warp-lang 1.8.0__py3-none-win_amd64.whl → 1.9.0__py3-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +282 -103
- warp/__init__.pyi +482 -110
- warp/bin/warp-clang.dll +0 -0
- warp/bin/warp.dll +0 -0
- warp/build.py +93 -30
- warp/build_dll.py +48 -63
- warp/builtins.py +955 -137
- warp/codegen.py +327 -209
- warp/config.py +1 -1
- warp/context.py +1363 -800
- warp/examples/core/example_marching_cubes.py +1 -0
- warp/examples/core/example_render_opengl.py +100 -3
- warp/examples/fem/example_apic_fluid.py +98 -52
- warp/examples/fem/example_convection_diffusion_dg.py +25 -4
- warp/examples/fem/example_diffusion_mgpu.py +8 -3
- warp/examples/fem/utils.py +68 -22
- warp/examples/interop/example_jax_callable.py +34 -4
- warp/examples/interop/example_jax_kernel.py +27 -1
- warp/fabric.py +1 -1
- warp/fem/cache.py +27 -19
- warp/fem/domain.py +2 -2
- warp/fem/field/nodal_field.py +2 -2
- warp/fem/field/virtual.py +266 -166
- warp/fem/geometry/geometry.py +5 -5
- warp/fem/integrate.py +200 -91
- warp/fem/space/restriction.py +4 -0
- warp/fem/space/shape/tet_shape_function.py +3 -10
- warp/jax_experimental/custom_call.py +1 -1
- warp/jax_experimental/ffi.py +203 -54
- warp/marching_cubes.py +708 -0
- warp/native/array.h +103 -8
- warp/native/builtin.h +90 -9
- warp/native/bvh.cpp +64 -28
- warp/native/bvh.cu +58 -58
- warp/native/bvh.h +2 -2
- warp/native/clang/clang.cpp +7 -7
- warp/native/coloring.cpp +13 -3
- warp/native/crt.cpp +2 -2
- warp/native/crt.h +3 -5
- warp/native/cuda_util.cpp +42 -11
- warp/native/cuda_util.h +10 -4
- warp/native/exports.h +1842 -1908
- warp/native/fabric.h +2 -1
- warp/native/hashgrid.cpp +37 -37
- warp/native/hashgrid.cu +2 -2
- warp/native/initializer_array.h +1 -1
- warp/native/intersect.h +4 -4
- warp/native/mat.h +1913 -119
- warp/native/mathdx.cpp +43 -43
- warp/native/mesh.cpp +24 -24
- warp/native/mesh.cu +26 -26
- warp/native/mesh.h +5 -3
- warp/native/nanovdb/GridHandle.h +179 -12
- warp/native/nanovdb/HostBuffer.h +8 -7
- warp/native/nanovdb/NanoVDB.h +517 -895
- warp/native/nanovdb/NodeManager.h +323 -0
- warp/native/nanovdb/PNanoVDB.h +2 -2
- warp/native/quat.h +337 -16
- warp/native/rand.h +7 -7
- warp/native/range.h +7 -1
- warp/native/reduce.cpp +10 -10
- warp/native/reduce.cu +13 -14
- warp/native/runlength_encode.cpp +2 -2
- warp/native/runlength_encode.cu +5 -5
- warp/native/scan.cpp +3 -3
- warp/native/scan.cu +4 -4
- warp/native/sort.cpp +10 -10
- warp/native/sort.cu +22 -22
- warp/native/sparse.cpp +8 -8
- warp/native/sparse.cu +14 -14
- warp/native/spatial.h +366 -17
- warp/native/svd.h +23 -8
- warp/native/temp_buffer.h +2 -2
- warp/native/tile.h +303 -70
- warp/native/tile_radix_sort.h +5 -1
- warp/native/tile_reduce.h +16 -25
- warp/native/tuple.h +2 -2
- warp/native/vec.h +385 -18
- warp/native/volume.cpp +54 -54
- warp/native/volume.cu +1 -1
- warp/native/volume.h +2 -1
- warp/native/volume_builder.cu +30 -37
- warp/native/warp.cpp +150 -149
- warp/native/warp.cu +337 -193
- warp/native/warp.h +227 -226
- warp/optim/linear.py +736 -271
- warp/render/imgui_manager.py +289 -0
- warp/render/render_opengl.py +137 -57
- warp/render/render_usd.py +0 -1
- warp/sim/collide.py +1 -2
- warp/sim/graph_coloring.py +2 -2
- warp/sim/integrator_vbd.py +10 -2
- warp/sparse.py +559 -176
- warp/tape.py +2 -0
- warp/tests/aux_test_module_aot.py +7 -0
- warp/tests/cuda/test_async.py +3 -3
- warp/tests/cuda/test_conditional_captures.py +101 -0
- warp/tests/geometry/test_marching_cubes.py +233 -12
- warp/tests/sim/test_cloth.py +89 -6
- warp/tests/sim/test_coloring.py +82 -7
- warp/tests/test_array.py +56 -5
- warp/tests/test_assert.py +53 -0
- warp/tests/test_atomic_cas.py +127 -114
- warp/tests/test_codegen.py +3 -2
- warp/tests/test_context.py +8 -15
- warp/tests/test_enum.py +136 -0
- warp/tests/test_examples.py +2 -2
- warp/tests/test_fem.py +45 -2
- warp/tests/test_fixedarray.py +229 -0
- warp/tests/test_func.py +18 -15
- warp/tests/test_future_annotations.py +7 -5
- warp/tests/test_linear_solvers.py +30 -0
- warp/tests/test_map.py +1 -1
- warp/tests/test_mat.py +1540 -378
- warp/tests/test_mat_assign_copy.py +178 -0
- warp/tests/test_mat_constructors.py +574 -0
- warp/tests/test_module_aot.py +287 -0
- warp/tests/test_print.py +69 -0
- warp/tests/test_quat.py +162 -34
- warp/tests/test_quat_assign_copy.py +145 -0
- warp/tests/test_reload.py +2 -1
- warp/tests/test_sparse.py +103 -0
- warp/tests/test_spatial.py +140 -34
- warp/tests/test_spatial_assign_copy.py +160 -0
- warp/tests/test_static.py +48 -0
- warp/tests/test_struct.py +43 -3
- warp/tests/test_tape.py +38 -0
- warp/tests/test_types.py +0 -20
- warp/tests/test_vec.py +216 -441
- warp/tests/test_vec_assign_copy.py +143 -0
- warp/tests/test_vec_constructors.py +325 -0
- warp/tests/tile/test_tile.py +206 -152
- warp/tests/tile/test_tile_cholesky.py +605 -0
- warp/tests/tile/test_tile_load.py +169 -0
- warp/tests/tile/test_tile_mathdx.py +2 -558
- warp/tests/tile/test_tile_matmul.py +179 -0
- warp/tests/tile/test_tile_mlp.py +1 -1
- warp/tests/tile/test_tile_reduce.py +100 -11
- warp/tests/tile/test_tile_shared_memory.py +16 -16
- warp/tests/tile/test_tile_sort.py +59 -55
- warp/tests/unittest_suites.py +16 -0
- warp/tests/walkthrough_debug.py +1 -1
- warp/thirdparty/unittest_parallel.py +108 -9
- warp/types.py +554 -264
- warp/utils.py +68 -86
- {warp_lang-1.8.0.dist-info → warp_lang-1.9.0.dist-info}/METADATA +28 -65
- {warp_lang-1.8.0.dist-info → warp_lang-1.9.0.dist-info}/RECORD +150 -138
- warp/native/marching.cpp +0 -19
- warp/native/marching.cu +0 -514
- warp/native/marching.h +0 -19
- {warp_lang-1.8.0.dist-info → warp_lang-1.9.0.dist-info}/WHEEL +0 -0
- {warp_lang-1.8.0.dist-info → warp_lang-1.9.0.dist-info}/licenses/LICENSE.md +0 -0
- {warp_lang-1.8.0.dist-info → warp_lang-1.9.0.dist-info}/top_level.txt +0 -0
warp/tests/test_mat.py
CHANGED
|
@@ -54,7 +54,7 @@ def test_shape_mismatch(test, device):
|
|
|
54
54
|
test.assertNotEqual(wp.mat33f(0.0), wp.mat22f(0.0))
|
|
55
55
|
test.assertNotEqual(wp.mat22f(0.0), wp.mat33f(0.0))
|
|
56
56
|
|
|
57
|
-
@wp.kernel
|
|
57
|
+
@wp.kernel(module="unique")
|
|
58
58
|
def kernel():
|
|
59
59
|
wp.expect_neq(wp.mat33f(0.0), wp.mat22f(0.0))
|
|
60
60
|
wp.expect_neq(wp.mat22f(0.0), wp.mat33f(0.0))
|
|
@@ -66,78 +66,6 @@ def test_shape_mismatch(test, device):
|
|
|
66
66
|
wp.launch(kernel, dim=1, inputs=[], device=device)
|
|
67
67
|
|
|
68
68
|
|
|
69
|
-
def test_anon_constructor_error_shape_arg_missing(test, device):
|
|
70
|
-
@wp.kernel
|
|
71
|
-
def kernel():
|
|
72
|
-
wp.matrix(1.0, 2.0, 3.0)
|
|
73
|
-
|
|
74
|
-
with test.assertRaisesRegex(
|
|
75
|
-
RuntimeError,
|
|
76
|
-
r"the `shape` argument must be specified when initializing a matrix by value$",
|
|
77
|
-
):
|
|
78
|
-
wp.launch(kernel, dim=1, inputs=[], device=device)
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
def test_anon_constructor_error_shape_mismatch(test, device):
|
|
82
|
-
@wp.kernel
|
|
83
|
-
def kernel():
|
|
84
|
-
wp.matrix(wp.matrix(shape=(1, 2), dtype=float), shape=(3, 4), dtype=float)
|
|
85
|
-
|
|
86
|
-
with test.assertRaisesRegex(
|
|
87
|
-
RuntimeError,
|
|
88
|
-
r"incompatible matrix of shape \(3, 4\) given when copy constructing a matrix of shape \(1, 2\)$",
|
|
89
|
-
):
|
|
90
|
-
wp.launch(kernel, dim=1, inputs=[], device=device)
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
def test_anon_constructor_error_type_mismatch(test, device):
|
|
94
|
-
@wp.kernel
|
|
95
|
-
def kernel():
|
|
96
|
-
wp.matrix(1.0, shape=(3, 2), dtype=wp.float16)
