wisent 0.7.701__py3-none-any.whl → 0.7.1045__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- wisent/__init__.py +1 -1
- wisent/comparison/__init__.py +1 -0
- wisent/comparison/detect_bos_features.py +275 -0
- wisent/comparison/fgaa.py +465 -0
- wisent/comparison/lora.py +669 -0
- wisent/comparison/lora_dpo.py +592 -0
- wisent/comparison/main.py +444 -0
- wisent/comparison/ours.py +76 -0
- wisent/comparison/sae.py +304 -0
- wisent/comparison/utils.py +381 -0
- wisent/core/activations/activation_cache.py +393 -0
- wisent/core/activations/activations.py +3 -3
- wisent/core/activations/activations_collector.py +12 -7
- wisent/core/activations/classifier_inference_strategy.py +12 -11
- wisent/core/activations/extraction_strategy.py +260 -84
- wisent/core/classifiers/classifiers/core/atoms.py +3 -2
- wisent/core/cli/__init__.py +2 -1
- wisent/core/cli/agent/train_classifier.py +16 -3
- wisent/core/cli/check_linearity.py +35 -3
- wisent/core/cli/cluster_benchmarks.py +4 -6
- wisent/core/cli/create_steering_vector.py +6 -4
- wisent/core/cli/diagnose_vectors.py +7 -4
- wisent/core/cli/estimate_unified_goodness_time.py +6 -4
- wisent/core/cli/generate_pairs_from_task.py +9 -56
- wisent/core/cli/generate_vector_from_task.py +11 -20
- wisent/core/cli/geometry_search.py +137 -0
- wisent/core/cli/get_activations.py +2 -2
- wisent/core/cli/method_optimizer.py +4 -3
- wisent/core/cli/modify_weights.py +3 -2
- wisent/core/cli/optimize_sample_size.py +1 -1
- wisent/core/cli/optimize_steering.py +14 -16
- wisent/core/cli/optimize_weights.py +2 -1
- wisent/core/cli/preview_pairs.py +203 -0
- wisent/core/cli/steering_method_trainer.py +3 -3
- wisent/core/cli/tasks.py +19 -76
- wisent/core/cli/train_unified_goodness.py +3 -3
- wisent/core/contrastive_pairs/diagnostics/control_vectors.py +4 -4
- wisent/core/contrastive_pairs/diagnostics/linearity.py +7 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/agentic_search.py +37 -347
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/aider_polyglot.py +113 -136
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/codeforces.py +2 -12
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/coding_benchmarks.py +124 -504
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/faithbench.py +40 -63
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/flames.py +46 -89
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/flores.py +15 -4
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/frames.py +36 -20
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/hallucinations_leaderboard.py +3 -45
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/livemathbench.py +42 -4
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/longform_writing.py +2 -112
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/math500.py +39 -4
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/medium_priority_benchmarks.py +475 -525
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/mercury.py +65 -42
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/olympiadbench.py +2 -12
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/planbench.py +78 -219
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/polymath.py +37 -4
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/recode.py +84 -69
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/refusalbench.py +168 -160
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/simpleqa.py +44 -25
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/tau_bench.py +3 -103
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/toolbench.py +3 -97
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/toolemu.py +48 -182
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_extractor_manifest.py +3 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_extractor_registry.py +19 -1
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/aclue.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/acp_bench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/acp_bench_hard.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/advanced.py +2 -4
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/aexams.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/afrimmlu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/afrixnli.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arabculture.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arabic.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arabic_exams.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arabic_leaderboard_complete.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arabic_leaderboard_light.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arabicmmlu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/aradice.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arc.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arc_challenge.py +1 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arc_easy.py +1 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arithmetic.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/asdiv.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/babi.py +36 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/basque_bench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/bbq.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/belebele.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/benchmarks.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/bertaqa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/bhs.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/bhtc.py +3 -5
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/blimp.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/blimp_nl.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/boolq.py +22 -5
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/c4.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cabbq.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/careqa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/catalan_bench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/catalanqa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/catcola.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cb.py +10 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/ceval.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/ceval_valid.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/chain.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/chartqa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/claim.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/click.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cmmlu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cnn.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cocoteros.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/coedit.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/commonsense.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/commonsense_qa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/copa.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/copal_id.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/coqa.py +3 -4
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/csatqa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cycle.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/darija_bench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/darijahellaswag.py +2 -6
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/darijammlu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/dbpedia.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/discrim_eval.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/doc.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/drop.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/epec.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eq.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eq_bench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eq_bench_ca.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eq_bench_es.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/esbbq.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/ethics.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eus.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eus_exams.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eus_proficiency.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eus_reading.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eus_trivia.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/evalita_llm.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/financial.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/flan.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/french_bench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/galician_bench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/gaokao.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/glianorex.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/global_mmlu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/global_piqa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/gpt3.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/groundcocoa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/haerae.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/headqa.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/hellaswag.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/hendrycks_ethics.py +5 -9
