warp-lang 1.9.1__py3-none-win_amd64.whl → 1.10.0rc2__py3-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (346) hide show
  1. warp/__init__.py +301 -287
  2. warp/__init__.pyi +794 -305
  3. warp/_src/__init__.py +14 -0
  4. warp/_src/autograd.py +1075 -0
  5. warp/_src/build.py +618 -0
  6. warp/_src/build_dll.py +640 -0
  7. warp/{builtins.py → _src/builtins.py} +1382 -377
  8. warp/_src/codegen.py +4359 -0
  9. warp/{config.py → _src/config.py} +178 -169
  10. warp/_src/constants.py +57 -0
  11. warp/_src/context.py +8294 -0
  12. warp/_src/dlpack.py +462 -0
  13. warp/_src/fabric.py +355 -0
  14. warp/_src/fem/__init__.py +14 -0
  15. warp/_src/fem/adaptivity.py +508 -0
  16. warp/_src/fem/cache.py +687 -0
  17. warp/_src/fem/dirichlet.py +188 -0
  18. warp/{fem → _src/fem}/domain.py +40 -30
  19. warp/_src/fem/field/__init__.py +131 -0
  20. warp/_src/fem/field/field.py +701 -0
  21. warp/{fem → _src/fem}/field/nodal_field.py +30 -15
  22. warp/{fem → _src/fem}/field/restriction.py +1 -1
  23. warp/{fem → _src/fem}/field/virtual.py +53 -27
  24. warp/_src/fem/geometry/__init__.py +32 -0
  25. warp/{fem → _src/fem}/geometry/adaptive_nanogrid.py +77 -163
  26. warp/_src/fem/geometry/closest_point.py +97 -0
  27. warp/{fem → _src/fem}/geometry/deformed_geometry.py +14 -22
  28. warp/{fem → _src/fem}/geometry/element.py +32 -10
  29. warp/{fem → _src/fem}/geometry/geometry.py +48 -20
  30. warp/{fem → _src/fem}/geometry/grid_2d.py +12 -23
  31. warp/{fem → _src/fem}/geometry/grid_3d.py +12 -23
  32. warp/{fem → _src/fem}/geometry/hexmesh.py +40 -63
  33. warp/{fem → _src/fem}/geometry/nanogrid.py +255 -248
  34. warp/{fem → _src/fem}/geometry/partition.py +121 -63
  35. warp/{fem → _src/fem}/geometry/quadmesh.py +26 -45
  36. warp/{fem → _src/fem}/geometry/tetmesh.py +40 -63
  37. warp/{fem → _src/fem}/geometry/trimesh.py +26 -45
  38. warp/{fem → _src/fem}/integrate.py +164 -158
  39. warp/_src/fem/linalg.py +383 -0
  40. warp/_src/fem/operator.py +396 -0
  41. warp/_src/fem/polynomial.py +229 -0
  42. warp/{fem → _src/fem}/quadrature/pic_quadrature.py +15 -20
  43. warp/{fem → _src/fem}/quadrature/quadrature.py +95 -47
  44. warp/_src/fem/space/__init__.py +248 -0
  45. warp/{fem → _src/fem}/space/basis_function_space.py +20 -11
  46. warp/_src/fem/space/basis_space.py +679 -0
  47. warp/{fem → _src/fem}/space/dof_mapper.py +3 -3
  48. warp/{fem → _src/fem}/space/function_space.py +14 -13
  49. warp/{fem → _src/fem}/space/grid_2d_function_space.py +4 -7
  50. warp/{fem → _src/fem}/space/grid_3d_function_space.py +4 -4
  51. warp/{fem → _src/fem}/space/hexmesh_function_space.py +4 -10
  52. warp/{fem → _src/fem}/space/nanogrid_function_space.py +3 -9
  53. warp/{fem → _src/fem}/space/partition.py +117 -60
  54. warp/{fem → _src/fem}/space/quadmesh_function_space.py +4 -10
  55. warp/{fem → _src/fem}/space/restriction.py +66 -33
  56. warp/_src/fem/space/shape/__init__.py +152 -0
  57. warp/{fem → _src/fem}/space/shape/cube_shape_function.py +9 -9
  58. warp/{fem → _src/fem}/space/shape/shape_function.py +8 -9
  59. warp/{fem → _src/fem}/space/shape/square_shape_function.py +6 -6
  60. warp/{fem → _src/fem}/space/shape/tet_shape_function.py +3 -3
  61. warp/{fem → _src/fem}/space/shape/triangle_shape_function.py +3 -3
  62. warp/{fem → _src/fem}/space/tetmesh_function_space.py +3 -9
  63. warp/_src/fem/space/topology.py +459 -0
  64. warp/{fem → _src/fem}/space/trimesh_function_space.py +3 -9
  65. warp/_src/fem/types.py +112 -0
  66. warp/_src/fem/utils.py +486 -0
  67. warp/_src/jax.py +186 -0
  68. warp/_src/jax_experimental/__init__.py +14 -0
  69. warp/_src/jax_experimental/custom_call.py +387 -0
  70. warp/_src/jax_experimental/ffi.py +1284 -0
  71. warp/_src/jax_experimental/xla_ffi.py +656 -0
  72. warp/_src/marching_cubes.py +708 -0
  73. warp/_src/math.py +414 -0
  74. warp/_src/optim/__init__.py +14 -0
  75. warp/_src/optim/adam.py +163 -0
  76. warp/_src/optim/linear.py +1606 -0
  77. warp/_src/optim/sgd.py +112 -0
  78. warp/_src/paddle.py +406 -0
  79. warp/_src/render/__init__.py +14 -0
  80. warp/_src/render/imgui_manager.py +289 -0
  81. warp/_src/render/render_opengl.py +3636 -0
  82. warp/_src/render/render_usd.py +937 -0
  83. warp/_src/render/utils.py +160 -0
  84. warp/_src/sparse.py +2716 -0
  85. warp/_src/tape.py +1206 -0
  86. warp/{thirdparty → _src/thirdparty}/unittest_parallel.py +9 -2
  87. warp/_src/torch.py +391 -0
  88. warp/_src/types.py +5870 -0
  89. warp/_src/utils.py +1693 -0
  90. warp/autograd.py +12 -1054
  91. warp/bin/warp-clang.dll +0 -0
  92. warp/bin/warp.dll +0 -0
  93. warp/build.py +8 -588
  94. warp/build_dll.py +6 -721
  95. warp/codegen.py +6 -4251
  96. warp/constants.py +6 -39
  97. warp/context.py +12 -8062
  98. warp/dlpack.py +6 -444
  99. warp/examples/distributed/example_jacobi_mpi.py +4 -5
  100. warp/examples/fem/example_adaptive_grid.py +1 -1
