
|
model_config.setdefault("max_num_seqs", 256)
|
|
386
|
-
|
|
524
|
+
if "model_quantization" in model_config:
|
|
525
|
+
model_config["quantization"] = model_config.pop("model_quantization")
|
|
526
|
+
else:
|
|
527
|
+
model_config.setdefault("quantization", None)
|
|
387
528
|
model_config.setdefault("max_model_len", None)
|
|
388
529
|
model_config.setdefault("guided_decoding_backend", "outlines")
|
|
389
530
|
model_config.setdefault("reasoning_content", False)
|
|
@@ -0,0 +1,314 @@
|
|
|
1
|
+
# Copyright 2022-2025 XProbe Inc.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
import asyncio
|
|
16
|
+
import logging
|
|
17
|
+
import os
|
|
18
|
+
from functools import partial
|
|
19
|
+
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Union
|
|
20
|
+
|
|
21
|
+
import xoscar as xo
|
|
22
|
+
from vllm.executor.executor_base import DistributedExecutorBase
|
|
23
|
+
from vllm.utils import _run_task_with_lock, get_distributed_init_method
|
|
24
|
+
from vllm.worker.worker_base import WorkerWrapperBase
|
|
25
|
+
from xoscar.utils import get_next_port
|
|
26
|
+
|
|
27
|
+
if TYPE_CHECKING:
|
|
28
|
+
from vllm.config import VllmConfig
|
|
29
|
+
from vllm.model_executor.layers.sampler import SamplerOutput
|
|
30
|
+
from vllm.sequence import ExecuteModelRequest
|
|
31
|
+
|
|
32
|
+
logger = logging.getLogger(__name__)
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
class WorkerActor(xo.StatelessActor):
|
|
36
|
+
def __init__(self, vllm_config: "VllmConfig", rpc_rank: int = 0, **kwargs):
|
|
37
|
+
super().__init__(**kwargs)
|
|
38
|
+
self._worker = WorkerWrapperBase(vllm_config, rpc_rank=rpc_rank)
|
|
39
|
+
|
|
40
|
+
async def __post_create__(self):
|
|
41
|
+
try:
|
|
42
|
+
# Change process title for model
|
|
43
|
+
import setproctitle
|
|
44
|
+
|
|
45
|
+
setproctitle.setproctitle(f"Xinf vLLM worker: {self._worker.rpc_rank}")
|
|
46
|
+
except ImportError:
|
|
47
|
+
pass
|
|
48
|
+
|
|
49
|
+
def __getattr__(self, item):
|
|
50
|
+
return getattr(self._worker, item)
|
|
51
|
+
|
|
52
|
+
@classmethod
|
|
53
|
+
def gen_uid(cls, rank):
|
|
54
|
+
return f"VllmWorker_{rank}"
|
|
55
|
+
|
|
56
|
+
def execute_method(self, method: Union[str, Callable], *args, **kwargs):
|
|
57
|
+
logger.debug(
|
|
58
|
+
"Calling method %s in vllm worker %s, args: %s, kwargs: %s",
|
|
59
|
+
method,
|
|
60
|
+
self.uid,
|
|
61
|
+
args,
|
|
62
|
+
kwargs,
|
|
63
|
+
)
|
|
64
|
+
if isinstance(method, str):
|
|
65
|
+
return getattr(self._worker, method)(*args, **kwargs)
|
|
66
|
+
else:
|
|
67
|
+
return method(self._worker, *args, **kwargs)
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
class WorkerWrapper:
|
|
71
|
+
def __init__(
|
|
72
|
+
self,
|
|
73
|
+
loop: asyncio.AbstractEventLoop,
|
|
74
|
+
worker_actor_ref: xo.ActorRefType[WorkerActor],
|
|
75
|
+
):
|
|
76
|
+
