wisent 0.7.701__py3-none-any.whl → 0.7.1045__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- wisent/__init__.py +1 -1
- wisent/comparison/__init__.py +1 -0
- wisent/comparison/detect_bos_features.py +275 -0
- wisent/comparison/fgaa.py +465 -0
- wisent/comparison/lora.py +669 -0
- wisent/comparison/lora_dpo.py +592 -0
- wisent/comparison/main.py +444 -0
- wisent/comparison/ours.py +76 -0
- wisent/comparison/sae.py +304 -0
- wisent/comparison/utils.py +381 -0
- wisent/core/activations/activation_cache.py +393 -0
- wisent/core/activations/activations.py +3 -3
- wisent/core/activations/activations_collector.py +12 -7
- wisent/core/activations/classifier_inference_strategy.py +12 -11
- wisent/core/activations/extraction_strategy.py +260 -84
- wisent/core/classifiers/classifiers/core/atoms.py +3 -2
- wisent/core/cli/__init__.py +2 -1
- wisent/core/cli/agent/train_classifier.py +16 -3
- wisent/core/cli/check_linearity.py +35 -3
- wisent/core/cli/cluster_benchmarks.py +4 -6
- wisent/core/cli/create_steering_vector.py +6 -4
- wisent/core/cli/diagnose_vectors.py +7 -4
- wisent/core/cli/estimate_unified_goodness_time.py +6 -4
- wisent/core/cli/generate_pairs_from_task.py +9 -56
- wisent/core/cli/generate_vector_from_task.py +11 -20
- wisent/core/cli/geometry_search.py +137 -0
- wisent/core/cli/get_activations.py +2 -2
- wisent/core/cli/method_optimizer.py +4 -3
- wisent/core/cli/modify_weights.py +3 -2
- wisent/core/cli/optimize_sample_size.py +1 -1
- wisent/core/cli/optimize_steering.py +14 -16
- wisent/core/cli/optimize_weights.py +2 -1
- wisent/core/cli/preview_pairs.py +203 -0
- wisent/core/cli/steering_method_trainer.py +3 -3
- wisent/core/cli/tasks.py +19 -76
- wisent/core/cli/train_unified_goodness.py +3 -3
- wisent/core/contrastive_pairs/diagnostics/control_vectors.py +4 -4
- wisent/core/contrastive_pairs/diagnostics/linearity.py +7 -0
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/agentic_search.py +37 -347
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/aider_polyglot.py +113 -136
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/codeforces.py +2 -12
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/coding_benchmarks.py +124 -504
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/faithbench.py +40 -63
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/flames.py +46 -89
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/flores.py +15 -4
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/frames.py +36 -20
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/hallucinations_leaderboard.py +3 -45
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/livemathbench.py +42 -4
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/longform_writing.py +2 -112
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/math500.py +39 -4
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/medium_priority_benchmarks.py +475 -525
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/mercury.py +65 -42
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/olympiadbench.py +2 -12
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/planbench.py +78 -219
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/polymath.py +37 -4
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/recode.py +84 -69
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/refusalbench.py +168 -160
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/simpleqa.py +44 -25
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/tau_bench.py +3 -103
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/toolbench.py +3 -97
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/toolemu.py +48 -182
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_extractor_manifest.py +3 -0
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_extractor_registry.py +19 -1
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/aclue.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/acp_bench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/acp_bench_hard.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/advanced.py +2 -4
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/aexams.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/afrimmlu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/afrixnli.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arabculture.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arabic.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arabic_exams.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arabic_leaderboard_complete.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arabic_leaderboard_light.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arabicmmlu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/aradice.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arc.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arc_challenge.py +1 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arc_easy.py +1 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/arithmetic.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/asdiv.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/babi.py +36 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/basque_bench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/bbq.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/belebele.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/benchmarks.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/bertaqa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/bhs.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/bhtc.py +3 -5
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/blimp.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/blimp_nl.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/boolq.py +22 -5
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/c4.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cabbq.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/careqa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/catalan_bench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/catalanqa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/catcola.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cb.py +10 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/ceval.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/ceval_valid.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/chain.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/chartqa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/claim.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/click.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cmmlu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cnn.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cocoteros.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/coedit.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/commonsense.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/commonsense_qa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/copa.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/copal_id.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/coqa.py +3 -4
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/csatqa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/cycle.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/darija_bench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/darijahellaswag.py +2 -6