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/hendrycks_math.py +63 -16
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/histoires_morales.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/hrm8k.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/humaneval_infilling.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/icelandic_winogrande.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/inverse.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/inverse_scaling.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/ja.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/japanese_leaderboard.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/japanese_leaderboard_mc.py +1 -1
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/kmmlu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/kobest.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/kormedmcqa.py +5 -17
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/lambada_cloze.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/lambada_multilingual.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/law.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/leaderboard.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/lingoly.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/llama3.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/lm_syneval.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/logiqa.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/logiqa2.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/longbench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/longbenchv2.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mastermind.py +2 -4
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mc-taco.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/med_concepts_qa.py +2 -4
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/meddialog.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/medical.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/medmcqa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/medqa.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mela.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/metabench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/minerva_math.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mmlu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mmlusr.py +3 -4
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mrpc.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/multiblimp.py +2 -5
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/multirc.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mutual.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/non.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/noreval.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/noreval_exact.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/noreval_gen_exact.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/noreval_mc.py +4 -8
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/noreval_mc_log_likelihoods.py +4 -8
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/nq_open.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/okapi_arc_multilingual.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/okapi_hellaswag_multilingual.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/okapi_mmlu_multilingual.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/okapi_truthfulqa_multilingual.py +2 -5
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/olaph.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/openbookqa.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/option.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/parafraseja.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/parafrases.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/paws.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/paws_x.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/pawsx.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/persona.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/phrases.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/pile.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/piqa.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/portuguese_bench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/prompt.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/prost.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/pubmedqa.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/qa4mre.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/qasper.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/qasper_bool.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/qnli.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/qnlieu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/qqp.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/race.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/random.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/record.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/reversed.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/rte.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/ruler.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/sciq.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/score.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/scrolls.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/scrolls_mc.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/self.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/sglue.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/sglue_rte.py +2 -1
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/siqa.py +4 -7
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/social_iqa.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/spanish_bench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/storycloze.py +2 -6
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/summarization.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/super.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/super_glue.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/swag.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/swde.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/sycophancy.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/t0.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/teca.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tinyarc.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tinybenchmarks.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tinygsm8k.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tinyhellaswag.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tinymmlu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tinytruthfulqa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tinywinogrande.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tmmluplus.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/triviaqa.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/truthfulqa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/truthfulqa_mc1.py +9 -4
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/truthfulqa_mc2.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/turblimp_core.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/turkishmmlu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/turkishmmlu_mc.py +0 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/unscramble.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/vaxx.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/webqs.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/wic.py +3 -4
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/winogrande.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/wmdp.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/wnli.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/wsc.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/wsc273.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/xcopa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/xlsum.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/xnli.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/xquad.py +2 -4
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/xstorycloze.py +2 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/xwinograd.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/zhoblimp.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_pairs_generation.py +173 -6
- wisent/core/data_loaders/loaders/lm_loader.py +12 -1
- wisent/core/geometry_runner.py +995 -0
- wisent/core/geometry_search_space.py +237 -0
- wisent/core/hyperparameter_optimizer.py +1 -1
- wisent/core/main.py +3 -0
- wisent/core/models/core/atoms.py +5 -3
- wisent/core/models/wisent_model.py +1 -1
- wisent/core/optuna/classifier/optuna_classifier_optimizer.py +2 -2