self._loop = loop
|
|
77
|
+
self._worker_actor_ref = worker_actor_ref
|
|
78
|
+
|
|
79
|
+
def execute_method(self, method: Union[str, Callable], *args, **kwargs):
|
|
80
|
+
coro = self._worker_actor_ref.execute_method(method, *args, **kwargs)
|
|
81
|
+
return asyncio.run_coroutine_threadsafe(coro, self._loop)
|
|
82
|
+
|
|
83
|
+
async def execute_method_async(self, method: Union[str, Callable], *args, **kwargs):
|
|
84
|
+
return await self._worker_actor_ref.execute_method(method, *args, **kwargs)
|
|
85
|
+
|
|
86
|
+
def kill(self):
|
|
87
|
+
coro = xo.kill_actor(self._worker_actor_ref)
|
|
88
|
+
return asyncio.run_coroutine_threadsafe(coro, self._loop)
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
class XinferenceDistributedExecutor(DistributedExecutorBase):
|
|
92
|
+
"""Xoscar based distributed executor"""
|
|
93
|
+
|
|
94
|
+
use_ray: bool = False
|
|
95
|
+
_loop: asyncio.AbstractEventLoop
|
|
96
|
+
_pool_addresses: List[str]
|
|
97
|
+
_n_worker: int
|
|
98
|
+
|
|
99
|
+
def __init__(
|
|
100
|
+
self,
|
|
101
|
+
vllm_config: "VllmConfig",
|
|
102
|
+
pool_addresses: List[str],
|
|
103
|
+
n_worker: int,
|
|
104
|
+
loop: asyncio.AbstractEventLoop,
|
|
105
|
+
*args,
|
|
106
|
+
**kwargs,
|
|
107
|
+
):
|
|
108
|
+
self._pool_addresses = pool_addresses
|
|
109
|
+
self._loop = loop
|
|
110
|
+
self._n_worker = n_worker
|
|
111
|
+
super().__init__(vllm_config, *args, **kwargs)
|
|
112
|
+
|
|
113
|
+
def _init_executor(self) -> None:
|
|
114
|
+
# Create the parallel GPU workers.
|
|
115
|
+
world_size = self.parallel_config.world_size
|
|
116
|
+
tensor_parallel_size = self.parallel_config.tensor_parallel_size
|
|
117
|
+
|
|
118
|
+
self.driver_worker: Optional[WorkerActor] = None
|
|
119
|
+
# The remaining workers are Xoscar actors
|
|
120
|
+
self.workers: List[WorkerWrapper] = []
|
|
121
|
+
|
|
122
|
+
assert (
|
|
123
|
+
self._pool_addresses and len(self._pool_addresses) == world_size
|
|
124
|
+
), f"Pool addresses(#{len(self._pool_addresses or [])} must be equal to worldsize(#{world_size})"
|
|
125
|
+
|
|
126
|
+
futures = []
|
|
127
|
+
for rank in range(world_size):
|
|
128
|
+
coro = xo.create_actor(
|
|
129
|
+
WorkerActor,
|
|
130
|
+
self.vllm_config,
|
|
131
|
+
rpc_rank=rank,
|
|
132
|
+
address=self._pool_addresses[rank],
|
|
133
|
+
uid=WorkerActor.gen_uid(rank),
|
|
134
|
+
)
|
|
135
|
+
futures.append(asyncio.run_coroutine_threadsafe(coro, self._loop))
|
|
136
|
+
refs = [fut.result() for fut in futures]
|
|
137
|
+
self.workers = [WorkerWrapper(self._loop, ref) for ref in refs[1:]]
|
|
138
|
+
self.driver_worker = WorkerActor(self.vllm_config, rpc_rank=0)
|
|
139
|
+
|
|
140
|
+
def driver_execute_method(*args, **kwargs):
|
|
141
|
+
func = partial(self.driver_worker.execute_method, *args, **kwargs)
|
|
142
|
+
return self._loop.run_in_executor(None, func)
