warp-lang 1.9.1__py3-none-win_amd64.whl → 1.10.0rc2__py3-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (346) hide show
  1. warp/__init__.py +301 -287
  2. warp/__init__.pyi +794 -305
  3. warp/_src/__init__.py +14 -0
  4. warp/_src/autograd.py +1075 -0
  5. warp/_src/build.py +618 -0
  6. warp/_src/build_dll.py +640 -0
  7. warp/{builtins.py → _src/builtins.py} +1382 -377
  8. warp/_src/codegen.py +4359 -0
  9. warp/{config.py → _src/config.py} +178 -169
  10. warp/_src/constants.py +57 -0
  11. warp/_src/context.py +8294 -0
  12. warp/_src/dlpack.py +462 -0
  13. warp/_src/fabric.py +355 -0
  14. warp/_src/fem/__init__.py +14 -0
  15. warp/_src/fem/adaptivity.py +508 -0
  16. warp/_src/fem/cache.py +687 -0
  17. warp/_src/fem/dirichlet.py +188 -0
  18. warp/{fem → _src/fem}/domain.py +40 -30
  19. warp/_src/fem/field/__init__.py +131 -0
  20. warp/_src/fem/field/field.py +701 -0
  21. warp/{fem → _src/fem}/field/nodal_field.py +30 -15
  22. warp/{fem → _src/fem}/field/restriction.py +1 -1
  23. warp/{fem → _src/fem}/field/virtual.py +53 -27
  24. warp/_src/fem/geometry/__init__.py +32 -0
  25. warp/{fem → _src/fem}/geometry/adaptive_nanogrid.py +77 -163
  26. warp/_src/fem/geometry/closest_point.py +97 -0
  27. warp/{fem → _src/fem}/geometry/deformed_geometry.py +14 -22
  28. warp/{fem → _src/fem}/geometry/element.py +32 -10
  29. warp/{fem → _src/fem}/geometry/geometry.py +48 -20
  30. warp/{fem → _src/fem}/geometry/grid_2d.py +12 -23
  31. warp/{fem → _src/fem}/geometry/grid_3d.py +12 -23
  32. warp/{fem → _src/fem}/geometry/hexmesh.py +40 -63
  33. warp/{fem → _src/fem}/geometry/nanogrid.py +255 -248
  34. warp/{fem → _src/fem}/geometry/partition.py +121 -63
  35. warp/{fem → _src/fem}/geometry/quadmesh.py +26 -45
  36. warp/{fem → _src/fem}/geometry/tetmesh.py +40 -63
  37. warp/{fem → _src/fem}/geometry/trimesh.py +26 -45
  38. warp/{fem → _src/fem}/integrate.py +164 -158
  39. warp/_src/fem/linalg.py +383 -0
  40. warp/_src/fem/operator.py +396 -0
  41. warp/_src/fem/polynomial.py +229 -0
  42. warp/{fem → _src/fem}/quadrature/pic_quadrature.py +15 -20
  43. warp/{fem → _src/fem}/quadrature/quadrature.py +95 -47
  44. warp/_src/fem/space/__init__.py +248 -0
  45. warp/{fem → _src/fem}/space/basis_function_space.py +20 -11
  46. warp/_src/fem/space/basis_space.py +679 -0
  47. warp/{fem → _src/fem}/space/dof_mapper.py +3 -3
  48. warp/{fem → _src/fem}/space/function_space.py +14 -13
  49. warp/{fem → _src/fem}/space/grid_2d_function_space.py +4 -7
  50. warp/{fem → _src/fem}/space/grid_3d_function_space.py +4 -4
  51. warp/{fem → _src/fem}/space/hexmesh_function_space.py +4 -10
  52. warp/{fem → _src/fem}/space/nanogrid_function_space.py +3 -9
  53. warp/{fem → _src/fem}/space/partition.py +117 -60
  54. warp/{fem → _src/fem}/space/quadmesh_function_space.py +4 -10
  55. warp/{fem → _src/fem}/space/restriction.py +66 -33
  56. warp/_src/fem/space/shape/__init__.py +152 -0
  57. warp/{fem → _src/fem}/space/shape/cube_shape_function.py +9 -9
  58. warp/{fem → _src/fem}/space/shape/shape_function.py +8 -9
  59. warp/{fem → _src/fem}/space/shape/square_shape_function.py +6 -6
  60. warp/{fem → _src/fem}/space/shape/tet_shape_function.py +3 -3
  61. warp/{fem → _src/fem}/space/shape/triangle_shape_function.py +3 -3
  62. warp/{fem → _src/fem}/space/tetmesh_function_space.py +3 -9
  63. warp/_src/fem/space/topology.py +459 -0
  64. warp/{fem → _src/fem}/space/trimesh_function_space.py +3 -9
  65. warp/_src/fem/types.py +112 -0
  66. warp/_src/fem/utils.py +486 -0
  67. warp/_src/jax.py +186 -0
  68. warp/_src/jax_experimental/__init__.py +14 -0
  69. warp/_src/jax_experimental/custom_call.py +387 -0
  70. warp/_src/jax_experimental/ffi.py +1284 -0
  71. warp/_src/jax_experimental/xla_ffi.py +656 -0
  72. warp/_src/marching_cubes.py +708 -0
  73. warp/_src/math.py +414 -0
  74. warp/_src/optim/__init__.py +14 -0
  75. warp/_src/optim/adam.py +163 -0
  76. warp/_src/optim/linear.py +1606 -0
  77. warp/_src/optim/sgd.py +112 -0
  78. warp/_src/paddle.py +406 -0
  79. warp/_src/render/__init__.py +14 -0
  80. warp/_src/render/imgui_manager.py +289 -0
  81. warp/_src/render/render_opengl.py +3636 -0
  82. warp/_src/render/render_usd.py +937 -0