- wisent/core/parser_arguments/check_linearity_parser.py +12 -2
- wisent/core/parser_arguments/generate_vector_from_synthetic_parser.py +2 -2
- wisent/core/parser_arguments/generate_vector_from_task_parser.py +6 -13
- wisent/core/parser_arguments/geometry_search_parser.py +61 -0
- wisent/core/parser_arguments/get_activations_parser.py +5 -14
- wisent/core/parser_arguments/main_parser.py +8 -0
- wisent/core/parser_arguments/train_unified_goodness_parser.py +2 -2
- wisent/core/steering.py +5 -3
- wisent/core/steering_methods/methods/hyperplane.py +2 -1
- wisent/core/synthetic/generators/nonsense_generator.py +30 -18
- wisent/core/trainers/steering_trainer.py +2 -2
- wisent/core/utils/device.py +27 -27
- wisent/core/utils/layer_combinations.py +70 -0
- wisent/examples/__init__.py +1 -0
- wisent/examples/scripts/__init__.py +1 -0
- wisent/examples/scripts/count_all_benchmarks.py +121 -0
- wisent/examples/scripts/discover_directions.py +469 -0
- wisent/examples/scripts/extract_benchmark_info.py +71 -0
- wisent/examples/scripts/search_all_short_names.py +31 -0
- wisent/examples/scripts/test_all_benchmarks.py +138 -0
- wisent/examples/scripts/test_all_benchmarks_new.py +28 -0
- wisent/examples/scripts/test_contrastive_pairs_all_supported.py +230 -0
- wisent/examples/scripts/test_nonsense_baseline.py +261 -0
- wisent/examples/scripts/test_one_benchmark.py +324 -0
- wisent/examples/scripts/test_one_coding_benchmark.py +293 -0
- wisent/parameters/lm_eval/broken_in_lm_eval.json +179 -2
- wisent/parameters/lm_eval/category_directions.json +137 -0
- wisent/parameters/lm_eval/repair_plan.json +282 -0
- wisent/parameters/lm_eval/weak_contrastive_pairs.json +38 -0
- wisent/parameters/lm_eval/working_benchmarks.json +206 -0
- wisent/parameters/lm_eval/working_benchmarks_categorized.json +236 -0
- wisent/tests/test_detector_accuracy.py +1 -1
- wisent/tests/visualize_geometry.py +1 -1
- {wisent-0.7.701.dist-info → wisent-0.7.1045.dist-info}/METADATA +5 -1
- {wisent-0.7.701.dist-info → wisent-0.7.1045.dist-info}/RECORD +328 -358
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/browsecomp.py +0 -245
- wisent/examples/contrastive_pairs/humanization_human_vs_ai.json +0 -2112
- wisent/examples/scripts/1/test_basqueglue_evaluation.json +0 -51
- wisent/examples/scripts/1/test_basqueglue_pairs.json +0 -14
- wisent/examples/scripts/1/test_bec2016eu_evaluation.json +0 -51
- wisent/examples/scripts/1/test_bec2016eu_pairs.json +0 -14
- wisent/examples/scripts/1/test_belebele_evaluation.json +0 -51
- wisent/examples/scripts/1/test_belebele_pairs.json +0 -14
- wisent/examples/scripts/1/test_benchmarks_evaluation.json +0 -51
- wisent/examples/scripts/1/test_benchmarks_pairs.json +0 -14
- wisent/examples/scripts/1/test_bertaqa_evaluation.json +0 -51
- wisent/examples/scripts/1/test_bertaqa_pairs.json +0 -14
- wisent/examples/scripts/1/test_bhtc_v2_evaluation.json +0 -30
- wisent/examples/scripts/1/test_bhtc_v2_pairs.json +0 -8
- wisent/examples/scripts/1/test_boolq-seq2seq_evaluation.json +0 -30
- wisent/examples/scripts/1/test_boolq-seq2seq_pairs.json +0 -8
- wisent/examples/scripts/1/test_cabreu_evaluation.json +0 -30
- wisent/examples/scripts/1/test_cabreu_pairs.json +0 -8
- wisent/examples/scripts/1/test_careqa_en_evaluation.json +0 -30
- wisent/examples/scripts/1/test_careqa_en_pairs.json +0 -8
- wisent/examples/scripts/1/test_careqa_evaluation.json +0 -30
- wisent/examples/scripts/1/test_careqa_pairs.json +0 -8
- wisent/examples/scripts/1/test_catalanqa_evaluation.json +0 -30
- wisent/examples/scripts/1/test_catalanqa_pairs.json +0 -8
- wisent/examples/scripts/1/test_catcola_evaluation.json +0 -30
- wisent/examples/scripts/1/test_catcola_pairs.json +0 -8
- wisent/examples/scripts/1/test_chartqa_evaluation.json +0 -30
- wisent/examples/scripts/1/test_chartqa_pairs.json +0 -8
- wisent/examples/scripts/1/test_claim_stance_topic_evaluation.json +0 -30
- wisent/examples/scripts/1/test_claim_stance_topic_pairs.json +0 -8
- wisent/examples/scripts/1/test_cnn_dailymail_evaluation.json +0 -30
- wisent/examples/scripts/1/test_cnn_dailymail_pairs.json +0 -8
- wisent/examples/scripts/1/test_cocoteros_es_evaluation.json +0 -30
- wisent/examples/scripts/1/test_cocoteros_es_pairs.json +0 -8
- wisent/examples/scripts/1/test_coedit_gec_evaluation.json +0 -30
- wisent/examples/scripts/1/test_coedit_gec_pairs.json +0 -8
- wisent/examples/scripts/1/test_cola_evaluation.json +0 -30
- wisent/examples/scripts/1/test_cola_pairs.json +0 -8
- wisent/examples/scripts/1/test_coqcat_evaluation.json +0 -30
- wisent/examples/scripts/1/test_coqcat_pairs.json +0 -8
- wisent/examples/scripts/1/test_dbpedia_14_evaluation.json +0 -30
- wisent/examples/scripts/1/test_dbpedia_14_pairs.json +0 -8
- wisent/examples/scripts/1/test_epec_koref_bin_evaluation.json +0 -30
- wisent/examples/scripts/1/test_epec_koref_bin_pairs.json +0 -8
- wisent/examples/scripts/1/test_ethos_binary_evaluation.json +0 -30
- wisent/examples/scripts/1/test_ethos_binary_pairs.json +0 -8
- wisent/examples/scripts/2/test_afrimgsm_direct_amh_evaluation.json +0 -30
- wisent/examples/scripts/2/test_afrimgsm_direct_amh_pairs.json +0 -8
- wisent/examples/scripts/2/test_afrimmlu_direct_amh_evaluation.json +0 -30
- wisent/examples/scripts/2/test_afrimmlu_direct_amh_pairs.json +0 -8
- wisent/examples/scripts/2/test_afrixnli_en_direct_amh_evaluation.json +0 -30
- wisent/examples/scripts/2/test_afrixnli_en_direct_amh_pairs.json +0 -8
- wisent/examples/scripts/2/test_arc_ar_evaluation.json +0 -30
- wisent/examples/scripts/2/test_arc_ar_pairs.json +0 -8
- wisent/examples/scripts/2/test_atis_evaluation.json +0 -30
- wisent/examples/scripts/2/test_atis_pairs.json +0 -8
- wisent/examples/scripts/2/test_babi_evaluation.json +0 -30
- wisent/examples/scripts/2/test_babi_pairs.json +0 -8
- wisent/examples/scripts/2/test_babilong_evaluation.json +0 -30
- wisent/examples/scripts/2/test_babilong_pairs.json +0 -8
- wisent/examples/scripts/2/test_bangla_mmlu_evaluation.json +0 -30
- wisent/examples/scripts/2/test_bangla_mmlu_pairs.json +0 -8
- wisent/examples/scripts/2/test_basque-glue_pairs.json +0 -14
- {wisent-0.7.701.dist-info → wisent-0.7.1045.dist-info}/WHEEL +0 -0
- {wisent-0.7.701.dist-info → wisent-0.7.1045.dist-info}/entry_points.txt +0 -0
- {wisent-0.7.701.dist-info → wisent-0.7.1045.dist-info}/licenses/LICENSE +0 -0
- {wisent-0.7.701.dist-info → wisent-0.7.1045.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,669 @@
|
|
|
1
|
+
"""
|
|
2
|
+
LoRA fine-tuning method for comparison experiments.
|
|
3
|
+
|
|
4
|
+
Trains a LoRA adapter on benchmark tasks using supervised fine-tuning (SFT)
|
|
5
|
+
on positive responses from contrastive pairs.
|
|
6
|
+
|
|
7
|
+
Optionally evaluates LoRA + steering by generating a steering vector on the
|
|
8
|
+
LoRA model and combining both methods.
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
from __future__ import annotations
|
|
12
|
+
|
|
13
|
+
import gc
|
|
14
|
+
import json
|
|
15
|
+
import tempfile
|
|
16
|
+
from pathlib import Path
|
|
17
|
+
from typing import TYPE_CHECKING
|
|
18
|
+
|
|
19
|
+
import torch
|
|
20
|
+
from datasets import Dataset
|
|
21
|
+
from peft import LoraConfig, TaskType, get_peft_model
|
|
22
|
+
from trl import SFTTrainer, SFTConfig
|
|
23
|
+
|
|
24
|
+
from wisent.comparison.utils import (
|
|
25
|
+
generate_contrastive_pairs,
|
|
26
|
+
create_test_only_task,
|
|
27
|
+
extract_accuracy,
|
|
28
|
+
run_lm_eval_evaluation,
|
|
29
|
+
run_ll_evaluation,
|
|
30
|
+
load_model_and_tokenizer,
|
|
31
|
+
apply_steering_to_model,
|
|
32
|
+
remove_steering,
|
|
33
|
+
)
|
|
34
|
+
from wisent.core.utils.device import preferred_dtype
|
|
35
|
+
|
|
36
|
+
if TYPE_CHECKING:
|
|
37
|
+
from wisent.core.models.wisent_model import WisentModel
|
|
38
|
+
|
|
39
|
+
__all__ = ["train_lora_adapter", "evaluate_lora", "apply_lora_to_model", "remove_lora"]
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
# Default LoRA configurations per model architecture
|
|
43
|
+
LORA_TARGET_MODULES = {
|
|
44
|
+
"gemma": ["q_proj", "k_proj", "v_proj", "o_proj"],
|
|
45
|
+
"llama": ["q_proj", "k_proj", "v_proj", "o_proj"],
|
|
46
|
+
"mistral": ["q_proj", "k_proj", "v_proj", "o_proj"],
|
|
47
|
+
"phi": ["q_proj", "k_proj", "v_proj", "dense"],
|
|
48
|
+
"gpt_neo": ["q_proj", "v_proj"],
|
|
49
|
+
"gpt2": ["c_attn"],
|
|
50
|
+
"default": "all-linear",
|
|
51
|
+
}
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
def get_target_modules(model_name: str) -> str | list[str]:
|
|
55
|
+
"""Get LoRA target modules based on model architecture."""
|
|
56
|
+
model_name_lower = model_name.lower()
|
|
57
|
+
|
|
58
|
+
for arch, modules in LORA_TARGET_MODULES.items():
|
|
59
|
+
if arch in model_name_lower:
|
|
60
|
+
return modules
|
|
61
|
+
|
|
62
|
+
return LORA_TARGET_MODULES["default"]
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
def prepare_sft_dataset(
|
|
66
|
+
pairs: list[dict],
|
|
67
|
+
tokenizer,
|
|
68
|
+
max_length: int = 512,
|
|
69
|
+
) -> Dataset:
|
|
70
|
+
"""
|
|
71
|
+
Prepare dataset for SFT from contrastive pairs.
|
|
72
|
+
|
|
73
|
+
Uses only positive responses for training.