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/darijammlu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/dbpedia.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/discrim_eval.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/doc.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/drop.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/epec.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eq.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eq_bench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eq_bench_ca.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eq_bench_es.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/esbbq.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/ethics.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eus.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eus_exams.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eus_proficiency.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eus_reading.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/eus_trivia.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/evalita_llm.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/financial.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/flan.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/french_bench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/galician_bench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/gaokao.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/glianorex.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/global_mmlu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/global_piqa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/gpt3.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/groundcocoa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/haerae.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/headqa.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/hellaswag.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/hendrycks_ethics.py +5 -9
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/hendrycks_math.py +63 -16
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/histoires_morales.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/hrm8k.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/humaneval_infilling.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/icelandic_winogrande.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/inverse.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/inverse_scaling.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/ja.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/japanese_leaderboard.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/japanese_leaderboard_mc.py +1 -1
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/kmmlu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/kobest.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/kormedmcqa.py +5 -17
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/lambada_cloze.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/lambada_multilingual.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/law.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/leaderboard.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/lingoly.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/llama3.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/lm_syneval.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/logiqa.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/logiqa2.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/longbench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/longbenchv2.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mastermind.py +2 -4
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mc-taco.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/med_concepts_qa.py +2 -4
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/meddialog.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/medical.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/medmcqa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/medqa.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mela.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/metabench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/minerva_math.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mmlu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mmlusr.py +3 -4
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mrpc.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/multiblimp.py +2 -5
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/multirc.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/mutual.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/non.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/noreval.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/noreval_exact.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/noreval_gen_exact.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/noreval_mc.py +4 -8
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/noreval_mc_log_likelihoods.py +4 -8
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/nq_open.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/okapi_arc_multilingual.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/okapi_hellaswag_multilingual.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/okapi_mmlu_multilingual.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/okapi_truthfulqa_multilingual.py +2 -5
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/olaph.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/openbookqa.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/option.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/parafraseja.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/parafrases.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/paws.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/paws_x.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/pawsx.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/persona.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/phrases.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/pile.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/piqa.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/portuguese_bench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/prompt.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/prost.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/pubmedqa.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/qa4mre.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/qasper.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/qasper_bool.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/qnli.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/qnlieu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/qqp.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/race.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/random.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/record.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/reversed.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/rte.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/ruler.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/sciq.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/score.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/scrolls.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/scrolls_mc.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/self.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/sglue.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/sglue_rte.py +2 -1
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/siqa.py +4 -7
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/social_iqa.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/spanish_bench.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/storycloze.py +2 -6
