wisent 0.7.701__py3-none-any.whl → 0.7.1045__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- wisent/__init__.py +1 -1
- wisent/comparison/__init__.py +1 -0
- wisent/comparison/detect_bos_features.py +275 -0
- wisent/comparison/fgaa.py +465 -0
- wisent/comparison/lora.py +669 -0
- wisent/comparison/lora_dpo.py +592 -0
- wisent/comparison/main.py +444 -0
- wisent/comparison/ours.py +76 -0
- wisent/comparison/sae.py +304 -0
- wisent/comparison/utils.py +381 -0
- wisent/core/activations/activation_cache.py +393 -0
- wisent/core/activations/activations.py +3 -3
- wisent/core/activations/activations_collector.py +12 -7
- wisent/core/activations/classifier_inference_strategy.py +12 -11
- wisent/core/activations/extraction_strategy.py +260 -84
- wisent/core/classifiers/classifiers/core/atoms.py +3 -2
- wisent/core/cli/__init__.py +2 -1
- wisent/core/cli/agent/train_classifier.py +16 -3
- wisent/core/cli/check_linearity.py +35 -3
- wisent/core/cli/cluster_benchmarks.py +4 -6
- wisent/core/cli/create_steering_vector.py +6 -4
- wisent/core/cli/diagnose_vectors.py +7 -4
- wisent/core/cli/estimate_unified_goodness_time.py +6 -4
- wisent/core/cli/generate_pairs_from_task.py +9 -56
- wisent/core/cli/generate_vector_from_task.py +11 -20
- wisent/core/cli/geometry_search.py +137 -0
- wisent/core/cli/get_activations.py +2 -2
- wisent/core/cli/method_optimizer.py +4 -3
- wisent/core/cli/modify_weights.py +3 -2
- wisent/core/cli/optimize_sample_size.py +1 -1
- wisent/core/cli/optimize_steering.py +14 -16
- wisent/core/cli/optimize_weights.py +2 -1
- wisent/core/cli/preview_pairs.py +203 -0
- wisent/core/cli/steering_method_trainer.py +3 -3
- wisent/core/cli/tasks.py +19 -76
- wisent/core/cli/train_unified_goodness.py +3 -3
- wisent/core/contrastive_pairs/diagnostics/control_vectors.py +4 -4
- wisent/core/contrastive_pairs/diagnostics/linearity.py +7 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/agentic_search.py +37 -347
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/aider_polyglot.py +113 -136
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/codeforces.py +2 -12
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/coding_benchmarks.py +124 -504
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/faithbench.py +40 -63
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/flames.py +46 -89
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/flores.py +15 -4
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/frames.py +36 -20
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/hallucinations_leaderboard.py +3 -45
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/livemathbench.py +42 -4
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/longform_writing.py +2 -112
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/math500.py +39 -4
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/medium_priority_benchmarks.py +475 -525
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/mercury.py +65 -42
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/olympiadbench.py +2 -12
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/planbench.py +78 -219
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/polymath.py +37 -4
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/recode.py +84 -69
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/refusalbench.py +168 -160
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/simpleqa.py +44 -25
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/tau_bench.py +3 -103
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/toolbench.py +3 -97
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/toolemu.py +48 -182
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_extractor_manifest.py +3 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_extractor_registry.py +19 -1
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/aclue.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/acp_bench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/acp_bench_hard.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/advanced.py +2 -4
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/aexams.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/afrimmlu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/afrixnli.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arabculture.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arabic.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arabic_exams.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arabic_leaderboard_complete.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arabic_leaderboard_light.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arabicmmlu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/aradice.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arc.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arc_challenge.py +1 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arc_easy.py +1 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arithmetic.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/asdiv.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/babi.py +36 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/basque_bench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/bbq.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/belebele.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/benchmarks.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/bertaqa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/bhs.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/bhtc.py +3 -5
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/blimp.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/blimp_nl.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/boolq.py +22 -5