|
|
97
|
-
|
|
98
|
-
with test.assertRaisesRegex(
|
|
99
|
-
RuntimeError,
|
|
100
|
-
r"the value used to fill this matrix is expected to be of the type `float16`$",
|
|
101
|
-
):
|
|
102
|
-
wp.launch(kernel, dim=1, inputs=[], device=device)
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
def test_anon_constructor_error_invalid_arg_count(test, device):
|
|
106
|
-
@wp.kernel
|
|
107
|
-
def kernel():
|
|
108
|
-
wp.matrix(1.0, 2.0, 3.0, shape=(2, 2), dtype=float)
|
|
109
|
-
|
|
110
|
-
with test.assertRaisesRegex(
|
|
111
|
-
RuntimeError,
|
|
112
|
-
r"incompatible number of values given \(3\) when constructing a matrix of shape \(2, 2\)$",
|
|
113
|
-
):
|
|
114
|
-
wp.launch(kernel, dim=1, inputs=[], device=device)
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
def test_tpl_constructor_error_incompatible_sizes(test, device):
|
|
118
|
-
@wp.kernel
|
|
119
|
-
def kernel():
|
|
120
|
-
wp.mat33(wp.mat22(1.0, 2.0, 3.0, 4.0))
|
|
121
|
-
|
|
122
|
-
with test.assertRaisesRegex(
|
|
123
|
-
RuntimeError,
|
|
124
|
-
r"incompatible matrix of shape \(3, 3\) given when copy constructing a matrix of shape \(2, 2\)$",
|
|
125
|
-
):
|
|
126
|
-
wp.launch(kernel, dim=1, inputs=[], device=device)
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
def test_tpl_constructor_error_invalid_arg_count(test, device):
|
|
130
|
-
@wp.kernel
|
|
131
|
-
def kernel():
|
|
132
|
-
wp.mat22(1.0, 2.0, 3.0)
|
|
133
|
-
|
|
134
|
-
with test.assertRaisesRegex(
|
|
135
|
-
RuntimeError,
|
|
136
|
-
r"incompatible number of values given \(3\) when constructing a matrix of shape \(2, 2\)$",
|
|
137
|
-
):
|
|
138
|
-
wp.launch(kernel, dim=1, inputs=[], device=device)
|
|
139
|
-
|
|
140
|
-
|
|
141
69
|
def test_py_arithmetic_ops(test, device, dtype):
|
|
142
70
|
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
143
71
|
|
|
@@ -179,105 +107,6 @@ def test_py_arithmetic_ops(test, device, dtype):
|
|
|
179
107
|
test.assertSequenceEqual(vec_cls(5, 5, 5) @ m, make_vec(120, 150, 180))
|
|
180
108
|
|
|
181
109
|
|
|
182
|
-
def test_quat_constructor(test, device, dtype, register_kernels=False):
|
|
183
|
-
rng = np.random.default_rng(123)
|
|
184
|
-
|
|
185
|
-
tol = {
|
|
186
|
-
np.float16: 1.0e-3,
|
|
187
|
-
np.float32: 1.0e-6,
|
|
188
|
-
np.float64: 1.0e-8,
|
|
189
|
-
}.get(dtype, 0)
|
|
190
|
-
|
|
191
|
-
wptype = wp.types.np_dtype_to_warp_type[np.dtype(dtype)]
|
|
192
|
-
mat44 = wp.types.matrix(shape=(4, 4), dtype=wptype)
|
|
193
|
-
vec4 = wp.types.vector(length=4, dtype=wptype)
|
|
194
|
-
vec3 = wp.types.vector(length=3, dtype=wptype)
|
|
195
|
-
quat = wp.types.quaternion(dtype=wptype)
|
|
196
|
-
|
|
197
|
-
output_select_kernel = get_select_kernel(wptype)
|
|
198
|
-
|
|
199
|
-
def check_mat_quat_constructor(
|
|
200
|
-
p: wp.array(dtype=vec3),
|
|
201
|
-
r: wp.array(dtype=quat),
|
|
202
|
-
s: wp.array(dtype=vec3),
|
|
203
|
-
outcomponents: wp.array(dtype=wptype),
|
|
204
|
-
outcomponents_alt: wp.array(dtype=wptype),
|
|
205
|
-
):
|
|
206
|
-
m = wp.transform_compose(p[0], r[0], s[0])
|
|
207
|
-
|
|
208
|
-
R = wp.transpose(wp.quat_to_matrix(r[0]))
|
|
209
|
-
c0 = s[0][0] * R[0]
|
|
210
|
-
c1 = s[0][1] * R[1]
|
|
211
|
-
c2 = s[0][2] * R[2]
|
|
212
|
-
m_alt = wp.matrix_from_cols(
|
|
213
|
-
vec4(c0[0], c0[1], c0[2], wptype(0.0)),
|
|
214
|
-
vec4(c1[0], c1[1], c1[2], wptype(0.0)),
|
|
215
|
-
vec4(c2[0], c2[1], c2[2], wptype(0.0)),
|
|
216
|
-
vec4(p[0][0], p[0][1], p[0][2], wptype(1.0)),
|
|
217
|
-
)
|
|
218
|
-
|
|
219
|
-
idx = 0
|
|
220
|
-
for i in range(4):
|
|
221
|
-
for j in range(4):
|
|
222
|
-
outcomponents[idx] = m[i, j]
|
|
223
|
-
outcomponents_alt[idx] = m_alt[i, j]
|
|
224
|
-
idx = idx + 1
|
|
225
|
-
|
|
226
|
-
kernel = getkernel(check_mat_quat_constructor, suffix=dtype.__name__)
|
|
227
|
-
|
|
228
|
-
if register_kernels:
|
|
229
|
-
return
|
|
230
|
-
|
|
231
|
-
# translation:
|
|
232
|
-
p = wp.array(rng.standard_normal(size=(1, 3)).astype(dtype), dtype=vec3, requires_grad=True, device=device)
|
|
233
|
-
|
|
234
|
-
# generate a normalized quaternion for the rotation:
|
|
235
|
-
r = rng.standard_normal(size=(1, 4))
|
|
236
|
-
r /= np.linalg.norm(r)
|
|
237
|
-
r = wp.array(r.astype(dtype), dtype=quat, requires_grad=True, device=device)
|
|
238
|
-
|
|
239
|
-
# scale:
|
|
240
|
-
s = wp.array(rng.standard_normal(size=(1, 3)).astype(dtype), dtype=vec3, requires_grad=True, device=device)
|
|
241
|
-
|
|
242
|
-
# just going to generate the matrix using the constructor, then
|
|
243
|
-
# more manually, and make sure the values/gradients are the same:
|
|
244
|
-
outcomponents = wp.zeros(4 * 4, dtype=wptype, requires_grad=True, device=device)
|
|
245
|
-
outcomponents_alt = wp.zeros(4 * 4, dtype=wptype, requires_grad=True, device=device)
|
|
246
|
-
wp.launch(kernel, dim=1, inputs=[p, r, s], outputs=[outcomponents, outcomponents_alt], device=device)
|
|
247
|
-
assert_np_equal(outcomponents.numpy(), outcomponents_alt.numpy(), tol=1.0e-6)
|
|
248
|
-
|
|
249
|
-
idx = 0
|
|
250
|
-
out = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
251
|
-
out_alt = wp.zeros(1, dtype=wptype, requires_grad=True, device=device)
|
|
252
|
-
for _i in range(4):
|
|
253
|
-
for _j in range(4):
|
|
254
|
-
tape = wp.Tape()
|
|
255
|
-
with tape:
|
|
256
|
-
wp.launch(kernel, dim=1, inputs=[p, r, s], outputs=[outcomponents, outcomponents_alt], device=device)
|
|
257
|
-
wp.launch(output_select_kernel, dim=1, inputs=[outcomponents, idx], outputs=[out], device=device)
|
|
258
|
-
wp.launch(
|
|
259
|
-
output_select_kernel, dim=1, inputs=[outcomponents_alt, idx], outputs=[out_alt], device=device
|
|
260
|
-
)
|
|
261
|
-
|
|
262
|
-
tape.backward(loss=out)
|
|
263
|
-
p_grad = 1.0 * tape.gradients[p].numpy()[0]
|
|
264
|
-
r_grad = 1.0 * tape.gradients[r].numpy()[0]
|
|
265
|
-
s_grad = 1.0 * tape.gradients[s].numpy()[0]
|
|
266
|
-
tape.zero()
|
|
267
|
-
|
|
268
|
-
tape.backward(loss=out_alt)
|
|
269
|
-
p_grad_alt = 1.0 * tape.gradients[p].numpy()[0]
|
|
270
|
-
r_grad_alt = 1.0 * tape.gradients[r].numpy()[0]
|
|
271
|
-
s_grad_alt = 1.0 * tape.gradients[s].numpy()[0]
|
|
272
|
-
tape.zero()
|
|
273
|
-
|
|
274
|
-
assert_np_equal(p_grad, p_grad_alt, tol=tol)
|
|
275
|
-
assert_np_equal(r_grad, r_grad_alt, tol=tol)
|
|
276
|
-
assert_np_equal(s_grad, s_grad_alt, tol=tol)
|
|
277
|
-
|
|
278
|
-
idx = idx + 1
|
|
279
|
-
|
|
280
|
-
|
|
281
110
|
def test_negation(test, device, dtype, register_kernels=False):
|
|
282
111
|
rng = np.random.default_rng(123)
|
|
283
112
|
|
|
@@ -1636,119 +1465,6 @@ def test_transform_vector(test, device, dtype, register_kernels=False):
|
|
|
1636
1465
|
tape.zero()
|
|
1637
1466
|
|
|
1638
1467
|
|
|
1639
|
-
# Test matrix constructors using explicit type (float16)
|
|
1640
|
-
# note that these tests are specifically not using generics / closure
|
|
1641
|
-
# args to create kernels dynamically (like the rest of this file)
|
|
1642
|
-
# as those use different code paths to resolve arg types which
|
|
1643
|
-
# has lead to regressions.
|
|
1644
|
-
@wp.kernel
|
|
1645
|
-
def test_constructors_explicit_precision():
|
|
1646
|
-
# construction for custom matrix types
|
|
1647
|
-
eye = wp.identity(dtype=wp.float16, n=2)
|
|
1648
|
-
zeros = wp.matrix(shape=(2, 2), dtype=wp.float16)
|
|
1649
|
-
custom = wp.matrix(wp.float16(0.0), wp.float16(1.0), wp.float16(2.0), wp.float16(3.0), shape=(2, 2))
|
|
1650
|
-
|
|
1651
|
-
for i in range(2):
|
|
1652
|
-
for j in range(2):
|
|
1653
|
-
if i == j:
|
|
1654
|
-
wp.expect_eq(eye[i, j], wp.float16(1.0))
|
|
1655
|
-
else:
|
|
1656
|
-
wp.expect_eq(eye[i, j], wp.float16(0.0))
|
|
1657
|
-
|
|
1658
|
-
wp.expect_eq(zeros[i, j], wp.float16(0.0))
|
|
1659
|
-
wp.expect_eq(custom[i, j], wp.float16(i) * wp.float16(2.0) + wp.float16(j))
|
|
1660
|
-
|
|
1661
|
-
|
|
1662
|
-
mat32d = wp.mat(shape=(3, 2), dtype=wp.float64)
|
|
1663
|
-
|
|
1664
|
-
|
|
1665
|
-
@wp.kernel
|
|
1666
|
-
def test_matrix_constructor_value_func():
|
|
1667
|
-
a = wp.mat22()
|
|
1668
|
-
b = wp.matrix(a, shape=(2, 2))
|
|
1669
|
-
c = mat32d()
|
|
1670
|
-
d = mat32d(c, shape=(3, 2))
|
|
1671
|
-
e = mat32d(wp.float64(1.0), wp.float64(2.0), wp.float64(1.0), wp.float64(2.0), wp.float64(1.0), wp.float64(2.0))
|
|
1672
|
-
f = wp.matrix(1.0, 2.0, 3.0, 4.0, shape=(2, 2), dtype=float)
|
|
1673
|
-
|
|
1674
|
-
|
|
1675
|
-
@wp.kernel
|
|
1676
|
-
def test_matrix_from_vecs():
|
|
1677
|
-
m1 = wp.matrix_from_cols(
|
|
1678
|
-
wp.vec3(1.0, 2.0, 3.0),
|
|
1679
|
-
wp.vec3(4.0, 5.0, 6.0),
|
|
1680
|
-
wp.vec3(7.0, 8.0, 9.0),
|
|
1681
|
-
)
|
|
1682
|
-
wp.expect_eq(m1[0, 0], 1.0)
|
|
1683
|
-
wp.expect_eq(m1[0, 1], 4.0)
|
|
1684
|
-
wp.expect_eq(m1[0, 2], 7.0)
|
|
1685
|
-
wp.expect_eq(m1[1, 0], 2.0)
|
|
1686
|
-
wp.expect_eq(m1[1, 1], 5.0)
|
|
1687
|
-
wp.expect_eq(m1[1, 2], 8.0)
|
|
1688
|
-
wp.expect_eq(m1[2, 0], 3.0)
|
|
1689
|
-
wp.expect_eq(m1[2, 1], 6.0)
|
|
1690
|
-
wp.expect_eq(m1[2, 2], 9.0)
|
|
1691
|
-
|
|
1692
|
-
m2 = wp.matrix_from_rows(
|
|
1693
|
-
wp.vec3(1.0, 2.0, 3.0),
|
|
1694
|
-
wp.vec3(4.0, 5.0, 6.0),
|
|
1695
|
-
wp.vec3(7.0, 8.0, 9.0),
|
|
1696
|
-
)
|
|
1697
|
-
wp.expect_eq(m2[0, 0], 1.0)
|
|
1698
|
-
wp.expect_eq(m2[0, 1], 2.0)
|
|
1699
|
-
wp.expect_eq(m2[0, 2], 3.0)
|
|
1700
|
-
wp.expect_eq(m2[1, 0], 4.0)
|
|
1701
|
-
wp.expect_eq(m2[1, 1], 5.0)
|
|
1702
|
-
wp.expect_eq(m2[1, 2], 6.0)
|
|
1703
|
-
wp.expect_eq(m2[2, 0], 7.0)
|
|
1704
|
-
wp.expect_eq(m2[2, 1], 8.0)
|
|
1705
|
-
wp.expect_eq(m2[2, 2], 9.0)
|
|
1706
|
-
|
|
1707
|
-
m3 = wp.matrix_from_cols(
|
|
1708
|
-
wp.vec3(1.0, 2.0, 3.0),
|
|
1709
|
-
wp.vec3(4.0, 5.0, 6.0),
|
|
1710
|
-
)
|
|
1711
|
-
wp.expect_eq(m3[0, 0], 1.0)
|
|
1712
|
-
wp.expect_eq(m3[0, 1], 4.0)
|
|
1713
|
-
wp.expect_eq(m3[1, 0], 2.0)
|
|
1714
|
-
wp.expect_eq(m3[1, 1], 5.0)
|
|
1715
|
-
wp.expect_eq(m3[2, 0], 3.0)
|
|
1716
|
-
wp.expect_eq(m3[2, 1], 6.0)
|
|
1717
|
-
|
|
1718
|
-
m4 = wp.matrix_from_rows(
|
|
1719
|
-
wp.vec3(1.0, 2.0, 3.0),
|
|
1720
|
-
wp.vec3(4.0, 5.0, 6.0),
|
|
1721
|
-
)
|
|
1722
|
-
wp.expect_eq(m4[0, 0], 1.0)
|
|
1723
|
-
wp.expect_eq(m4[0, 1], 2.0)
|
|
1724
|
-
wp.expect_eq(m4[0, 2], 3.0)
|
|
1725
|
-
wp.expect_eq(m4[1, 0], 4.0)
|
|
1726
|
-
wp.expect_eq(m4[1, 1], 5.0)
|
|
1727
|
-
wp.expect_eq(m4[1, 2], 6.0)
|
|
1728
|
-
|
|
1729
|
-
|
|
1730
|
-
# Same as above but with a default (float/int) type
|
|
1731
|
-
# which tests some different code paths that
|
|
1732
|
-
# need to ensure types are correctly canonicalized
|
|
1733
|
-
# during codegen
|
|
1734
|
-
@wp.kernel
|
|
1735
|
-
def test_constructors_default_precision():
|
|
1736
|
-
# construction for default (float) matrix types
|
|
1737
|
-
eye = wp.identity(dtype=float, n=2)
|
|
1738
|
-
zeros = wp.matrix(shape=(2, 2), dtype=float)
|
|
1739
|
-
custom = wp.matrix(0.0, 1.0, 2.0, 3.0, shape=(2, 2))
|
|
1740
|
-
|
|
1741
|
-
for i in range(2):
|
|
1742
|
-
for j in range(2):
|
|
1743
|
-
if i == j:
|
|
1744
|
-
wp.expect_eq(eye[i, j], 1.0)
|
|
1745
|
-
else:
|
|
1746
|
-
wp.expect_eq(eye[i, j], 0.0)
|
|
1747
|
-
|
|
1748
|
-
wp.expect_eq(zeros[i, j], 0.0)
|
|
1749
|
-
wp.expect_eq(custom[i, j], float(i) * 2.0 + float(j))
|
|
1750
|
-
|
|
1751
|
-
|
|
1752
1468
|
@wp.kernel
|
|
1753
1469
|
def test_matrix_mutation(expected: wp.types.matrix(shape=(10, 3), dtype=float)):
|
|
1754
1470
|
m = wp.matrix(shape=(10, 3), dtype=float)
|
|
@@ -1774,26 +1490,10 @@ def test_matrix_mutation(expected: wp.types.matrix(shape=(10, 3), dtype=float)):
|
|
|
1774
1490
|
wp.expect_eq(m, expected)
|
|
1775
1491
|
|
|
1776
1492
|
|
|
1777
|
-
# NOTE: Compile tile is highly sensitive to shape so we use small values now
|
|
1778
|
-
CONSTANT_SHAPE_ROWS = wp.constant(2)
|
|
1779
|
-
CONSTANT_SHAPE_COLS = wp.constant(2)
|
|
1780
|
-
|
|
1781
|
-
|
|
1782
|
-
# tests that we can use global constants in shape keyword argument
|
|
1783
|
-
# for matrix constructor
|
|
1784
|
-
@wp.kernel
|
|
1785
|
-
def test_constructors_constant_shape():
|
|
1786
|
-
m = wp.matrix(shape=(CONSTANT_SHAPE_ROWS, CONSTANT_SHAPE_COLS), dtype=float)
|
|
1787
|
-
|
|
1788
|
-
for i in range(CONSTANT_SHAPE_ROWS):
|
|
1789
|
-
for j in range(CONSTANT_SHAPE_COLS):
|
|
1790
|
-
m[i, j] = float(i * j)
|
|
1791
|
-
|
|
1792
|
-
|
|
1793
1493
|
Mat23 = wp.mat((2, 3), dtype=wp.float16)
|
|
1794
1494
|
|
|
1795
1495
|
|
|
1796
|
-
@wp.kernel
|
|
1496
|
+
@wp.kernel(module="unique")
|
|
1797
1497
|
def matrix_len_kernel(
|
|
1798
1498
|
m1: wp.mat22, m2: wp.mat((3, 3), float), m3: wp.mat((Any, Any), float), m4: Mat23, out: wp.array(dtype=int)
|
|
1799
1499
|
):
|
|
@@ -1941,36 +1641,6 @@ def test_mat_assign(test, device):
|
|
|
1941
1641
|
assert_np_equal(x.grad.numpy(), np.array([[3.0, 3.0]], dtype=float))
|
|
1942
1642
|
|
|
1943
1643
|
|
|
1944
|
-
def test_matrix_assign_copy(test, device):
|
|
1945
|
-
saved_enable_vector_component_overwrites_setting = wp.config.enable_vector_component_overwrites
|
|
1946
|
-
try:
|
|
1947
|
-
wp.config.enable_vector_component_overwrites = True
|
|
1948
|
-
|
|
1949
|
-
@wp.kernel
|
|
1950
|
-
def mat_in_register_overwrite(x: wp.array2d(dtype=wp.mat22), y: wp.array(dtype=wp.vec2)):
|
|
1951
|
-
i, j = wp.tid()
|
|
1952
|
-
|
|
1953
|
-
a = wp.mat22()
|
|
1954
|
-
a[0] = y[i]
|
|
1955
|
-
a[0, 1] = 3.0
|
|
1956
|
-
x[i, j] = a
|
|
1957
|
-
|
|
1958
|
-
x = wp.zeros((1, 1), dtype=wp.mat22, device=device, requires_grad=True)
|
|
1959
|
-
y = wp.ones(1, dtype=wp.vec2, device=device, requires_grad=True)
|
|
1960
|
-
|
|
1961
|
-
tape = wp.Tape()
|
|
1962
|
-
with tape:
|
|
1963
|
-
wp.launch(mat_in_register_overwrite, dim=(1, 1), inputs=[x, y], device=device)
|
|
1964
|
-
|
|
1965
|
-
tape.backward(grads={x: wp.ones_like(x, requires_grad=False)})
|
|
1966
|
-
|
|
1967
|
-
assert_np_equal(x.numpy(), np.array([[[[1.0, 3.0], [0.0, 0.0]]]], dtype=float))
|
|
1968
|
-
assert_np_equal(y.grad.numpy(), np.array([[1.0, 0.0]], dtype=float))
|
|
1969
|
-
|
|
1970
|
-
finally:
|
|
1971
|
-
wp.config.enable_vector_component_overwrites = saved_enable_vector_component_overwrites_setting
|
|
1972
|
-
|
|
1973
|
-
|
|
1974
1644
|
@wp.kernel
|
|
1975
1645
|
def mat_array_extract_element(x: wp.array2d(dtype=wp.mat22), y: wp.array2d(dtype=float)):
|
|
1976
1646
|
i, j = wp.tid()
|
|
@@ -2225,6 +1895,1536 @@ def test_mat_array_sub_inplace(test, device):
|
|
|
2225
1895
|
assert_np_equal(x.grad.numpy(), np.array([[[-1.0, -1.0], [-1.0, -1.0]]], dtype=float))
|
|
2226
1896
|
|
|
2227
1897
|
|
|
1898
|
+
@wp.kernel
|
|
1899
|
+
def scalar_mat_div(x: wp.array(dtype=wp.mat22), y: wp.array(dtype=wp.mat22)):
|
|
1900
|
+
i = wp.tid()
|
|
1901
|
+
y[i] = 1.0 / x[i]
|
|
1902
|
+
|
|
1903
|
+
|
|
1904
|
+
def test_scalar_mat_div(test, device):
|
|
1905
|
+
x = wp.array((wp.mat22(1.0, 2.0, 4.0, 8.0),), dtype=wp.mat22, requires_grad=True, device=device)
|
|
1906
|
+
y = wp.ones(1, dtype=wp.mat22, requires_grad=True, device=device)
|
|
1907
|
+
|
|
1908
|
+
tape = wp.Tape()
|
|
1909
|
+
with tape:
|
|
1910
|
+
wp.launch(scalar_mat_div, 1, inputs=(x,), outputs=(y,), device=device)
|
|