  101. warp/examples/fem/example_apic_fluid.py +1 -1
  102. warp/examples/fem/example_burgers.py +8 -8
  103. warp/examples/fem/example_diffusion.py +1 -1
  104. warp/examples/fem/example_distortion_energy.py +1 -1
  105. warp/examples/fem/example_mixed_elasticity.py +2 -2
  106. warp/examples/fem/example_navier_stokes.py +1 -1
  107. warp/examples/fem/example_nonconforming_contact.py +7 -7
  108. warp/examples/fem/example_stokes.py +1 -1
  109. warp/examples/fem/example_stokes_transfer.py +1 -1
  110. warp/examples/fem/utils.py +2 -2
  111. warp/examples/interop/example_jax_callable.py +1 -1
  112. warp/examples/interop/example_jax_ffi_callback.py +1 -1
  113. warp/examples/interop/example_jax_kernel.py +1 -1
  114. warp/examples/tile/example_tile_mcgp.py +191 -0
  115. warp/fabric.py +6 -337
  116. warp/fem/__init__.py +159 -97
  117. warp/fem/adaptivity.py +7 -489
  118. warp/fem/cache.py +9 -648
  119. warp/fem/dirichlet.py +6 -184
  120. warp/fem/field/__init__.py +8 -109
  121. warp/fem/field/field.py +7 -652
  122. warp/fem/geometry/__init__.py +7 -18
  123. warp/fem/geometry/closest_point.py +11 -77
  124. warp/fem/linalg.py +18 -366
  125. warp/fem/operator.py +11 -369
  126. warp/fem/polynomial.py +9 -209
  127. warp/fem/space/__init__.py +5 -211
  128. warp/fem/space/basis_space.py +6 -662
  129. warp/fem/space/shape/__init__.py +41 -118
  130. warp/fem/space/topology.py +6 -437
  131. warp/fem/types.py +6 -81
  132. warp/fem/utils.py +11 -444
  133. warp/jax.py +8 -165
  134. warp/jax_experimental/__init__.py +14 -1
  135. warp/jax_experimental/custom_call.py +8 -365
  136. warp/jax_experimental/ffi.py +17 -873
  137. warp/jax_experimental/xla_ffi.py +5 -605
  138. warp/marching_cubes.py +5 -689
  139. warp/math.py +16 -393
  140. warp/native/array.h +385 -37
  141. warp/native/builtin.h +314 -37
  142. warp/native/bvh.cpp +43 -9
  143. warp/native/bvh.cu +62 -27
  144. warp/native/bvh.h +310 -309
  145. warp/native/clang/clang.cpp +102 -97
  146. warp/native/coloring.cpp +0 -1
  147. warp/native/crt.h +208 -0
  148. warp/native/exports.h +156 -0
  149. warp/native/hashgrid.cu +2 -0
  150. warp/native/intersect.h +24 -1
  151. warp/native/intersect_tri.h +44 -35
  152. warp/native/mat.h +1456 -276
  153. warp/native/mesh.cpp +4 -4
  154. warp/native/mesh.cu +4 -2
  155. warp/native/mesh.h +176 -61
  156. warp/native/quat.h +0 -52
  157. warp/native/scan.cu +2 -0
  158. warp/native/sparse.cu +7 -3
  159. warp/native/spatial.h +12 -0
  160. warp/native/tile.h +681 -89
  161. warp/native/tile_radix_sort.h +1 -1
  162. warp/native/tile_reduce.h +394 -46
  163. warp/native/tile_scan.h +4 -4
  164. warp/native/vec.h +469 -0
  165. warp/native/version.h +23 -0
  166. warp/native/volume.cpp +1 -1
  167. warp/native/volume.cu +1 -0
  168. warp/native/volume.h +1 -1
  169. warp/native/volume_builder.cu +2 -0
  170. warp/native/warp.cpp +57 -29
  171. warp/native/warp.cu +253 -171
  172. warp/native/warp.h +11 -8
  173. warp/optim/__init__.py +6 -3
  174. warp/optim/adam.py +6 -145
  175. warp/optim/linear.py +14 -1585
  176. warp/optim/sgd.py +6 -94
  177. warp/paddle.py +6 -388
  178. warp/render/__init__.py +8 -4
  179. warp/render/imgui_manager.py +7 -267
  180. warp/render/render_opengl.py +6 -3618
  181. warp/render/render_usd.py +6 -919
  182. warp/render/utils.py +6 -142
  183. warp/sparse.py +37 -2563
  184. warp/tape.py +6 -1188
  185. warp/tests/__main__.py +1 -1
  186. warp/tests/cuda/test_async.py +4 -4
  187. warp/tests/cuda/test_conditional_captures.py +1 -1
  188. warp/tests/cuda/test_multigpu.py +1 -1
  189. warp/tests/cuda/test_streams.py +58 -1
  190. warp/tests/geometry/test_bvh.py +157 -22
  191. warp/tests/geometry/test_marching_cubes.py +0 -1
  192. warp/tests/geometry/test_mesh.py +5 -3
  193. warp/tests/geometry/test_mesh_query_aabb.py +5 -12
  194. warp/tests/geometry/test_mesh_query_point.py +5 -2
  195. warp/tests/geometry/test_mesh_query_ray.py +15 -3
  196. warp/tests/geometry/test_volume_write.py +5 -5
  197. warp/tests/interop/test_dlpack.py +14 -14
  198. warp/tests/interop/test_jax.py +772 -49
  199. warp/tests/interop/test_paddle.py +1 -1
  200. warp/tests/test_adam.py +0 -1
  201. warp/tests/test_arithmetic.py +9 -9
  202. warp/tests/test_array.py +527 -100
  203. warp/tests/test_array_reduce.py +3 -3
  204. warp/tests/test_atomic.py +12 -8
  205. warp/tests/test_atomic_bitwise.py +209 -0
  206. warp/tests/test_atomic_cas.py +4 -4
  207. warp/tests/test_bool.py +2 -2
  208. warp/tests/test_builtins_resolution.py +5 -571
  209. warp/tests/test_codegen.py +33 -14
  210. warp/tests/test_conditional.py +1 -1
  211. warp/tests/test_context.py +6 -6
  212. warp/tests/test_copy.py +242 -161
  213. warp/tests/test_ctypes.py +3 -3
  214. warp/tests/test_devices.py +24 -2
  215. warp/tests/test_examples.py +16 -84
  216. warp/tests/test_fabricarray.py +35 -35