  83. warp/_src/render/utils.py +160 -0
  84. warp/_src/sparse.py +2716 -0
  85. warp/_src/tape.py +1206 -0
  86. warp/{thirdparty → _src/thirdparty}/unittest_parallel.py +9 -2
  87. warp/_src/torch.py +391 -0
  88. warp/_src/types.py +5870 -0
  89. warp/_src/utils.py +1693 -0
  90. warp/autograd.py +12 -1054
  91. warp/bin/warp-clang.dll +0 -0
  92. warp/bin/warp.dll +0 -0
  93. warp/build.py +8 -588
  94. warp/build_dll.py +6 -721
  95. warp/codegen.py +6 -4251
  96. warp/constants.py +6 -39
  97. warp/context.py +12 -8062
  98. warp/dlpack.py +6 -444
  99. warp/examples/distributed/example_jacobi_mpi.py +4 -5
  100. warp/examples/fem/example_adaptive_grid.py +1 -1
  101. warp/examples/fem/example_apic_fluid.py +1 -1
  102. warp/examples/fem/example_burgers.py +8 -8
  103. warp/examples/fem/example_diffusion.py +1 -1
  104. warp/examples/fem/example_distortion_energy.py +1 -1
  105. warp/examples/fem/example_mixed_elasticity.py +2 -2
  106. warp/examples/fem/example_navier_stokes.py +1 -1
  107. warp/examples/fem/example_nonconforming_contact.py +7 -7
  108. warp/examples/fem/example_stokes.py +1 -1
  109. warp/examples/fem/example_stokes_transfer.py +1 -1
  110. warp/examples/fem/utils.py +2 -2
  111. warp/examples/interop/example_jax_callable.py +1 -1
  112. warp/examples/interop/example_jax_ffi_callback.py +1 -1
  113. warp/examples/interop/example_jax_kernel.py +1 -1
  114. warp/examples/tile/example_tile_mcgp.py +191 -0
  115. warp/fabric.py +6 -337
  116. warp/fem/__init__.py +159 -97
  117. warp/fem/adaptivity.py +7 -489
  118. warp/fem/cache.py +9 -648
  119. warp/fem/dirichlet.py +6 -184
  120. warp/fem/field/__init__.py +8 -109
  121. warp/fem/field/field.py +7 -652
  122. warp/fem/geometry/__init__.py +7 -18
  123. warp/fem/geometry/closest_point.py +11 -77
  124. warp/fem/linalg.py +18 -366
  125. warp/fem/operator.py +11 -369
  126. warp/fem/polynomial.py +9 -209
  127. warp/fem/space/__init__.py +5 -211
  128. warp/fem/space/basis_space.py +6 -662
  129. warp/fem/space/shape/__init__.py +41 -118
  130. warp/fem/space/topology.py +6 -437
  131. warp/fem/types.py +6 -81
  132. warp/fem/utils.py +11 -444
  133. warp/jax.py +8 -165
  134. warp/jax_experimental/__init__.py +14 -1
  135. warp/jax_experimental/custom_call.py +8 -365
  136. warp/jax_experimental/ffi.py +17 -873
  137. warp/jax_experimental/xla_ffi.py +5 -605
  138. warp/marching_cubes.py +5 -689
  139. warp/math.py +16 -393
  140. warp/native/array.h +385 -37
  141. warp/native/builtin.h +314 -37
  142. warp/native/bvh.cpp +43 -9
  143. warp/native/bvh.cu +62 -27
  144. warp/native/bvh.h +310 -309
  145. warp/native/clang/clang.cpp +102 -97
  146. warp/native/coloring.cpp +0 -1
  147. warp/native/crt.h +208 -0
  148. warp/native/exports.h +156 -0
  149. warp/native/hashgrid.cu +2 -0
  150. warp/native/intersect.h +24 -1
  151. warp/native/intersect_tri.h +44 -35
  152. warp/native/mat.h +1456 -276
  153. warp/native/mesh.cpp +4 -4
  154. warp/native/mesh.cu +4 -2
  155. warp/native/mesh.h +176 -61
  156. warp/native/quat.h +0 -52
  157. warp/native/scan.cu +2 -0
  158. warp/native/sparse.cu +7 -3
  159. warp/native/spatial.h +12 -0
  160. warp/native/tile.h +681 -89
  161. warp/native/tile_radix_sort.h +1 -1
  162. warp/native/tile_reduce.h +394 -46
  163. warp/native/tile_scan.h +4 -4
  164. warp/native/vec.h +469 -0
  165. warp/native/version.h +23 -0
  166. warp/native/volume.cpp +1 -1
  167. warp/native/volume.cu +1 -0
  168. warp/native/volume.h +1 -1
  169. warp/native/volume_builder.cu +2 -0
  170. warp/native/warp.cpp +57 -29
  171. warp/native/warp.cu +253 -171
  172. warp/native/warp.h +11 -8
  173. warp/optim/__init__.py +6 -3
  174. warp/optim/adam.py +6 -145
  175. warp/optim/linear.py +14 -1585
  176. warp/optim/sgd.py +6 -94
  177. warp/paddle.py +6 -388
  178. warp/render/__init__.py +8 -4
  179. warp/render/imgui_manager.py +7 -267
  180. warp/render/render_opengl.py +6 -3618
  181. warp/render/render_usd.py +6 -919
  182. warp/render/utils.py +6 -142
  183. warp/sparse.py +37 -2563
  184. warp/tape.py +6 -1188
  185. warp/tests/__main__.py +1 -1
  186. warp/tests/cuda/test_async.py +4 -4
  187. warp/tests/cuda/test_conditional_captures.py +1 -1
  188. warp/tests/cuda/test_multigpu.py +1 -1