1911
|
+
|
|
1912
|
+
y.grad = wp.ones_like(y)
|
|
1913
|
+
tape.backward()
|
|
1914
|
+
|
|
1915
|
+
assert_np_equal(y.numpy(), np.array((((1.0, 0.5), (0.25, 0.125)),), dtype=float))
|
|
1916
|
+
assert_np_equal(x.grad.numpy(), np.array((((-1.0, -0.25), (-0.0625, -0.015625)),), dtype=float))
|
|
1917
|
+
|
|
1918
|
+
|
|
1919
|
+
def test_mat_from_rows_indexing_assign(test, device):
|
|
1920
|
+
@wp.func
|
|
1921
|
+
def fn():
|
|
1922
|
+
m = wp.matrix_from_rows(
|
|
1923
|
+
wp.vec2(1.0, 2.0),
|
|
1924
|
+
wp.vec2(3.0, 4.0),
|
|
1925
|
+
wp.vec2(5.0, 6.0),
|
|
1926
|
+
)
|
|
1927
|
+
|
|
1928
|
+
m[0] = wp.vec2(123.0, 234.0)
|
|
1929
|
+
m[1] *= 2.0
|
|
1930
|
+
|
|
1931
|
+
wp.expect_eq(m[0], wp.vec2(123.0, 234.0))
|
|
1932
|
+
wp.expect_eq(m[1], wp.vec2(6.0, 8.0))
|
|
1933
|
+
wp.expect_eq(m[2], wp.vec2(5.0, 6.0))
|
|
1934
|
+
|
|
1935
|
+
m[-1] = wp.vec2(123.0, 234.0)
|
|
1936
|
+
m[-2] *= 2.0
|
|
1937
|
+
|
|
1938
|
+
wp.expect_eq(m[-1], wp.vec2(123.0, 234.0))
|
|
1939
|
+
wp.expect_eq(m[-2], wp.vec2(12.0, 16.0))
|
|
1940
|
+
wp.expect_eq(m[-3], wp.vec2(123.0, 234.0))
|
|
1941
|
+
|
|
1942
|
+
m[0, 0] = 345.0
|
|
1943
|
+
m[1, 0] *= 2.0
|
|
1944
|
+
|
|
1945
|
+
wp.expect_eq(m[0, 0], 345.0)
|
|
1946
|
+
wp.expect_eq(m[0, 1], 234.0)
|
|
1947
|
+
wp.expect_eq(m[1, 0], 24.0)
|
|
1948
|
+
wp.expect_eq(m[1, 1], 16.0)
|
|
1949
|
+
wp.expect_eq(m[2, 0], 123.0)
|
|
1950
|
+
wp.expect_eq(m[2, 1], 234.0)
|
|
1951
|
+
|
|
1952
|
+
m[-1, -1] = 345.0
|
|
1953
|
+
m[-2, -1] *= 2.0
|
|
1954
|
+
|
|
1955
|
+
wp.expect_eq(m[-1, -1], 345.0)
|
|
1956
|
+
wp.expect_eq(m[-1, -2], 123.0)
|
|
1957
|
+
wp.expect_eq(m[-2, -1], 32.0)
|
|
1958
|
+
wp.expect_eq(m[-2, -2], 24.0)
|
|
1959
|
+
wp.expect_eq(m[-3, -1], 234.0)
|
|
1960
|
+
wp.expect_eq(m[-3, -2], 345.0)
|
|
1961
|
+
|
|
1962
|
+
m[0, 1] = 456.0
|
|
1963
|
+
m[1, 1] *= 2.0
|
|
1964
|
+
|
|
1965
|
+
wp.expect_eq(m[0][0], 345.0)
|
|
1966
|
+
wp.expect_eq(m[0][1], 456.0)
|
|
1967
|
+
wp.expect_eq(m[1][0], 24.0)
|
|
1968
|
+
wp.expect_eq(m[1][1], 64.0)
|
|
1969
|
+
wp.expect_eq(m[2][0], 123.0)
|
|
1970
|
+
wp.expect_eq(m[2][1], 345.0)
|
|
1971
|
+
|
|
1972
|
+
m[-1, -2] = 456.0
|
|
1973
|
+
m[-2, -2] *= 2.0
|
|
1974
|
+
|
|
1975
|
+
wp.expect_eq(m[-1][-1], 345.0)
|
|
1976
|
+
wp.expect_eq(m[-1][-2], 456.0)
|
|
1977
|
+
wp.expect_eq(m[-2][-1], 64.0)
|
|
1978
|
+
wp.expect_eq(m[-2][-2], 48.0)
|
|
1979
|
+
wp.expect_eq(m[-3][-1], 456.0)
|
|
1980
|
+
wp.expect_eq(m[-3][-2], 345.0)
|
|
1981
|
+
|
|
1982
|
+
@wp.kernel(module="unique")
|
|
1983
|
+
def kernel():
|
|
1984
|
+
fn()
|
|
1985
|
+
|
|
1986
|
+
wp.launch(kernel, 1, device=device)
|
|
1987
|
+
wp.synchronize()
|
|
1988
|
+
fn()
|
|
1989
|
+
|
|
1990
|
+
|
|
1991
|
+
def test_mat_from_cols_indexing_assign(test, device):
|
|
1992
|
+
@wp.func
|
|
1993
|
+
def fn():
|
|
1994
|
+
m = wp.matrix_from_cols(
|
|
1995
|
+
wp.vec2(1.0, 2.0),
|
|
1996
|
+
wp.vec2(3.0, 4.0),
|
|
1997
|
+
wp.vec2(5.0, 6.0),
|
|
1998
|
+
)
|
|
1999
|
+
|
|
2000
|
+
m[0] = wp.vec3(123.0, 234.0, 345.0)
|
|
2001
|
+
m[1] *= 2.0
|
|
2002
|
+
|
|
2003
|
+
wp.expect_eq(m[0], wp.vec3(123.0, 234.0, 345.0))
|
|
2004
|
+
wp.expect_eq(m[1], wp.vec3(4.0, 8.0, 12.0))
|
|
2005
|
+
|
|
2006
|
+
m[-1] = wp.vec3(123.0, 234.0, 345.0)
|
|
2007
|
+
m[-2] *= 2.0
|
|
2008
|
+
|
|
2009
|
+
wp.expect_eq(m[-1], wp.vec3(123.0, 234.0, 345.0))
|
|
2010
|
+
wp.expect_eq(m[-2], wp.vec3(246.0, 468.0, 690.0))
|
|
2011
|
+
|
|
2012
|
+
m[0, 0] = 456.0
|
|
2013
|
+
m[1, 0] *= 2.0
|
|
2014
|
+
|
|
2015
|
+
wp.expect_eq(m[0, 0], 456.0)
|
|
2016
|
+
wp.expect_eq(m[0, 1], 468.0)
|
|
2017
|
+
wp.expect_eq(m[0, 2], 690.0)
|
|
2018
|
+
wp.expect_eq(m[1, 0], 246.0)
|
|
2019
|
+
wp.expect_eq(m[1, 1], 234.0)
|
|
2020
|
+
wp.expect_eq(m[1, 2], 345.0)
|
|
2021
|
+
|
|
2022
|
+
m[-1, -1] = 456.0
|
|
2023
|
+
m[-2, -1] *= 2.0
|
|
2024
|
+
|
|
2025
|
+
wp.expect_eq(m[-1, -1], 456.0)
|
|
2026
|
+
wp.expect_eq(m[-1, -2], 234.0)
|
|
2027
|
+
wp.expect_eq(m[-1, -3], 246.0)
|
|
2028
|
+
wp.expect_eq(m[-2, -1], 1380.0)
|
|
2029
|
+
wp.expect_eq(m[-2, -2], 468.0)
|
|
2030
|
+
wp.expect_eq(m[-2, -3], 456.0)
|
|
2031
|
+
|
|
2032
|
+
m[0, 1] = 567.0
|
|
2033
|
+
m[1, 1] *= 2.0
|
|
2034
|
+
|
|
2035
|
+
wp.expect_eq(m[0][0], 456.0)
|
|
2036
|
+
wp.expect_eq(m[0][1], 567.0)
|
|
2037
|
+
wp.expect_eq(m[0][2], 1380.0)
|
|
2038
|
+
wp.expect_eq(m[1][0], 246.0)
|
|
2039
|
+
wp.expect_eq(m[1][1], 468.0)
|
|
2040
|
+
wp.expect_eq(m[1][2], 456.0)
|
|
2041
|
+
|
|
2042
|
+
m[-1, -2] = 567.0
|
|
2043
|
+
m[-2, -2] *= 2.0
|
|
2044
|
+
|
|
2045
|
+
wp.expect_eq(m[-1][-1], 456.0)
|
|
2046
|
+
wp.expect_eq(m[-1][-2], 567.0)
|
|
2047
|
+
wp.expect_eq(m[-1][-3], 246.0)
|
|
2048
|
+
wp.expect_eq(m[-2][-1], 1380.0)
|
|
2049
|
+
wp.expect_eq(m[-2][-2], 1134.0)
|
|
2050
|
+
wp.expect_eq(m[-2][-3], 456.0)
|
|
2051
|
+
|
|
2052
|
+
@wp.kernel(module="unique")
|
|
2053
|
+
def kernel():
|
|
2054
|
+
fn()
|
|
2055
|
+
|
|
2056
|
+
wp.launch(kernel, 1, device=device)
|
|
2057
|
+
wp.synchronize()
|
|
2058
|
+
fn()
|
|
2059
|
+
|
|
2060
|
+
|
|
2061
|
+
def test_mat_from_rows_slicing_assign(test, device):
|
|
2062
|
+
mat00 = wp.mat((0, 0), float)
|
|
2063
|
+
vec1 = wp.vec(1, float)
|
|
2064
|
+
vec2 = wp.vec(2, float)
|
|
2065
|
+
vec3 = wp.vec(3, float)
|
|
2066
|
+
vec4 = wp.vec(4, float)
|
|
2067
|
+
|
|
2068
|
+
@wp.func
|
|
2069
|
+
def fn():
|
|
2070
|
+
m = wp.matrix_from_rows(
|
|
2071
|
+
vec4(1.0, 2.0, 3.0, 4.0),
|
|
2072
|
+
vec4(5.0, 6.0, 7.0, 8.0),
|
|
2073
|
+
vec4(9.0, 10.0, 11.0, 12.0),
|
|
2074
|
+
vec4(13.0, 14.0, 15.0, 16.0),
|
|
2075
|
+
)
|
|
2076
|
+
|
|
2077
|
+
wp.expect_eq(
|
|
2078
|
+
m[:]
|
|
2079
|
+
== wp.matrix_from_rows(
|
|
2080
|
+
vec4(1.0, 2.0, 3.0, 4.0),
|
|
2081
|
+
vec4(5.0, 6.0, 7.0, 8.0),
|
|
2082
|
+
vec4(9.0, 10.0, 11.0, 12.0),
|
|
2083
|
+
vec4(13.0, 14.0, 15.0, 16.0),
|
|
2084
|
+
),
|
|
2085
|
+
True,
|
|
2086
|
+
)
|
|
2087
|
+
wp.expect_eq(
|
|
2088
|
+
m[-123:123]
|
|
2089
|
+
== wp.matrix_from_rows(
|
|
2090
|
+
vec4(1.0, 2.0, 3.0, 4.0),
|
|
2091
|
+
vec4(5.0, 6.0, 7.0, 8.0),
|
|
2092
|
+
vec4(9.0, 10.0, 11.0, 12.0),
|
|
2093
|
+
vec4(13.0, 14.0, 15.0, 16.0),
|
|
2094
|
+
),
|
|
2095
|
+
True,
|
|
2096
|
+
)
|
|
2097
|
+
wp.expect_eq(m[123:] == mat00(), True)
|
|
2098
|
+
wp.expect_eq(m[:-123] == mat00(), True)
|
|
2099
|
+
wp.expect_eq(
|
|
2100
|
+
m[::123]
|
|
2101
|
+
== wp.matrix_from_rows(
|
|
2102
|
+
vec4(1.0, 2.0, 3.0, 4.0),
|
|
2103
|
+
),
|
|
2104
|
+
True,
|
|
2105
|
+
)
|
|
2106
|
+
|
|
2107
|
+
wp.expect_eq(
|
|
2108
|
+
m[1:]
|
|
2109
|
+
== wp.matrix_from_rows(
|
|
2110
|
+
vec4(5.0, 6.0, 7.0, 8.0),
|
|
2111
|
+
vec4(9.0, 10.0, 11.0, 12.0),
|
|
2112
|
+
vec4(13.0, 14.0, 15.0, 16.0),
|
|
2113
|
+
),
|
|
2114
|
+
True,
|
|
2115
|
+
)
|
|
2116
|
+
wp.expect_eq(
|
|
2117
|
+
m[-2:]
|
|
2118
|
+
== wp.matrix_from_rows(
|
|
2119
|
+
vec4(9.0, 10.0, 11.0, 12.0),
|
|
2120
|
+
vec4(13.0, 14.0, 15.0, 16.0),
|
|
2121
|
+
),
|
|
2122
|
+
True,
|
|
2123
|
+
)
|
|
2124
|
+
wp.expect_eq(
|
|
2125
|
+
m[:2]
|
|
2126
|
+
== wp.matrix_from_rows(
|
|
2127
|
+
vec4(1.0, 2.0, 3.0, 4.0),
|
|
2128
|
+
vec4(5.0, 6.0, 7.0, 8.0),
|
|
2129
|
+
),
|
|
2130
|
+
True,
|
|
2131
|
+
)
|
|
2132
|
+
wp.expect_eq(
|
|
2133
|
+
m[:-1]
|
|
2134
|
+
== wp.matrix_from_rows(
|
|
2135
|
+
vec4(1.0, 2.0, 3.0, 4.0),
|
|
2136
|
+
vec4(5.0, 6.0, 7.0, 8.0),
|
|
2137
|
+
vec4(9.0, 10.0, 11.0, 12.0),
|
|
2138
|
+
),
|
|
2139
|
+
True,
|
|
2140
|
+
)
|
|
2141
|
+
wp.expect_eq(
|
|
2142
|
+
m[::2]
|
|
2143
|
+
== wp.matrix_from_rows(
|
|
2144
|
+
vec4(1.0, 2.0, 3.0, 4.0),
|
|
2145
|
+