|
|
143
|
+
|
|
144
|
+
self.driver_exec_method = driver_execute_method
|
|
145
|
+
|
|
146
|
+
# Set environment variables for the driver and workers.
|
|
147
|
+
all_args_to_update_environment_variables: List[Dict[str, str]] = [
|
|
148
|
+
dict() for _ in range(world_size)
|
|
149
|
+
]
|
|
150
|
+
|
|
151
|
+
for args in all_args_to_update_environment_variables:
|
|
152
|
+
# some carry-over env vars from the driver
|
|
153
|
+
# TODO: refactor platform-specific env vars
|
|
154
|
+
for name in [
|
|
155
|
+
"VLLM_ATTENTION_BACKEND",
|
|
156
|
+
"TPU_CHIPS_PER_HOST_BOUNDS",
|
|
157
|
+
"TPU_HOST_BOUNDS",
|
|
158
|
+
"VLLM_USE_V1",
|
|
159
|
+
"VLLM_TRACE_FUNCTION",
|
|
160
|
+
]:
|
|
161
|
+
if name in os.environ:
|
|
162
|
+
args[name] = os.environ[name]
|
|
163
|
+
|
|
164
|
+
self._env_vars_for_all_workers = all_args_to_update_environment_variables
|
|
165
|
+
|
|
166
|
+
self._run_workers(
|
|
167
|
+
"update_environment_variables", self._env_vars_for_all_workers
|
|
168
|
+
)
|
|
169
|
+
|
|
170
|
+
all_kwargs = []
|
|
171
|
+
distributed_init_method = get_distributed_init_method(
|
|
172
|
+
self._pool_addresses[0].split(":", 1)[0], get_next_port()
|
|
173
|
+
)
|
|
174
|
+
for rank in range(world_size):
|
|
175
|
+
local_rank = rank % (world_size // self._n_worker)
|
|
176
|
+
kwargs = dict(
|
|
177
|
+
vllm_config=self.vllm_config,
|
|
178
|
+
local_rank=local_rank,
|
|
179
|
+
rank=rank,
|
|
180
|
+
distributed_init_method=distributed_init_method,
|
|
181
|
+
is_driver_worker=not self.parallel_config
|
|
182
|
+
or (rank % tensor_parallel_size == 0),
|
|
183
|
+
)
|
|
184
|
+
all_kwargs.append(kwargs)
|
|
185
|
+
self._run_workers("init_worker", all_kwargs)
|
|
186
|
+
self._run_workers("init_device")
|
|
187
|
+
self._run_workers(
|
|
188
|
+
"load_model",
|
|
189
|
+
max_concurrent_workers=self.parallel_config.max_parallel_loading_workers,
|
|
190
|
+
)
|
|
191
|
+
|
|
192
|
+
# This is the list of workers that are rank 0 of each TP group EXCEPT
|
|
193
|
+
# global rank 0. These are the workers that will broadcast to the
|
|
194
|
+
# rest of the workers.
|
|
195
|
+
self.tp_driver_workers: List[WorkerWrapper] = []
|
|
196
|
+
# This is the list of workers that are not drivers and not the first
|
|
197
|
+
# worker in a TP group. These are the workers that will be
|
|
198
|
+
# broadcasted to.
|
|
199
|
+
self.non_driver_workers: List[WorkerWrapper] = []
|
|
200
|
+
|
|
201
|
+
# Enforce rank order for correct rank to return final output.
|
|
202
|
+
for index, worker in enumerate(self.workers):
|
|
203
|
+
# The driver worker is rank 0 and not in self.workers.
|
|
204
|
+
rank = index + 1
|
|
205
|
+
if rank % self.parallel_config.tensor_parallel_size == 0:
|
|
206
|
+
self.tp_driver_workers.append(worker)
|
|
207
|
+
else:
|
|
208
|
+
self.non_driver_workers.append(worker)
|
|
209
|
+
|
|
210
|
+
self.pp_locks: Optional[List[asyncio.Lock]] = None
|
|
211
|
+
|
|
212
|
+
def _run_workers(
|
|
213
|
+
self,
|
|
214
|
+
method: Union[str, Callable],
|
|
215
|
+
*args,
|
|
216
|
+
async_run_tensor_parallel_workers_only: bool = False,
|
|
217
|
+
max_concurrent_workers: Optional[int] = None,
|
|
218
|
+
**kwargs,
|
|
219
|
+
) -> Any:
|
|
220
|
+
if max_concurrent_workers:
|
|
221
|
+
raise NotImplementedError("max_concurrent_workers is not supported yet.")
|
|
222
|
+
|
|
223
|
+
workers = self.workers
|
|
224
|
+
if async_run_tensor_parallel_workers_only:
|
|
225
|
+
workers = self.non_driver_workers
|
|
226
|
+
worker_outputs = [
|
|
227
|
+
worker.execute_method(method, *args, **kwargs) for worker in workers
|
|
228
|
+
]
|
|
229
|
+
|
|
230
|
+
if async_run_tensor_parallel_workers_only:
|
|
231
|
+
return worker_outputs
|
|
232
|
+
|
|
233
|
+
driver_worker_outputs = [
|
|
234
|
+
self.driver_worker.execute_method(method, *args, **kwargs) # type: ignore
|
|
235
|
+
]
|
|
236
|
+
return driver_worker_outputs + [output.result() for output in worker_outputs]
|
|
237
|
+
|
|
238
|
+
def _wait_for_tasks_completion(self, parallel_worker_tasks: Any) -> None:
|
|
239
|
+
"""Wait for futures returned from _run_workers() with
|
|
240
|
+
async_run_remote_workers_only to complete."""