  189. warp/tests/cuda/test_streams.py +58 -1
  190. warp/tests/geometry/test_bvh.py +157 -22
  191. warp/tests/geometry/test_marching_cubes.py +0 -1
  192. warp/tests/geometry/test_mesh.py +5 -3
  193. warp/tests/geometry/test_mesh_query_aabb.py +5 -12
  194. warp/tests/geometry/test_mesh_query_point.py +5 -2
  195. warp/tests/geometry/test_mesh_query_ray.py +15 -3
  196. warp/tests/geometry/test_volume_write.py +5 -5
  197. warp/tests/interop/test_dlpack.py +14 -14
  198. warp/tests/interop/test_jax.py +772 -49
  199. warp/tests/interop/test_paddle.py +1 -1
  200. warp/tests/test_adam.py +0 -1
  201. warp/tests/test_arithmetic.py +9 -9
  202. warp/tests/test_array.py +527 -100
  203. warp/tests/test_array_reduce.py +3 -3
  204. warp/tests/test_atomic.py +12 -8
  205. warp/tests/test_atomic_bitwise.py +209 -0
  206. warp/tests/test_atomic_cas.py +4 -4
  207. warp/tests/test_bool.py +2 -2
  208. warp/tests/test_builtins_resolution.py +5 -571
  209. warp/tests/test_codegen.py +33 -14
  210. warp/tests/test_conditional.py +1 -1
  211. warp/tests/test_context.py +6 -6
  212. warp/tests/test_copy.py +242 -161
  213. warp/tests/test_ctypes.py +3 -3
  214. warp/tests/test_devices.py +24 -2
  215. warp/tests/test_examples.py +16 -84
  216. warp/tests/test_fabricarray.py +35 -35
  217. warp/tests/test_fast_math.py +0 -2
  218. warp/tests/test_fem.py +56 -10
  219. warp/tests/test_fixedarray.py +3 -3
  220. warp/tests/test_func.py +8 -5
  221. warp/tests/test_generics.py +1 -1
  222. warp/tests/test_indexedarray.py +24 -24
  223. warp/tests/test_intersect.py +39 -9
  224. warp/tests/test_large.py +1 -1
  225. warp/tests/test_lerp.py +3 -1
  226. warp/tests/test_linear_solvers.py +1 -1
  227. warp/tests/test_map.py +35 -4
  228. warp/tests/test_mat.py +52 -62
  229. warp/tests/test_mat_constructors.py +4 -5
  230. warp/tests/test_mat_lite.py +1 -1
  231. warp/tests/test_mat_scalar_ops.py +121 -121
  232. warp/tests/test_math.py +34 -0
  233. warp/tests/test_module_aot.py +4 -4
  234. warp/tests/test_modules_lite.py +28 -2
  235. warp/tests/test_print.py +11 -11
  236. warp/tests/test_quat.py +93 -58
  237. warp/tests/test_runlength_encode.py +1 -1
  238. warp/tests/test_scalar_ops.py +38 -10
  239. warp/tests/test_smoothstep.py +1 -1
  240. warp/tests/test_sparse.py +126 -15
  241. warp/tests/test_spatial.py +105 -87
  242. warp/tests/test_special_values.py +6 -6
  243. warp/tests/test_static.py +7 -7
  244. warp/tests/test_struct.py +13 -2
  245. warp/tests/test_triangle_closest_point.py +48 -1
  246. warp/tests/test_types.py +27 -15
  247. warp/tests/test_utils.py +52 -52
  248. warp/tests/test_vec.py +29 -29
  249. warp/tests/test_vec_constructors.py +5 -5
  250. warp/tests/test_vec_scalar_ops.py +97 -97
  251. warp/tests/test_version.py +75 -0
  252. warp/tests/tile/test_tile.py +178 -0
  253. warp/tests/tile/test_tile_atomic_bitwise.py +403 -0
  254. warp/tests/tile/test_tile_cholesky.py +7 -4
  255. warp/tests/tile/test_tile_load.py +26 -2
  256. warp/tests/tile/test_tile_mathdx.py +3 -3
  257. warp/tests/tile/test_tile_matmul.py +1 -1
  258. warp/tests/tile/test_tile_mlp.py +2 -4
  259. warp/tests/tile/test_tile_reduce.py +214 -13
  260. warp/tests/unittest_suites.py +6 -14
  261. warp/tests/unittest_utils.py +10 -9
  262. warp/tests/walkthrough_debug.py +3 -1
  263. warp/torch.py +6 -373
  264. warp/types.py +29 -5764
  265. warp/utils.py +10 -1659
  266. {warp_lang-1.9.1.dist-info → warp_lang-1.10.0rc2.dist-info}/METADATA +46 -99
  267. warp_lang-1.10.0rc2.dist-info/RECORD +468 -0
  268. warp_lang-1.10.0rc2.dist-info/licenses/licenses/Gaia-LICENSE.txt +6 -0
  269. warp_lang-1.10.0rc2.dist-info/licenses/licenses/appdirs-LICENSE.txt +22 -0
  270. warp_lang-1.10.0rc2.dist-info/licenses/licenses/asset_pixel_jpg-LICENSE.txt +3 -0
  271. warp_lang-1.10.0rc2.dist-info/licenses/licenses/cuda-LICENSE.txt +1582 -0
  272. warp_lang-1.10.0rc2.dist-info/licenses/licenses/dlpack-LICENSE.txt +201 -0
  273. warp_lang-1.10.0rc2.dist-info/licenses/licenses/fp16-LICENSE.txt +28 -0
  274. warp_lang-1.10.0rc2.dist-info/licenses/licenses/libmathdx-LICENSE.txt +220 -0
  275. warp_lang-1.10.0rc2.dist-info/licenses/licenses/llvm-LICENSE.txt +279 -0