|
|
74
|
+
|
|
75
|
+
Args:
|
|
76
|
+
pairs: List of contrastive pairs
|
|
77
|
+
tokenizer: Tokenizer for formatting
|
|
78
|
+
max_length: Maximum sequence length
|
|
79
|
+
|
|
80
|
+
Returns:
|
|
81
|
+
HuggingFace Dataset ready for SFTTrainer
|
|
82
|
+
"""
|
|
83
|
+
formatted_examples = []
|
|
84
|
+
|
|
85
|
+
for pair in pairs:
|
|
86
|
+
prompt = pair["prompt"]
|
|
87
|
+
positive_response = pair["positive_response"]["model_response"]
|
|
88
|
+
|
|
89
|
+
# Format as chat if tokenizer supports it, otherwise simple format
|
|
90
|
+
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template:
|
|
91
|
+
messages = [
|
|
92
|
+
{"role": "user", "content": prompt},
|
|
93
|
+
{"role": "assistant", "content": positive_response},
|
|
94
|
+
]
|
|
95
|
+
text = tokenizer.apply_chat_template(
|
|
96
|
+
messages,
|
|
97
|
+
tokenize=False,
|
|
98
|
+
add_generation_prompt=False,
|
|
99
|
+
)
|
|
100
|
+
else:
|
|
101
|
+
# Simple format for base models
|
|
102
|
+
text = f"Q: {prompt}\nA: {positive_response}"
|
|
103
|
+
|
|
104
|
+
formatted_examples.append({"text": text})
|
|
105
|
+
|
|
106
|
+
return Dataset.from_list(formatted_examples)
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
def train_lora_adapter(
|
|
110
|
+
task: str,
|
|
111
|
+
model_name: str,
|
|
112
|
+
output_path: str | Path,
|
|
113
|
+
trait_label: str = "correctness",
|
|
114
|
+
num_pairs: int = 50,
|
|
115
|
+
device: str = "cuda:0",
|
|
116
|
+
keep_intermediate: bool = False,
|
|
117
|
+
# LoRA-specific parameters
|
|
118
|
+
lora_r: int = 16,
|
|
119
|
+
lora_alpha: int = 32,
|
|
120
|
+
lora_dropout: float = 0.05,
|
|
121
|
+
learning_rate: float = 2e-4,
|
|
122
|
+
num_epochs: int = 3,
|
|
123
|
+
batch_size: int = 2,
|
|
124
|
+
max_length: int = 512,
|
|
125
|
+
) -> Path:
|
|
126
|
+
"""
|
|
127
|
+
Train a LoRA adapter using SFT on positive responses.
|
|
128
|
+
|
|
129
|
+
Args:
|
|
130
|
+
task: lm-eval task name (e.g., 'boolq', 'cb')
|
|
131
|
+
model_name: HuggingFace model name
|
|
132
|
+
output_path: Where to save the LoRA adapter
|
|
133
|
+
trait_label: Label for the trait being trained
|
|
134
|
+
num_pairs: Number of training examples to use
|
|
135
|
+
device: Device to train on
|
|
136
|
+
keep_intermediate: Whether to keep intermediate files
|
|
137
|
+
lora_r: LoRA rank
|
|
138
|
+
lora_alpha: LoRA alpha scaling factor
|
|
139
|
+
lora_dropout: LoRA dropout
|
|
140
|
+
learning_rate: Training learning rate
|
|
141
|
+
num_epochs: Number of training epochs
|
|
142
|
+
batch_size: Training batch size
|
|
143
|
+
max_length: Maximum sequence length
|
|
144
|
+
|
|
145
|
+
Returns:
|
|
146
|
+
Path to the saved LoRA adapter directory
|
|
147
|
+
"""
|
|
148
|
+
import gc
|
|
149
|
+
|
|
150
|
+
output_path = Path(output_path)
|
|
151
|
+
|
|
152
|
+
# Step 1: Generate contrastive pairs
|
|
153
|
+
print(f"Step 1: Generating training data from task: {task}")
|
|
154
|
+
pairs, pairs_file = generate_contrastive_pairs(task, num_pairs)
|
|
155
|
+
print(f" Loaded {len(pairs)} training examples")
|
|
156
|
+
|
|
157
|
+
# Step 2: Load model and tokenizer
|
|
158
|
+
print(f"\nStep 2: Loading model {model_name}...")
|
|
159
|
+
model, tokenizer = load_model_and_tokenizer(model_name, device, eval_mode=False)
|
|
160
|
+
|
|
161
|
+
# Step 3: Configure LoRA
|
|
162
|
+
print(f"\nStep 3: Configuring LoRA (r={lora_r}, alpha={lora_alpha})...")
|
|
163
|
+
|
|
164
|
+
target_modules = get_target_modules(model_name)
|
|
165
|
+
print(f" Target modules: {target_modules}")
|
|
166
|
+
|
|
167
|
+
lora_config = LoraConfig(
|
|
168
|
+
r=lora_r,
|
|
169
|
+
lora_alpha=lora_alpha,
|
|
170
|
+
target_modules=target_modules,
|
|
171
|
+
lora_dropout=lora_dropout,
|
|
172
|
+
bias="none",
|
|
173
|
+
task_type=TaskType.CAUSAL_LM,
|
|
174
|
+
)
|
|
175
|
+
|
|
176
|
+
model = get_peft_model(model, lora_config)
|
|
177
|
+
model.print_trainable_parameters()
|
|
178
|
+
|
|
179
|
+
# Step 4: Prepare dataset
|
|
180
|
+
print(f"\nStep 4: Preparing SFT dataset...")
|
|
181
|
+
train_dataset = prepare_sft_dataset(pairs, tokenizer, max_length=max_length)
|
|
182
|
+
print(f" Dataset size: {len(train_dataset)} examples")
|
|
183
|
+
|
|
184
|
+
# Step 5: Training
|
|
185
|
+
print(f"\nStep 5: Training LoRA adapter...")
|
|
186
|
+
|
|
187
|
+
# Create temporary directory for training outputs
|
|
188
|
+
training_output_dir = tempfile.mkdtemp(prefix="lora_training_")
|
|
189
|
+
|
|
190
|
+
# Use device-optimized dtype (bfloat16 on CUDA, float16 on MPS, float32 on CPU)
|
|
191
|
+
dtype = preferred_dtype(device)
|
|
192
|
+
|
|
193
|
+
training_args = SFTConfig(
|
|
194
|
+
output_dir=training_output_dir,
|
|
195
|
+
num_train_epochs=num_epochs,
|
|
196
|
+
per_device_train_batch_size=batch_size,
|
|
197
|
+
gradient_accumulation_steps=1,
|
|
198
|
+
learning_rate=learning_rate,
|
|
199
|
+
weight_decay=0.01,
|
|
200
|
+
warmup_ratio=0.1,
|
|
201
|
+
logging_steps=10,
|
|
202
|
+
save_strategy="no", # Don't save checkpoints
|
|
203
|
+
bf16=(dtype == torch.bfloat16),
|
|
204
|
+
fp16=(dtype == torch.float16),
|
|
205
|
+
report_to="none", # Disable wandb/tensorboard
|
|
206
|
+
dataset_text_field="text", # Field containing the text to train on
|
|
207
|
+
)
|
|
208
|
+
|
|
209
|
+
trainer = SFTTrainer(
|
|
210
|
+
model=model,
|
|
211
|
+
args=training_args,
|
|
212
|
+
train_dataset=train_dataset,
|
|
213
|
+
processing_class=tokenizer,
|
|
214
|
+
)
|
|
215
|
+
|
|
216
|
+
trainer.train()
|
|
217
|
+
|
|
218
|
+
# Step 6: Save LoRA adapter
|
|
219
|
+
print(f"\nStep 6: Saving LoRA adapter to {output_path}...")