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/summarization.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/super.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/super_glue.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/swag.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/swde.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/sycophancy.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/t0.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/teca.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tinyarc.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tinybenchmarks.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tinygsm8k.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tinyhellaswag.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tinymmlu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tinytruthfulqa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tinywinogrande.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/tmmluplus.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/triviaqa.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/truthfulqa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/truthfulqa_mc1.py +9 -4
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/truthfulqa_mc2.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/turblimp_core.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/turkishmmlu.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/turkishmmlu_mc.py +0 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/unscramble.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/vaxx.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/webqs.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/wic.py +3 -4
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/winogrande.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/wmdp.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/wnli.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/wsc.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/wsc273.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/xcopa.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/xlsum.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/xnli.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/xquad.py +2 -4
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/xstorycloze.py +2 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/xwinograd.py +2 -2
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/zhoblimp.py +1 -3
- wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_pairs_generation.py +173 -6
- wisent/core/data_loaders/loaders/lm_loader.py +12 -1
- wisent/core/geometry_runner.py +995 -0
- wisent/core/geometry_search_space.py +237 -0
- wisent/core/hyperparameter_optimizer.py +1 -1
- wisent/core/main.py +3 -0
- wisent/core/models/core/atoms.py +5 -3
- wisent/core/models/wisent_model.py +1 -1
- wisent/core/optuna/classifier/optuna_classifier_optimizer.py +2 -2
- wisent/core/parser_arguments/check_linearity_parser.py +12 -2
- wisent/core/parser_arguments/generate_vector_from_synthetic_parser.py +2 -2
- wisent/core/parser_arguments/generate_vector_from_task_parser.py +6 -13
- wisent/core/parser_arguments/geometry_search_parser.py +61 -0
- wisent/core/parser_arguments/get_activations_parser.py +5 -14
- wisent/core/parser_arguments/main_parser.py +8 -0
- wisent/core/parser_arguments/train_unified_goodness_parser.py +2 -2
- wisent/core/steering.py +5 -3
- wisent/core/steering_methods/methods/hyperplane.py +2 -1
- wisent/core/synthetic/generators/nonsense_generator.py +30 -18
- wisent/core/trainers/steering_trainer.py +2 -2
- wisent/core/utils/device.py +27 -27
- wisent/core/utils/layer_combinations.py +70 -0
- wisent/examples/__init__.py +1 -0
- wisent/examples/scripts/__init__.py +1 -0
- wisent/examples/scripts/count_all_benchmarks.py +121 -0
- wisent/examples/scripts/discover_directions.py +469 -0
- wisent/examples/scripts/extract_benchmark_info.py +71 -0
- wisent/examples/scripts/search_all_short_names.py +31 -0
- wisent/examples/scripts/test_all_benchmarks.py +138 -0
- wisent/examples/scripts/test_all_benchmarks_new.py +28 -0
- wisent/examples/scripts/test_contrastive_pairs_all_supported.py +230 -0
- wisent/examples/scripts/test_nonsense_baseline.py +261 -0
- wisent/examples/scripts/test_one_benchmark.py +324 -0
- wisent/examples/scripts/test_one_coding_benchmark.py +293 -0
- wisent/parameters/lm_eval/broken_in_lm_eval.json +179 -2
- wisent/parameters/lm_eval/category_directions.json +137 -0
- wisent/parameters/lm_eval/repair_plan.json +282 -0
- wisent/parameters/lm_eval/weak_contrastive_pairs.json +38 -0
- wisent/parameters/lm_eval/working_benchmarks.json +206 -0
- wisent/parameters/lm_eval/working_benchmarks_categorized.json +236 -0
- wisent/tests/test_detector_accuracy.py +1 -1
- wisent/tests/visualize_geometry.py +1 -1
- {wisent-0.7.701.dist-info → wisent-0.7.1045.dist-info}/METADATA +5 -1
- {wisent-0.7.701.dist-info → wisent-0.7.1045.dist-info}/RECORD +328 -358
- wisent/core/contrastive_pairs/huggingface_pairs/hf_task_extractors/browsecomp.py +0 -245
- wisent/examples/contrastive_pairs/humanization_human_vs_ai.json +0 -2112
- wisent/examples/scripts/1/test_basqueglue_evaluation.json +0 -51
- wisent/examples/scripts/1/test_basqueglue_pairs.json +0 -14
- wisent/examples/scripts/1/test_bec2016eu_evaluation.json +0 -51
- wisent/examples/scripts/1/test_bec2016eu_pairs.json +0 -14
- wisent/examples/scripts/1/test_belebele_evaluation.json +0 -51
- wisent/examples/scripts/1/test_belebele_pairs.json +0 -14
- wisent/examples/scripts/1/test_benchmarks_evaluation.json +0 -51
- wisent/examples/scripts/1/test_benchmarks_pairs.json +0 -14
- wisent/examples/scripts/1/test_bertaqa_evaluation.json +0 -51
- wisent/examples/scripts/1/test_bertaqa_pairs.json +0 -14
- wisent/examples/scripts/1/test_bhtc_v2_evaluation.json +0 -30
- wisent/examples/scripts/1/test_bhtc_v2_pairs.json +0 -8
- wisent/examples/scripts/1/test_boolq-seq2seq_evaluation.json +0 -30
- wisent/examples/scripts/1/test_boolq-seq2seq_pairs.json +0 -8
- wisent/examples/scripts/1/test_cabreu_evaluation.json +0 -30
- wisent/examples/scripts/1/test_cabreu_pairs.json +0 -8
- wisent/examples/scripts/1/test_careqa_en_evaluation.json +0 -30
- wisent/examples/scripts/1/test_careqa_en_pairs.json +0 -8
- wisent/examples/scripts/1/test_careqa_evaluation.json +0 -30
- wisent/examples/scripts/1/test_careqa_pairs.json +0 -8
- wisent/examples/scripts/1/test_catalanqa_evaluation.json +0 -30
- wisent/examples/scripts/1/test_catalanqa_pairs.json +0 -8
- wisent/examples/scripts/1/test_catcola_evaluation.json +0 -30
- wisent/examples/scripts/1/test_catcola_pairs.json +0 -8
- wisent/examples/scripts/1/test_chartqa_evaluation.json +0 -30
- wisent/examples/scripts/1/test_chartqa_pairs.json +0 -8
- wisent/examples/scripts/1/test_claim_stance_topic_evaluation.json +0 -30
- wisent/examples/scripts/1/test_claim_stance_topic_pairs.json +0 -8
- wisent/examples/scripts/1/test_cnn_dailymail_evaluation.json +0 -30
- wisent/examples/scripts/1/test_cnn_dailymail_pairs.json +0 -8
- wisent/examples/scripts/1/test_cocoteros_es_evaluation.json +0 -30
- wisent/examples/scripts/1/test_cocoteros_es_pairs.json +0 -8
- wisent/examples/scripts/1/test_coedit_gec_evaluation.json +0 -30
- wisent/examples/scripts/1/test_coedit_gec_pairs.json +0 -8
- wisent/examples/scripts/1/test_cola_evaluation.json +0 -30
- wisent/examples/scripts/1/test_cola_pairs.json +0 -8
- wisent/examples/scripts/1/test_coqcat_evaluation.json +0 -30
- wisent/examples/scripts/1/test_coqcat_pairs.json +0 -8
- wisent/examples/scripts/1/test_dbpedia_14_evaluation.json +0 -30
- wisent/examples/scripts/1/test_dbpedia_14_pairs.json +0 -8
- wisent/examples/scripts/1/test_epec_koref_bin_evaluation.json +0 -30
- wisent/examples/scripts/1/test_epec_koref_bin_pairs.json +0 -8
- wisent/examples/scripts/1/test_ethos_binary_evaluation.json +0 -30