  217. warp/tests/test_fast_math.py +0 -2
  218. warp/tests/test_fem.py +56 -10
  219. warp/tests/test_fixedarray.py +3 -3
  220. warp/tests/test_func.py +8 -5
  221. warp/tests/test_generics.py +1 -1
  222. warp/tests/test_indexedarray.py +24 -24
  223. warp/tests/test_intersect.py +39 -9
  224. warp/tests/test_large.py +1 -1
  225. warp/tests/test_lerp.py +3 -1
  226. warp/tests/test_linear_solvers.py +1 -1
  227. warp/tests/test_map.py +35 -4
  228. warp/tests/test_mat.py +52 -62
  229. warp/tests/test_mat_constructors.py +4 -5
  230. warp/tests/test_mat_lite.py +1 -1
  231. warp/tests/test_mat_scalar_ops.py +121 -121
  232. warp/tests/test_math.py +34 -0
  233. warp/tests/test_module_aot.py +4 -4
  234. warp/tests/test_modules_lite.py +28 -2
  235. warp/tests/test_print.py +11 -11
  236. warp/tests/test_quat.py +93 -58
  237. warp/tests/test_runlength_encode.py +1 -1
  238. warp/tests/test_scalar_ops.py +38 -10
  239. warp/tests/test_smoothstep.py +1 -1
  240. warp/tests/test_sparse.py +126 -15
  241. warp/tests/test_spatial.py +105 -87
  242. warp/tests/test_special_values.py +6 -6
  243. warp/tests/test_static.py +7 -7
  244. warp/tests/test_struct.py +13 -2
  245. warp/tests/test_triangle_closest_point.py +48 -1
  246. warp/tests/test_types.py +27 -15
  247. warp/tests/test_utils.py +52 -52
  248. warp/tests/test_vec.py +29 -29
  249. warp/tests/test_vec_constructors.py +5 -5
  250. warp/tests/test_vec_scalar_ops.py +97 -97
  251. warp/tests/test_version.py +75 -0
  252. warp/tests/tile/test_tile.py +178 -0
  253. warp/tests/tile/test_tile_atomic_bitwise.py +403 -0
  254. warp/tests/tile/test_tile_cholesky.py +7 -4
  255. warp/tests/tile/test_tile_load.py +26 -2
  256. warp/tests/tile/test_tile_mathdx.py +3 -3
  257. warp/tests/tile/test_tile_matmul.py +1 -1
  258. warp/tests/tile/test_tile_mlp.py +2 -4
  259. warp/tests/tile/test_tile_reduce.py +214 -13
  260. warp/tests/unittest_suites.py +6 -14
  261. warp/tests/unittest_utils.py +10 -9
  262. warp/tests/walkthrough_debug.py +3 -1
  263. warp/torch.py +6 -373
  264. warp/types.py +29 -5764
  265. warp/utils.py +10 -1659
  266. {warp_lang-1.9.1.dist-info → warp_lang-1.10.0rc2.dist-info}/METADATA +46 -99
  267. warp_lang-1.10.0rc2.dist-info/RECORD +468 -0
  268. warp_lang-1.10.0rc2.dist-info/licenses/licenses/Gaia-LICENSE.txt +6 -0
  269. warp_lang-1.10.0rc2.dist-info/licenses/licenses/appdirs-LICENSE.txt +22 -0
  270. warp_lang-1.10.0rc2.dist-info/licenses/licenses/asset_pixel_jpg-LICENSE.txt +3 -0
  271. warp_lang-1.10.0rc2.dist-info/licenses/licenses/cuda-LICENSE.txt +1582 -0
  272. warp_lang-1.10.0rc2.dist-info/licenses/licenses/dlpack-LICENSE.txt +201 -0
  273. warp_lang-1.10.0rc2.dist-info/licenses/licenses/fp16-LICENSE.txt +28 -0
  274. warp_lang-1.10.0rc2.dist-info/licenses/licenses/libmathdx-LICENSE.txt +220 -0
  275. warp_lang-1.10.0rc2.dist-info/licenses/licenses/llvm-LICENSE.txt +279 -0
  276. warp_lang-1.10.0rc2.dist-info/licenses/licenses/moller-LICENSE.txt +16 -0
  277. warp_lang-1.10.0rc2.dist-info/licenses/licenses/nanovdb-LICENSE.txt +2 -0
  278. warp_lang-1.10.0rc2.dist-info/licenses/licenses/nvrtc-LICENSE.txt +1592 -0
  279. warp_lang-1.10.0rc2.dist-info/licenses/licenses/svd-LICENSE.txt +23 -0
  280. warp_lang-1.10.0rc2.dist-info/licenses/licenses/unittest_parallel-LICENSE.txt +21 -0
  281. warp_lang-1.10.0rc2.dist-info/licenses/licenses/usd-LICENSE.txt +213 -0
  282. warp_lang-1.10.0rc2.dist-info/licenses/licenses/windingnumber-LICENSE.txt +21 -0
  283. warp/examples/assets/cartpole.urdf +0 -110
  284. warp/examples/assets/crazyflie.usd +0 -0
  285. warp/examples/assets/nv_ant.xml +0 -92
  286. warp/examples/assets/nv_humanoid.xml +0 -183
  287. warp/examples/assets/quadruped.urdf +0 -268
  288. warp/examples/optim/example_bounce.py +0 -266
  289. warp/examples/optim/example_cloth_throw.py +0 -228
  290. warp/examples/optim/example_drone.py +0 -870
  291. warp/examples/optim/example_inverse_kinematics.py +0 -182
  292. warp/examples/optim/example_inverse_kinematics_torch.py +0 -191
  293. warp/examples/optim/example_softbody_properties.py +0 -400
  294. warp/examples/optim/example_spring_cage.py +0 -245
  295. warp/examples/optim/example_trajectory.py +0 -227
  296. warp/examples/sim/example_cartpole.py +0 -143
  297. warp/examples/sim/example_cloth.py +0 -225
  298. warp/examples/sim/example_cloth_self_contact.py +0 -316
  299. warp/examples/sim/example_granular.py +0 -130
  300. warp/examples/sim/example_granular_collision_sdf.py +0 -202
  301. warp/examples/sim/example_jacobian_ik.py +0 -244
  302. warp/examples/sim/example_particle_chain.py +0 -124
  303. warp/examples/sim/example_quadruped.py +0 -203
  304. warp/examples/sim/example_rigid_chain.py +0 -203
  305. warp/examples/sim/example_rigid_contact.py +0 -195
  306. warp/examples/sim/example_rigid_force.py +0 -133
  307. warp/examples/sim/example_rigid_gyroscopic.py +0 -115