vec4(9.0, 10.0, 11.0, 12.0),
|
|
2146
|
+
),
|
|
2147
|
+
True,
|
|
2148
|
+
)
|
|
2149
|
+
wp.expect_eq(
|
|
2150
|
+
m[1::2]
|
|
2151
|
+
== wp.matrix_from_rows(
|
|
2152
|
+
vec4(5.0, 6.0, 7.0, 8.0),
|
|
2153
|
+
vec4(13.0, 14.0, 15.0, 16.0),
|
|
2154
|
+
),
|
|
2155
|
+
True,
|
|
2156
|
+
)
|
|
2157
|
+
wp.expect_eq(
|
|
2158
|
+
m[::-1]
|
|
2159
|
+
== wp.matrix_from_rows(
|
|
2160
|
+
vec4(13.0, 14.0, 15.0, 16.0),
|
|
2161
|
+
vec4(9.0, 10.0, 11.0, 12.0),
|
|
2162
|
+
vec4(5.0, 6.0, 7.0, 8.0),
|
|
2163
|
+
vec4(1.0, 2.0, 3.0, 4.0),
|
|
2164
|
+
),
|
|
2165
|
+
True,
|
|
2166
|
+
)
|
|
2167
|
+
wp.expect_eq(
|
|
2168
|
+
m[::-2]
|
|
2169
|
+
== wp.matrix_from_rows(
|
|
2170
|
+
vec4(13.0, 14.0, 15.0, 16.0),
|
|
2171
|
+
vec4(5.0, 6.0, 7.0, 8.0),
|
|
2172
|
+
),
|
|
2173
|
+
True,
|
|
2174
|
+
)
|
|
2175
|
+
wp.expect_eq(
|
|
2176
|
+
m[1::-2]
|
|
2177
|
+
== wp.matrix_from_rows(
|
|
2178
|
+
vec4(5.0, 6.0, 7.0, 8.0),
|
|
2179
|
+
),
|
|
2180
|
+
True,
|
|
2181
|
+
)
|
|
2182
|
+
|
|
2183
|
+
wp.expect_eq(
|
|
2184
|
+
m[:, :]
|
|
2185
|
+
== wp.matrix_from_rows(
|
|
2186
|
+
vec4(1.0, 2.0, 3.0, 4.0),
|
|
2187
|
+
vec4(5.0, 6.0, 7.0, 8.0),
|
|
2188
|
+
vec4(9.0, 10.0, 11.0, 12.0),
|
|
2189
|
+
vec4(13.0, 14.0, 15.0, 16.0),
|
|
2190
|
+
),
|
|
2191
|
+
True,
|
|
2192
|
+
)
|
|
2193
|
+
wp.expect_eq(
|
|
2194
|
+
m[:, 2:]
|
|
2195
|
+
== wp.matrix_from_rows(
|
|
2196
|
+
vec2(3.0, 4.0),
|
|
2197
|
+
vec2(7.0, 8.0),
|
|
2198
|
+
vec2(11.0, 12.0),
|
|
2199
|
+
vec2(15.0, 16.0),
|
|
2200
|
+
),
|
|
2201
|
+
True,
|
|
2202
|
+
)
|
|
2203
|
+
wp.expect_eq(
|
|
2204
|
+
m[1:, 2:]
|
|
2205
|
+
== wp.matrix_from_rows(
|
|
2206
|
+
vec2(7.0, 8.0),
|
|
2207
|
+
vec2(11.0, 12.0),
|
|
2208
|
+
vec2(15.0, 16.0),
|
|
2209
|
+
),
|
|
2210
|
+
True,
|
|
2211
|
+
)
|
|
2212
|
+
wp.expect_eq(
|
|
2213
|
+
m[-2:, 2:]
|
|
2214
|
+
== wp.matrix_from_rows(
|
|
2215
|
+
vec2(11.0, 12.0),
|
|
2216
|
+
vec2(15.0, 16.0),
|
|
2217
|
+
),
|
|
2218
|
+
True,
|
|
2219
|
+
)
|
|
2220
|
+
wp.expect_eq(
|
|
2221
|
+
m[2:, -2:]
|
|
2222
|
+
== wp.matrix_from_rows(
|
|
2223
|
+
vec2(11.0, 12.0),
|
|
2224
|
+
vec2(15.0, 16.0),
|
|
2225
|
+
),
|
|
2226
|
+
True,
|
|
2227
|
+
)
|
|
2228
|
+
wp.expect_eq(
|
|
2229
|
+
m[1:, :2]
|
|
2230
|
+
== wp.matrix_from_rows(
|
|
2231
|
+
vec2(5.0, 6.0),
|
|
2232
|
+
vec2(9.0, 10.0),
|
|
2233
|
+
vec2(13.0, 14.0),
|
|
2234
|
+
),
|
|
2235
|
+
True,
|
|
2236
|
+
)
|
|
2237
|
+
wp.expect_eq(
|
|
2238
|
+
m[:1, 2:]
|
|
2239
|
+
== wp.matrix_from_rows(
|
|
2240
|
+
vec2(3.0, 4.0),
|
|
2241
|
+
),
|
|
2242
|
+
True,
|
|
2243
|
+
)
|
|
2244
|
+
wp.expect_eq(
|
|
2245
|
+
m[::-1, :1]
|
|
2246
|
+
== wp.matrix_from_rows(
|
|
2247
|
+
vec1(13.0),
|
|
2248
|
+
vec1(9.0),
|
|
2249
|
+
vec1(5.0),
|
|
2250
|
+
vec1(1.0),
|
|
2251
|
+
),
|
|
2252
|
+
True,
|
|
2253
|
+
)
|
|
2254
|
+
wp.expect_eq(
|
|
2255
|
+
m[:1, ::-1]
|
|
2256
|
+
== wp.matrix_from_rows(
|
|
2257
|
+
vec4(4.0, 3.0, 2.0, 1.0),
|
|
2258
|
+
),
|
|
2259
|
+
True,
|
|
2260
|
+
)
|
|
2261
|
+
wp.expect_eq(
|
|
2262
|
+
m[:1:-1, 2::-1]
|
|
2263
|
+
== wp.matrix_from_rows(
|
|
2264
|
+
vec3(15.0, 14.0, 13.0),
|
|
2265
|
+
vec3(11.0, 10.0, 9.0),
|
|
2266
|
+
),
|
|
2267
|
+
True,
|
|
2268
|
+
)
|
|
2269
|
+
|
|
2270
|
+
wp.expect_eq(m[:2, 0] == vec2(1.0, 5.0), True)
|
|
2271
|
+
wp.expect_eq(m[2:, 1] == vec2(10.0, 14.0), True)
|
|
2272
|
+
wp.expect_eq(m[0, :3] == vec3(1.0, 2.0, 3.0), True)
|
|
2273
|
+
wp.expect_eq(m[1, 1:] == vec3(6.0, 7.0, 8.0), True)
|
|
2274
|
+
|
|
2275
|
+
m[1:] = wp.matrix_from_rows(
|
|
2276
|
+
vec4(17.0, 18.0, 19.0, 20.0),
|
|
2277
|
+
vec4(21.0, 22.0, 23.0, 24.0),
|
|
2278
|
+
vec4(25.0, 26.0, 27.0, 28.0),
|
|
2279
|
+
)
|
|
2280
|
+
wp.expect_eq(
|
|
2281
|
+
m
|
|
2282
|
+
== wp.matrix_from_rows(
|
|
2283
|
+
vec4(1.0, 2.0, 3.0, 4.0),
|
|
2284
|
+
vec4(17.0, 18.0, 19.0, 20.0),
|
|
2285
|
+
vec4(21.0, 22.0, 23.0, 24.0),
|
|
2286
|
+
vec4(25.0, 26.0, 27.0, 28.0),
|
|
2287
|
+
),
|
|
2288
|
+
True,
|
|
2289
|
+
)
|
|
2290
|
+
|
|
2291
|
+
m[-2:] = wp.matrix_from_rows(
|
|
2292
|
+
vec4(29.0, 30.0, 31.0, 32.0),
|
|
2293
|
+
vec4(33.0, 34.0, 35.0, 36.0),
|
|
2294
|
+
)
|
|
2295
|
+
wp.expect_eq(
|
|
2296
|
+
m
|
|
2297
|
+
== wp.matrix_from_rows(
|
|
2298
|
+
vec4(1.0, 2.0, 3.0, 4.0),
|
|
2299
|
+
vec4(17.0, 18.0, 19.0, 20.0),
|
|
2300
|
+
vec4(29.0, 30.0, 31.0, 32.0),
|
|
2301
|
+
vec4(33.0, 34.0, 35.0, 36.0),
|
|
2302
|
+
),
|
|
2303
|
+
True,
|
|
2304
|
+
)
|
|
2305
|
+
|
|
2306
|
+
m[:2] = wp.matrix_from_rows(
|
|
2307
|
+
vec4(37.0, 38.0, 39.0, 40.0),
|
|
2308
|
+
vec4(41.0, 42.0, 43.0, 44.0),
|
|
2309
|
+
)
|
|
2310
|
+
wp.expect_eq(
|
|
2311
|
+
m
|
|
2312
|
+
== wp.matrix_from_rows(
|
|
2313
|
+
vec4(37.0, 38.0, 39.0, 40.0),
|
|
2314
|
+
vec4(41.0, 42.0, 43.0, 44.0),
|
|
2315
|
+
vec4(29.0, 30.0, 31.0, 32.0),
|
|
2316
|
+
vec4(33.0, 34.0, 35.0, 36.0),
|
|
2317
|
+
),
|
|
2318
|
+
True,
|
|
2319
|
+
)
|
|
2320
|
+
|
|
2321
|
+
m[:-1] = wp.matrix_from_rows(
|
|
2322
|
+
vec4(45.0, 46.0, 47.0, 48.0),
|
|
2323
|
+
vec4(49.0, 50.0, 51.0, 52.0),
|
|
2324
|
+
vec4(53.0, 54.0, 55.0, 56.0),
|
|
2325
|
+
)
|
|
2326
|
+
wp.expect_eq(
|
|
2327
|
+
m
|
|
2328
|
+
== wp.matrix_from_rows(
|
|
2329
|
+
vec4(45.0, 46.0, 47.0, 48.0),
|
|
2330
|
+
vec4(49.0, 50.0, 51.0, 52.0),
|
|
2331
|
+
vec4(53.0, 54.0, 55.0, 56.0),
|
|
2332
|
+
vec4(33.0, 34.0, 35.0, 36.0),
|
|
2333
|
+
),
|
|
2334
|
+
True,
|
|
2335
|
+
)
|
|
2336
|
+
|
|
2337
|
+
m[::2] = wp.matrix_from_rows(
|
|
2338
|
+
vec4(57.0, 58.0, 59.0, 60.0),
|
|
2339
|
+
vec4(61.0, 62.0, 63.0, 64.0),
|
|
2340
|
+
)
|
|
2341
|
+
wp.expect_eq(
|
|
2342
|
+
m
|
|
2343
|
+
== wp.matrix_from_rows(
|
|
2344
|
+
vec4(57.0, 58.0, 59.0, 60.0),
|
|
2345
|
+
vec4(49.0, 50.0, 51.0, 52.0),
|
|
2346
|
+
vec4(61.0, 62.0, 63.0, 64.0),
|
|
2347
|
+
vec4(33.0, 34.0, 35.0, 36.0),
|
|
2348
|
+
),
|
|
2349
|
+
True,
|
|
2350
|
+
)
|
|
2351
|
+
|
|
2352
|
+
m[1::2] = wp.matrix_from_rows(
|
|
2353
|
+
vec4(65.0, 66.0, 67.0, 68.0),
|
|
2354
|
+
vec4(69.0, 70.0, 71.0, 72.0),
|
|
2355
|
+
)
|
|
2356
|
+
wp.expect_eq(
|
|
2357
|
+
m
|
|
2358
|
+
== wp.matrix_from_rows(
|
|
2359
|
+
vec4(57.0, 58.0, 59.0, 60.0),
|
|
2360
|
+
vec4(65.0, 66.0, 67.0, 68.0),
|
|
2361
|
+
vec4(61.0, 62.0, 63.0, 64.0),
|
|
2362
|
+
vec4(69.0, 70.0, 71.0, 72.0),
|
|
2363
|
+
),
|
|
2364
|
+
True,
|
|
2365
|
+
)
|
|
2366
|
+
|
|
2367
|
+
m[::-1] = wp.matrix_from_rows(
|
|
2368
|
+
vec4(73.0, 74.0, 75.0, 76.0),
|
|
2369
|
+
vec4(77.0, 78.0, 79.0, 80.0),
|
|
2370
|
+
vec4(81.0, 82.0, 83.0, 84.0),
|
|
2371
|
+
vec4(85.0, 86.0, 87.0, 88.0),
|
|
2372
|
+
)
|
|
2373
|
+
wp.expect_eq(
|
|
2374
|
+
m
|
|
2375
|
+
== wp.matrix_from_rows(
|
|
2376
|
+
vec4(85.0, 86.0, 87.0, 88.0),
|
|
2377
|
+
vec4(81.0, 82.0, 83.0, 84.0),
|
|
2378
|
+
vec4(77.0, 78.0, 79.0, 80.0),
|
|
2379
|
+
vec4(73.0, 74.0, 75.0, 76.0),
|
|
2380
|
+
),
|
|
2381
|
+
True,
|
|
2382
|
+
)
|
|
2383
|
+
|
|
2384
|
+
m[::-2] = wp.matrix_from_rows(
|
|
2385
|
+
vec4(89.0, 90.0, 91.0, 92.0),
|
|
2386
|
+
vec4(93.0, 94.0, 95.0, 96.0),
|
|
2387
|
+
)
|
|
2388
|
+
wp.expect_eq(
|
|
2389
|
+
m
|
|
2390
|
+
== wp.matrix_from_rows(
|
|
2391
|
+
vec4(85.0, 86.0, 87.0, 88.0),
|
|
2392
|
+
vec4(93.0, 94.0, 95.0, 96.0),
|
|
2393
|
+
vec4(77.0, 78.0, 79.0, 80.0),
|
|
2394
|
+
vec4(89.0, 90.0, 91.0, 92.0),
|
|
2395
|
+
),
|
|
2396
|
+
True,
|
|
2397
|
+
)
|
|
2398
|
+
|
|
2399
|
+
m[1::-2] = wp.matrix_from_rows(
|
|
2400
|
+
vec4(97.0, 98.0, 99.0, 100.0),
|
|
2401
|
+
)
|
|
2402
|
+
wp.expect_eq(
|
|
2403
|
+
m
|
|
2404
|
+
== wp.matrix_from_rows(
|
|
2405
|
+