|
|
241
|
+
for result in parallel_worker_tasks:
|
|
242
|
+
result.get()
|
|
243
|
+
|
|
244
|
+
def check_health(self) -> None:
|
|
245
|
+
# Assume that the workers are healthy.
|
|
246
|
+
# TODO: check the health by checking if the workers all alive
|
|
247
|
+
return
|
|
248
|
+
|
|
249
|
+
def shutdown(self) -> None:
|
|
250
|
+
try:
|
|
251
|
+
futs = [worker.kill() for worker in self.workers]
|
|
252
|
+
_ = [fut.result() for fut in futs]
|
|
253
|
+
except (RuntimeError, ConnectionError):
|
|
254
|
+
# event loop closed already, ignore
|
|
255
|
+
pass
|
|
256
|
+
|
|
257
|
+
def __del__(self):
|
|
258
|
+
return self.shutdown()
|
|
259
|
+
|
|
260
|
+
def _driver_execute_model(
|
|
261
|
+
self, execute_model_req: Optional["ExecuteModelRequest"]
|
|
262
|
+
) -> Optional[List["SamplerOutput"]]:
|
|
263
|
+
return self.driver_worker.execute_method("execute_model", execute_model_req) # type: ignore
|
|
264
|
+
|
|
265
|
+
async def _driver_execute_model_async(
|
|
266
|
+
self,
|
|
267
|
+
execute_model_req: Optional["ExecuteModelRequest"] = None,
|
|
268
|
+
) -> List["SamplerOutput"]:
|
|
269
|
+
if not self.tp_driver_workers:
|
|
270
|
+
return await self.driver_exec_method("execute_model", execute_model_req)
|
|
271
|
+
|
|
272
|
+
if self.pp_locks is None:
|
|
273
|
+
# This locks each pipeline parallel stage so multiple virtual
|
|
274
|
+
# engines can't execute on the same stage at the same time
|
|
275
|
+
# We create the locks here to avoid creating them in the constructor
|
|
276
|
+
# which uses a different asyncio loop.
|
|
277
|
+
self.pp_locks = [
|
|
278
|
+
asyncio.Lock()
|
|
279
|
+
for _ in range(self.parallel_config.pipeline_parallel_size)
|
|
280
|
+
]
|
|
281
|
+
|
|
282
|
+
tasks = [
|
|
283
|
+
asyncio.create_task(
|
|
284
|
+
_run_task_with_lock(
|
|
285
|
+
self.driver_exec_method,
|
|
286
|
+
self.pp_locks[0],
|
|
287
|
+
"execute_model",
|
|
288
|
+
execute_model_req,
|
|
289
|
+
)
|
|
290
|
+
)
|
|
291
|
+
]
|
|
292
|
+
for pp_rank, driver_worker in enumerate(self.tp_driver_workers, start=1):
|
|
293
|
+
tasks.append(
|
|
294
|
+
asyncio.create_task(
|
|
295
|
+
_run_task_with_lock(
|
|
296
|
+
driver_worker.execute_method_async,
|
|
297
|
+
self.pp_locks[pp_rank],
|
|
298
|
+
"execute_model",
|
|
299
|
+
execute_model_req,
|
|
300
|
+
)
|
|
301
|
+
)
|
|
302
|
+
)
|
|
303
|
+
|
|
304
|
+
results = await asyncio.gather(*tasks)