  308. warp/examples/sim/example_rigid_soft_contact.py +0 -140
  309. warp/examples/sim/example_soft_body.py +0 -196
  310. warp/examples/tile/example_tile_walker.py +0 -327
  311. warp/sim/__init__.py +0 -74
  312. warp/sim/articulation.py +0 -793
  313. warp/sim/collide.py +0 -2570
  314. warp/sim/graph_coloring.py +0 -307
  315. warp/sim/import_mjcf.py +0 -791
  316. warp/sim/import_snu.py +0 -227
  317. warp/sim/import_urdf.py +0 -579
  318. warp/sim/import_usd.py +0 -898
  319. warp/sim/inertia.py +0 -357
  320. warp/sim/integrator.py +0 -245
  321. warp/sim/integrator_euler.py +0 -2000
  322. warp/sim/integrator_featherstone.py +0 -2101
  323. warp/sim/integrator_vbd.py +0 -2487
  324. warp/sim/integrator_xpbd.py +0 -3295
  325. warp/sim/model.py +0 -4821
  326. warp/sim/particles.py +0 -121
  327. warp/sim/render.py +0 -431
  328. warp/sim/utils.py +0 -431
  329. warp/tests/sim/disabled_kinematics.py +0 -244
  330. warp/tests/sim/test_cloth.py +0 -863
  331. warp/tests/sim/test_collision.py +0 -743
  332. warp/tests/sim/test_coloring.py +0 -347
  333. warp/tests/sim/test_inertia.py +0 -161
  334. warp/tests/sim/test_model.py +0 -226
  335. warp/tests/sim/test_sim_grad.py +0 -287
  336. warp/tests/sim/test_sim_grad_bounce_linear.py +0 -212
  337. warp/tests/sim/test_sim_kinematics.py +0 -98
  338. warp/thirdparty/__init__.py +0 -0
  339. warp_lang-1.9.1.dist-info/RECORD +0 -456
  340. /warp/{fem → _src/fem}/quadrature/__init__.py +0 -0
  341. /warp/{tests/sim → _src/thirdparty}/__init__.py +0 -0
  342. /warp/{thirdparty → _src/thirdparty}/appdirs.py +0 -0
  343. /warp/{thirdparty → _src/thirdparty}/dlpack.py +0 -0
  344. {warp_lang-1.9.1.dist-info → warp_lang-1.10.0rc2.dist-info}/WHEEL +0 -0
  345. {warp_lang-1.9.1.dist-info → warp_lang-1.10.0rc2.dist-info}/licenses/LICENSE.md +0 -0
  346. {warp_lang-1.9.1.dist-info → warp_lang-1.10.0rc2.dist-info}/top_level.txt +0 -0
warp/_src/fem/utils.py ADDED
@@ -0,0 +1,486 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from typing import Optional, Tuple, Union
17
+
18
+ import numpy as np
19
+
20
+ import warp as wp
21
+ import warp._src.fem.cache as cache
22
+ from warp._src.fem.linalg import array_axpy, inverse_qr, symmetric_eigenvalues_qr # noqa: F401
23
+ from warp._src.fem.types import NULL_NODE_INDEX
24
+ from warp._src.types import scalar_types, type_is_matrix
25
+ from warp._src.utils import array_scan, radix_sort_pairs, runlength_encode
26
+
27
+
28
+ def type_zero_element(dtype):
29
+ suffix = cache.pod_type_key(dtype)
30
+
31
+ if dtype in scalar_types:
32
+
33
+ @cache.dynamic_func(suffix=suffix)
34
+ def zero_element():
35
+ return dtype(0.0)
36
+
37
+ return zero_element
38
+
39
+ @cache.dynamic_func(suffix=suffix)
40
+ def zero_element():
41
+ return dtype()
42
+
43
+ return zero_element
44
+
45
+
46
+ def type_basis_element(dtype):
47
+ suffix = cache.pod_type_key(dtype)
48
+
49
+ if dtype in scalar_types:
50
+
51
+ @cache.dynamic_func(suffix=suffix)
52
+ def basis_element(coord: int):
53
+ return dtype(1.0)
54
+
55
+ return basis_element
56
+
57
+ if type_is_matrix(dtype):
58
+ cols = dtype._shape_[1]
59
+
60
+ @cache.dynamic_func(suffix=suffix)
61
+ def basis_element(coord: int):
62
+ v = dtype()
63
+ i = coord // cols
64
+ j = coord - i * cols
65
+ v[i, j] = v.dtype(1.0)
66
+ return v
67
+
68
+ return basis_element
69
+
70
+ @cache.dynamic_func(suffix=suffix)
71
+ def basis_element(coord: int):
72
+ v = dtype()
73
+ v[coord] = v.dtype(1.0)
74
+ return v
75
+
76
+ return basis_element
77
+
78
+
79
+ def compress_node_indices(
80
+ node_count: int,
81
+ node_indices: wp.array(dtype=int),
82
+ return_unique_nodes=False,
83
+ node_offsets: wp.array(dtype=int) = None,
84
+ sorted_array_indices: wp.array(dtype=int) = None,
85
+ unique_node_count: wp.array(dtype=int) = None,
86
+ unique_node_indices: wp.array(dtype=int) = None,
87
+ temporary_store: cache.TemporaryStore = None,
88
+ ) -> Union[Tuple[cache.Temporary, cache.Temporary], Tuple[cache.Temporary, cache.Temporary, int, cache.Temporary]]:
89
+ """
90
+ Compress an unsorted list of node indices into:
91
+ - the `node_offsets` array, giving for each node the start offset of corresponding indices in sorted_array_indices
92
+ - the `sorted_array_indices` array, listing the indices in the input array corresponding to each node
93
+
94
+ Plus if `return_unique_nodes` is ``True``,
95
+ - the `unique_node_count` array containing the number of unique node indices
96
+ - the `unique_node_indices` array containing the sorted list of unique node indices (i.e. the list of indices i for which node_offsets[i] < node_offsets[i+1])
97
+
98
+ Node indices equal to NULL_NODE_INDEX will be ignored
99
+
100
+ If the ``node_offsets``, ``sorted_array_indices``, ``unique_node_count`` and ``unique_node_indices`` arrays are provided and adequately shaped, they will be used to store the results instead of creating new arrays.