|
|
220
|
+
output_path.mkdir(parents=True, exist_ok=True)
|
|
221
|
+
model.save_pretrained(output_path)
|
|
222
|
+
tokenizer.save_pretrained(output_path)
|
|
223
|
+
|
|
224
|
+
# Save metadata
|
|
225
|
+
metadata = {
|
|
226
|
+
"method": "lora",
|
|
227
|
+
"model": model_name,
|
|
228
|
+
"task": task,
|
|
229
|
+
"trait_label": trait_label,
|
|
230
|
+
"num_pairs": len(pairs),
|
|
231
|
+
"lora_config": {
|
|
232
|
+
"r": lora_r,
|
|
233
|
+
"alpha": lora_alpha,
|
|
234
|
+
"dropout": lora_dropout,
|
|
235
|
+
"target_modules": target_modules if isinstance(target_modules, list) else [target_modules],
|
|
236
|
+
},
|
|
237
|
+
"training_config": {
|
|
238
|
+
"learning_rate": learning_rate,
|
|
239
|
+
"num_epochs": num_epochs,
|
|
240
|
+
"batch_size": batch_size,
|
|
241
|
+
"max_length": max_length,
|
|
242
|
+
},
|
|
243
|
+
}
|
|
244
|
+
|
|
245
|
+
with open(output_path / "metadata.json", "w") as f:
|
|
246
|
+
json.dump(metadata, f, indent=2)
|
|
247
|
+
|
|
248
|
+
# Cleanup
|
|
249
|
+
del model, trainer
|
|
250
|
+
gc.collect()
|
|
251
|
+
if torch.cuda.is_available():
|
|
252
|
+
torch.cuda.empty_cache()
|
|
253
|
+
torch.cuda.synchronize()
|
|
254
|
+
|
|
255
|
+
if not keep_intermediate:
|
|
256
|
+
import os
|
|
257
|
+
os.unlink(pairs_file)
|
|
258
|
+
import shutil
|
|
259
|
+
shutil.rmtree(training_output_dir, ignore_errors=True)
|
|
260
|
+
|
|
261
|
+
print(f"\nLoRA adapter saved to {output_path}")
|
|
262
|
+
return output_path
|
|
263
|
+
|
|
264
|
+
|
|
265
|
+
def apply_lora_to_model(wisent_model: "WisentModel", lora_path: str | Path) -> None:
|
|
266
|
+
"""
|
|
267
|
+
Apply a trained LoRA adapter to a WisentModel.
|
|
268
|
+
|
|
269
|
+
Args:
|
|
270
|
+
wisent_model: WisentModel instance
|
|
271
|
+
lora_path: Path to the saved LoRA adapter
|
|
272
|
+
"""
|
|
273
|
+
from peft import PeftModel
|
|
274
|
+
|
|
275
|
+
lora_path = Path(lora_path)
|
|
276
|
+
|
|
277
|
+
# Check if model already has adapters
|
|
278
|
+
if hasattr(wisent_model.hf_model, 'peft_config'):
|
|
279
|
+
# Model already has PEFT, just load new adapter
|
|
280
|
+
wisent_model.hf_model.load_adapter(str(lora_path), adapter_name="steering")
|
|
281
|
+
wisent_model.hf_model.set_adapter("steering")
|
|
282
|
+
else:
|
|
283
|
+
# Wrap model with PEFT
|
|
284
|
+
wisent_model.hf_model = PeftModel.from_pretrained(
|
|
285
|
+
wisent_model.hf_model,
|
|
286
|
+
str(lora_path),
|
|
287
|
+
adapter_name="steering",
|
|
288
|
+
)
|
|
289
|
+
|
|
290
|
+
print(f"LoRA adapter loaded from {lora_path}")
|
|
291
|
+
|
|
292
|
+
|
|
293
|
+
def remove_lora(wisent_model: "WisentModel") -> None:
|
|
294
|
+
"""
|
|
295
|
+
Remove/disable LoRA adapter from a WisentModel.
|
|
296
|
+
|
|
297
|
+
Args:
|
|
298
|
+
wisent_model: WisentModel instance with LoRA applied
|
|
299
|
+
"""
|
|
300
|
+
if hasattr(wisent_model.hf_model, 'disable_adapters'):
|
|
301
|
+
try:
|
|
302
|
+
wisent_model.hf_model.disable_adapters()
|
|
303
|
+
print("LoRA adapter disabled")
|
|
304
|
+
except ValueError:
|
|
305
|
+
# No adapter was loaded
|
|
306
|
+
pass
|
|
307
|
+
elif hasattr(wisent_model.hf_model, 'base_model'):
|
|
308
|
+
# Unwrap the model
|
|
309
|
+
wisent_model.hf_model = wisent_model.hf_model.base_model.model
|
|
310
|
+
print("LoRA adapter removed")
|
|
311
|
+
|
|
312
|
+
|
|
313
|
+
def evaluate_lora(
|
|
314
|
+
model_name: str,
|
|
315
|
+
lora_path: str | Path,
|
|
316
|
+
task: str,
|
|
317
|
+
train_ratio: float = 0.8,
|
|
318
|
+
device: str = "cuda:0",
|
|
319
|
+
batch_size: int = 1,
|
|
320
|
+
max_batch_size: int = 8,
|
|
321
|
+
limit: int | None = None,
|
|
322
|
+
output_dir: str | Path = None,
|
|
323
|
+
# Training metadata (for output)
|
|
324
|
+
num_train_pairs: int | None = None,
|
|
325
|
+
num_epochs: int | None = None,
|
|
326
|
+
lora_r: int | None = None,
|
|
327
|
+
lora_alpha: int | None = None,
|
|
328
|
+
lora_dropout: float | None = None,
|
|
329
|
+
learning_rate: float | None = None,
|
|
330
|
+
# Steering parameters (optional)
|
|
331
|
+
with_steering: bool = False,
|
|
332
|
+
steering_method: str = "caa",
|
|
333
|
+
steering_layers: str = "12",
|
|
334
|
+
steering_num_pairs: int = 50,
|
|
335
|
+
steering_scales: list[float] | None = None,
|
|
336
|
+
extraction_strategy: str = "mc_completion",
|
|
337
|
+
) -> dict:
|
|
338
|
+
"""
|
|
339
|
+
Evaluate a trained LoRA adapter comparing base vs LoRA performance.
|
|
340
|
+
|
|
341
|
+
Optionally also evaluates LoRA + steering at multiple scales.
|
|
342
|
+
All results are saved to a single output file.