  276. warp_lang-1.10.0rc2.dist-info/licenses/licenses/moller-LICENSE.txt +16 -0
  277. warp_lang-1.10.0rc2.dist-info/licenses/licenses/nanovdb-LICENSE.txt +2 -0
  278. warp_lang-1.10.0rc2.dist-info/licenses/licenses/nvrtc-LICENSE.txt +1592 -0
  279. warp_lang-1.10.0rc2.dist-info/licenses/licenses/svd-LICENSE.txt +23 -0
  280. warp_lang-1.10.0rc2.dist-info/licenses/licenses/unittest_parallel-LICENSE.txt +21 -0
  281. warp_lang-1.10.0rc2.dist-info/licenses/licenses/usd-LICENSE.txt +213 -0
  282. warp_lang-1.10.0rc2.dist-info/licenses/licenses/windingnumber-LICENSE.txt +21 -0
  283. warp/examples/assets/cartpole.urdf +0 -110
  284. warp/examples/assets/crazyflie.usd +0 -0
  285. warp/examples/assets/nv_ant.xml +0 -92
  286. warp/examples/assets/nv_humanoid.xml +0 -183
  287. warp/examples/assets/quadruped.urdf +0 -268
  288. warp/examples/optim/example_bounce.py +0 -266
  289. warp/examples/optim/example_cloth_throw.py +0 -228
  290. warp/examples/optim/example_drone.py +0 -870
  291. warp/examples/optim/example_inverse_kinematics.py +0 -182
  292. warp/examples/optim/example_inverse_kinematics_torch.py +0 -191
  293. warp/examples/optim/example_softbody_properties.py +0 -400
  294. warp/examples/optim/example_spring_cage.py +0 -245
  295. warp/examples/optim/example_trajectory.py +0 -227
  296. warp/examples/sim/example_cartpole.py +0 -143
  297. warp/examples/sim/example_cloth.py +0 -225
  298. warp/examples/sim/example_cloth_self_contact.py +0 -316
  299. warp/examples/sim/example_granular.py +0 -130
  300. warp/examples/sim/example_granular_collision_sdf.py +0 -202
  301. warp/examples/sim/example_jacobian_ik.py +0 -244
  302. warp/examples/sim/example_particle_chain.py +0 -124
  303. warp/examples/sim/example_quadruped.py +0 -203
  304. warp/examples/sim/example_rigid_chain.py +0 -203
  305. warp/examples/sim/example_rigid_contact.py +0 -195
  306. warp/examples/sim/example_rigid_force.py +0 -133
  307. warp/examples/sim/example_rigid_gyroscopic.py +0 -115
  308. warp/examples/sim/example_rigid_soft_contact.py +0 -140
  309. warp/examples/sim/example_soft_body.py +0 -196
  310. warp/examples/tile/example_tile_walker.py +0 -327
  311. warp/sim/__init__.py +0 -74
  312. warp/sim/articulation.py +0 -793
  313. warp/sim/collide.py +0 -2570
  314. warp/sim/graph_coloring.py +0 -307
  315. warp/sim/import_mjcf.py +0 -791
  316. warp/sim/import_snu.py +0 -227
  317. warp/sim/import_urdf.py +0 -579
  318. warp/sim/import_usd.py +0 -898
  319. warp/sim/inertia.py +0 -357
  320. warp/sim/integrator.py +0 -245
  321. warp/sim/integrator_euler.py +0 -2000
  322. warp/sim/integrator_featherstone.py +0 -2101
  323. warp/sim/integrator_vbd.py +0 -2487
  324. warp/sim/integrator_xpbd.py +0 -3295
  325. warp/sim/model.py +0 -4821
  326. warp/sim/particles.py +0 -121
  327. warp/sim/render.py +0 -431
  328. warp/sim/utils.py +0 -431
  329. warp/tests/sim/disabled_kinematics.py +0 -244
  330. warp/tests/sim/test_cloth.py +0 -863
  331. warp/tests/sim/test_collision.py +0 -743
  332. warp/tests/sim/test_coloring.py +0 -347
  333. warp/tests/sim/test_inertia.py +0 -161
  334. warp/tests/sim/test_model.py +0 -226
  335. warp/tests/sim/test_sim_grad.py +0 -287
  336. warp/tests/sim/test_sim_grad_bounce_linear.py +0 -212
  337. warp/tests/sim/test_sim_kinematics.py +0 -98
  338. warp/thirdparty/__init__.py +0 -0
  339. warp_lang-1.9.1.dist-info/RECORD +0 -456
  340. /warp/{fem → _src/fem}/quadrature/__init__.py +0 -0
  341. /warp/{tests/sim → _src/thirdparty}/__init__.py +0 -0
  342. /warp/{thirdparty → _src/thirdparty}/appdirs.py +0 -0
  343. /warp/{thirdparty → _src/thirdparty}/dlpack.py +0 -0
  344. {warp_lang-1.9.1.dist-info → warp_lang-1.10.0rc2.dist-info}/WHEEL +0 -0
  345. {warp_lang-1.9.1.dist-info → warp_lang-1.10.0rc2.dist-info}/licenses/LICENSE.md +0 -0
  346. {warp_lang-1.9.1.dist-info → warp_lang-1.10.0rc2.dist-info}/top_level.txt +0 -0
warp/jax.py CHANGED
@@ -1,4 +1,4 @@
1
- # SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
2
  # SPDX-License-Identifier: Apache-2.0
3
3
  #
4
4
  # Licensed under the Apache License, Version 2.0 (the "License");
@@ -13,174 +13,17 @@
13
13
  # See the License for the specific language governing permissions and
14
14
  # limitations under the License.
15
15
 