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/c4.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cabbq.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/careqa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/catalan_bench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/catalanqa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/catcola.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cb.py +10 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/ceval.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/ceval_valid.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/chain.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/chartqa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/claim.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/click.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cmmlu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cnn.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cocoteros.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/coedit.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/commonsense.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/commonsense_qa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/copa.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/copal_id.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/coqa.py +3 -4
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/csatqa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cycle.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/darija_bench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/darijahellaswag.py +2 -6
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/darijammlu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/dbpedia.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/discrim_eval.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/doc.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/drop.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/epec.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eq.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eq_bench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eq_bench_ca.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eq_bench_es.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/esbbq.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/ethics.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eus.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eus_exams.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eus_proficiency.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eus_reading.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eus_trivia.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/evalita_llm.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/financial.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/flan.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/french_bench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/galician_bench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/gaokao.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/glianorex.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/global_mmlu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/global_piqa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/gpt3.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/groundcocoa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/haerae.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/headqa.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/hellaswag.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/hendrycks_ethics.py +5 -9
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/hendrycks_math.py +63 -16
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/histoires_morales.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/hrm8k.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/humaneval_infilling.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/icelandic_winogrande.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/inverse.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/inverse_scaling.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/ja.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/japanese_leaderboard.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/japanese_leaderboard_mc.py +1 -1
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/kmmlu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/kobest.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/kormedmcqa.py +5 -17
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/lambada_cloze.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/lambada_multilingual.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/law.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/leaderboard.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/lingoly.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/llama3.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/lm_syneval.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/logiqa.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/logiqa2.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/longbench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/longbenchv2.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mastermind.py +2 -4
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mc-taco.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/med_concepts_qa.py +2 -4
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/meddialog.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/medical.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/medmcqa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/medqa.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mela.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/metabench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/minerva_math.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mmlu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mmlusr.py +3 -4
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mrpc.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/multiblimp.py +2 -5
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/multirc.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mutual.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/non.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/noreval.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/noreval_exact.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/noreval_gen_exact.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/noreval_mc.py +4 -8
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/noreval_mc_log_likelihoods.py +4 -8