|
|
343
|
+
|
|
344
|
+
Args:
|
|
345
|
+
model_name: HuggingFace model name
|
|
346
|
+
lora_path: Path to trained LoRA adapter
|
|
347
|
+
task: lm-eval task name
|
|
348
|
+
train_ratio: Train/test split ratio
|
|
349
|
+
device: Device to run on
|
|
350
|
+
batch_size: Batch size for evaluation
|
|
351
|
+
max_batch_size: Max batch size
|
|
352
|
+
limit: Limit number of eval examples
|
|
353
|
+
output_dir: Where to save results
|
|
354
|
+
with_steering: Whether to also evaluate LoRA + steering
|
|
355
|
+
steering_method: Steering method (caa or fgaa)
|
|
356
|
+
steering_layers: Layers for steering vector
|
|
357
|
+
steering_num_pairs: Number of pairs for steering generation
|
|
358
|
+
steering_scales: List of steering scales to evaluate
|
|
359
|
+
extraction_strategy: Strategy for activation extraction
|
|
360
|
+
|
|
361
|
+
Returns:
|
|
362
|
+
Dict with evaluation results
|
|
363
|
+
"""
|
|
364
|
+
import gc
|
|
365
|
+
|
|
366
|
+
from wisent.core.models.wisent_model import WisentModel
|
|
367
|
+
|
|
368
|
+
lora_path = Path(lora_path)
|
|
369
|
+
|
|
370
|
+
if steering_scales is None:
|
|
371
|
+
steering_scales = [1.0, 2.0, 4.0]
|
|
372
|
+
|
|
373
|
+
# Create test task
|
|
374
|
+
print(f"\n{'='*60}")
|
|
375
|
+
print(f"Creating test task for: {task}")
|
|
376
|
+
print(f"{'='*60}")
|
|
377
|
+
|
|
378
|
+
task_dict = create_test_only_task(task, train_ratio=train_ratio)
|
|
379
|
+
|
|
380
|
+
# Load model
|
|
381
|
+
print(f"\n{'='*60}")
|
|
382
|
+
print(f"Loading model: {model_name}")
|
|
383
|
+
print(f"{'='*60}")
|
|
384
|
+
wisent_model = WisentModel(model_name=model_name, device=device)
|
|
385
|
+
|
|
386
|
+
# BASE evaluation
|
|
387
|
+
print(f"\n{'='*60}")
|
|
388
|
+
print(f"Running BASE evaluation (no LoRA)")
|
|
389
|
+
print(f"{'='*60}")
|
|
390
|
+
|
|
391
|
+
base_results = run_lm_eval_evaluation(wisent_model, task_dict, task, batch_size, max_batch_size, limit)
|
|
392
|
+
base_acc_lm_eval = extract_accuracy(base_results, task)
|
|
393
|
+
print(f"Base accuracy (lm-eval): {base_acc_lm_eval:.4f}")
|
|
394
|
+
|
|
395
|
+
base_acc_ll = run_ll_evaluation(wisent_model, task_dict, task, limit)
|
|
396
|
+
print(f"Base accuracy (LL): {base_acc_ll:.4f}")
|
|
397
|
+
|
|
398
|
+
# Apply LoRA
|
|
399
|
+
print(f"\n{'='*60}")
|
|
400
|
+
print(f"Applying LoRA adapter from: {lora_path}")
|
|
401
|
+
print(f"{'='*60}")
|
|
402
|
+
apply_lora_to_model(wisent_model, lora_path)
|
|
403
|
+
|
|
404
|
+
# LORA evaluation
|
|
405
|
+
print(f"\n{'='*60}")
|
|
406
|
+
print(f"Running LORA evaluation")
|
|
407
|
+
print(f"{'='*60}")
|
|
408
|
+
|
|
409
|
+
lora_results = run_lm_eval_evaluation(wisent_model, task_dict, task, batch_size, max_batch_size, limit)
|
|
410
|
+
lora_acc_lm_eval = extract_accuracy(lora_results, task)
|
|
411
|
+
print(f"LoRA accuracy (lm-eval): {lora_acc_lm_eval:.4f}")
|
|
412
|
+
|
|
413
|
+
lora_acc_ll = run_ll_evaluation(wisent_model, task_dict, task, limit)
|
|
414
|
+
print(f"LoRA accuracy (LL): {lora_acc_ll:.4f}")
|
|
415
|
+
|
|
416
|
+
# Results dict
|
|
417
|
+
results = {
|
|
418
|
+
"task": task,
|
|
419
|
+
"model": model_name,
|
|
420
|
+
"lora_path": str(lora_path),
|
|
421
|
+
# Training config
|
|
422
|
+
"num_train_pairs": num_train_pairs,
|
|
423
|
+
"num_epochs": num_epochs,
|
|
424
|
+
"lora_r": lora_r,
|
|
425
|
+
"lora_alpha": lora_alpha,
|
|
426
|
+
"lora_dropout": lora_dropout,
|
|
427
|
+
"learning_rate": learning_rate,
|
|
428
|
+
# Eval config
|
|
429
|
+
"train_ratio": train_ratio,
|
|
430
|
+
"eval_limit": limit,
|
|
431
|
+
# Results
|
|
432
|
+
"base_accuracy_lm_eval": base_acc_lm_eval,
|
|
433
|
+
"base_accuracy_ll": base_acc_ll,
|
|
434
|
+
"lora_accuracy_lm_eval": lora_acc_lm_eval,
|
|
435
|
+
"lora_accuracy_ll": lora_acc_ll,
|
|
436
|
+
"lora_diff_lm_eval": lora_acc_lm_eval - base_acc_lm_eval,
|
|
437
|
+
"lora_diff_ll": lora_acc_ll - base_acc_ll,
|
|
438
|
+
}
|
|
439
|
+
|
|
440
|
+
# LoRA + Steering evaluation (if enabled)
|
|
441
|
+
if with_steering:
|
|
442
|
+
from wisent.core.trainers.steering_trainer import WisentSteeringTrainer
|
|
443
|
+
from wisent.core.steering_methods import get_steering_method
|
|
444
|
+
from wisent.core.activations.extraction_strategy import ExtractionStrategy
|
|
445
|
+
from wisent.core.contrastive_pairs.core.set import ContrastivePairSet
|
|
446
|
+
from wisent.core.contrastive_pairs.core.pair import ContrastivePair
|
|
447
|
+
from wisent.core.contrastive_pairs.core.response import PositiveResponse, NegativeResponse
|
|
448
|
+
|
|
449
|
+
# Generate contrastive pairs for steering
|
|
450
|
+
print(f"\n{'='*60}")
|
|
451
|
+
print(f"Generating {steering_num_pairs} contrastive pairs for steering")
|
|
452
|
+
print(f"{'='*60}")
|
|
453
|
+
pairs_data, pairs_file = generate_contrastive_pairs(task, steering_num_pairs)
|
|
454
|
+
|
|
455
|
+
# Convert to ContrastivePairSet
|
|
456
|
+
pairs = []
|
|
457
|
+
for p in pairs_data:
|
|
458
|
+
pair = ContrastivePair(
|
|
459
|
+
prompt=p["prompt"],
|
|
460
|
+