- wisent/examples/scripts/1/test_ethos_binary_pairs.json +0 -8
- wisent/examples/scripts/2/test_afrimgsm_direct_amh_evaluation.json +0 -30
- wisent/examples/scripts/2/test_afrimgsm_direct_amh_pairs.json +0 -8
- wisent/examples/scripts/2/test_afrimmlu_direct_amh_evaluation.json +0 -30
- wisent/examples/scripts/2/test_afrimmlu_direct_amh_pairs.json +0 -8
- wisent/examples/scripts/2/test_afrixnli_en_direct_amh_evaluation.json +0 -30
- wisent/examples/scripts/2/test_afrixnli_en_direct_amh_pairs.json +0 -8
- wisent/examples/scripts/2/test_arc_ar_evaluation.json +0 -30
- wisent/examples/scripts/2/test_arc_ar_pairs.json +0 -8
- wisent/examples/scripts/2/test_atis_evaluation.json +0 -30
- wisent/examples/scripts/2/test_atis_pairs.json +0 -8
- wisent/examples/scripts/2/test_babi_evaluation.json +0 -30
- wisent/examples/scripts/2/test_babi_pairs.json +0 -8
- wisent/examples/scripts/2/test_babilong_evaluation.json +0 -30
- wisent/examples/scripts/2/test_babilong_pairs.json +0 -8
- wisent/examples/scripts/2/test_bangla_mmlu_evaluation.json +0 -30
- wisent/examples/scripts/2/test_bangla_mmlu_pairs.json +0 -8
- wisent/examples/scripts/2/test_basque-glue_pairs.json +0 -14
- {wisent-0.7.701.dist-info → wisent-0.7.1045.dist-info}/WHEEL +0 -0
- {wisent-0.7.701.dist-info → wisent-0.7.1045.dist-info}/entry_points.txt +0 -0
- {wisent-0.7.701.dist-info → wisent-0.7.1045.dist-info}/licenses/LICENSE +0 -0
- {wisent-0.7.701.dist-info → wisent-0.7.1045.dist-info}/top_level.txt +0 -0
|
@@ -133,14 +133,12 @@ class OkapiMmluMultilingualExtractor(LMEvalBenchmarkExtractor):
|
|
|
133
133
|
incorrect_idx = (answer_idx + 1) % len(choices)
|
|
134
134
|
incorrect = choices[incorrect_idx]
|
|
135
135
|
|
|
136
|
-
formatted_question = f"Question: {question}\nA. {incorrect}\nB. {correct}"
|
|
137
|
-
|
|
138
136
|
metadata = {
|
|
139
137
|
"label": "okapi/mmlu_multilingual",
|
|
140
138
|
}
|
|
141
139
|
|
|
142
140
|
return self._build_pair(
|
|
143
|
-
question=
|
|
141
|
+
question=question,
|
|
144
142
|
correct=correct,
|
|
145
143
|
incorrect=incorrect,
|
|
146
144
|
metadata=metadata,
|
wisent/core/contrastive_pairs/lm_eval_pairs/lm_task_extractors/okapi_truthfulqa_multilingual.py
CHANGED
|
@@ -117,10 +117,9 @@ class OkapiTruthfulqaMultilingualExtractor(LMEvalBenchmarkExtractor):
|
|
|
117
117
|
incorrect = choices[incorrect_idx].strip() if isinstance(choices[incorrect_idx], str) else str(choices[incorrect_idx])
|
|
118
118
|
|
|
119
119
|
if correct and incorrect:
|
|
120
|
-
formatted_question = f"Question: {question}\nA. {incorrect}\nB. {correct}"
|
|
121
120
|
metadata = {"label": "okapi/truthfulqa_multilingual"}
|
|
122
121
|
return self._build_pair(
|
|
123
|
-
question=
|
|
122
|
+
question=question,
|
|
124
123
|
correct=correct,
|
|
125
124
|
incorrect=incorrect,
|
|
126
125
|
metadata=metadata,
|
|
@@ -180,14 +179,12 @@ class OkapiTruthfulqaMultilingualExtractor(LMEvalBenchmarkExtractor):
|
|
|
180
179
|
incorrect_idx = (answer_idx + 1) % len(choices)
|
|
181
180
|
incorrect = choices[incorrect_idx]
|
|
182
181
|
|
|
183
|
-
formatted_question = f"Question: {question}\nA. {incorrect}\nB. {correct}"
|
|
184
|
-
|
|
185
182
|
metadata = {
|
|
186
183
|
"label": "okapi/truthfulqa_multilingual",
|
|
187
184
|
}
|
|
188
185
|
|
|
189
186
|
return self._build_pair(
|
|
190
|
-
question=
|
|
187
|
+
question=question,
|
|
191
188
|
correct=correct,
|
|
192
189
|
incorrect=incorrect,
|
|
193
190
|
metadata=metadata,
|
|
@@ -157,14 +157,12 @@ class OlaphExtractor(LMEvalBenchmarkExtractor):
|
|
|
157
157
|
incorrect_idx = (answer_idx + 1) % len(choices)
|
|
158
158
|
incorrect = choices[incorrect_idx]
|
|
159
159
|
|
|
160
|
-
formatted_question = f"Question: {question}\nA. {incorrect}\nB. {correct}"
|
|
161
|
-
|
|
162
160
|
metadata = {
|
|
163
161
|
"label": "olaph",
|
|
164
162
|
}
|
|
165
163
|
|
|
166
164
|
return self._build_pair(
|
|
167
|
-
question=
|
|
165
|
+
question=question,
|
|
168
166
|
correct=correct,
|
|
169
167
|
incorrect=incorrect,
|
|
170
168
|
metadata=metadata,
|
|
@@ -89,14 +89,14 @@ class OpenBookQAExtractor(LMEvalBenchmarkExtractor):
|
|
|
89
89
|
incorrect = endings[(answer_idx+1)%len(endings)]
|
|
90
90
|
|
|
91
91
|
question = f"{question_stem}"
|
|
92
|
-
|
|
92
|
+
prompt = f"{question}"
|
|
93
93
|
|
|
94
94
|
metadata = {
|
|
95
95
|
"label": "openbookqa",
|
|
96
96
|
}
|
|
97
97
|
|
|
98
98
|
return self._build_pair(
|
|
99
|
-
question=
|
|
99
|
+
question=prompt,
|
|
100
100
|
correct=correct,
|
|
101
101
|
incorrect=incorrect,
|
|
102
102
|
metadata=metadata,
|
|
@@ -80,12 +80,10 @@ class OptionExtractor(LMEvalBenchmarkExtractor):
|
|
|
80
80
|
correct = str(choices[answer_idx]).strip()
|
|
81
81
|
incorrect_idx = (answer_idx + 1) % len(choices)
|
|
82
82
|
incorrect = str(choices[incorrect_idx]).strip()
|
|
83
|
-
|
|
84
|
-
formatted_question = f"Question: {question}\nA. {incorrect}\nB. {correct}"
|
|
85
83
|
metadata = {"label": "option"}
|
|
86
84
|
|
|
87
85
|
return self._build_pair(
|
|
88
|
-
question=
|
|
86
|
+
question=question,
|
|
89
87
|
correct=correct,
|
|
90
88
|
incorrect=incorrect,
|
|
91
89
|
metadata=metadata,
|
|
@@ -83,12 +83,10 @@ class ParafrasejaExtractor(LMEvalBenchmarkExtractor):
|
|
|
83
83
|
correct = str(choices[answer_idx]).strip()
|
|
84
84
|
incorrect_idx = (answer_idx + 1) % len(choices)
|
|
85
85
|
incorrect = str(choices[incorrect_idx]).strip()
|
|
86
|
-
|
|
87
|
-
formatted_question = f"Question: {question}\nA. {incorrect}\nB. {correct}"
|
|
88
86
|
metadata = {"label": "parafraseja"}
|
|
89
87
|
|
|
90
88
|
return self._build_pair(
|
|
91
|
-
question=
|
|
89
|
+
question=question,
|
|
92
90
|
correct=correct,
|
|
93
91
|
incorrect=incorrect,
|
|
94
92
|
metadata=metadata,
|
|
@@ -83,12 +83,10 @@ class ParafrasesExtractor(LMEvalBenchmarkExtractor):
|
|
|
83
83
|
correct = str(choices[answer_idx]).strip()
|
|
84
84
|
incorrect_idx = (answer_idx + 1) % len(choices)
|
|
85
85
|
incorrect = str(choices[incorrect_idx]).strip()
|
|
86
|
-
|
|
87
|
-
formatted_question = f"Question: {question}\nA. {incorrect}\nB. {correct}"
|
|
88
86
|
metadata = {"label": "parafrases"}
|
|
89
87
|
|
|
90
88
|
return self._build_pair(
|
|
91
|
-
question=
|
|
89
|
+
question=question,
|
|
92
90
|
correct=correct,
|
|
93
91
|
incorrect=incorrect,
|
|
94
92
|
metadata=metadata,
|
|
@@ -80,12 +80,10 @@ class PawsExtractor(LMEvalBenchmarkExtractor):
|
|
|
80
80
|
correct = str(choices[answer_idx]).strip()
|
|
81
81
|
incorrect_idx = (answer_idx + 1) % len(choices)
|
|
82
82
|
incorrect = str(choices[incorrect_idx]).strip()
|
|
83
|
-
|
|
84
|
-
formatted_question = f"Question: {question}\nA. {incorrect}\nB. {correct}"
|
|
85
83
|
metadata = {"label": "paws"}
|
|
86
84
|
|
|
87
85
|
return self._build_pair(
|
|
88
|
-
question=
|
|
86
|
+
question=question,
|
|
89
87
|
correct=correct,
|
|
90
88
|
incorrect=incorrect,
|
|
91
89
|
metadata=metadata,
|
|
@@ -125,14 +125,12 @@ class PawsXExtractor(LMEvalBenchmarkExtractor):
|
|
|
125
125
|
incorrect_idx = (answer_idx + 1) % len(choices)
|
|
126
126
|
incorrect = choices[incorrect_idx]
|
|
127
127
|
|
|
128
|
-
formatted_question = f"Question: {question}\nA. {incorrect}\nB. {correct}"
|
|
129
|
-
|
|
130
128
|
metadata = {
|
|
131
129
|
"label": "paws-x",
|
|
132
130
|
}
|
|
133
131
|
|
|
134
132
|
return self._build_pair(
|
|
135
|
-
question=
|
|
133
|
+
question=question,
|
|
136
134
|
correct=correct,
|
|
137
135
|
incorrect=incorrect,
|
|
138
136
|
metadata=metadata,
|
|
@@ -82,7 +82,7 @@ class PawsXExtractor(LMEvalBenchmarkExtractor):
|
|
|
82
82
|
)
|
|
83
83
|
return None
|
|
84
84
|
|
|
85
|
-
|
|
85
|
+
prompt = f"Is sentence '{sentence1}' paraphrase of sentence '{sentence2}'?"