16
- import warp
16
+ # isort: skip_file
17
17
 
18
+ from warp._src.jax import get_jax_device as get_jax_device
18
19
 
19
- def device_to_jax(warp_device: warp.context.Devicelike):
20
- """Return the Jax device corresponding to a Warp device.
21
20
 
22
- Returns:
23
- :class:`jax.Device`
21
+ # TODO: Remove after cleaning up the public API.
24
22
 
25
- Raises:
26
- RuntimeError: Failed to find the corresponding Jax device.
27
- """
28
- import jax
23
+ from warp._src import jax as _jax
29
24
 
30
- d = warp.get_device(warp_device)
31
25
 
32
- if d.is_cuda:
33
- cuda_devices = jax.devices("cuda")
34
- if d.ordinal >= len(cuda_devices):
35
- raise RuntimeError(f"Jax device corresponding to '{warp_device}' is not available")
36
- return cuda_devices[d.ordinal]
37
- else:
38
- cpu_devices = jax.devices("cpu")
39
- if not cpu_devices:
40
- raise RuntimeError(f"Jax device corresponding to '{warp_device}' is not available")
41
- return cpu_devices[0]
26
+ def __getattr__(name):
27
+ from warp._src.utils import get_deprecated_api
42
28
 
43
-
44
- def device_from_jax(jax_device) -> warp.context.Device:
45
- """Return the Warp device corresponding to a Jax device.
46
-
47
- Args:
48
- jax_device (jax.Device): A Jax device descriptor.
49
-
50
- Raises:
51
- RuntimeError: The Jax device is neither a CPU nor GPU device.
52
- """
53
- if jax_device.platform == "cpu":
54
- return warp.get_device("cpu")
55
- elif jax_device.platform == "gpu":
56
- return warp.get_cuda_device(jax_device.id)
57
- else:
58
- raise RuntimeError(f"Unsupported Jax device platform '{jax_device.platform}'")
59
-
60
-
61
- def get_jax_device():
62
- """Get the current Jax device."""
63
- import jax
64
-
65
- # TODO: is there a simpler way of getting the Jax "current" device?
66
- # check if jax.default_device() context manager is active
67
- device = jax.config.jax_default_device
68
- # if default device is not set, use first device
69
- if device is None:
70
- device = jax.local_devices()[0]
71
- return device
72
-
73
-
74
- def dtype_to_jax(warp_dtype):
75
- """Return the Jax dtype corresponding to a Warp dtype.
76
-
77
- Args:
78
- warp_dtype: A Warp data type that has a corresponding Jax data type.
79
-
80
- Raises:
81
- TypeError: Unable to find a corresponding Jax data type.
82
- """
83
- # initialize lookup table on first call to defer jax import
84
- if dtype_to_jax.type_map is None:
85
- import jax.numpy as jp
86
-
87
- dtype_to_jax.type_map = {
88
- warp.float16: jp.float16,
89
- warp.float32: jp.float32,
90
- warp.float64: jp.float64,
91
- warp.int8: jp.int8,
92
- warp.int16: jp.int16,
93
- warp.int32: jp.int32,
94
- warp.int64: jp.int64,
95
- warp.uint8: jp.uint8,
96
- warp.uint16: jp.uint16,
97
- warp.uint32: jp.uint32,
98
- warp.uint64: jp.uint64,
99
- warp.bool: jp.bool_,
100
- }
101
-
102
- jax_dtype = dtype_to_jax.type_map.get(warp_dtype)
103
- if jax_dtype is not None:
104
- return jax_dtype
105
- else:
106
- raise TypeError(f"Cannot convert {warp_dtype} to a Jax type")
107
-
108
-
109
- def dtype_from_jax(jax_dtype):
110
- """Return the Warp dtype corresponding to a Jax dtype.
111
-
112
- Raises:
113
- TypeError: Unable to find a corresponding Warp data type.
114
- """
115
- # initialize lookup table on first call to defer jax import
116
- if dtype_from_jax.type_map is None:
117
- import jax.numpy as jp
118
-
119
- dtype_from_jax.type_map = {
120
- # Jax scalar types
121
- jp.float16: warp.float16,
122
- jp.float32: warp.float32,
123
- jp.float64: warp.float64,
124
- jp.int8: warp.int8,
125
- jp.int16: warp.int16,
126
- jp.int32: warp.int32,
127
- jp.int64: warp.int64,
128
- jp.uint8: warp.uint8,
129
- jp.uint16: warp.uint16,
130
- jp.uint32: warp.uint32,
131
- jp.uint64: warp.uint64,
132
- jp.bool_: warp.bool,
133
- # Jax dtype objects
134
- jp.dtype(jp.float16): warp.float16,
135
- jp.dtype(jp.float32): warp.float32,
136
- jp.dtype(jp.float64): warp.float64,
137
- jp.dtype(jp.int8): warp.int8,
138
- jp.dtype(jp.int16): warp.int16,
139
- jp.dtype(jp.int32): warp.int32,
140
- jp.dtype(jp.int64): warp.int64,
141
- jp.dtype(jp.uint8): warp.uint8,
142
- jp.dtype(jp.uint16): warp.uint16,
143
- jp.dtype(jp.uint32): warp.uint32,
144
- jp.dtype(jp.uint64): warp.uint64,
145
- jp.dtype(jp.bool_): warp.bool,
146
- }
147
-
148
- wp_dtype = dtype_from_jax.type_map.get(jax_dtype)
149
- if wp_dtype is not None:
150
- return wp_dtype
151
- else:
152
- raise TypeError(f"Cannot convert {jax_dtype} to a Warp type")
153
-
154
-
155
- # lookup tables initialized when needed
156
- dtype_from_jax.type_map = None
157
- dtype_to_jax.type_map = None
158
-
159
-
160
- def to_jax(warp_array):
161
- """
162
- Convert a Warp array to a Jax array without copying the data.
163
-
164
- Args:
165
- warp_array (warp.array): The Warp array to convert.
166
-
167
- Returns:
168
- jax.Array: The converted Jax array.
169
- """
170
- import jax.dlpack
171
-
172
- return jax.dlpack.from_dlpack(warp_array)
173
-
174
-
175
- def from_jax(jax_array, dtype=None) -> warp.array:
176
- """Convert a Jax array to a Warp array without copying the data.
177
-
178
- Args:
179
- jax_array (jax.Array): The Jax array to convert.
180
- dtype (optional): The target data type of the resulting Warp array. Defaults to the Jax array's data type mapped to a Warp data type.
181
-
182
- Returns:
183
- warp.array: The converted Warp array.
184
- """
185
-
186
- return warp.from_dlpack(jax_array, dtype=dtype)
29
+ return get_deprecated_api(_jax, "wp", name)
@@ -13,4 +13,17 @@
13
13
  # See the License for the specific language governing permissions and
14
14
  # limitations under the License.
15
15
 