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/nq_open.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/okapi_arc_multilingual.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/okapi_hellaswag_multilingual.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/okapi_mmlu_multilingual.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/okapi_truthfulqa_multilingual.py +2 -5
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/olaph.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/openbookqa.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/option.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/parafraseja.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/parafrases.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/paws.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/paws_x.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/pawsx.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/persona.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/phrases.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/pile.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/piqa.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/portuguese_bench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/prompt.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/prost.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/pubmedqa.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/qa4mre.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/qasper.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/qasper_bool.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/qnli.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/qnlieu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/qqp.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/race.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/random.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/record.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/reversed.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/rte.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/ruler.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/sciq.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/score.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/scrolls.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/scrolls_mc.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/self.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/sglue.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/sglue_rte.py +2 -1
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/siqa.py +4 -7
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/social_iqa.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/spanish_bench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/storycloze.py +2 -6
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/summarization.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/super.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/super_glue.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/swag.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/swde.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/sycophancy.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/t0.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/teca.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tinyarc.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tinybenchmarks.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tinygsm8k.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tinyhellaswag.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tinymmlu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tinytruthfulqa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tinywinogrande.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tmmluplus.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/triviaqa.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/truthfulqa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/truthfulqa_mc1.py +9 -4
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/truthfulqa_mc2.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/turblimp_core.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/turkishmmlu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/turkishmmlu_mc.py +0 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/unscramble.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/vaxx.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/webqs.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/wic.py +3 -4
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/winogrande.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/wmdp.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/wnli.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/wsc.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/wsc273.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/xcopa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/xlsum.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/xnli.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/xquad.py +2 -4
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/xstorycloze.py +2 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/xwinograd.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/zhoblimp.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_pairs_generation.py +173 -6
- wisent/core/data_loaders/loaders/lm_loader.py +12 -1
- wisent/core/geometry_runner.py +995 -0
- wisent/core/geometry_search_space.py +237 -0
- wisent/core/hyperparameter_optimizer.py +1 -1
- wisent/core/main.py +3 -0
- wisent/core/models/core/atoms.py +5 -3
- wisent/core/models/wisent_model.py +1 -1
- wisent/core/optuna/classifier/optuna_classifier_optimizer.py +2 -2
- wisent/core/parser_arguments/check_linearity_parser.py +12 -2
- wisent/core/parser_arguments/generate_vector_from_synthetic_parser.py +2 -2
- wisent/core/parser_arguments/generate_vector_from_task_parser.py +6 -13
- wisent/core/parser_arguments/geometry_search_parser.py +61 -0
- wisent/core/parser_arguments/get_activations_parser.py +5 -14
- wisent/core/parser_arguments/main_parser.py +8 -0
- wisent/core/parser_arguments/train_unified_goodness_parser.py +2 -2