|
|
86
86
|
|
|
87
87
|
# label == 1 means paraphrase (positive), label == 0 means not paraphrase (negative)
|
|
88
88
|
correct = "Yes" if label == 1 else "No"
|
|
@@ -93,7 +93,7 @@ class PawsXExtractor(LMEvalBenchmarkExtractor):
|
|
|
93
93
|
}
|
|
94
94
|
|
|
95
95
|
return self._build_pair(
|
|
96
|
-
question=
|
|
96
|
+
question=prompt,
|
|
97
97
|
correct=correct,
|
|
98
98
|
incorrect=incorrect,
|
|
99
99
|
metadata=metadata,
|
|
@@ -219,12 +219,10 @@ class PersonaExtractor(LMEvalBenchmarkExtractor):
|
|
|
219
219
|
correct = str(choices[answer_idx]).strip()
|
|
220
220
|
incorrect_idx = (answer_idx + 1) % len(choices)
|
|
221
221
|
incorrect = str(choices[incorrect_idx]).strip()
|
|
222
|
-
|
|
223
|
-
formatted_question = f"Question: {question}\nA. {incorrect}\nB. {correct}"
|
|
224
222
|
metadata = {"label": "persona"}
|
|
225
223
|
|
|
226
224
|
return self._build_pair(
|
|
227
|
-
question=
|
|
225
|
+
question=question,
|
|
228
226
|
correct=correct,
|
|
229
227
|
incorrect=incorrect,
|
|
230
228
|
metadata=metadata,
|
|
@@ -117,12 +117,10 @@ class PhrasesExtractor(LMEvalBenchmarkExtractor):
|
|
|
117
117
|
correct = str(choices[answer_idx]).strip()
|
|
118
118
|
incorrect_idx = (answer_idx + 1) % len(choices)
|
|
119
119
|
incorrect = str(choices[incorrect_idx]).strip()
|
|
120
|
-
|
|
121
|
-
formatted_question = f"Question: {question}\nA. {incorrect}\nB. {correct}"
|
|
122
120
|
metadata = {"label": "phrases"}
|
|
123
121
|
|
|
124
122
|
return self._build_pair(
|
|
125
|
-
question=
|
|
123
|
+
question=question,
|
|
126
124
|
correct=correct,
|
|
127
125
|
incorrect=incorrect,
|
|
128
126
|
metadata=metadata,
|
|
@@ -132,14 +132,12 @@ class PileExtractor(LMEvalBenchmarkExtractor):
|
|
|
132
132
|
incorrect_idx = (answer_idx + 1) % len(choices)
|
|
133
133
|
incorrect = choices[incorrect_idx]
|
|
134
134
|
|
|
135
|
-
formatted_question = f"Question: {question}\nA. {incorrect}\nB. {correct}"
|
|
136
|
-
|
|
137
135
|
metadata = {
|
|
138
136
|
"label": "pile",
|
|
139
137
|
}
|
|
140
138
|
|
|
141
139
|
return self._build_pair(
|
|
142
|
-
question=
|
|
140
|
+
question=question,
|
|
143
141
|
correct=correct,
|
|
144
142
|
incorrect=incorrect,
|
|
145
143
|
metadata=metadata,
|
|
@@ -84,7 +84,7 @@ class PIQAExtractor(LMEvalBenchmarkExtractor):
|
|
|
84
84
|
return None
|
|
85
85
|
|
|
86
86
|
question = f"Question: {goal}\nAnswer:"
|
|
87
|
-
|
|
87
|
+
prompt = f"{question}"
|
|
88
88
|
|
|
89
89
|
correct = sol1 if label == 0 else sol2
|
|
90
90
|
incorrect = sol2 if label == 0 else sol1
|
|
@@ -94,7 +94,7 @@ class PIQAExtractor(LMEvalBenchmarkExtractor):
|
|
|
94
94
|
}
|
|
95
95
|
|
|
96
96
|
return self._build_pair(
|
|
97
|
-
question=
|
|
97
|
+
question=prompt,
|
|
98
98
|
correct=correct,
|
|
99
99
|
incorrect=incorrect,
|
|
100
100
|
metadata=metadata,
|
|
@@ -126,14 +126,12 @@ class PortugueseBenchExtractor(LMEvalBenchmarkExtractor):
|
|
|
126
126
|
incorrect_idx = (answer_idx + 1) % len(choices)
|
|
127
127
|
incorrect = choices[incorrect_idx]
|
|
128
128
|
|
|
129
|
-
formatted_question = f"Question: {question}\nA. {incorrect}\nB. {correct}"
|
|
130
|
-
|
|
131
129
|
metadata = {
|
|
132
130
|
"label": "portuguese_bench",
|
|
133
131
|
}
|
|
134
132
|
|
|
135
133
|
return self._build_pair(
|
|
136
|
-
question=
|
|
134
|
+
question=question,
|
|
137
135
|
correct=correct,
|
|
138
136
|
incorrect=incorrect,
|
|
139
137
|
metadata=metadata,
|
|
@@ -80,12 +80,10 @@ class PromptExtractor(LMEvalBenchmarkExtractor):
|
|
|
80
80
|
correct = str(choices[answer_idx]).strip()
|
|
81
81
|