16
- from .custom_call import jax_kernel
16
+ # isort: skip_file
17
+
18
+ from warp._src.jax_experimental.ffi import GraphMode as GraphMode
19
+ from warp._src.jax_experimental.ffi import jax_kernel as jax_kernel
20
+ from warp._src.jax_experimental.ffi import jax_callable as jax_callable
21
+ from warp._src.jax_experimental.ffi import register_ffi_callback as register_ffi_callback
22
+
23
+ from warp._src.jax_experimental.ffi import (
24
+ get_jax_callable_default_graph_cache_max as get_jax_callable_default_graph_cache_max,
25
+ )
26
+ from warp._src.jax_experimental.ffi import (
27
+ set_jax_callable_default_graph_cache_max as set_jax_callable_default_graph_cache_max,
28
+ )
29
+ from warp._src.jax_experimental.ffi import clear_jax_callable_graph_cache as clear_jax_callable_graph_cache
@@ -1,4 +1,4 @@
1
- # SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
2
  # SPDX-License-Identifier: Apache-2.0
3
3
  #
4
4
  # Licensed under the Apache License, Version 2.0 (the "License");
@@ -13,374 +13,17 @@
13
13
  # See the License for the specific language governing permissions and
14
14
  # limitations under the License.
15
15
 
16
- import ctypes
16
+ # isort: skip_file
17
17
 
18
- import warp as wp
19
- from warp.context import type_str
20
- from warp.jax import get_jax_device
21
- from warp.types import array_t, launch_bounds_t, strides_from_shape
22
- from warp.utils import warn
18
+ from warp._src.jax_experimental.custom_call import jax_kernel as jax_kernel
23
19
 
24
- _jax_warp_p = None
25
20
 
26
- # Holder for the custom callback to keep it alive.
27
- _cc_callback = None
28
- _registered_kernels = [None]
29
- _registered_kernel_to_id = {}
21
+ # TODO: Remove after cleaning up the public API.
30
22
 
23
+ from warp._src.jax_experimental import custom_call as _custom_call
31
24
 
32
- def jax_kernel(kernel, launch_dims=None, quiet=False):
33
- """Create a Jax primitive from a Warp kernel.
34
25
 
35
- NOTE: This is an experimental feature under development.
26
+ def __getattr__(name):
27
+ from warp._src.utils import get_deprecated_api
36
28
 