|
|
305
|
+
|
|
306
|
+
# Only the last PP stage has the final results.
|
|
307
|
+
return results[-1]
|
|
308
|
+
|
|
309
|
+
async def _start_worker_execution_loop(self):
|
|
310
|
+
coros = [
|
|
311
|
+
worker.execute_method_async("start_worker_execution_loop")
|
|
312
|
+
for worker in self.non_driver_workers
|
|
313
|
+
]
|
|
314
|
+
return await asyncio.gather(*coros)
|
xinference/model/rerank/core.py
CHANGED
|
@@ -106,9 +106,10 @@ def generate_rerank_description(model_spec: RerankModelSpec) -> Dict[str, List[D
|
|
|
106
106
|
return res
|
|
107
107
|
|
|
108
108
|
|
|
109
|
-
class _ModelWrapper:
|
|
109
|
+
class _ModelWrapper(nn.Module):
|
|
110
110
|
def __init__(self, module: nn.Module):
|
|
111
|
-
|
|
111
|
+
super().__init__()
|
|
112
|
+
self.model = module
|
|
112
113
|
self._local_data = threading.local()
|
|
113
114
|
|
|
114
115
|
@property
|
|
@@ -116,18 +117,22 @@ class _ModelWrapper:
|
|
|
116
117
|
return getattr(self._local_data, "n_tokens", 0)
|
|
117
118
|
|
|
118
119
|
@n_tokens.setter
|
|
119
|
-
def n_tokens(self,
|
|
120
|
-
self._local_data.n_tokens =
|
|
120
|
+
def n_tokens(self, value):
|
|
121
|
+
self._local_data.n_tokens = value
|
|
121
122
|
|
|
122
|
-
def
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
def __call__(self, **kwargs):
|
|
126
|
-
attention_mask = kwargs["attention_mask"]
|
|
123
|
+
def forward(self, **kwargs):
|
|
124
|
+
attention_mask = kwargs.get("attention_mask")
|
|
127
125
|
# when batching, the attention mask 1 means there is a token
|
|
128
126
|
# thus we just sum up it to get the total number of tokens
|
|
129
|
-
|
|
130
|
-
|
|
127
|
+
if attention_mask is not None:
|
|
128
|
+
self.n_tokens += attention_mask.sum().item()
|
|
129
|
+
return self.model(**kwargs)
|
|
130
|
+
|
|
131
|
+
def __getattr__(self, attr):
|
|
132
|
+
try:
|
|
133
|
+
return super().__getattr__(attr)
|
|
134
|
+
except AttributeError:
|
|
135
|
+
return getattr(self.model, attr)
|
|
131
136
|
|
|
132
137
|
|
|
133
138
|
class RerankModel:
|
|
@@ -0,0 +1,31 @@
|
|
|
1
|
+
# Copyright (c) 2023-2024 DeepSeek.
|
|
2
|
+
#
|
|
3
|
+
# Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
4
|
+
# this software and associated documentation files (the "Software"), to deal in
|
|
5
|
+
# the Software without restriction, including without limitation the rights to
|
|
6
|
+
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
|
7
|
+
# the Software, and to permit persons to whom the Software is furnished to do so,
|
|
8
|
+
# subject to the following conditions:
|
|
9
|
+
#
|
|
10
|
+
# The above copyright notice and this permission notice shall be included in all
|
|
11
|
+
# copies or substantial portions of the Software.
|
|
12
|
+
#
|
|
13
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
14
|
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
|
15
|
+
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
|
16
|
+
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
|
17
|
+
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
18
|
+
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
# check if python version is above 3.10
|
|
22
|
+
import sys
|
|
23
|
+
|
|
24
|
+
if sys.version_info >= (3, 10):
|
|
25
|
+
print("Python version is above 3.10, patching the collections module.")
|
|
26
|
+
# Monkey patch collections
|
|
27
|
+
import collections
|
|
28
|
+
import collections.abc
|
|
29
|
+
|
|
30
|
+
for type_name in collections.abc.__all__:
|
|
31
|
+
setattr(collections, type_name, getattr(collections.abc, type_name))
|
|
@@ -0,0 +1,26 @@
|
|
|
1
|
+
# Copyright (c) 2023-2024 DeepSeek.
|
|
2
|
+
#
|
|
3
|
+
# Permission is hereby granted, free of charge, to any person obtaining a copy of
|
|
4
|
+
# this software and associated documentation files (the "Software"), to deal in
|
|
5
|
+
# the Software without restriction, including without limitation the rights to
|
|
6
|
+
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
|
7
|
+
# the Software, and to permit persons to whom the Software is furnished to do so,
|
|
8
|
+
# subject to the following conditions:
|
|
9
|
+
#
|
|
10
|
+
# The above copyright notice and this permission notice shall be included in all
|
|
11
|
+
# copies or substantial portions of the Software.
|
|
12
|
+
#
|
|
13
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
14
|
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
|
15
|
+
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
|
16
|
+
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
|
17
|
+
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
18
|
+
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
19
|
+
|
|
20
|
+
from .processing_deepseek_vl_v2 import DeepseekVLV2Processor
|
|
21
|
+
from .modeling_deepseek_vl_v2 import DeepseekVLV2ForCausalLM
|
|
22
|
+
|
|
23
|
+
__all__ = [
|
|
24
|
+
"DeepseekVLV2Processor",
|
|
25
|
+
"DeepseekVLV2ForCausalLM",
|
|
26
|
+
]
|