incorrect_idx = (answer_idx + 1) % len(choices)
|
|
82
82
|
incorrect = str(choices[incorrect_idx]).strip()
|
|
83
|
-
|
|
84
|
-
formatted_question = f"Question: {question}\nA. {incorrect}\nB. {correct}"
|
|
85
83
|
metadata = {"label": "prompt"}
|
|
86
84
|
|
|
87
85
|
return self._build_pair(
|
|
88
|
-
question=
|
|
86
|
+
question=question,
|
|
89
87
|
correct=correct,
|
|
90
88
|
incorrect=incorrect,
|
|
91
89
|
metadata=metadata,
|
|
@@ -86,14 +86,14 @@ class ProstExtractor(LMEvalBenchmarkExtractor):
|
|
|
86
86
|
correct = answers[label]
|
|
87
87
|
incorrect = answers[(label+1)%len(answers)]
|
|
88
88
|
|
|
89
|
-
|
|
89
|
+
prompt = f"{context}\nQuestion: {question}\nAnswer:"
|
|
90
90
|
|
|
91
91
|
metadata = {
|
|
92
92
|
"label": "prost",
|
|
93
93
|
}
|
|
94
94
|
|
|
95
95
|
return self._build_pair(
|
|
96
|
-
question=
|
|
96
|
+
question=prompt,
|
|
97
97
|
correct=correct,
|
|
98
98
|
incorrect=incorrect,
|
|
99
99
|
metadata=metadata,
|
|
@@ -80,7 +80,7 @@ class PubMedQAExtractor(LMEvalBenchmarkExtractor):
|
|
|
80
80
|
return None
|
|
81
81
|
|
|
82
82
|
formatted_context = " ".join(s.strip() for s in contexts if isinstance(s, str) and s.strip())
|
|
83
|
-
|
|
83
|
+
prompt = f"Abstract: {formatted_context}\nQuestion: {question}"
|
|
84
84
|
|
|
85
85
|
correct = final_decision
|
|
86
86
|
incorrect = "yes" if correct == "no" else "no"
|
|
@@ -90,7 +90,7 @@ class PubMedQAExtractor(LMEvalBenchmarkExtractor):
|
|
|
90
90
|
}
|
|
91
91
|
|
|
92
92
|
return self._build_pair(
|
|
93
|
-
question=
|
|
93
|
+
question=prompt,
|
|
94
94
|
correct=correct,
|
|
95
95
|
incorrect=incorrect,
|
|
96
96
|
metadata=metadata,
|
|
@@ -90,14 +90,14 @@ class QA4MREExtractor(LMEvalBenchmarkExtractor):
|
|
|
90
90
|
correct = answers[answer]
|
|
91
91
|
incorrect = answers[(answer+1)%len(answers)]
|
|
92
92
|
|
|
93
|
-
|
|
93
|
+
prompt = f"{document_str}\nQuestion: {question_str}?\nAnswer:"
|
|
94
94
|
|
|
95
95
|
metadata = {
|
|
96
96
|
"label": "qa4mre",
|
|
97
97
|
}
|
|
98
98
|
|
|
99
99
|
return self._build_pair(
|
|
100
|
-
question=
|
|
100
|
+
question=prompt,
|
|
101
101
|
correct=correct,
|
|
102
102
|
incorrect=incorrect,
|
|
103
103
|
metadata=metadata,
|
|
@@ -86,7 +86,7 @@ class QasperExtractor(LMEvalBenchmarkExtractor):
|
|
|
86
86
|
return None
|
|
87
87
|
|
|
88
88
|
|
|
89
|
-
|
|
89
|
+
prompt = f"TITLE: {title}\nABSTRACT: {abstract}\nQ: {question}"
|
|
90
90
|
|
|
91
91
|
correct = answer
|
|
92
92
|
incorrect = "yes" if answer == "no" else "no"
|
|
@@ -96,7 +96,7 @@ class QasperExtractor(LMEvalBenchmarkExtractor):
|
|
|
96
96
|
}
|
|
97
97
|
|
|
98
98
|
return self._build_pair(
|
|
99
|
-
question=
|
|
99
|
+
question=prompt,
|
|
100
100
|
correct=correct,
|
|
101
101
|
incorrect=incorrect,
|
|
102
102
|
metadata=metadata,
|
|
@@ -80,7 +80,7 @@ class QasperBoolExtractor(LMEvalBenchmarkExtractor):
|
|
|
80
80
|
return None
|
|
81
81
|
|
|
82
82
|
|
|
83
|
-
|
|
83
|
+
prompt = f"TITLE: {title}\nABSTRACT: {abstract}\nQ: {question}"
|
|
84
84
|
|
|
85
85
|
correct = answer
|
|
86
86
|
incorrect = "yes" if answer == "no" else "no"
|
|
@@ -90,7 +90,7 @@ class QasperBoolExtractor(LMEvalBenchmarkExtractor):
|
|
|
90
90
|
}
|
|
91
91
|
|
|
92
92
|
return self._build_pair(
|
|
93
|
-
question=
|
|
93
|
+
question=prompt,
|
|
94
94
|
correct=correct,
|
|
95
95
|
incorrect=incorrect,
|
|
96
96
|
metadata=metadata,
|
|
@@ -79,7 +79,7 @@ class QNLIExtractor(LMEvalBenchmarkExtractor):
|
|
|
79
79
|
)
|
|
80
80
|
return None
|
|
81
81
|
|
|
82
|
-
|
|
82
|
+
prompt = f"{question}\n{sentence}\nQuestion: Does this response answer the question?"