vec4(85.0, 86.0, 87.0, 88.0),
|
|
2406
|
+
vec4(97.0, 98.0, 99.0, 100.0),
|
|
2407
|
+
vec4(77.0, 78.0, 79.0, 80.0),
|
|
2408
|
+
vec4(89.0, 90.0, 91.0, 92.0),
|
|
2409
|
+
),
|
|
2410
|
+
True,
|
|
2411
|
+
)
|
|
2412
|
+
|
|
2413
|
+
m[:, :] = wp.matrix_from_rows(
|
|
2414
|
+
vec4(101.0, 102.0, 103.0, 104.0),
|
|
2415
|
+
vec4(105.0, 106.0, 107.0, 108.0),
|
|
2416
|
+
vec4(109.0, 110.0, 111.0, 112.0),
|
|
2417
|
+
vec4(113.0, 114.0, 115.0, 116.0),
|
|
2418
|
+
)
|
|
2419
|
+
wp.expect_eq(
|
|
2420
|
+
m
|
|
2421
|
+
== wp.matrix_from_rows(
|
|
2422
|
+
vec4(101.0, 102.0, 103.0, 104.0),
|
|
2423
|
+
vec4(105.0, 106.0, 107.0, 108.0),
|
|
2424
|
+
vec4(109.0, 110.0, 111.0, 112.0),
|
|
2425
|
+
vec4(113.0, 114.0, 115.0, 116.0),
|
|
2426
|
+
),
|
|
2427
|
+
True,
|
|
2428
|
+
)
|
|
2429
|
+
|
|
2430
|
+
m[:, 2:] = wp.matrix_from_rows(
|
|
2431
|
+
vec2(117.0, 118.0),
|
|
2432
|
+
vec2(119.0, 120.0),
|
|
2433
|
+
vec2(121.0, 122.0),
|
|
2434
|
+
vec2(123.0, 124.0),
|
|
2435
|
+
)
|
|
2436
|
+
wp.expect_eq(
|
|
2437
|
+
m
|
|
2438
|
+
== wp.matrix_from_rows(
|
|
2439
|
+
vec4(101.0, 102.0, 117.0, 118.0),
|
|
2440
|
+
vec4(105.0, 106.0, 119.0, 120.0),
|
|
2441
|
+
vec4(109.0, 110.0, 121.0, 122.0),
|
|
2442
|
+
vec4(113.0, 114.0, 123.0, 124.0),
|
|
2443
|
+
),
|
|
2444
|
+
True,
|
|
2445
|
+
)
|
|
2446
|
+
|
|
2447
|
+
m[1:, 2:] = wp.matrix_from_rows(
|
|
2448
|
+
vec2(125.0, 126.0),
|
|
2449
|
+
vec2(127.0, 128.0),
|
|
2450
|
+
vec2(129.0, 130.0),
|
|
2451
|
+
)
|
|
2452
|
+
wp.expect_eq(
|
|
2453
|
+
m
|
|
2454
|
+
== wp.matrix_from_rows(
|
|
2455
|
+
vec4(101.0, 102.0, 117.0, 118.0),
|
|
2456
|
+
vec4(105.0, 106.0, 125.0, 126.0),
|
|
2457
|
+
vec4(109.0, 110.0, 127.0, 128.0),
|
|
2458
|
+
vec4(113.0, 114.0, 129.0, 130.0),
|
|
2459
|
+
),
|
|
2460
|
+
True,
|
|
2461
|
+
)
|
|
2462
|
+
|
|
2463
|
+
m[-2:, 2:] = wp.matrix_from_rows(
|
|
2464
|
+
vec2(131.0, 132.0),
|
|
2465
|
+
vec2(133.0, 134.0),
|
|
2466
|
+
)
|
|
2467
|
+
wp.expect_eq(
|
|
2468
|
+
m
|
|
2469
|
+
== wp.matrix_from_rows(
|
|
2470
|
+
vec4(101.0, 102.0, 117.0, 118.0),
|
|
2471
|
+
vec4(105.0, 106.0, 125.0, 126.0),
|
|
2472
|
+
vec4(109.0, 110.0, 131.0, 132.0),
|
|
2473
|
+
vec4(113.0, 114.0, 133.0, 134.0),
|
|
2474
|
+
),
|
|
2475
|
+
True,
|
|
2476
|
+
)
|
|
2477
|
+
|
|
2478
|
+
m[2:, -2:] = wp.matrix_from_rows(
|
|
2479
|
+
vec2(135.0, 136.0),
|
|
2480
|
+
vec2(137.0, 138.0),
|
|
2481
|
+
)
|
|
2482
|
+
wp.expect_eq(
|
|
2483
|
+
m
|
|
2484
|
+
== wp.matrix_from_rows(
|
|
2485
|
+
vec4(101.0, 102.0, 117.0, 118.0),
|
|
2486
|
+
vec4(105.0, 106.0, 125.0, 126.0),
|
|
2487
|
+
vec4(109.0, 110.0, 135.0, 136.0),
|
|
2488
|
+
vec4(113.0, 114.0, 137.0, 138.0),
|
|
2489
|
+
),
|
|
2490
|
+
True,
|
|
2491
|
+
)
|
|
2492
|
+
|
|
2493
|
+
m[1:, :2] = wp.matrix_from_rows(
|
|
2494
|
+
vec2(139.0, 140.0),
|
|
2495
|
+
vec2(141.0, 142.0),
|
|
2496
|
+
vec2(143.0, 144.0),
|
|
2497
|
+
)
|
|
2498
|
+
wp.expect_eq(
|
|
2499
|
+
m
|
|
2500
|
+
== wp.matrix_from_rows(
|
|
2501
|
+
vec4(101.0, 102.0, 117.0, 118.0),
|
|
2502
|
+
vec4(139.0, 140.0, 125.0, 126.0),
|
|
2503
|
+
vec4(141.0, 142.0, 135.0, 136.0),
|
|
2504
|
+
vec4(143.0, 144.0, 137.0, 138.0),
|
|
2505
|
+
),
|
|
2506
|
+
True,
|
|
2507
|
+
)
|
|
2508
|
+
|
|
2509
|
+
m[:1, 2:] = wp.matrix_from_rows(
|
|
2510
|
+
vec2(145.0, 146.0),
|
|
2511
|
+
)
|
|
2512
|
+
wp.expect_eq(
|
|
2513
|
+
m
|
|
2514
|
+
== wp.matrix_from_rows(
|
|
2515
|
+
vec4(101.0, 102.0, 145.0, 146.0),
|
|
2516
|
+
vec4(139.0, 140.0, 125.0, 126.0),
|
|
2517
|
+
vec4(141.0, 142.0, 135.0, 136.0),
|
|
2518
|
+
vec4(143.0, 144.0, 137.0, 138.0),
|
|
2519
|
+
),
|
|
2520
|
+
True,
|
|
2521
|
+
)
|
|
2522
|
+
|
|
2523
|
+
m[:2, 0] = vec2(147.0, 148.0)
|
|
2524
|
+
wp.expect_eq(
|
|
2525
|
+
m
|
|
2526
|
+
== wp.matrix_from_rows(
|
|
2527
|
+
vec4(147.0, 102.0, 145.0, 146.0),
|
|
2528
|
+
vec4(148.0, 140.0, 125.0, 126.0),
|
|
2529
|
+
vec4(141.0, 142.0, 135.0, 136.0),
|
|
2530
|
+
vec4(143.0, 144.0, 137.0, 138.0),
|
|
2531
|
+
),
|
|
2532
|
+
True,
|
|
2533
|
+
)
|
|
2534
|
+
|
|
2535
|
+
m[2:, 1] = vec2(149.0, 150.0)
|
|
2536
|
+
wp.expect_eq(
|
|
2537
|
+
m
|
|
2538
|
+
== wp.matrix_from_rows(
|
|
2539
|
+
vec4(147.0, 102.0, 145.0, 146.0),
|
|
2540
|
+
vec4(148.0, 140.0, 125.0, 126.0),
|
|
2541
|
+
vec4(141.0, 149.0, 135.0, 136.0),
|
|
2542
|
+
vec4(143.0, 150.0, 137.0, 138.0),
|
|
2543
|
+
),
|
|
2544
|
+
True,
|
|
2545
|
+
)
|
|
2546
|
+
|
|
2547
|
+
m[0, :3] = vec3(151.0, 152.0, 153.0)
|
|
2548
|
+
wp.expect_eq(
|
|
2549
|
+
m
|
|
2550
|
+
== wp.matrix_from_rows(
|
|
2551
|
+
vec4(151.0, 152.0, 153.0, 146.0),
|
|
2552
|
+
vec4(148.0, 140.0, 125.0, 126.0),
|
|
2553
|
+
vec4(141.0, 149.0, 135.0, 136.0),
|
|
2554
|
+
vec4(143.0, 150.0, 137.0, 138.0),
|
|
2555
|
+
),
|
|
2556
|
+
True,
|
|
2557
|
+
)
|
|
2558
|
+
|
|
2559
|
+
m[1, 1:] = vec3(154.0, 155.0, 156.0)
|
|
2560
|
+
wp.expect_eq(
|
|
2561
|
+
m
|
|
2562
|
+
== wp.matrix_from_rows(
|
|
2563
|
+
vec4(151.0, 152.0, 153.0, 146.0),
|
|
2564
|
+
vec4(148.0, 154.0, 155.0, 156.0),
|
|
2565
|
+
vec4(141.0, 149.0, 135.0, 136.0),
|
|
2566
|
+
vec4(143.0, 150.0, 137.0, 138.0),
|
|
2567
|
+
),
|
|
2568
|
+
True,
|
|
2569
|
+
)
|
|
2570
|
+
|
|
2571
|
+
m[0, 2] = 157.0
|
|
2572
|
+
wp.expect_eq(
|
|
2573
|
+
m
|
|
2574
|
+
== wp.matrix_from_rows(
|
|
2575
|
+
vec4(151.0, 152.0, 157.0, 146.0),
|
|
2576
|
+
vec4(148.0, 154.0, 155.0, 156.0),
|
|
2577
|
+
vec4(141.0, 149.0, 135.0, 136.0),
|
|
2578
|
+
vec4(143.0, 150.0, 137.0, 138.0),
|
|
2579
|
+
),
|
|
2580
|
+
True,
|
|
2581
|
+
)
|
|
2582
|
+
|
|
2583
|
+
m[3, 1:] += vec3(158.0, 159.0, 160.0)
|
|
2584
|
+
wp.expect_eq(
|
|
2585
|
+
m
|
|
2586
|
+
== wp.matrix_from_rows(
|
|
2587
|
+
vec4(151.0, 152.0, 157.0, 146.0),
|
|
2588
|
+
vec4(148.0, 154.0, 155.0, 156.0),
|
|
2589
|
+
vec4(141.0, 149.0, 135.0, 136.0),
|
|
2590
|
+
vec4(143.0, 308.0, 296.0, 298.0),
|
|
2591
|
+
),
|
|
2592
|
+
True,
|
|
2593
|
+
)
|
|
2594
|
+
|
|
2595
|
+
m[2:, 1] += vec2(161.0, 162.0)
|
|
2596
|
+
wp.expect_eq(
|
|
2597
|
+
m
|
|
2598
|
+
== wp.matrix_from_rows(
|
|
2599
|
+
vec4(151.0, 152.0, 157.0, 146.0),
|
|
2600
|
+
vec4(148.0, 154.0, 155.0, 156.0),
|
|
2601
|
+
vec4(141.0, 310.0, 135.0, 136.0),
|
|
2602
|
+
vec4(143.0, 470.0, 296.0, 298.0),
|
|
2603
|
+
),
|
|
2604
|
+
True,
|
|
2605
|
+
)
|
|
2606
|
+
|
|
2607
|
+
m[2:, 3] -= vec2(163.0, 164.0)
|
|
2608
|
+
wp.expect_eq(
|
|
2609
|
+
m
|
|
2610
|
+
== wp.matrix_from_rows(
|
|
2611
|
+
vec4(151.0, 152.0, 157.0, 146.0),
|
|
2612
|
+
vec4(148.0, 154.0, 155.0, 156.0),
|
|
2613
|
+
vec4(141.0, 310.0, 135.0, -27.0),
|
|
2614
|
+
vec4(143.0, 470.0, 296.0, 134.0),
|
|
2615
|
+
),
|
|
2616
|
+
True,
|
|
2617
|
+
)
|
|
2618
|
+
|
|
2619
|
+
m[1, :3] -= vec3(165.0, 166.0, 167.0)
|
|
2620
|
+
wp.expect_eq(
|
|
2621
|
+
m
|
|
2622
|
+
== wp.matrix_from_rows(
|
|
2623
|
+
vec4(151.0, 152.0, 157.0, 146.0),
|
|
2624
|
+
vec4(-17.0, -12.0, -12.0, 156.0),
|
|
2625
|
+
vec4(141.0, 310.0, 135.0, -27.0),
|
|
2626
|
+
vec4(143.0, 470.0, 296.0, 134.0),
|
|
2627
|
+
),
|
|
2628
|
+
True,
|
|
2629
|
+
)
|
|
2630
|
+
|
|
2631
|
+
m[:-2, 2:] *= 3.0
|
|
2632
|
+
wp.expect_eq(
|
|
2633
|
+
m
|
|
2634
|
+
== wp.matrix_from_rows(
|
|
2635
|
+
vec4(151.0, 152.0, 471.0, 438.0),
|
|
2636
|
+
vec4(-17.0, -12.0, -36.0, 468.0),
|
|
2637
|
+
vec4(141.0, 310.0, 135.0, -27.0),
|
|
2638
|
+
vec4(143.0, 470.0, 296.0, 134.0),
|
|
2639
|
+
),
|
|
2640
|
+
True,
|
|
2641
|
+
)
|
|
2642
|
+
|
|
2643
|
+
m[-2:, 1] *= 4.0
|
|
2644
|
+
wp.expect_eq(
|
|
2645
|
+
m
|
|
2646
|
+
== wp.matrix_from_rows(
|
|
2647
|
+
vec4(151.0, 152.0, 471.0, 438.0),
|