- wisent/core/steering.py +5 -3
- wisent/core/steering_methods/methods/hyperplane.py +2 -1
- wisent/core/synthetic/generators/nonsense_generator.py +30 -18
- wisent/core/trainers/steering_trainer.py +2 -2
- wisent/core/utils/device.py +27 -27
- wisent/core/utils/layer_combinations.py +70 -0
- wisent/examples/__init__.py +1 -0
- wisent/examples/scripts/__init__.py +1 -0
- wisent/examples/scripts/count_all_benchmarks.py +121 -0
- wisent/examples/scripts/discover_directions.py +469 -0
- wisent/examples/scripts/extract_benchmark_info.py +71 -0
- wisent/examples/scripts/search_all_short_names.py +31 -0
- wisent/examples/scripts/test_all_benchmarks.py +138 -0
- wisent/examples/scripts/test_all_benchmarks_new.py +28 -0
- wisent/examples/scripts/test_contrastive_pairs_all_supported.py +230 -0
- wisent/examples/scripts/test_nonsense_baseline.py +261 -0
- wisent/examples/scripts/test_one_benchmark.py +324 -0
- wisent/examples/scripts/test_one_coding_benchmark.py +293 -0
- wisent/parameters/lm_eval/broken_in_lm_eval.json +179 -2
- wisent/parameters/lm_eval/category_directions.json +137 -0
- wisent/parameters/lm_eval/repair_plan.json +282 -0
- wisent/parameters/lm_eval/weak_contrastive_pairs.json +38 -0
- wisent/parameters/lm_eval/working_benchmarks.json +206 -0
- wisent/parameters/lm_eval/working_benchmarks_categorized.json +236 -0
- wisent/tests/test_detector_accuracy.py +1 -1
- wisent/tests/visualize_geometry.py +1 -1
- {wisent-0.7.701.dist-info → wisent-0.7.1045.dist-info}/METADATA +5 -1
- {wisent-0.7.701.dist-info → wisent-0.7.1045.dist-info}/RECORD +328 -358
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/browsecomp.py +0 -245
- wisent/examples/contrastive_pairs/humanization_human_vs_ai.json +0 -2112
- wisent/examples/scripts/1/test_basqueglue_evaluation.json +0 -51
- wisent/examples/scripts/1/test_basqueglue_pairs.json +0 -14
- wisent/examples/scripts/1/test_bec2016eu_evaluation.json +0 -51
- wisent/examples/scripts/1/test_bec2016eu_pairs.json +0 -14
- wisent/examples/scripts/1/test_belebele_evaluation.json +0 -51
- wisent/examples/scripts/1/test_belebele_pairs.json +0 -14
- wisent/examples/scripts/1/test_benchmarks_evaluation.json +0 -51
- wisent/examples/scripts/1/test_benchmarks_pairs.json +0 -14
- wisent/examples/scripts/1/test_bertaqa_evaluation.json +0 -51
- wisent/examples/scripts/1/test_bertaqa_pairs.json +0 -14
- wisent/examples/scripts/1/test_bhtc_v2_evaluation.json +0 -30
- wisent/examples/scripts/1/test_bhtc_v2_pairs.json +0 -8
- wisent/examples/scripts/1/test_boolq-seq2seq_evaluation.json +0 -30
- wisent/examples/scripts/1/test_boolq-seq2seq_pairs.json +0 -8
- wisent/examples/scripts/1/test_cabreu_evaluation.json +0 -30
- wisent/examples/scripts/1/test_cabreu_pairs.json +0 -8
- wisent/examples/scripts/1/test_careqa_en_evaluation.json +0 -30
- wisent/examples/scripts/1/test_careqa_en_pairs.json +0 -8
- wisent/examples/scripts/1/test_careqa_evaluation.json +0 -30
- wisent/examples/scripts/1/test_careqa_pairs.json +0 -8
- wisent/examples/scripts/1/test_catalanqa_evaluation.json +0 -30
- wisent/examples/scripts/1/test_catalanqa_pairs.json +0 -8
- wisent/examples/scripts/1/test_catcola_evaluation.json +0 -30
- wisent/examples/scripts/1/test_catcola_pairs.json +0 -8
- wisent/examples/scripts/1/test_chartqa_evaluation.json +0 -30
- wisent/examples/scripts/1/test_chartqa_pairs.json +0 -8
- wisent/examples/scripts/1/test_claim_stance_topic_evaluation.json +0 -30
- wisent/examples/scripts/1/test_claim_stance_topic_pairs.json +0 -8
- wisent/examples/scripts/1/test_cnn_dailymail_evaluation.json +0 -30
- wisent/examples/scripts/1/test_cnn_dailymail_pairs.json +0 -8
- wisent/examples/scripts/1/test_cocoteros_es_evaluation.json +0 -30
- wisent/examples/scripts/1/test_cocoteros_es_pairs.json +0 -8
- wisent/examples/scripts/1/test_coedit_gec_evaluation.json +0 -30
- wisent/examples/scripts/1/test_coedit_gec_pairs.json +0 -8
- wisent/examples/scripts/1/test_cola_evaluation.json +0 -30
- wisent/examples/scripts/1/test_cola_pairs.json +0 -8
- wisent/examples/scripts/1/test_coqcat_evaluation.json +0 -30
- wisent/examples/scripts/1/test_coqcat_pairs.json +0 -8
- wisent/examples/scripts/1/test_dbpedia_14_evaluation.json +0 -30
- wisent/examples/scripts/1/test_dbpedia_14_pairs.json +0 -8
- wisent/examples/scripts/1/test_epec_koref_bin_evaluation.json +0 -30
- wisent/examples/scripts/1/test_epec_koref_bin_pairs.json +0 -8
- wisent/examples/scripts/1/test_ethos_binary_evaluation.json +0 -30
- wisent/examples/scripts/1/test_ethos_binary_pairs.json +0 -8
- wisent/examples/scripts/2/test_afrimgsm_direct_amh_evaluation.json +0 -30
- wisent/examples/scripts/2/test_afrimgsm_direct_amh_pairs.json +0 -8
- wisent/examples/scripts/2/test_afrimmlu_direct_amh_evaluation.json +0 -30
- wisent/examples/scripts/2/test_afrimmlu_direct_amh_pairs.json +0 -8
- wisent/examples/scripts/2/test_afrixnli_en_direct_amh_evaluation.json +0 -30
- wisent/examples/scripts/2/test_afrixnli_en_direct_amh_pairs.json +0 -8
- wisent/examples/scripts/2/test_arc_ar_evaluation.json +0 -30
- wisent/examples/scripts/2/test_arc_ar_pairs.json +0 -8
- wisent/examples/scripts/2/test_atis_evaluation.json +0 -30
- wisent/examples/scripts/2/test_atis_pairs.json +0 -8
- wisent/examples/scripts/2/test_babi_evaluation.json +0 -30
- wisent/examples/scripts/2/test_babi_pairs.json +0 -8
- wisent/examples/scripts/2/test_babilong_evaluation.json +0 -30
- wisent/examples/scripts/2/test_babilong_pairs.json +0 -8
- wisent/examples/scripts/2/test_bangla_mmlu_evaluation.json +0 -30
- wisent/examples/scripts/2/test_bangla_mmlu_pairs.json +0 -8
- wisent/examples/scripts/2/test_basque-glue_pairs.json +0 -14
- {wisent-0.7.701.dist-info → wisent-0.7.1045.dist-info}/WHEEL +0 -0
- {wisent-0.7.701.dist-info → wisent-0.7.1045.dist-info}/entry_points.txt +0 -0
- {wisent-0.7.701.dist-info → wisent-0.7.1045.dist-info}/licenses/LICENSE +0 -0
- {wisent-0.7.701.dist-info → wisent-0.7.1045.dist-info}/top_level.txt +0 -0
wisent/__init__.py
CHANGED
|
@@ -0,0 +1 @@
|
|
|
1
|
+
# Comparison methods for evaluating steering techniques
|
|
@@ -0,0 +1,275 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Detect BOS (Beginning of Sequence) features in Gemma Scope SAEs.