101
+
102
+ """
103
+
104
+ index_count = node_indices.size
105
+ device = node_indices.device
106
+
107
+ with wp.ScopedDevice(device):
108
+ sorted_node_indices = cache.borrow_temporary(temporary_store, shape=2 * index_count, dtype=int)
109
+
110
+ if sorted_array_indices is None or sorted_array_indices.shape != sorted_node_indices.shape:
111
+ sorted_array_indices = cache.borrow_temporary_like(sorted_node_indices, temporary_store)
112
+
113
+ indices_per_element = 1 if node_indices.ndim == 1 else node_indices.shape[-1]
114
+ wp.launch(
115
+ kernel=_prepare_node_sort_kernel,
116
+ dim=index_count,
117
+ inputs=[node_indices.flatten(), sorted_node_indices, sorted_array_indices, indices_per_element],
118
+ )
119
+
120
+ # Sort indices
121
+ radix_sort_pairs(sorted_node_indices, sorted_array_indices, count=index_count)
122
+
123
+ # Build prefix sum of number of elements per node
124
+ node_element_counts = cache.borrow_temporary(temporary_store, shape=index_count, dtype=int)
125
+ if unique_node_indices is None or unique_node_indices.shape != node_element_counts.shape:
126
+ unique_node_indices = cache.borrow_temporary_like(node_element_counts, temporary_store)
127
+
128
+ if unique_node_count is None or unique_node_count.shape != (1,):
129
+ unique_node_count = cache.borrow_temporary(temporary_store, shape=(1,), dtype=int)
130
+
131
+ runlength_encode(
132
+ sorted_node_indices,
133
+ unique_node_indices,
134
+ node_element_counts,
135
+ value_count=index_count,
136
+ run_count=unique_node_count,
137
+ )
138
+
139
+ # Scatter seen run counts to global array of element count per node
140
+ if node_offsets is None or node_offsets.shape != (node_count + 1,):
141
+ node_offsets = cache.borrow_temporary(temporary_store, shape=(node_count + 1), dtype=int)
142
+
143
+ node_offsets.zero_()
144
+ wp.launch(
145
+ kernel=_scatter_node_counts,
146
+ dim=node_count + 1, # +1 to accommodate possible NULL node,
147
+ inputs=[node_element_counts, unique_node_indices, node_offsets, unique_node_count],
148
+ )
149
+
150
+ # Prefix sum of number of elements per node
151
+ array_scan(node_offsets, node_offsets, inclusive=True)
152
+
153
+ sorted_node_indices.release()
154
+ node_element_counts.release()
155
+
156
+ if not return_unique_nodes:
157
+ return node_offsets, sorted_array_indices
158
+
159
+ return node_offsets, sorted_array_indices, unique_node_count, unique_node_indices
160
+
161
+
162
+ def host_read_at_index(array: wp.array, index: int = -1, temporary_store: cache.TemporaryStore = None) -> int:
163
+ """Returns the value of the array element at the given index on host"""
164
+
165
+ if index < 0:
166
+ index += array.shape[0]
167
+ return array[index : index + 1].numpy()[0]
168
+
169
+
170
+ def masked_indices(
171
+ mask: wp.array,
172
+ missing_index: int = -1,
173
+ max_index_count: int = -1,
174
+ local_to_global: Optional[wp.array] = None,
175
+ global_to_local: Optional[wp.array] = None,
176
+ temporary_store: cache.TemporaryStore = None,
177
+ ) -> Tuple[wp.array, wp.array]:
178
+ """
179
+ From an array of boolean masks (must be either 0 or 1), returns:
180
+ - Local to global map: The list of indices for which the mask is 1
181
+ - Global to local map: A map associating to each element of the input mask array its local index if non-zero, or missing_index if zero.
182
+
183
+ If ``max_index_count`` is provided, it will be used to limit the number of indices returned instead of synchronizing back to the host
184
+
185
+ If ``local_to_global`` and ``global_to_local`` are provided and adequately sized, they will be used to store the indices instead of creating new arrays.