|
2648
|
+
vec4(-17.0, -12.0, -36.0, 468.0),
|
|
2649
|
+
vec4(141.0, 1240.0, 135.0, -27.0),
|
|
2650
|
+
vec4(143.0, 1880.0, 296.0, 134.0),
|
|
2651
|
+
),
|
|
2652
|
+
True,
|
|
2653
|
+
)
|
|
2654
|
+
|
|
2655
|
+
m[3, :1] *= 5.0
|
|
2656
|
+
wp.expect_eq(
|
|
2657
|
+
m
|
|
2658
|
+
== wp.matrix_from_rows(
|
|
2659
|
+
vec4(151.0, 152.0, 471.0, 438.0),
|
|
2660
|
+
vec4(-17.0, -12.0, -36.0, 468.0),
|
|
2661
|
+
vec4(141.0, 1240.0, 135.0, -27.0),
|
|
2662
|
+
vec4(715.0, 1880.0, 296.0, 134.0),
|
|
2663
|
+
),
|
|
2664
|
+
True,
|
|
2665
|
+
)
|
|
2666
|
+
|
|
2667
|
+
m[:2, :2] /= 2.0
|
|
2668
|
+
wp.expect_eq(
|
|
2669
|
+
m
|
|
2670
|
+
== wp.matrix_from_rows(
|
|
2671
|
+
vec4(75.5, 76.0, 471.0, 438.0),
|
|
2672
|
+
vec4(-8.5, -6.0, -36.0, 468.0),
|
|
2673
|
+
vec4(141.0, 1240.0, 135.0, -27.0),
|
|
2674
|
+
vec4(715.0, 1880.0, 296.0, 134.0),
|
|
2675
|
+
),
|
|
2676
|
+
True,
|
|
2677
|
+
)
|
|
2678
|
+
|
|
2679
|
+
m[3:, 3] /= 4.0
|
|
2680
|
+
wp.expect_eq(
|
|
2681
|
+
m
|
|
2682
|
+
== wp.matrix_from_rows(
|
|
2683
|
+
vec4(75.5, 76.0, 471.0, 438.0),
|
|
2684
|
+
vec4(-8.5, -6.0, -36.0, 468.0),
|
|
2685
|
+
vec4(141.0, 1240.0, 135.0, -27.0),
|
|
2686
|
+
vec4(715.0, 1880.0, 296.0, 33.5),
|
|
2687
|
+
),
|
|
2688
|
+
True,
|
|
2689
|
+
)
|
|
2690
|
+
|
|
2691
|
+
m[0, :2] /= 4.0
|
|
2692
|
+
wp.expect_eq(
|
|
2693
|
+
m
|
|
2694
|
+
== wp.matrix_from_rows(
|
|
2695
|
+
vec4(18.875, 19.0, 471.0, 438.0),
|
|
2696
|
+
vec4(-8.5, -6.0, -36.0, 468.0),
|
|
2697
|
+
vec4(141.0, 1240.0, 135.0, -27.0),
|
|
2698
|
+
vec4(715.0, 1880.0, 296.0, 33.5),
|
|
2699
|
+
),
|
|
2700
|
+
True,
|
|
2701
|
+
)
|
|
2702
|
+
|
|
2703
|
+
@wp.kernel(module="unique")
|
|
2704
|
+
def kernel():
|
|
2705
|
+
fn()
|
|
2706
|
+
|
|
2707
|
+
wp.launch(kernel, 1, device=device)
|
|
2708
|
+
wp.synchronize()
|
|
2709
|
+
fn()
|
|
2710
|
+
|
|
2711
|
+
|
|
2712
|
+
def test_mat_from_cols_slicing_assign(test, device):
|
|
2713
|
+
mat00 = wp.mat((0, 0), float)
|
|
2714
|
+
vec1 = wp.vec(1, float)
|
|
2715
|
+
vec2 = wp.vec(2, float)
|
|
2716
|
+
vec3 = wp.vec(3, float)
|
|
2717
|
+
vec4 = wp.vec(4, float)
|
|
2718
|
+
|
|
2719
|
+
@wp.func
|
|
2720
|
+
def fn():
|
|
2721
|
+
m = wp.matrix_from_cols(
|
|
2722
|
+
vec4(1.0, 2.0, 3.0, 4.0),
|
|
2723
|
+
vec4(5.0, 6.0, 7.0, 8.0),
|
|
2724
|
+
vec4(9.0, 10.0, 11.0, 12.0),
|
|
2725
|
+
vec4(13.0, 14.0, 15.0, 16.0),
|
|
2726
|
+
)
|
|
2727
|
+
|
|
2728
|
+
wp.expect_eq(
|
|
2729
|
+
m[:]
|
|
2730
|
+
== wp.matrix_from_rows(
|
|
2731
|
+
vec4(1.0, 5.0, 9.0, 13.0),
|
|
2732
|
+
vec4(2.0, 6.0, 10.0, 14.0),
|
|
2733
|
+
vec4(3.0, 7.0, 11.0, 15.0),
|
|
2734
|
+
vec4(4.0, 8.0, 12.0, 16.0),
|
|
2735
|
+
),
|
|
2736
|
+
True,
|
|
2737
|
+
)
|
|
2738
|
+
wp.expect_eq(
|
|
2739
|
+
m[-123:123]
|
|
2740
|
+
== wp.matrix_from_rows(
|
|
2741
|
+
vec4(1.0, 5.0, 9.0, 13.0),
|
|
2742
|
+
vec4(2.0, 6.0, 10.0, 14.0),
|
|
2743
|
+
vec4(3.0, 7.0, 11.0, 15.0),
|
|
2744
|
+
vec4(4.0, 8.0, 12.0, 16.0),
|
|
2745
|
+
),
|
|
2746
|
+
True,
|
|
2747
|
+
)
|
|
2748
|
+
wp.expect_eq(m[123:] == mat00(), True)
|
|
2749
|
+
wp.expect_eq(m[:-123] == mat00(), True)
|
|
2750
|
+
wp.expect_eq(
|
|
2751
|
+
m[::123]
|
|
2752
|
+
== wp.matrix_from_rows(
|
|
2753
|
+
vec4(1.0, 5.0, 9.0, 13.0),
|
|
2754
|
+
),
|
|
2755
|
+
True,
|
|
2756
|
+
)
|
|
2757
|
+
|
|
2758
|
+
wp.expect_eq(
|
|
2759
|
+
m[1:]
|
|
2760
|
+
== wp.matrix_from_rows(
|
|
2761
|
+
vec4(2.0, 6.0, 10.0, 14.0),
|
|
2762
|
+
vec4(3.0, 7.0, 11.0, 15.0),
|
|
2763
|
+
vec4(4.0, 8.0, 12.0, 16.0),
|
|
2764
|
+
),
|
|
2765
|
+
True,
|
|
2766
|
+
)
|
|
2767
|
+
wp.expect_eq(
|
|
2768
|
+
m[-2:]
|
|
2769
|
+
== wp.matrix_from_rows(
|
|
2770
|
+
vec4(3.0, 7.0, 11.0, 15.0),
|
|
2771
|
+
vec4(4.0, 8.0, 12.0, 16.0),
|
|
2772
|
+
),
|
|
2773
|
+
True,
|
|
2774
|
+
)
|
|
2775
|
+
wp.expect_eq(
|
|
2776
|
+
m[:2]
|
|
2777
|
+
== wp.matrix_from_rows(
|
|
2778
|
+
vec4(1.0, 5.0, 9.0, 13.0),
|
|
2779
|
+
vec4(2.0, 6.0, 10.0, 14.0),
|
|
2780
|
+
),
|
|
2781
|
+
True,
|
|
2782
|
+
)
|
|
2783
|
+
wp.expect_eq(
|
|
2784
|
+
m[:-1]
|
|
2785
|
+
== wp.matrix_from_rows(
|
|
2786
|
+
vec4(1.0, 5.0, 9.0, 13.0),
|
|
2787
|
+
vec4(2.0, 6.0, 10.0, 14.0),
|
|
2788
|
+
vec4(3.0, 7.0, 11.0, 15.0),
|
|
2789
|
+
),
|
|
2790
|
+
True,
|
|
2791
|
+
)
|
|
2792
|
+
wp.expect_eq(
|
|
2793
|
+
m[::2]
|
|
2794
|
+
== wp.matrix_from_rows(
|
|
2795
|
+
vec4(1.0, 5.0, 9.0, 13.0),
|
|
2796
|
+
vec4(3.0, 7.0, 11.0, 15.0),
|
|
2797
|
+
),
|
|
2798
|
+
True,
|
|
2799
|
+
)
|
|
2800
|
+
wp.expect_eq(
|
|
2801
|
+
m[1::2]
|
|
2802
|
+
== wp.matrix_from_rows(
|
|
2803
|
+
vec4(2.0, 6.0, 10.0, 14.0),
|
|
2804
|
+
vec4(4.0, 8.0, 12.0, 16.0),
|
|
2805
|
+
),
|
|
2806
|
+
True,
|
|
2807
|
+
)
|
|
2808
|
+
wp.expect_eq(
|
|
2809
|
+
m[::-1]
|
|
2810
|
+
== wp.matrix_from_rows(
|
|
2811
|
+
vec4(4.0, 8.0, 12.0, 16.0),
|
|
2812
|
+
vec4(3.0, 7.0, 11.0, 15.0),
|
|
2813
|
+
vec4(2.0, 6.0, 10.0, 14.0),
|
|
2814
|
+
vec4(1.0, 5.0, 9.0, 13.0),
|
|
2815
|
+
),
|
|
2816
|
+
True,
|
|
2817
|
+
)
|
|
2818
|
+
wp.expect_eq(
|
|
2819
|
+
m[::-2]
|
|
2820
|
+
== wp.matrix_from_rows(
|
|
2821
|
+
vec4(4.0, 8.0, 12.0, 16.0),
|
|
2822
|
+
vec4(2.0, 6.0, 10.0, 14.0),
|
|
2823
|
+
),
|
|
2824
|
+
True,
|
|
2825
|
+
)
|
|
2826
|
+
wp.expect_eq(
|
|
2827
|
+
m[1::-2]
|
|
2828
|
+
== wp.matrix_from_rows(
|
|
2829
|
+
vec4(2.0, 6.0, 10.0, 14.0),
|
|
2830
|
+
),
|
|
2831
|
+
True,
|
|
2832
|
+
)
|
|
2833
|
+
|
|
2834
|
+
wp.expect_eq(
|
|
2835
|
+
m[:, :]
|
|
2836
|
+
== wp.matrix_from_rows(
|
|
2837
|
+
vec4(1.0, 5.0, 9.0, 13.0),
|
|
2838
|
+
vec4(2.0, 6.0, 10.0, 14.0),
|
|
2839
|
+
vec4(3.0, 7.0, 11.0, 15.0),
|
|
2840
|
+
vec4(4.0, 8.0, 12.0, 16.0),
|
|
2841
|
+
),
|
|
2842
|
+
True,
|
|
2843
|
+
)
|
|
2844
|
+
wp.expect_eq(
|
|
2845
|
+
m[:, 2:]
|
|
2846
|
+
== wp.matrix_from_rows(
|
|
2847
|
+
vec2(9.0, 13.0),
|
|
2848
|
+
vec2(10.0, 14.0),
|
|
2849
|
+
vec2(11.0, 15.0),
|
|
2850
|
+
vec2(12.0, 16.0),
|
|
2851
|
+
),
|
|
2852
|
+
True,
|
|
2853
|
+
)
|
|
2854
|
+
wp.expect_eq(
|
|
2855
|
+
m[1:, 2:]
|
|
2856
|
+
== wp.matrix_from_rows(
|
|
2857
|
+
vec2(10.0, 14.0),
|
|
2858
|
+
vec2(11.0, 15.0),
|
|
2859
|
+
vec2(12.0, 16.0),
|
|
2860
|
+
),
|
|
2861
|
+
True,
|
|
2862
|
+
)
|
|
2863
|
+
wp.expect_eq(
|
|
2864
|
+
m[-2:, 2:]
|
|
2865
|
+
== wp.matrix_from_rows(
|
|
2866
|
+
vec2(11.0, 15.0),
|
|
2867
|
+
vec2(12.0, 16.0),
|
|
2868
|
+
),
|
|
2869
|
+
True,
|
|
2870
|
+
)
|
|
2871
|
+
wp.expect_eq(
|
|
2872
|
+
m[2:, -2:]
|
|
2873
|
+
== wp.matrix_from_rows(
|
|
2874
|
+
vec2(11.0, 15.0),
|
|
2875
|
+
vec2(12.0, 16.0),
|
|
2876
|
+
),
|
|
2877
|
+
True,
|
|
2878
|
+
)
|
|
2879
|
+
wp.expect_eq(
|
|
2880
|
+
m[1:, :2]
|
|
2881
|
+
== wp.matrix_from_rows(
|
|
2882
|
+
vec2(2.0, 6.0),
|
|
2883
|
+
vec2(3.0, 7.0),
|
|
2884
|
+
vec2(4.0, 8.0),
|
|
2885
|
+
),
|
|
2886
|
+
True,
|
|
2887
|
+
)
|
|
2888
|
+
wp.expect_eq(
|
|
2889
|
+
m[:1, 2:]
|
|
2890
|
+
== wp.matrix_from_rows(
|
|
2891
|
+
vec2(9.0, 13.0),
|
|
2892
|
+
),
|
|
2893
|
+
True,
|
|
2894
|
+
)
|
|
2895
|
+
wp.expect_eq(
|
|
2896
|
+
m[::-1, :1]
|
|
2897
|
+
== wp.matrix_from_rows(
|
|
2898
|
+
vec1(4.0),
|
|
2899
|
+
vec1(3.0),
|
|
2900
|
+
vec1(2.0),
|
|
2901
|
+
vec1(1.0),
|
|
2902
|
+
),
|
|
2903
|
+
True,
|
|
2904
|
+
)
|
|
2905
|
+
wp.expect_eq(
|
|
2906
|
+
m[:1, ::-1]
|
|
2907
|
+
== wp.matrix_from_rows(
|
|
2908
|
+
vec4(13.0, 9.0, 5.0, 1.0),
|
|
2909
|
+
),
|
|
2910
|
+
True,
|
|
2911
|
+
)
|
|
2912
|
+
wp.expect_eq(
|
|
2913
|
+
m[:1:-1, 2::-1]
|
|
2914
|
+
== wp.matrix_from_rows(
|
|
2915
|
+
vec3(12.0, 8.0, 4.0),
|
|
2916
|
+
vec3(11.0, 7.0, 3.0),