|
|
3
|
+
|
|
4
|
+
BOS features are SAE features that activate most strongly at the BOS token position.
|
|
5
|
+
These should be filtered out when computing steering vectors as they introduce
|
|
6
|
+
artifacts without contributing to steering.
|
|
7
|
+
|
|
8
|
+
Reference: "Interpretable Steering of Large Language Models with Feature Guided
|
|
9
|
+
Activation Additions" (arXiv:2501.09929), Appendix G.
|
|
10
|
+
|
|
11
|
+
Known BOS features from paper (Gemma-2-2B, layer 12, 16k SAE):
|
|
12
|
+
- 11087, 3220, 11752, 12160, 11498
|
|
13
|
+
|
|
14
|
+
Usage:
|
|
15
|
+
python -m wisent.comparison.detect_bos_features --model google/gemma-2-2b
|
|
16
|
+
"""
|
|
17
|
+
|
|
18
|
+
from __future__ import annotations
|
|
19
|
+
|
|
20
|
+
import argparse
|
|
21
|
+
import json
|
|
22
|
+
from pathlib import Path
|
|
23
|
+
|
|
24
|
+
import torch
|
|
25
|
+
from datasets import load_dataset
|
|
26
|
+
from tqdm import tqdm
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
# Known BOS feature indices from paper (Appendix G)
|
|
30
|
+
KNOWN_BOS_FEATURES = {
|
|
31
|
+
"google/gemma-2-2b": [11087, 3220, 11752, 12160, 11498],
|
|
32
|
+
"google/gemma-2-9b": [], # Not listed in paper
|
|
33
|
+
}
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
def load_sample_texts(num_samples: int = 2000, min_length: int = 50) -> list[str]:
|
|
37
|
+
"""Load sample texts from WikiText dataset."""
|
|
38
|
+
print(f"Loading up to {num_samples} sample texts from WikiText...")
|
|
39
|
+
|
|
40
|
+
dataset = load_dataset("wikitext", "wikitext-103-v1", split="train")
|
|
41
|
+
|
|
42
|
+
texts = []
|
|
43
|
+
for item in dataset:
|
|
44
|
+
if len(texts) >= num_samples:
|
|
45
|
+
break
|
|
46
|
+
text = item["text"].strip()
|
|
47
|
+
if len(text) >= min_length:
|
|
48
|
+
texts.append(text)
|
|
49
|
+
|
|
50
|
+
print(f" Loaded {len(texts)} texts")
|
|
51
|
+
return texts
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
def detect_bos_features(
|
|
55
|
+
model,
|
|
56
|
+
tokenizer,
|
|
57
|
+
sae,
|
|
58
|
+
layer_idx: int,
|
|
59
|
+
device: str,
|
|
60
|
+
texts: list[str],
|
|
61
|
+
top_k: int = 10,
|
|
62
|
+
batch_size: int = 8,
|
|
63
|
+
) -> tuple[list[int], dict[str, torch.Tensor]]:
|
|
64
|
+
"""
|
|
65
|
+
Detect BOS features by finding features that activate most strongly at position 0.
|
|
66
|
+
|
|
67
|
+
Computes statistics (mean, variance, median) of activation at BOS position for each
|
|
68
|
+
SAE feature across all samples, then returns the top-k features with highest mean
|
|
69
|
+
BOS activation.
|
|
70
|
+
|
|
71
|
+
Reference: FGAA paper (arXiv:2501.09929) identifies BOS features as those that
|
|
72
|
+
"exclusively had the strongest activation on the BOS token".