|
|
83
83
|
|
|
84
84
|
correct = "Yes" if label == 0 else "No"
|
|
85
85
|
incorrect = "No" if label == 0 else "Yes"
|
|
@@ -89,7 +89,7 @@ class QNLIExtractor(LMEvalBenchmarkExtractor):
|
|
|
89
89
|
}
|
|
90
90
|
|
|
91
91
|
return self._build_pair(
|
|
92
|
-
question=
|
|
92
|
+
question=prompt,
|
|
93
93
|
correct=correct,
|
|
94
94
|
incorrect=incorrect,
|
|
95
95
|
metadata=metadata,
|
|
@@ -80,12 +80,10 @@ class QnlieuExtractor(LMEvalBenchmarkExtractor):
|
|
|
80
80
|
correct = str(choices[answer_idx]).strip()
|
|
81
81
|
incorrect_idx = (answer_idx + 1) % len(choices)
|
|
82
82
|
incorrect = str(choices[incorrect_idx]).strip()
|
|
83
|
-
|
|
84
|
-
formatted_question = f"Question: {question}\nA. {incorrect}\nB. {correct}"
|
|
85
83
|
metadata = {"label": "qnlieu"}
|
|
86
84
|
|
|
87
85
|
return self._build_pair(
|
|
88
|
-
question=
|
|
86
|
+
question=question,
|
|
89
87
|
correct=correct,
|
|
90
88
|
incorrect=incorrect,
|
|
91
89
|
metadata=metadata,
|
|
@@ -79,7 +79,7 @@ class QQPExtractor(LMEvalBenchmarkExtractor):
|
|
|
79
79
|
)
|
|
80
80
|
return None
|
|
81
81
|
|
|
82
|
-
|
|
82
|
+
prompt = f"{question1}\n{question2}\nQuestion: Do both questions ask the same thing?"
|
|
83
83
|
|
|
84
84
|
correct = "Yes" if label == 1 else "No"
|
|
85
85
|
incorrect = "No" if label == 1 else "Yes"
|
|
@@ -89,7 +89,7 @@ class QQPExtractor(LMEvalBenchmarkExtractor):
|
|
|
89
89
|
}
|
|
90
90
|
|
|
91
91
|
return self._build_pair(
|
|
92
|
-
question=
|
|
92
|
+
question=prompt,
|
|
93
93
|
correct=correct,
|
|
94
94
|
incorrect=incorrect,
|
|
95
95
|
metadata=metadata,
|
|
@@ -95,14 +95,14 @@ class RACEExtractor(LMEvalBenchmarkExtractor):
|
|
|
95
95
|
correct = options[answer_idx]
|
|
96
96
|
incorrect = options[(answer_idx+1)%len(options)]
|
|
97
97
|
|
|
98
|
-
|
|
98
|
+
prompt = f"{article}\nQuestion: {question}?\nAnswer:"
|
|
99
99
|
|
|
100
100
|
metadata = {
|
|
101
101
|
"label": "race",
|
|
102
102
|
}
|
|
103
103
|
|
|
104
104
|
return self._build_pair(
|
|
105
|
-
question=
|
|
105
|
+
question=prompt,
|
|
106
106
|
correct=correct,
|
|
107
107
|
incorrect=incorrect,
|
|
108
108
|
metadata=metadata,
|
|
@@ -80,12 +80,10 @@ class RandomExtractor(LMEvalBenchmarkExtractor):
|
|
|
80
80
|
correct = str(choices[answer_idx]).strip()
|
|
81
81
|
incorrect_idx = (answer_idx + 1) % len(choices)
|
|
82
82
|
incorrect = str(choices[incorrect_idx]).strip()
|
|
83
|
-
|
|
84
|
-
formatted_question = f"Question: {question}\nA. {incorrect}\nB. {correct}"
|
|
85
83
|
metadata = {"label": "random"}
|
|
86
84
|
|
|
87
85
|
return self._build_pair(
|
|
88
|
-
question=
|
|
86
|
+
question=question,
|
|
89
87
|
correct=correct,
|
|
90
88
|
incorrect=incorrect,
|
|
91
89
|
metadata=metadata,
|
|
@@ -96,14 +96,14 @@ class RecordExtractor(LMEvalBenchmarkExtractor):
|
|
|
96
96
|
# Remove @highlight prefix
|
|
97
97
|
passage = passage.replace('@highlight', '')
|
|
98
98
|
|
|
99
|
-
|
|
99
|
+
prompt = f"Passage: {passage}\n\nQuery: {query}\nWhich option correctly completes the sentence at @placeholder?"
|
|
100
100
|
|
|
101
101
|
metadata = {
|
|
102
102
|
"label": "record",
|
|
103
103
|
}
|
|
104
104
|
|
|
105
105
|
return self._build_pair(
|
|
106
|
-
question=
|
|
106
|
+
question=prompt,
|
|
107
107
|
correct=correct,
|
|
108
108
|
incorrect=incorrect,
|
|
109
109
|
metadata=metadata,
|
|
@@ -83,12 +83,10 @@ class ReversedExtractor(LMEvalBenchmarkExtractor):
|
|
|
83
83
|
correct = str(choices[answer_idx]).strip()
|
|
84
84
|
incorrect_idx = (answer_idx + 1) % len(choices)
|
|
85
85
|
incorrect = str(choices[incorrect_idx]).strip()
|
|
86
|
-
|
|
87
|
-
formatted_question = f"Question: {question}\nA. {incorrect}\nB. {correct}"
|
|
88
86
|
metadata = {"label": "reversed"}
|
|
89
87
|
|
|
90
88
|
return self._build_pair(
|
|
91
|
-
question=
|
|
89
|
+
question=question,
|
|
92
90
|
correct=correct,
|
|
93
91
|
incorrect=incorrect,
|
|
94
92
|
metadata=metadata,
|
|
@@ -79,7 +79,7 @@ class RTEExtractor(LMEvalBenchmarkExtractor):
|
|
|
79
79
|
)
|
|
80
80
|
return None
|
|
81
81
|
|
|
82
|
-
|
|
82
|
+
prompt = f"{sentence1}\nQuestion: {sentence2} True or False?"