186
+ """
187
+
188
+ if global_to_local is None or global_to_local.shape != mask.shape:
189
+ offsets = cache.borrow_temporary_like(mask, temporary_store)
190
+ global_to_local = offsets
191
+ else:
192
+ offsets = global_to_local
193
+
194
+ array_scan(mask, offsets, inclusive=True)
195
+
196
+ # Get back total counts (on host if no estimate is provided)
197
+ local_count = (
198
+ min(max_index_count, mask.shape[0])
199
+ if max_index_count >= 0
200
+ else int(host_read_at_index(offsets, temporary_store=temporary_store))
201
+ )
202
+
203
+ # Convert counts to indices
204
+ if local_to_global is None or local_to_global.shape[0] != local_count:
205
+ local_to_global = cache.borrow_temporary(temporary_store, shape=local_count, device=mask.device, dtype=int)
206
+
207
+ if max_index_count >= 0:
208
+ # We might (and hopefully have) reserved more space than necessary
209
+ # Fill with missing index to avoid uninitialized values
210
+ local_to_global.fill_(missing_index)
211
+
212
+ wp.launch(
213
+ kernel=_masked_indices_kernel,
214
+ dim=offsets.shape,
215
+ inputs=[missing_index, mask, offsets, local_to_global, offsets],
216
+ device=mask.device,
217
+ )
218
+
219
+ return local_to_global, global_to_local
220
+
221
+
222
+ @wp.kernel
223
+ def _prepare_node_sort_kernel(
224
+ node_indices: wp.array(dtype=int),
225
+ sort_keys: wp.array(dtype=int),
226
+ sort_values: wp.array(dtype=int),
227
+ divisor: int,
228
+ ):
229
+ i = wp.tid()
230
+ node = node_indices[i]
231
+ sort_keys[i] = wp.where(node >= 0, node, NULL_NODE_INDEX)
232
+ sort_values[i] = i // divisor
233
+
234
+
235
+ @wp.kernel
236
+ def _scatter_node_counts(
237
+ unique_counts: wp.array(dtype=int),
238
+ unique_node_indices: wp.array(dtype=int),
239
+ node_counts: wp.array(dtype=int),
240
+ unique_node_count: wp.array(dtype=int),
241
+ ):
242
+ i = wp.tid()
243
+
244
+ if i >= unique_node_count[0]:
245
+ if i < unique_node_indices.shape[0]:
246
+ unique_node_indices[i] = NULL_NODE_INDEX
247
+ return
248
+
249
+ node_index = unique_node_indices[i]
250
+ if node_index == NULL_NODE_INDEX:
251
+ wp.atomic_sub(unique_node_count, 0, 1)
252
+ return
253
+
254
+ node_counts[1 + node_index] = unique_counts[i]
255
+
256
+
257
+ @wp.kernel
258
+ def _masked_indices_kernel(
259
+ missing_index: int,
260
+ mask: wp.array(dtype=int),
261
+ offsets: wp.array(dtype=int),
262
+ masked_to_global: wp.array(dtype=int),
263
+ global_to_masked: wp.array(dtype=int),
264
+ ):
265
+ i = wp.tid()
266
+
267
+ max_count = masked_to_global.shape[0]
268
+ masked_idx = offsets[i] - 1
269
+
270
+ if i + 1 == offsets.shape[0] and masked_idx >= max_count:
271
+ if max_count < offsets[i]:
272
+ wp.printf(
273
+ "Number of elements exceeded the %d limit; increase to %d.\n",
274
+ max_count,
275
+ masked_idx + 1,
276
+ )
277
+
278
+ if mask[i] == 0 or masked_idx >= max_count:
279
+ # index not in mask, or greater than reserved index count
280
+ global_to_masked[i] = missing_index
281
+ else:
282
+ global_to_masked[i] = masked_idx
283
+ masked_to_global[masked_idx] = i
284
+
285
+
286
+ def grid_to_tris(Nx: int, Ny: int):
287
+ """Constructs a triangular mesh topology by dividing each cell of a dense 2D grid into two triangles.
288
+
289
+ The resulting triangles will be oriented counter-clockwise assuming that `y` is the fastest moving index direction
290
+
291
+ Args:
292
+ Nx: Resolution of the grid along `x` dimension
293
+ Ny: Resolution of the grid along `y` dimension
294
+
295
+ Returns:
296
+ Array of shape (2 * Nx * Ny, 3) containing vertex indices for each triangle
297
+ """
298
+
299
+ cx, cy = np.meshgrid(np.arange(Nx, dtype=int), np.arange(Ny, dtype=int), indexing="ij")
300
+
301
+ vidx = np.transpose(
302
+ np.array(
303
+ [
304
+ (Ny + 1) * cx + cy,
305
+ (Ny + 1) * (cx + 1) + cy,
306
+ (Ny + 1) * (cx + 1) + (cy + 1),
307
+ (Ny + 1) * cx + cy,
308
+ (Ny + 1) * (cx + 1) + (cy + 1),
309
+ (Ny + 1) * (cx) + (cy + 1),
310
+ ]
311
+ )
312
+ ).reshape((-1, 3))
313
+
314
+ return vidx
315
+
316
+
317
+ def grid_to_tets(Nx: int, Ny: int, Nz: int):
318
+ """Constructs a tetrahedral mesh topology by diving each cell of a dense 3D grid into five tetrahedrons
319
+
320
+ The resulting tets have positive volume assuming that `z` is the fastest moving index direction
321
+
322
+ Args:
323
+ Nx: Resolution of the grid along `x` dimension
324
+ Ny: Resolution of the grid along `y` dimension
325
+ Nz: Resolution of the grid along `z` dimension
326
+
327
+ Returns:
328
+ Array of shape (5 * Nx * Ny * Nz, 4) containing vertex indices for each tet
329
+ """
330
+
331
+ # Global node indices for each cell
332
+ cx, cy, cz = np.meshgrid(
333
+ np.arange(Nx, dtype=int), np.arange(Ny, dtype=int), np.arange(Nz, dtype=int), indexing="ij"
334
+ )
335
+
336
+ grid_vidx = np.array(
337
+ [
338
+ (Ny + 1) * (Nz + 1) * cx + (Nz + 1) * cy + cz,
339
+ (Ny + 1) * (Nz + 1) * cx + (Nz + 1) * cy + cz + 1,
340
+ (Ny + 1) * (Nz + 1) * cx + (Nz + 1) * (cy + 1) + cz,
341
+ (Ny + 1) * (Nz + 1) * cx + (Nz + 1) * (cy + 1) + cz + 1,
342