|
|
73
|
+
|
|
74
|
+
Args:
|
|
75
|
+
model: HuggingFace model
|
|
76
|
+
tokenizer: Tokenizer
|
|
77
|
+
sae: SAE object from sae_lens
|
|
78
|
+
layer_idx: Layer index (0-indexed)
|
|
79
|
+
device: Device
|
|
80
|
+
texts: List of sample texts to analyze
|
|
81
|
+
top_k: Number of top BOS features to return (default 10)
|
|
82
|
+
batch_size: Batch size for processing
|
|
83
|
+
|
|
84
|
+
Returns:
|
|
85
|
+
Tuple of (top_bos_feature_indices, stats_dict) where stats_dict contains
|
|
86
|
+
'mean', 'variance', and 'median' tensors of shape [d_sae].
|
|
87
|
+
"""
|
|
88
|
+
d_sae = sae.cfg.d_sae
|
|
89
|
+
|
|
90
|
+
# Collect all BOS activations on CPU for stable statistics computation
|
|
91
|
+
all_bos_activations = []
|
|
92
|
+
|
|
93
|
+
print(f"Detecting BOS features from {len(texts)} samples...")
|
|
94
|
+
print(f" Layer: {layer_idx}, d_sae: {d_sae}")
|
|
95
|
+
|
|
96
|
+
# Use hook to capture only the layer we need (not all 26 layers)
|
|
97
|
+
captured_acts = {}
|
|
98
|
+
def capture_hook(module, input, output):
|
|
99
|
+
captured_acts["hidden"] = output[0].detach()
|
|
100
|
+
|
|
101
|
+
# Register hook on the specific layer
|
|
102
|
+
target_layer = model.model.layers[layer_idx]
|
|
103
|
+
hook_handle = target_layer.register_forward_hook(capture_hook)
|
|
104
|
+
|
|
105
|
+
try:
|
|
106
|
+
for i in tqdm(range(0, len(texts), batch_size), desc="Processing"):
|
|
107
|
+
batch_texts = texts[i:i + batch_size]
|
|
108
|
+
|
|
109
|
+
inputs = tokenizer(
|
|
110
|
+
batch_texts,
|
|
111
|
+
return_tensors="pt",
|
|
112
|
+
truncation=True,
|
|
113
|
+
max_length=128,
|
|
114
|
+
padding=True,
|
|
115
|
+
)
|
|
116
|
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
|
117
|
+
|
|
118
|
+
with torch.no_grad():
|
|
119
|
+
# Use model.model to skip lm_head (saves ~66MB per forward)
|
|
120
|
+
model.model(**inputs, use_cache=False)
|
|
121
|
+
|
|
122
|
+
# Get captured hidden states (only this layer, not all 26)
|
|
123
|
+
acts = captured_acts["hidden"].to(sae.W_enc.dtype)
|
|
124
|
+
latents = sae.encode(acts)
|
|
125
|
+
|
|
126
|
+
attention_mask = inputs.get("attention_mask")
|
|
127
|
+
for j in range(latents.shape[0]):
|
|
128
|
+
seq_len = int(attention_mask[j].sum().item()) if attention_mask is not None else latents.shape[1]
|
|
129
|
+
sample_latents = latents[j, :seq_len, :] # [seq_len, d_sae]
|
|
130
|
+
|
|
131
|
+
# Collect BOS activation (position 0) - move to CPU immediately
|
|
132
|
+
bos_act = sample_latents[0].float().cpu()
|
|
133
|
+
all_bos_activations.append(bos_act)
|
|
134
|
+
finally:
|
|
135
|
+
hook_handle.remove()
|
|
136
|
+
|
|
137
|
+
# Compute statistics (all on CPU)
|
|
138
|
+
# Stack all activations for stable computation
|
|
139
|
+
all_bos_tensor = torch.stack(all_bos_activations, dim=0) # [num_samples, d_sae]
|
|
140
|
+
mean_bos = all_bos_tensor.mean(dim=0)
|
|
141
|
+
variance_bos = all_bos_tensor.var(dim=0)
|
|
142
|
+
median_bos = all_bos_tensor.median(dim=0).values
|
|
143
|
+
|
|
144
|
+
stats = {
|
|
145
|
+
"mean": mean_bos,
|
|
146
|
+
"variance": variance_bos,
|
|
147
|
+
"median": median_bos,
|
|
148
|
+
}
|
|
149
|
+
|
|
150
|
+
# Select top features by BOS activation
|
|
151
|
+
top_indices = mean_bos.topk(top_k).indices.tolist()
|
|
152
|
+
|
|
153
|
+
print(f"\nDetected top {top_k} BOS features by mean activation")
|
|
154
|
+
return top_indices, stats
|
|
155
|
+
|
|
156
|
+
|
|
157
|
+
def compare_with_known(model_name: str, detected: list[int], stats: dict[str, torch.Tensor]) -> None:
|
|
158
|
+
"""Compare detected BOS features with known list from paper."""