|
|
83
83
|
|
|
84
84
|
correct = "True" if label == 0 else "False"
|
|
85
85
|
incorrect = "False" if label == 0 else "True"
|
|
@@ -89,7 +89,7 @@ class RTEExtractor(LMEvalBenchmarkExtractor):
|
|
|
89
89
|
}
|
|
90
90
|
|
|
91
91
|
return self._build_pair(
|
|
92
|
-
question=
|
|
92
|
+
question=prompt,
|
|
93
93
|
correct=correct,
|
|
94
94
|
incorrect=incorrect,
|
|
95
95
|
metadata=metadata,
|
|
@@ -141,14 +141,12 @@ class RulerExtractor(LMEvalBenchmarkExtractor):
|
|
|
141
141
|
incorrect_idx = (answer_idx + 1) % len(choices)
|
|
142
142
|
incorrect = choices[incorrect_idx]
|
|
143
143
|
|
|
144
|
-
formatted_question = f"Question: {question}\nA. {incorrect}\nB. {correct}"
|
|
145
|
-
|
|
146
144
|
metadata = {
|
|
147
145
|
"label": "ruler",
|
|
148
146
|
}
|
|
149
147
|
|
|
150
148
|
return self._build_pair(
|
|
151
|
-
question=
|
|
149
|
+
question=question,
|
|
152
150
|
correct=correct,
|
|
153
151
|
incorrect=incorrect,
|
|
154
152
|
metadata=metadata,
|
|
@@ -84,14 +84,14 @@ class SciQExtractor(LMEvalBenchmarkExtractor):
|
|
|
84
84
|
)
|
|
85
85
|
return None
|
|
86
86
|
|
|
87
|
-
|
|
87
|
+
prompt = f"{support}\nQuestion: {question}\nAnswer:"
|
|
88
88
|
|
|
89
89
|
metadata = {
|
|
90
90
|
"label": "sciq",
|
|
91
91
|
}
|
|
92
92
|
|
|
93
93
|
return self._build_pair(
|
|
94
|
-
question=
|
|
94
|
+
question=prompt,
|
|
95
95
|
correct=correct,
|
|
96
96
|
incorrect=incorrect,
|
|
97
97
|
metadata=metadata,
|
|
@@ -150,12 +150,10 @@ class ScoreExtractor(LMEvalBenchmarkExtractor):
|
|
|
150
150
|
incorrect_idx = (answer_idx + 1) % len(cleaned_choices)
|
|
151
151
|
incorrect = cleaned_choices[incorrect_idx]
|
|
152
152
|
|
|
153
|
-
formatted_question = f"Question: {question}\nA. {incorrect}\nB. {correct}"
|
|
154
|
-
|
|
155
153
|
metadata = {"label": "score_robustness"}
|
|
156
154
|
|
|
157
155
|
return self._build_pair(
|
|
158
|
-
question=
|
|
156
|
+
question=question,
|
|
159
157
|
correct=correct,
|
|
160
158
|
incorrect=incorrect,
|
|
161
159
|
metadata=metadata,
|
|
@@ -132,14 +132,12 @@ class ScrollsExtractor(LMEvalBenchmarkExtractor):
|
|
|
132
132
|
incorrect_idx = (answer_idx + 1) % len(choices)
|
|
133
133
|
incorrect = choices[incorrect_idx]
|
|
134
134
|
|
|
135
|
-
formatted_question = f"Question: {question}\nA. {incorrect}\nB. {correct}"
|
|
136
|
-
|
|
137
135
|
metadata = {
|
|
138
136
|
"label": "scrolls",
|
|
139
137
|
}
|
|
140
138
|
|
|
141
139
|
return self._build_pair(
|
|
142
|
-
question=
|
|
140
|
+
question=question,
|
|
143
141
|
correct=correct,
|
|
144
142
|
incorrect=incorrect,
|
|
145
143
|
metadata=metadata,
|
|
@@ -128,14 +128,12 @@ class ScrollsMultipleChoiceExtractor(LMEvalBenchmarkExtractor):
|
|
|
128
128
|
incorrect_idx = (answer_idx + 1) % len(choices)
|
|
129
129
|
incorrect = choices[incorrect_idx]
|
|
130
130
|
|
|
131
|
-
formatted_question = f"Question: {question}\nA. {incorrect}\nB. {correct}"
|
|
132
|
-
|
|
133
131
|
metadata = {
|
|
134
132
|
"label": "scrolls_mc",
|
|
135
133
|
}
|
|
136
134
|
|
|
137
135
|
return self._build_pair(
|
|
138
|
-
question=
|
|
136
|
+
question=question,
|
|
139
137
|
correct=correct,
|
|
140
138
|
incorrect=incorrect,
|
|
141
139
|
metadata=metadata,
|
|
@@ -83,12 +83,10 @@ class SelfExtractor(LMEvalBenchmarkExtractor):
|
|
|
83
83
|
correct = str(choices[answer_idx]).strip()
|
|
84
84
|
incorrect_idx = (answer_idx + 1) % len(choices)
|
|
85
85
|
incorrect = str(choices[incorrect_idx]).strip()
|
|
86
|
-
|
|
87
|
-
formatted_question = f"Question: {question}\nA. {incorrect}\nB. {correct}"
|
|
88
86
|
metadata = {"label": "self"}
|
|
89
87
|
|
|
90
88
|
return self._build_pair(
|
|
91
|
-
question=
|
|
89
|
+
question=question,
|
|
92
90
|
correct=correct,
|
|
93
91
|
incorrect=incorrect,
|
|
94
92
|
metadata=metadata,
|
|
@@ -104,12 +104,10 @@ class SglueExtractor(LMEvalBenchmarkExtractor):
|
|
|
104
104
|
correct = str(choices[answer_idx]).strip()
|
|
105
105
|
incorrect_idx = (answer_idx + 1) % len(choices)
|
|
106
106
|
incorrect = str(choices[incorrect_idx]).strip()
|
|
107
|
-
|
|
108
|
-
formatted_question = f"Question: {question}\nA. {incorrect}\nB. {correct}"
|
|
109
107
|
metadata = {"label": "sglue"}
|
|
110
108
|
|
|
111
109
|
return self._build_pair(
|
|
112
|
-
question=
|
|
110
|
+
question=question,
|
|
113
111
|
correct=correct,
|
|
114
112
|
incorrect=incorrect,
|
|
115
113
|
metadata=metadata,
|
|
@@ -92,7 +92,8 @@ class SglueRteExtractor(LMEvalBenchmarkExtractor):
|
|
|
92
92
|
correct = "False"
|
|
93
93
|
incorrect = "True"
|
|
94
94
|
|
|
95
|
-
|
|
95
|
+
# Raw prompt without A./B. formatting
|
|
96
|
+
prompt = f"Premise: {premise}\nHypothesis: {hypothesis} True or False?"
|
|
96
97
|
|
|
97
98
|
metadata = {"label": "sglue_rte"}
|
|
98
99
|
|