+ (Ny + 1) * (Nz + 1) * (cx + 1) + (Nz + 1) * cy + cz,
343
+ (Ny + 1) * (Nz + 1) * (cx + 1) + (Nz + 1) * cy + cz + 1,
344
+ (Ny + 1) * (Nz + 1) * (cx + 1) + (Nz + 1) * (cy + 1) + cz,
345
+ (Ny + 1) * (Nz + 1) * (cx + 1) + (Nz + 1) * (cy + 1) + cz + 1,
346
+ ]
347
+ )
348
+
349
+ # decompose grid cells into 5 tets
350
+ tet_vidx = np.array(
351
+ [
352
+ [0, 1, 2, 4],
353
+ [3, 2, 1, 7],
354
+ [5, 1, 7, 4],
355
+ [6, 7, 4, 2],
356
+ [4, 1, 2, 7],
357
+ ]
358
+ )
359
+
360
+ # Convert to 3d index coordinates
361
+ vidx_coords = np.array(
362
+ [
363
+ [0, 0, 0],
364
+ [0, 0, 1],
365
+ [0, 1, 0],
366
+ [0, 1, 1],
367
+ [1, 0, 0],
368
+ [1, 0, 1],
369
+ [1, 1, 0],
370
+ [1, 1, 1],
371
+ ]
372
+ )
373
+ tet_coords = vidx_coords[tet_vidx]
374
+
375
+ # Symmetry bits for each cell
376
+ ox, oy, oz = np.meshgrid(
377
+ np.arange(Nx, dtype=int) % 2, np.arange(Ny, dtype=int) % 2, np.arange(Nz, dtype=int) % 2, indexing="ij"
378
+ )
379
+ tet_coords = np.broadcast_to(tet_coords, shape=(*ox.shape, *tet_coords.shape))
380
+
381
+ # Flip coordinates according to symmetry
382
+ ox_bk = np.broadcast_to(ox.reshape(*ox.shape, 1, 1), tet_coords.shape[:-1])
383
+ oy_bk = np.broadcast_to(oy.reshape(*oy.shape, 1, 1), tet_coords.shape[:-1])
384
+ oz_bk = np.broadcast_to(oz.reshape(*oz.shape, 1, 1), tet_coords.shape[:-1])
385
+
386
+ tet_coords_x = tet_coords[..., 0] ^ ox_bk
387
+ tet_coords_y = tet_coords[..., 1] ^ oy_bk
388
+ tet_coords_z = tet_coords[..., 2] ^ oz_bk
389
+
390
+ # Back to local vertex indices
391
+ corner_indices = 4 * tet_coords_x + 2 * tet_coords_y + tet_coords_z
392
+
393
+ # Now go from cell-local to global node indices
394
+ # There must be a nicer way than this, but for small grids this works
395
+
396
+ corner_indices = corner_indices.reshape(-1, 4)
397
+
398
+ grid_vidx = grid_vidx.reshape((8, -1, 1))
399
+ grid_vidx = np.broadcast_to(grid_vidx, shape=(8, grid_vidx.shape[1], 5))
400
+ grid_vidx = grid_vidx.reshape((8, -1))
401
+
402
+ node_indices = np.arange(corner_indices.shape[0])
403
+ tet_grid_vidx = np.transpose(
404
+ [
405
+ grid_vidx[corner_indices[:, 0], node_indices],
406
+ grid_vidx[corner_indices[:, 1], node_indices],
407
+ grid_vidx[corner_indices[:, 2], node_indices],
408
+ grid_vidx[corner_indices[:, 3], node_indices],
409
+ ]
410
+ )
411
+
412
+ return tet_grid_vidx
413
+
414
+
415
+ def grid_to_quads(Nx: int, Ny: int):
416
+ """Constructs a quadrilateral mesh topology from a dense 2D grid
417
+
418
+ The resulting quads will be indexed counter-clockwise
419
+
420
+ Args:
421
+ Nx: Resolution of the grid along `x` dimension
422
+ Ny: Resolution of the grid along `y` dimension
423
+
424
+ Returns:
425
+ Array of shape (Nx * Ny, 4) containing vertex indices for each quadrilateral
426
+ """
427
+
428
+ quad_vtx = np.array(
429
+ [
430
+ [0, 0],
431
+ [1, 0],
432
+ [1, 1],
433
+ [0, 1],
434
+ ]
435
+ ).T
436
+
437
+ quads = np.stack(np.meshgrid(np.arange(0, Nx), np.arange(0, Ny), indexing="ij"))
438
+
439
+ quads_vtx_shape = (*quads.shape, quad_vtx.shape[1])
440
+ quads_vtx = np.broadcast_to(quads.reshape(*quads.shape, 1), quads_vtx_shape) + np.broadcast_to(
441
+ quad_vtx.reshape(2, 1, 1, quad_vtx.shape[1]), quads_vtx_shape
442
+ )
443
+
444
+ quad_vtx_indices = quads_vtx[0] * (Ny + 1) + quads_vtx[1]
445
+
446
+ return quad_vtx_indices.reshape(-1, 4)
447
+
448
+
449
+ def grid_to_hexes(Nx: int, Ny: int, Nz: int):
450
+ """Constructs a hexahedral mesh topology from a dense 3D grid
451
+
452
+ The resulting hexes will be indexed following usual convention assuming that `z` is the fastest moving index direction
453
+ (counter-clockwise bottom vertices, then counter-clockwise top vertices)
454
+
455
+ Args:
456
+ Nx: Resolution of the grid along `x` dimension
457
+ Ny: Resolution of the grid along `y` dimension
458
+ Nz: Resolution of the grid along `z` dimension
459
+
460
+ Returns:
461
+ Array of shape (Nx * Ny * Nz, 8) containing vertex indices for each hexahedron
462
+ """
463
+
464
+ hex_vtx = np.array(
465
+ [
466
+ [0, 0, 0],
467
+ [1, 0, 0],
468
+ [1, 1, 0],
469
+ [0, 1, 0],
470
+ [0, 0, 1],
471
+ [1, 0, 1],
472
+ [1, 1, 1],
473
+ [0, 1, 1],
474
+ ]
475
+ ).T
476
+
477
+ hexes = np.stack(np.meshgrid(np.arange(0, Nx), np.arange(0, Ny), np.arange(0, Nz), indexing="ij"))
478
+
479
+ hexes_vtx_shape = (*hexes.shape, hex_vtx.shape[1])
480
+ hexes_vtx = np.broadcast_to(hexes.reshape(*hexes.shape, 1), hexes_vtx_shape) + np.broadcast_to(
481
+ hex_vtx.reshape(3, 1, 1, 1, hex_vtx.shape[1]), hexes_vtx_shape
482
+ )
483
+
484
+ hexes_vtx_indices = hexes_vtx[0] * (Nz + 1) * (Ny + 1) + hexes_vtx[1] * (Nz + 1) + hexes_vtx[2]
485
+
486
+ return hexes_vtx_indices.reshape(-1, 8)
warp/_src/jax.py ADDED
@@ -0,0 +1,186 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import warp
17
+
18
+
19
+ def device_to_jax(warp_device: warp._src.context.Devicelike):
20
+ """Return the Jax device corresponding to a Warp device.
21
+
22
+ Returns:
23
+ :class:`jax.Device`
24
+
25
+ Raises:
26
+ RuntimeError: Failed to find the corresponding Jax device.