|
|
159
|
+
mean_bos = stats["mean"]
|
|
160
|
+
variance_bos = stats["variance"]
|
|
161
|
+
median_bos = stats["median"]
|
|
162
|
+
|
|
163
|
+
known = KNOWN_BOS_FEATURES.get(model_name, [])
|
|
164
|
+
detected_set = set(detected)
|
|
165
|
+
known_set = set(known)
|
|
166
|
+
|
|
167
|
+
print(f"\n{'='*60}")
|
|
168
|
+
print(f"BOS Feature Comparison for {model_name}")
|
|
169
|
+
print(f"{'='*60}")
|
|
170
|
+
print(f"Known (paper): {sorted(known_set)}")
|
|
171
|
+
print(f"Detected: {sorted(detected_set)}")
|
|
172
|
+
print(f"{'='*60}")
|
|
173
|
+
print(f"Common: {sorted(detected_set & known_set)}")
|
|
174
|
+
print(f"Only in paper: {sorted(known_set - detected_set)}")
|
|
175
|
+
print(f"Only detected: {sorted(detected_set - known_set)}")
|
|
176
|
+
|
|
177
|
+
if known:
|
|
178
|
+
print(f"\nKnown features - BOS activation stats:")
|
|
179
|
+
for idx in sorted(known):
|
|
180
|
+
mean_val = mean_bos[idx].item()
|
|
181
|
+
var_val = variance_bos[idx].item()
|
|
182
|
+
median_val = median_bos[idx].item()
|
|
183
|
+
status = "detected" if idx in detected_set else "missed"
|
|
184
|
+
print(f" Feature {idx}: mean={mean_val:.4f}, var={var_val:.4f}, median={median_val:.4f} ({status})")
|
|
185
|
+
|
|
186
|
+
print(f"\nTop 20 features by mean BOS activation:")
|
|
187
|
+
for rank, idx in enumerate(mean_bos.topk(20).indices.tolist(), 1):
|
|
188
|
+
mean_val = mean_bos[idx].item()
|
|
189
|
+
var_val = variance_bos[idx].item()
|
|
190
|
+
median_val = median_bos[idx].item()
|
|
191
|
+
marker = " (known)" if idx in known_set else ""
|
|
192
|
+
print(f" {rank:2}. Feature {idx}: mean={mean_val:.4f}, var={var_val:.4f}, median={median_val:.4f}{marker}")
|
|
193
|
+
|
|
194
|
+
|
|
195
|
+
def main():
|
|
196
|
+
parser = argparse.ArgumentParser(description="Detect BOS features in Gemma Scope SAEs")
|
|
197
|
+
parser.add_argument("--model", default="google/gemma-2-2b", help="Model name")
|
|
198
|
+
parser.add_argument("--layer", type=int, default=12, help="Layer index")
|
|
199
|
+
parser.add_argument("--num-samples", type=int, default=1000, help="Number of text samples")
|
|
200
|
+
parser.add_argument("--top-k", type=int, default=20, help="Number of top BOS features to detect")
|
|
201
|
+
parser.add_argument("--batch-size", type=int, default=1, help="Batch size")
|
|
202
|
+
parser.add_argument("--device", default="cuda:0", help="Device")
|
|
203
|
+
parser.add_argument("--output-dir", default="wisent/comparison/results", help="Output directory")
|
|
204
|
+
args = parser.parse_args()
|
|
205
|
+
|
|
206
|
+
print(f"Model: {args.model}")
|
|
207
|
+
print(f"Layer: {args.layer}")
|
|
208
|
+
print(f"Top-k: {args.top_k}")
|
|
209
|
+
|
|
210
|
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
211
|
+
|
|
212
|
+
print(f"\nLoading model...")