37
- Args:
38
- kernel: The Warp kernel to be wrapped.
39
- launch_dims: Optional. Specify the kernel launch dimensions. If None,
40
- dimensions are inferred from the shape of the first argument.
41
- This option when set will specify the output dimensions.
42
- quiet: Optional. If True, suppress deprecation warnings with newer JAX versions.
43
-
44
- Limitations:
45
- - All kernel arguments must be contiguous arrays.
46
- - Input arguments are followed by output arguments in the Warp kernel definition.
47
- - There must be at least one input argument and at least one output argument.
48
- - Only the CUDA backend is supported.
49
- """
50
-
51
- import jax
52
-
53
- # check if JAX version supports this
54
- if jax.__version_info__ < (0, 4, 25) or jax.__version_info__ >= (0, 8, 0):
55
- msg = (
56
- "This version of jax_kernel() requires JAX version 0.4.25 - 0.7.x, "
57
- f"but installed JAX version is {jax.__version_info__}."
58
- )
59
- if jax.__version_info__ >= (0, 8, 0):
60
- msg += " Please use warp.jax_experimental.ffi.jax_kernel instead."
61
- raise RuntimeError(msg)
62
-
63
- # deprecation warning
64
- if jax.__version_info__ >= (0, 5, 0) and not quiet:
65
- warn(
66
- "This version of jax_kernel() is deprecated and will not be supported with newer JAX versions. "
67
- "Please use the newer FFI version instead (warp.jax_experimental.ffi.jax_kernel). "
68
- "In Warp release 1.10, the FFI version will become the default implementation of jax_kernel().",
69
- DeprecationWarning,
70
- )
71
-
72
- if _jax_warp_p is None:
73
- # Create and register the primitive
74
- _create_jax_warp_primitive()
75
- if kernel not in _registered_kernel_to_id:
76
- id = len(_registered_kernels)
77
- _registered_kernels.append(kernel)
78
- _registered_kernel_to_id[kernel] = id
79
- else:
80
- id = _registered_kernel_to_id[kernel]
81
-
82
- def bind(*args):
83
- return _jax_warp_p.bind(*args, kernel=id, launch_dims=launch_dims)
84
-
85
- return bind
86
-
87
-
88
- def _warp_custom_callback(stream, buffers, opaque, opaque_len):
89
- # The descriptor is the form
90
- # <kernel-id>|<launch-dims>|<arg-dims-list>
91
- # Example: 42|16,32|16,32;100;16,32
92
- kernel_id_str, dim_str, args_str = opaque.decode().split("|")
93
-
94
- # Get the kernel from the registry.
95
- kernel_id = int(kernel_id_str)
96
- kernel = _registered_kernels[kernel_id]
97
-
98
- # Parse launch dimensions.
99
- dims = [int(d) for d in dim_str.split(",")]
100
- bounds = launch_bounds_t(dims)
101
-
102
- # Parse arguments.
103
- arg_strings = args_str.split(";")
104
- num_args = len(arg_strings)
105
- assert num_args == len(kernel.adj.args), "Incorrect number of arguments"
106
-
107
- # First param is the launch bounds.
108
- kernel_params = (ctypes.c_void_p * (1 + num_args))()
109
- kernel_params[0] = ctypes.addressof(bounds)
110
-
111
- # Parse array descriptors.
112
- args = []
113
- for i in range(num_args):
114
- dtype = kernel.adj.args[i].type.dtype
115
- shape = [int(d) for d in arg_strings[i].split(",")]
116
- strides = strides_from_shape(shape, dtype)
117
-
118
- arr = array_t(buffers[i], 0, len(shape), shape, strides)
119
- args.append(arr) # keep a reference
120
- arg_ptr = ctypes.addressof(arr)
121
-
122
- kernel_params[i + 1] = arg_ptr
123
-
124
- # Get current device.
125
- device = wp.device_from_jax(get_jax_device())
126
-
127
- # Get kernel hooks.
128
- # Note: module was loaded during jit lowering.
129
- hooks = kernel.module.get_kernel_hooks(kernel, device)
130
- assert hooks.forward, "Failed to find kernel entry point"
131
-
132
- # Launch the kernel.
133
- wp.context.runtime.core.wp_cuda_launch_kernel(
134
- device.context, hooks.forward, bounds.size, 0, 256, hooks.forward_smem_bytes, kernel_params, stream
135
- )
136
-
137
-
138
- def _create_jax_warp_primitive():
139
- from functools import reduce
140
-
141
- import jax
142
- from jax._src.interpreters import batching
143
- from jax.interpreters import mlir
144
- from jax.interpreters.mlir import ir
145
- from jaxlib.hlo_helpers import custom_call
146
-
147
- global _jax_warp_p
148
- global _cc_callback
149
-
150
- # Create and register the primitive.
151
- # TODO add default implementation that calls the kernel via warp.
152
- try:
153
- # newer JAX versions
154
- import jax.extend
155
-
156
- _jax_warp_p = jax.extend.core.Primitive("jax_warp")
157
- except (ImportError, AttributeError):
158
- # older JAX versions
159
- _jax_warp_p = jax.core.Primitive("jax_warp")
160
- _jax_warp_p.multiple_results = True
161
-
162
- # TODO Just launch the kernel directly, but make sure the argument
163
- # shapes are massaged the same way as below so that vmap works.
164
- def impl(*args):
165
- raise Exception("Not implemented")
166
-
167
- _jax_warp_p.def_impl(impl)
168
-
169
- # Auto-batching. Make sure all the arguments are fully broadcasted
170
- # so that Warp is not confused about dimensions.
171
- def vectorized_multi_batcher(args, dims, **params):
172
- # Figure out the number of outputs.
173
- wp_kernel = _registered_kernels[params["kernel"]]
174
- output_count = len(wp_kernel.adj.args) - len(args)
175
- shape, dim = next((a.shape, d) for a, d in zip(args, dims) if d is not None)
176
- size = shape[dim]
177
- args = [batching.bdim_at_front(a, d, size) if len(a.shape) else a for a, d in zip(args, dims)]
178
- # Create the batched primitive.
179
- return _jax_warp_p.bind(*args, **params), [dims[0]] * output_count
180
-
181
- batching.primitive_batchers[_jax_warp_p] = vectorized_multi_batcher
182
-
183
- def get_vecmat_shape(warp_type):
184
- if hasattr(warp_type.dtype, "_shape_"):
185
- return warp_type.dtype._shape_
186
- return []
187
-
188
- def strip_vecmat_dimensions(warp_arg, actual_shape):
189
- shape = get_vecmat_shape(warp_arg.type)
190
- for i, s in enumerate(reversed(shape)):
191
- item = actual_shape[-i - 1]
192
- if s != item:
193
- raise Exception(f"The vector/matrix shape for argument {warp_arg.label} does not match")
194
- return actual_shape[: len(actual_shape) - len(shape)]
195
-
196
- def collapse_into_leading_dimension(warp_arg, actual_shape):
197
- if len(actual_shape) < warp_arg.type.ndim:
198
- raise Exception(f"Argument {warp_arg.label} has too few non-matrix/vector dimensions")
199
- index_rest = len(actual_shape) - warp_arg.type.ndim + 1
200
- leading_size = reduce(lambda x, y: x * y, actual_shape[:index_rest])
201
- return [leading_size] + actual_shape[index_rest:]
202
-
203
- # Infer array dimensions from input type.
204
- def infer_dimensions(warp_arg, actual_shape):
205
- actual_shape = strip_vecmat_dimensions(warp_arg, actual_shape)
206
- return collapse_into_leading_dimension(warp_arg, actual_shape)
207
-
208
- def base_type_to_jax(warp_dtype):
209
- if hasattr(warp_dtype, "_wp_scalar_type_"):
210
- return wp.dtype_to_jax(warp_dtype._wp_scalar_type_)
211
- return wp.dtype_to_jax(warp_dtype)