27
+ """
28
+ import jax
29
+
30
+ d = warp.get_device(warp_device)
31
+
32
+ if d.is_cuda:
33
+ cuda_devices = jax.devices("cuda")
34
+ if d.ordinal >= len(cuda_devices):
35
+ raise RuntimeError(f"Jax device corresponding to '{warp_device}' is not available")
36
+ return cuda_devices[d.ordinal]
37
+ else:
38
+ cpu_devices = jax.devices("cpu")
39
+ if not cpu_devices:
40
+ raise RuntimeError(f"Jax device corresponding to '{warp_device}' is not available")
41
+ return cpu_devices[0]
42
+
43
+
44
+ def device_from_jax(jax_device) -> warp._src.context.Device:
45
+ """Return the Warp device corresponding to a Jax device.
46
+
47
+ Args:
48
+ jax_device (jax.Device): A Jax device descriptor.
49
+
50
+ Raises:
51
+ RuntimeError: The Jax device is neither a CPU nor GPU device.
52
+ """
53
+ if jax_device.platform == "cpu":
54
+ return warp.get_device("cpu")
55
+ elif jax_device.platform == "gpu":
56
+ return warp.get_cuda_device(jax_device.id)
57
+ else:
58
+ raise RuntimeError(f"Unsupported Jax device platform '{jax_device.platform}'")
59
+
60
+
61
+ def get_jax_device():
62
+ """Get the current Jax device."""
63
+ import jax
64
+
65
+ # TODO: is there a simpler way of getting the Jax "current" device?
66
+ # check if jax.default_device() context manager is active
67
+ device = jax.config.jax_default_device
68
+ # if default device is not set, use first device
69
+ if device is None:
70
+ device = jax.local_devices()[0]
71
+ return device
72
+
73
+
74
+ def dtype_to_jax(warp_dtype):
75
+ """Return the Jax dtype corresponding to a Warp dtype.
76
+
77
+ Args:
78
+ warp_dtype: A Warp data type that has a corresponding Jax data type.
79
+
80
+ Raises:
81
+ TypeError: Unable to find a corresponding Jax data type.
82
+ """
83
+ # initialize lookup table on first call to defer jax import
84
+ if dtype_to_jax.type_map is None:
85
+ import jax.numpy as jp
86
+
87
+ dtype_to_jax.type_map = {
88
+ warp.float16: jp.float16,
89
+ warp.float32: jp.float32,
90
+ warp.float64: jp.float64,
91
+ warp.int8: jp.int8,
92
+ warp.int16: jp.int16,
93
+ warp.int32: jp.int32,
94
+ warp.int64: jp.int64,
95
+ warp.uint8: jp.uint8,
96
+ warp.uint16: jp.uint16,
97
+ warp.uint32: jp.uint32,
98
+ warp.uint64: jp.uint64,
99
+ warp.bool: jp.bool_,
100
+ }
101
+
102
+ jax_dtype = dtype_to_jax.type_map.get(warp_dtype)
103
+ if jax_dtype is not None:
104
+ return jax_dtype
105
+ else:
106
+ raise TypeError(f"Cannot convert {warp_dtype} to a Jax type")
107
+
108
+
109
+ def dtype_from_jax(jax_dtype):
110
+ """Return the Warp dtype corresponding to a Jax dtype.
111
+
112
+ Raises:
113
+ TypeError: Unable to find a corresponding Warp data type.
114
+ """
115
+ # initialize lookup table on first call to defer jax import
116
+ if dtype_from_jax.type_map is None:
117
+ import jax.numpy as jp
118
+
119
+ dtype_from_jax.type_map = {
120
+ # Jax scalar types
121
+ jp.float16: warp.float16,
122
+ jp.float32: warp.float32,
123
+ jp.float64: warp.float64,
124
+ jp.int8: warp.int8,
125
+ jp.int16: warp.int16,
126
+ jp.int32: warp.int32,
127
+ jp.int64: warp.int64,
128
+ jp.uint8: warp.uint8,
129
+ jp.uint16: warp.uint16,
130
+ jp.uint32: warp.uint32,
131
+ jp.uint64: warp.uint64,
132
+ jp.bool_: warp.bool,
133
+ # Jax dtype objects
134
+ jp.dtype(jp.float16): warp.float16,
135
+ jp.dtype(jp.float32): warp.float32,
136
+ jp.dtype(jp.float64): warp.float64,
137
+ jp.dtype(jp.int8): warp.int8,
138
+ jp.dtype(jp.int16): warp.int16,
139
+ jp.dtype(jp.int32): warp.int32,
140
+ jp.dtype(jp.int64): warp.int64,
141
+ jp.dtype(jp.uint8): warp.uint8,
142
+ jp.dtype(jp.uint16): warp.uint16,
143
+ jp.dtype(jp.uint32): warp.uint32,
144
+ jp.dtype(jp.uint64): warp.uint64,
145
+ jp.dtype(jp.bool_): warp.bool,
146
+ }
147
+
148
+ wp_dtype = dtype_from_jax.type_map.get(jax_dtype)
149
+ if wp_dtype is not None:
150
+ return wp_dtype
151
+ else:
152
+ raise TypeError(f"Cannot convert {jax_dtype} to a Warp type")
153
+
154
+
155
+ # lookup tables initialized when needed
156
+ dtype_from_jax.type_map = None
157
+ dtype_to_jax.type_map = None
158
+
159
+
160
+ def to_jax(warp_array):
161
+ """
162
+ Convert a Warp array to a Jax array without copying the data.
163
+
164
+ Args:
165
+ warp_array (warp.array): The Warp array to convert.
166
+
167
+ Returns:
168
+ jax.Array: The converted Jax array.
169
+ """
170
+ import jax.dlpack
171
+
172
+ return jax.dlpack.from_dlpack(warp_array)
173
+
174
+
175
+ def from_jax(jax_array, dtype=None) -> warp.array:
176
+ """Convert a Jax array to a Warp array without copying the data.
177
+
178
+ Args:
179
+ jax_array (jax.Array): The Jax array to convert.
180
+ dtype (optional): The target data type of the resulting Warp array. Defaults to the Jax array's data type mapped to a Warp data type.
181
+
182
+ Returns:
183
+ warp.array: The converted Warp array.
184
+ """
185
+
186
+ return warp.from_dlpack(jax_array, dtype=dtype)
@@ -0,0 +1,14 @@
1
+ # SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.