positive_response=PositiveResponse(model_response=p["positive_response"]["model_response"]),
|
|
461
|
+
negative_response=NegativeResponse(model_response=p["negative_response"]["model_response"]),
|
|
462
|
+
)
|
|
463
|
+
pairs.append(pair)
|
|
464
|
+
pair_set = ContrastivePairSet(pairs=pairs, name=f"{task}_lora_steering")
|
|
465
|
+
print(f"Created {len(pair_set)} contrastive pairs")
|
|
466
|
+
|
|
467
|
+
# Generate steering vector on LoRA model
|
|
468
|
+
print(f"\n{'='*60}")
|
|
469
|
+
print(f"Generating {steering_method.upper()} steering vector on LoRA model")
|
|
470
|
+
print(f"Layers: {steering_layers}")
|
|
471
|
+
print(f"{'='*60}")
|
|
472
|
+
|
|
473
|
+
steering_method_obj = get_steering_method(steering_method, device=device)
|
|
474
|
+
strategy = ExtractionStrategy(extraction_strategy)
|
|
475
|
+
|
|
476
|
+
trainer = WisentSteeringTrainer(
|
|
477
|
+
model=wisent_model,
|
|
478
|
+
pair_set=pair_set,
|
|
479
|
+
steering_method=steering_method_obj,
|
|
480
|
+
)
|
|
481
|
+
|
|
482
|
+
result = trainer.run(
|
|
483
|
+
layers_spec=steering_layers,
|
|
484
|
+
strategy=strategy,
|
|
485
|
+
accept_low_quality_vector=True,
|
|
486
|
+
)
|
|
487
|
+
|
|
488
|
+
# Convert to dict format for apply_steering_to_model
|
|
489
|
+
steering_vectors = {}
|
|
490
|
+
for layer_name, tensor in result.steered_vectors.to_dict().items():
|
|
491
|
+
if tensor is not None:
|
|
492
|
+
steering_vectors[layer_name] = tensor.cpu().float().tolist()
|
|
493
|
+
|
|
494
|
+
steering_data = {
|
|
495
|
+
"steering_vectors": steering_vectors,
|
|
496
|
+
"layers": list(steering_vectors.keys()),
|
|
497
|
+
}
|
|
498
|
+
|
|
499
|
+
# Cleanup temp file
|
|
500
|
+
import os
|
|
501
|
+
os.unlink(pairs_file)
|
|
502
|
+
|
|
503
|
+
# Add steering info to results
|
|
504
|
+
results["steering"] = {
|
|
505
|
+
"method": steering_method,
|
|
506
|
+
"layers": list(steering_vectors.keys()),
|
|
507
|
+
"num_pairs": steering_num_pairs,
|
|
508
|
+
"extraction_strategy": extraction_strategy,
|
|
509
|
+
"scales": {},
|
|
510
|
+
}
|
|
511
|
+
|
|
512
|
+
# Evaluate at each scale
|
|
513
|
+
for scale in steering_scales:
|
|
514
|
+
print(f"\n{'='*60}")
|
|
515
|
+
print(f"Evaluating LoRA+{steering_method.upper()} at scale={scale}")
|
|
516
|
+
print(f"{'='*60}")
|
|
517
|
+
|
|
518
|
+
apply_steering_to_model(wisent_model, steering_data, scale=scale)
|
|
519
|
+
|
|
520
|
+
steer_results = run_lm_eval_evaluation(wisent_model, task_dict, task, batch_size, max_batch_size, limit)
|
|
521
|
+
steer_acc_lm_eval = extract_accuracy(steer_results, task)
|
|
522
|
+
print(f"LoRA+{steering_method.upper()} accuracy (lm-eval): {steer_acc_lm_eval:.4f}")
|
|
523
|
+
|
|
524
|
+
steer_acc_ll = run_ll_evaluation(wisent_model, task_dict, task, limit)
|
|
525
|
+
print(f"LoRA+{steering_method.upper()} accuracy (LL): {steer_acc_ll:.4f}")
|
|
526
|
+
|
|
527
|
+
remove_steering(wisent_model)
|
|
528
|
+
|
|
529
|
+
results["steering"]["scales"][str(scale)] = {
|
|
530
|
+
"accuracy_lm_eval": steer_acc_lm_eval,
|
|
531
|
+
"accuracy_ll": steer_acc_ll,
|
|
532
|
+
"diff_from_base_lm_eval": steer_acc_lm_eval - base_acc_lm_eval,
|
|
533
|
+
"diff_from_base_ll": steer_acc_ll - base_acc_ll,
|
|
534
|
+
"diff_from_lora_lm_eval": steer_acc_lm_eval - lora_acc_lm_eval,
|
|
535
|
+
"diff_from_lora_ll": steer_acc_ll - lora_acc_ll,
|
|
536
|
+
}
|
|
537
|
+
|
|
538
|
+
# Cleanup
|
|
539
|
+
remove_lora(wisent_model)
|
|
540
|
+
del wisent_model
|
|
541
|
+
gc.collect()
|
|
542
|
+
if torch.cuda.is_available():
|
|
543
|
+
torch.cuda.empty_cache()
|
|
544
|
+
|
|
545
|
+
# Print summary
|
|
546
|
+
print(f"\n{'='*70}")
|
|
547
|
+
print(f"RESULTS SUMMARY")
|
|
548
|
+
print(f"{'='*70}")
|
|
549
|
+
print(f"Task: {task}")
|
|
550
|
+
print(f"Model: {model_name}")
|
|
551
|
+
print(f"LoRA: {lora_path}")
|
|
552
|
+
print(f"{'-'*70}")
|
|
553
|
+
print(f"{'Method':<25} {'lm-eval acc':<15} {'LL acc':<15} {'Diff (lm-eval)':<15}")
|
|
554
|
+
print(f"{'-'*70}")
|
|
555
|
+
print(f"{'Base':<25} {base_acc_lm_eval:<15.4f} {base_acc_ll:<15.4f} {'':<15}")
|
|
556
|
+
print(f"{'LoRA':<25} {lora_acc_lm_eval:<15.4f} {lora_acc_ll:<15.4f} {lora_acc_lm_eval - base_acc_lm_eval:+.4f}")
|
|
557
|
+
|
|
558
|
+
if with_steering:
|
|
559
|
+
for scale, res in results["steering"]["scales"].items():
|
|
560
|
+
label = f"LoRA+{steering_method.upper()}@{scale}"
|
|
561
|
+
print(f"{label:<25} {res['accuracy_lm_eval']:<15.4f} {res['accuracy_ll']:<15.4f} {res['diff_from_base_lm_eval']:+.4f}")
|
|
562
|
+
|
|
563
|
+
print(f"{'='*70}")
|
|
564
|
+
|
|
565
|
+
# Save results
|
|
566
|
+
if output_dir:
|
|
567
|
+
output_dir = Path(output_dir)
|
|
568
|
+
model_dir_name = model_name.replace("/", "_")
|
|
569
|
+
output_dir = output_dir / model_dir_name
|
|
570
|
+
output_dir.mkdir(parents=True, exist_ok=True)
|
|
571
|
+
results_file = output_dir / f"{task}_lora_eval_results.json"
|
|
572
|
+
with open(results_file, "w") as f:
|
|
573
|
+
json.dump(results, f, indent=2)
|
|
574
|
+
print(f"\nResults saved to: {results_file}")