212
-
213
- def base_type_to_jax_ir(warp_dtype):
214
- warp_to_jax_dict = {
215
- wp.float16: ir.F16Type.get(),
216
- wp.float32: ir.F32Type.get(),
217
- wp.float64: ir.F64Type.get(),
218
- wp.int8: ir.IntegerType.get_signless(8),
219
- wp.int16: ir.IntegerType.get_signless(16),
220
- wp.int32: ir.IntegerType.get_signless(32),
221
- wp.int64: ir.IntegerType.get_signless(64),
222
- wp.uint8: ir.IntegerType.get_unsigned(8),
223
- wp.uint16: ir.IntegerType.get_unsigned(16),
224
- wp.uint32: ir.IntegerType.get_unsigned(32),
225
- wp.uint64: ir.IntegerType.get_unsigned(64),
226
- }
227
- if hasattr(warp_dtype, "_wp_scalar_type_"):
228
- warp_dtype = warp_dtype._wp_scalar_type_
229
- jax_dtype = warp_to_jax_dict.get(warp_dtype)
230
- if jax_dtype is None:
231
- raise TypeError(f"Invalid or unsupported data type: {warp_dtype}")
232
- return jax_dtype
233
-
234
- def base_type_is_compatible(warp_type, jax_ir_type):
235
- jax_ir_to_warp = {
236
- "f16": wp.float16,
237
- "f32": wp.float32,
238
- "f64": wp.float64,
239
- "i8": wp.int8,
240
- "i16": wp.int16,
241
- "i32": wp.int32,
242
- "i64": wp.int64,
243
- "ui8": wp.uint8,
244
- "ui16": wp.uint16,
245
- "ui32": wp.uint32,
246
- "ui64": wp.uint64,
247
- }
248
- expected_warp_type = jax_ir_to_warp.get(str(jax_ir_type))
249
- if expected_warp_type is not None:
250
- if hasattr(warp_type, "_wp_scalar_type_"):
251
- return warp_type._wp_scalar_type_ == expected_warp_type
252
- else:
253
- return warp_type == expected_warp_type
254
- else:
255
- raise TypeError(f"Invalid or unsupported data type: {jax_ir_type}")
256
-
257
- # Abstract evaluation.
258
- def jax_warp_abstract(*args, kernel=None, launch_dims=None):
259
- wp_kernel = _registered_kernels[kernel]
260
- # All the extra arguments to the warp kernel are outputs.
261
- warp_outputs = [o.type for o in wp_kernel.adj.args[len(args) :]]
262
-
263
- if launch_dims is None:
264
- # Use the first input dimension to infer the output's dimensions if launch_dims is not provided
265
- dims = strip_vecmat_dimensions(wp_kernel.adj.args[0], list(args[0].shape))
266
- else:
267
- dims = launch_dims
268
-
269
- jax_outputs = []
270
- for o in warp_outputs:
271
- shape = list(dims) + list(get_vecmat_shape(o))
272
- dtype = base_type_to_jax(o.dtype)
273
- jax_outputs.append(jax.core.ShapedArray(shape, dtype))
274
- return jax_outputs
275
-
276
- _jax_warp_p.def_abstract_eval(jax_warp_abstract)
277
-
278
- # Lowering to MLIR.
279
-
280
- # Create python-land custom call target.
281
- CCALLFUNC = ctypes.CFUNCTYPE(
282
- ctypes.c_voidp, ctypes.c_void_p, ctypes.POINTER(ctypes.c_void_p), ctypes.c_char_p, ctypes.c_size_t
283
- )
284
- _cc_callback = CCALLFUNC(_warp_custom_callback)
285
- ccall_address = ctypes.cast(_cc_callback, ctypes.c_void_p)
286
-
287
- # Put the custom call into a capsule, as required by XLA.
288
- PyCapsule_Destructor = ctypes.CFUNCTYPE(None, ctypes.py_object)
289
- PyCapsule_New = ctypes.pythonapi.PyCapsule_New
290
- PyCapsule_New.restype = ctypes.py_object
291
- PyCapsule_New.argtypes = (ctypes.c_void_p, ctypes.c_char_p, PyCapsule_Destructor)
292
- capsule = PyCapsule_New(ccall_address.value, b"xla._CUSTOM_CALL_TARGET", PyCapsule_Destructor(0))
293
-
294
- # Register the callback in XLA.
295
- try:
296
- # newer JAX versions
297
- jax.ffi.register_ffi_target("warp_call", capsule, platform="gpu", api_version=0)
298
- except AttributeError:
299
- # older JAX versions
300
- jax.lib.xla_client.register_custom_call_target("warp_call", capsule, platform="gpu")
301
-
302
- def default_layout(shape):
303
- return range(len(shape) - 1, -1, -1)
304
-
305
- def warp_call_lowering(ctx, *args, kernel=None, launch_dims=None):
306
- if not kernel:
307
- raise Exception("Unknown kernel id " + str(kernel))
308
- wp_kernel = _registered_kernels[kernel]
309
-
310
- # TODO This may not be necessary, but it is perhaps better not to be
311
- # mucking with kernel loading while already running the workload.
312
- module = wp_kernel.module
313
- device = wp.device_from_jax(get_jax_device())
314
- if not module.load(device):
315
- raise Exception("Could not load kernel on device")
316
-
317
- if launch_dims is None:
318
- # Infer dimensions from the first input.
319
- warp_arg0 = wp_kernel.adj.args[0]
320
- actual_shape0 = ir.RankedTensorType(args[0].type).shape
321
- dims = strip_vecmat_dimensions(warp_arg0, actual_shape0)
322
- warp_dims = collapse_into_leading_dimension(warp_arg0, dims)
323
- else:
324
- dims = launch_dims
325
- warp_dims = launch_dims
326
- # Figure out the types and shapes of the input arrays.
327
- arg_strings = []
328
- operand_layouts = []
329
- for actual, warg in zip(args, wp_kernel.adj.args):
330
- wtype = warg.type
331
- rtt = ir.RankedTensorType(actual.type)
332
-
333
- if not isinstance(wtype, wp.array):
334
- raise Exception("Only contiguous arrays are supported for Jax kernel arguments")
335
-
336
- if not base_type_is_compatible(wtype.dtype, rtt.element_type):
337
- raise TypeError(
338
- f"Incompatible data type for argument '{warg.label}', expected {type_str(wtype.dtype)}, got {rtt.element_type}"
339
- )
340
-
341
- # Infer array dimension (by removing the vector/matrix dimensions and
342
- # collapsing the initial dimensions).
343
- shape = infer_dimensions(warg, rtt.shape)
344
-
345
- if len(shape) != wtype.ndim:
346
- raise TypeError(f"Incompatible array dimensionality for argument '{warg.label}'")
347
-
348
- arg_strings.append(",".join([str(d) for d in shape]))
349
- operand_layouts.append(default_layout(rtt.shape))
350
-
351
- # Figure out the types and shapes of the output arrays.
352
- result_types = []
353
- result_layouts = []
354
- for warg in wp_kernel.adj.args[len(args) :]:
355
- wtype = warg.type
356
-
357
- if not isinstance(wtype, wp.array):
358
- raise Exception("Only contiguous arrays are supported for Jax kernel arguments")
359
-
360
- # Infer dimensions from the first input.
361
- arg_strings.append(",".join([str(d) for d in warp_dims]))
362
-
363
- result_shape = list(dims) + list(get_vecmat_shape(wtype))
364
- result_types.append(ir.RankedTensorType.get(result_shape, base_type_to_jax_ir(wtype.dtype)))
365
- result_layouts.append(default_layout(result_shape))
366
-
367
- # Build opaque descriptor for callback.
368
- shape_str = ",".join([str(d) for d in warp_dims])
369
- args_str = ";".join(arg_strings)
370
- descriptor = f"{kernel}|{shape_str}|{args_str}"
371
-
372
- out = custom_call(
373
- b"warp_call",
374
- result_types=result_types,
375
- operands=args,
376
- backend_config=descriptor.encode("utf-8"),
377
- operand_layouts=operand_layouts,
378
- result_layouts=result_layouts,
379
- ).results
380
- return out
381
-
382
- mlir.register_lowering(
383
- _jax_warp_p,
384
- warp_call_lowering,
385
- platform="gpu",
386
- )
29
+ return get_deprecated_api(_custom_call, "wp.jax_experimental", name)