|
|
213
|
+
model = AutoModelForCausalLM.from_pretrained(
|
|
214
|
+
args.model,
|
|
215
|
+
torch_dtype=torch.bfloat16,
|
|
216
|
+
device_map=args.device,
|
|
217
|
+
trust_remote_code=True,
|
|
218
|
+
)
|
|
219
|
+
tokenizer = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True)
|
|
220
|
+
if tokenizer.pad_token is None:
|
|
221
|
+
tokenizer.pad_token = tokenizer.eos_token
|
|
222
|
+
model.eval()
|
|
223
|
+
|
|
224
|
+
print(f"\nLoading SAE...")
|
|
225
|
+
from sae_lens import SAE
|
|
226
|
+
|
|
227
|
+
release = "gemma-scope-2b-pt-res-canonical" if "2b" in args.model.lower() else "gemma-scope-9b-pt-res-canonical"
|
|
228
|
+
sae_id = f"layer_{args.layer}/width_16k/canonical"
|
|
229
|
+
sae, _, _ = SAE.from_pretrained(release=release, sae_id=sae_id, device=args.device)
|
|
230
|
+
|
|
231
|
+
texts = load_sample_texts(args.num_samples)
|
|
232
|
+
|
|
233
|
+
bos_features, stats = detect_bos_features(
|
|
234
|
+
model=model,
|
|
235
|
+
tokenizer=tokenizer,
|
|
236
|
+
sae=sae,
|
|
237
|
+
layer_idx=args.layer,
|
|
238
|
+
device=args.device,
|
|
239
|
+
texts=texts,
|
|
240
|
+
top_k=args.top_k,
|
|
241
|
+
batch_size=args.batch_size,
|
|
242
|
+
)
|
|
243
|
+
|
|
244
|
+
compare_with_known(args.model, bos_features, stats)
|
|
245
|
+
|
|
246
|
+
# Build detected features with their stats
|
|
247
|
+
detected_with_stats = [
|
|
248
|
+
{
|
|
249
|
+
"feature": idx,
|
|
250
|
+
"mean_bos_activation": stats["mean"][idx].item(),
|
|
251
|
+
"variance_bos_activation": stats["variance"][idx].item(),
|
|
252
|
+
"median_bos_activation": stats["median"][idx].item(),
|
|
253
|
+
}
|
|
254
|
+
for idx in bos_features
|
|
255
|
+
]
|
|
256
|
+
|
|
257
|
+
output = {
|
|
258
|
+
"model": args.model,
|
|
259
|
+
"layer": args.layer,
|
|
260
|
+
"top_k": args.top_k,
|
|
261
|
+
"num_samples": len(texts),
|
|
262
|
+
"detected_bos_features": detected_with_stats,
|
|
263
|
+
"known_bos_features": KNOWN_BOS_FEATURES.get(args.model, []),
|
|
264
|
+
}
|
|
265
|
+
|
|
266
|
+
output_dir = Path(args.output_dir)
|
|
267
|
+
output_dir.mkdir(parents=True, exist_ok=True)
|
|
268
|
+
output_path = output_dir / f"bos_features_{args.model.replace('/', '_')}_layer{args.layer}.json"
|
|
269
|
+
with open(output_path, "w") as f:
|
|
270
|
+
json.dump(output, f, indent=2)
|
|
271
|
+
print(f"\nSaved to {output_path}")
|
|
272
|
+
|
|
273
|
+
|
|
274
|
+
if __name__ == "__main__":
|
|
275
|
+
main()
|