|
|
575
|
+
|
|
576
|
+
return results
|
|
577
|
+
|
|
578
|
+
|
|
579
|
+
def main():
|
|
580
|
+
import argparse
|
|
581
|
+
|
|
582
|
+
parser = argparse.ArgumentParser(description="Train and evaluate LoRA adapter on benchmark task")
|
|
583
|
+
parser.add_argument("--model", required=True, help="HuggingFace model name")
|
|
584
|
+
parser.add_argument("--task", default="boolq", help="lm-eval task name")
|
|
585
|
+
parser.add_argument("--output-dir", default="/home/ubuntu/output", help="Output directory")
|
|
586
|
+
parser.add_argument("--num-pairs", type=int, default=50, help="Number of training examples")
|
|
587
|
+
parser.add_argument("--device", default="cuda:0", help="Device")
|
|
588
|
+
parser.add_argument("--lora-r", type=int, default=16, help="LoRA rank")
|
|
589
|
+
parser.add_argument("--lora-alpha", type=int, default=32, help="LoRA alpha")
|
|
590
|
+
parser.add_argument("--lora-dropout", type=float, default=0.05, help="LoRA dropout")
|
|
591
|
+
parser.add_argument("--learning-rate", type=float, default=2e-4, help="Learning rate")
|
|
592
|
+
parser.add_argument("--num-epochs", type=int, default=3, help="Number of epochs")
|
|
593
|
+
parser.add_argument("--batch-size", type=int, default=2, help="Training batch size")
|
|
594
|
+
parser.add_argument("--max-length", type=int, default=512, help="Max sequence length")
|
|
595
|
+
parser.add_argument("--keep-intermediate", action="store_true", help="Keep intermediate files")
|
|
596
|
+
# Eval args
|
|
597
|
+
parser.add_argument("--train-ratio", type=float, default=0.8, help="Train/test split ratio")
|
|
598
|
+
parser.add_argument("--eval-batch-size", default="auto", help="Eval batch size (int or 'auto')")
|
|
599
|
+
parser.add_argument("--eval-max-batch-size", type=int, default=64, help="Max eval batch size for auto")
|
|
600
|
+
parser.add_argument("--eval-limit", type=int, default=None, help="Limit eval examples")
|
|
601
|
+
parser.add_argument("--skip-eval", action="store_true", help="Skip evaluation after training")
|
|
602
|
+
# LoRA + Steering args
|
|
603
|
+
parser.add_argument("--with-steering", action="store_true", help="Also evaluate LoRA + steering")
|
|
604
|
+
parser.add_argument("--steering-method", default="caa", choices=["caa", "fgaa"], help="Steering method")
|
|
605
|
+
parser.add_argument("--steering-layers", default="12", help="Layers for steering vector")
|
|
606
|
+
parser.add_argument("--steering-num-pairs", type=int, default=50, help="Number of pairs for steering")
|
|
607
|
+
parser.add_argument("--steering-scales", default="1.0,2.0,4.0", help="Comma-separated steering scales")
|
|
608
|
+
parser.add_argument("--extraction-strategy", default="mc_balanced", help="Extraction strategy for steering")
|
|
609
|
+
|
|
610
|
+
args = parser.parse_args()
|
|
611
|
+
|
|
612
|
+
output_path = Path(args.output_dir) / f"{args.task}_lora_adapter"
|
|
613
|
+
|
|
614
|
+
# Train
|
|
615
|
+
train_lora_adapter(
|
|
616
|
+
task=args.task,
|
|
617
|
+
model_name=args.model,
|
|
618
|
+
output_path=output_path,
|
|
619
|
+
num_pairs=args.num_pairs,
|
|
620
|
+
device=args.device,
|
|
621
|
+
keep_intermediate=args.keep_intermediate,
|
|
622
|
+
lora_r=args.lora_r,
|
|
623
|
+
lora_alpha=args.lora_alpha,
|
|
624
|
+
lora_dropout=args.lora_dropout,
|
|
625
|
+
learning_rate=args.learning_rate,
|
|
626
|
+
num_epochs=args.num_epochs,
|
|
627
|
+
batch_size=args.batch_size,
|
|
628
|
+
max_length=args.max_length,
|
|
629
|
+
)
|
|
630
|
+
|
|
631
|
+
# Evaluate base vs LoRA (and optionally LoRA + steering)
|
|
632
|
+
if not args.skip_eval:
|
|
633
|
+
# Parse eval batch size (can be "auto" or int)
|
|
634
|
+
eval_batch_size = args.eval_batch_size
|
|
635
|
+
if eval_batch_size != "auto":
|
|
636
|
+
eval_batch_size = int(eval_batch_size)
|
|
637
|
+
|
|
638
|
+
# Parse steering scales
|
|
639
|
+
steering_scales = [float(s.strip()) for s in args.steering_scales.split(",")]
|
|
640
|
+
|
|
641
|
+
evaluate_lora(
|
|
642
|
+
model_name=args.model,
|
|
643
|
+
lora_path=output_path,
|
|
644
|
+
task=args.task,
|
|
645
|
+
train_ratio=args.train_ratio,
|
|
646
|
+
device=args.device,
|
|
647
|
+
batch_size=eval_batch_size,
|
|
648
|
+
max_batch_size=args.eval_max_batch_size,
|
|
649
|
+
limit=args.eval_limit,
|
|
650
|
+
output_dir=args.output_dir,
|
|
651
|
+
# Training metadata
|
|
652
|
+
num_train_pairs=args.num_pairs,
|
|
653
|
+
num_epochs=args.num_epochs,
|
|
654
|
+
lora_r=args.lora_r,
|
|
655
|
+
lora_alpha=args.lora_alpha,
|
|
656
|
+
lora_dropout=args.lora_dropout,
|
|
657
|
+
learning_rate=args.learning_rate,
|
|
658
|
+
# Steering parameters
|
|
659
|
+
with_steering=args.with_steering,
|
|
660
|
+
steering_method=args.steering_method,
|
|
661
|
+
steering_layers=args.steering_layers,
|
|
662
|
+
steering_num_pairs=args.steering_num_pairs,
|
|
663
|
+
steering_scales=steering_scales,
|
|
664
|
+
extraction_strategy=args.extraction_strategy,
|
|
665
|
+
)
|
|
666
|
+
|
|
667
|
+
|
|
668
|
+
if __name__ == "__main__":
|
|
669
|
+
main()
|