|
|
2917
|
+
),
|
|
2918
|
+
True,
|
|
2919
|
+
)
|
|
2920
|
+
|
|
2921
|
+
wp.expect_eq(m[:2, 0] == vec2(1.0, 2.0), True)
|
|
2922
|
+
wp.expect_eq(m[2:, 1] == vec2(7.0, 8.0), True)
|
|
2923
|
+
wp.expect_eq(m[0, :3] == vec3(1.0, 5.0, 9.0), True)
|
|
2924
|
+
wp.expect_eq(m[1, 1:] == vec3(6.0, 10.0, 14.0), True)
|
|
2925
|
+
|
|
2926
|
+
m[1:] = wp.matrix_from_cols(
|
|
2927
|
+
vec3(17.0, 18.0, 19.0),
|
|
2928
|
+
vec3(20.0, 21.0, 22.0),
|
|
2929
|
+
vec3(23.0, 24.0, 25.0),
|
|
2930
|
+
vec3(26.0, 27.0, 28.0),
|
|
2931
|
+
)
|
|
2932
|
+
wp.expect_eq(
|
|
2933
|
+
m
|
|
2934
|
+
== wp.matrix_from_rows(
|
|
2935
|
+
vec4(1.0, 5.0, 9.0, 13.0),
|
|
2936
|
+
vec4(17.0, 20.0, 23.0, 26.0),
|
|
2937
|
+
vec4(18.0, 21.0, 24.0, 27.0),
|
|
2938
|
+
vec4(19.0, 22.0, 25.0, 28.0),
|
|
2939
|
+
),
|
|
2940
|
+
True,
|
|
2941
|
+
)
|
|
2942
|
+
|
|
2943
|
+
m[-2:] = wp.matrix_from_cols(
|
|
2944
|
+
vec2(29.0, 30.0),
|
|
2945
|
+
vec2(31.0, 32.0),
|
|
2946
|
+
vec2(33.0, 34.0),
|
|
2947
|
+
vec2(35.0, 36.0),
|
|
2948
|
+
)
|
|
2949
|
+
wp.expect_eq(
|
|
2950
|
+
m
|
|
2951
|
+
== wp.matrix_from_rows(
|
|
2952
|
+
vec4(1.0, 5.0, 9.0, 13.0),
|
|
2953
|
+
vec4(17.0, 20.0, 23.0, 26.0),
|
|
2954
|
+
vec4(29.0, 31.0, 33.0, 35.0),
|
|
2955
|
+
vec4(30.0, 32.0, 34.0, 36.0),
|
|
2956
|
+
),
|
|
2957
|
+
True,
|
|
2958
|
+
)
|
|
2959
|
+
|
|
2960
|
+
m[:2] = wp.matrix_from_cols(
|
|
2961
|
+
vec2(37.0, 38.0),
|
|
2962
|
+
vec2(39.0, 40.0),
|
|
2963
|
+
vec2(41.0, 42.0),
|
|
2964
|
+
vec2(43.0, 44.0),
|
|
2965
|
+
)
|
|
2966
|
+
wp.expect_eq(
|
|
2967
|
+
m
|
|
2968
|
+
== wp.matrix_from_rows(
|
|
2969
|
+
vec4(37.0, 39.0, 41.0, 43.0),
|
|
2970
|
+
vec4(38.0, 40.0, 42.0, 44.0),
|
|
2971
|
+
vec4(29.0, 31.0, 33.0, 35.0),
|
|
2972
|
+
vec4(30.0, 32.0, 34.0, 36.0),
|
|
2973
|
+
),
|
|
2974
|
+
True,
|
|
2975
|
+
)
|
|
2976
|
+
|
|
2977
|
+
m[:-1] = wp.matrix_from_cols(
|
|
2978
|
+
vec3(45.0, 46.0, 47.0),
|
|
2979
|
+
vec3(48.0, 49.0, 50.0),
|
|
2980
|
+
vec3(51.0, 52.0, 53.0),
|
|
2981
|
+
vec3(54.0, 55.0, 56.0),
|
|
2982
|
+
)
|
|
2983
|
+
wp.expect_eq(
|
|
2984
|
+
m
|
|
2985
|
+
== wp.matrix_from_rows(
|
|
2986
|
+
vec4(45.0, 48.0, 51.0, 54.0),
|
|
2987
|
+
vec4(46.0, 49.0, 52.0, 55.0),
|
|
2988
|
+
vec4(47.0, 50.0, 53.0, 56.0),
|
|
2989
|
+
vec4(30.0, 32.0, 34.0, 36.0),
|
|
2990
|
+
),
|
|
2991
|
+
True,
|
|
2992
|
+
)
|
|
2993
|
+
|
|
2994
|
+
m[::2] = wp.matrix_from_cols(
|
|
2995
|
+
vec2(57.0, 58.0),
|
|
2996
|
+
vec2(59.0, 60.0),
|
|
2997
|
+
vec2(61.0, 62.0),
|
|
2998
|
+
vec2(63.0, 64.0),
|
|
2999
|
+
)
|
|
3000
|
+
wp.expect_eq(
|
|
3001
|
+
m
|
|
3002
|
+
== wp.matrix_from_rows(
|
|
3003
|
+
vec4(57.0, 59.0, 61.0, 63.0),
|
|
3004
|
+
vec4(46.0, 49.0, 52.0, 55.0),
|
|
3005
|
+
vec4(58.0, 60.0, 62.0, 64.0),
|
|
3006
|
+
vec4(30.0, 32.0, 34.0, 36.0),
|
|
3007
|
+
),
|
|
3008
|
+
True,
|
|
3009
|
+
)
|
|
3010
|
+
|
|
3011
|
+
m[1::2] = wp.matrix_from_cols(
|
|
3012
|
+
vec2(65.0, 66.0),
|
|
3013
|
+
vec2(67.0, 68.0),
|
|
3014
|
+
vec2(69.0, 70.0),
|
|
3015
|
+
vec2(71.0, 72.0),
|
|
3016
|
+
)
|
|
3017
|
+
wp.expect_eq(
|
|
3018
|
+
m
|
|
3019
|
+
== wp.matrix_from_rows(
|
|
3020
|
+
vec4(57.0, 59.0, 61.0, 63.0),
|
|
3021
|
+
vec4(65.0, 67.0, 69.0, 71.0),
|
|
3022
|
+
vec4(58.0, 60.0, 62.0, 64.0),
|
|
3023
|
+
vec4(66.0, 68.0, 70.0, 72.0),
|
|
3024
|
+
),
|
|
3025
|
+
True,
|
|
3026
|
+
)
|
|
3027
|
+
|
|
3028
|
+
m[::-1] = wp.matrix_from_cols(
|
|
3029
|
+
vec4(73.0, 74.0, 75.0, 76.0),
|
|
3030
|
+
vec4(77.0, 78.0, 79.0, 80.0),
|
|
3031
|
+
vec4(81.0, 82.0, 83.0, 84.0),
|
|
3032
|
+
vec4(85.0, 86.0, 87.0, 88.0),
|
|
3033
|
+
)
|
|
3034
|
+
wp.expect_eq(
|
|
3035
|
+
m
|
|
3036
|
+
== wp.matrix_from_rows(
|
|
3037
|
+
vec4(76.0, 80.0, 84.0, 88.0),
|
|
3038
|
+
vec4(75.0, 79.0, 83.0, 87.0),
|
|
3039
|
+
vec4(74.0, 78.0, 82.0, 86.0),
|
|
3040
|
+
vec4(73.0, 77.0, 81.0, 85.0),
|
|
3041
|
+
),
|
|
3042
|
+
True,
|
|
3043
|
+
)
|
|
3044
|
+
|
|
3045
|
+
m[::-2] = wp.matrix_from_cols(
|
|
3046
|
+
vec2(89.0, 90.0),
|
|
3047
|
+
vec2(91.0, 92.0),
|
|
3048
|
+
vec2(93.0, 94.0),
|
|
3049
|
+
vec2(95.0, 96.0),
|
|
3050
|
+
)
|
|
3051
|
+
wp.expect_eq(
|
|
3052
|
+
m
|
|
3053
|
+
== wp.matrix_from_rows(
|
|
3054
|
+
vec4(76.0, 80.0, 84.0, 88.0),
|
|
3055
|
+
vec4(90.0, 92.0, 94.0, 96.0),
|
|
3056
|
+
vec4(74.0, 78.0, 82.0, 86.0),
|
|
3057
|
+
vec4(89.0, 91.0, 93.0, 95.0),
|
|
3058
|
+
),
|
|
3059
|
+
True,
|
|
3060
|
+
)
|
|
3061
|
+
|
|
3062
|
+
m[1::-2] = wp.matrix_from_cols(
|
|
3063
|
+
vec1(97.0),
|
|
3064
|
+
vec1(98.0),
|
|
3065
|
+
vec1(99.0),
|
|
3066
|
+
vec1(100.0),
|
|
3067
|
+
)
|
|
3068
|
+
wp.expect_eq(
|
|
3069
|
+
m
|
|
3070
|
+
== wp.matrix_from_rows(
|
|
3071
|
+
vec4(76.0, 80.0, 84.0, 88.0),
|
|
3072
|
+
vec4(97.0, 98.0, 99.0, 100.0),
|
|
3073
|
+
vec4(74.0, 78.0, 82.0, 86.0),
|
|
3074
|
+
vec4(89.0, 91.0, 93.0, 95.0),
|
|
3075
|
+
),
|
|
3076
|
+
True,
|
|
3077
|
+
)
|
|
3078
|
+
|
|
3079
|
+
m[:, :] = wp.matrix_from_cols(
|
|
3080
|
+
vec4(101.0, 102.0, 103.0, 104.0),
|
|
3081
|
+
vec4(105.0, 106.0, 107.0, 108.0),
|
|
3082
|
+
vec4(109.0, 110.0, 111.0, 112.0),
|
|
3083
|
+
vec4(113.0, 114.0, 115.0, 116.0),
|
|
3084
|
+
)
|
|
3085
|
+
wp.expect_eq(
|
|
3086
|
+
m
|
|
3087
|
+
== wp.matrix_from_rows(
|
|
3088
|
+
vec4(101.0, 105.0, 109.0, 113.0),
|
|
3089
|
+
vec4(102.0, 106.0, 110.0, 114.0),
|
|
3090
|
+
vec4(103.0, 107.0, 111.0, 115.0),
|
|
3091
|
+
vec4(104.0, 108.0, 112.0, 116.0),
|
|
3092
|
+
),
|
|
3093
|
+
True,
|
|
3094
|
+
)
|
|
3095
|
+
|
|
3096
|
+
m[:, 2:] = wp.matrix_from_cols(
|
|
3097
|
+
vec4(117.0, 118.0, 119.0, 120.0),
|
|
3098
|
+
vec4(121.0, 122.0, 123.0, 124.0),
|
|
3099
|
+
)
|
|
3100
|
+
wp.expect_eq(
|
|
3101
|
+
m
|
|
3102
|
+
== wp.matrix_from_rows(
|
|
3103
|
+
vec4(101.0, 105.0, 117.0, 121.0),
|
|
3104
|
+
vec4(102.0, 106.0, 118.0, 122.0),
|
|
3105
|
+
vec4(103.0, 107.0, 119.0, 123.0),
|
|
3106
|
+
vec4(104.0, 108.0, 120.0, 124.0),
|
|
3107
|
+
),
|
|
3108
|
+
True,
|
|
3109
|
+
)
|
|
3110
|
+
|
|
3111
|
+
m[1:, 2:] = wp.matrix_from_cols(
|
|
3112
|
+
vec3(125.0, 126.0, 127.0),
|
|
3113
|
+
vec3(128.0, 129.0, 130.0),
|
|
3114
|
+
)
|
|
3115
|
+
wp.expect_eq(
|
|
3116
|
+
m
|
|
3117
|
+
== wp.matrix_from_rows(
|
|
3118
|
+
vec4(101.0, 105.0, 117.0, 121.0),
|
|
3119
|
+
vec4(102.0, 106.0, 125.0, 128.0),
|
|
3120
|
+
vec4(103.0, 107.0, 126.0, 129.0),
|
|
3121
|
+
vec4(104.0, 108.0, 127.0, 130.0),
|
|
3122
|
+
),
|
|
3123
|
+
True,
|
|
3124
|
+
)
|
|
3125
|
+
|
|
3126
|
+
m[-2:, 2:] = wp.matrix_from_cols(
|
|
3127
|
+
vec2(131.0, 132.0),
|
|
3128
|
+
vec2(133.0, 134.0),
|
|
3129
|
+
)
|
|
3130
|
+
wp.expect_eq(
|
|
3131
|
+
m
|
|
3132
|
+
== wp.matrix_from_rows(
|
|
3133
|
+
vec4(101.0, 105.0, 117.0, 121.0),
|
|
3134
|
+
vec4(102.0, 106.0, 125.0, 128.0),
|
|
3135
|
+
vec4(103.0, 107.0, 131.0, 133.0),
|
|
3136
|
+
vec4(104.0, 108.0, 132.0, 134.0),
|
|
3137
|
+
),
|
|
3138
|
+
True,
|
|
3139
|
+
)
|
|
3140
|
+
|
|
3141
|
+
m[2:, -2:] = wp.matrix_from_cols(
|
|
3142
|
+
vec2(135.0, 136.0),
|
|
3143
|
+
vec2(137.0, 138.0),
|
|
3144
|
+
)
|
|
3145
|
+
wp.expect_eq(
|
|
3146
|
+
m
|
|
3147
|
+
== wp.matrix_from_rows(
|
|
3148
|
+
vec4(101.0, 105.0, 117.0, 121.0),
|
|
3149
|
+
vec4(102.0, 106.0, 125.0, 128.0),
|
|
3150
|
+
vec4(103.0, 107.0, 135.0, 137.0),
|
|
3151
|
+
vec4(104.0, 108.0, 136.0, 138.0),
|
|
3152
|
+
),
|
|
3153
|
+
True,
|
|
3154
|
+
)
|
|
3155
|
+
|
|
3156
|
+
m[1:, :2] = wp.matrix_from_cols(
|
|
3157
|
+
vec3(139.0, 140.0, 141.0),
|
|
3158
|
+
vec3(142.0, 143.0, 144.0),
|
|
3159
|
+
)
|
|
3160
|
+
wp.expect_eq(
|
|
3161
|
+
m
|
|
3162
|
+
== wp.matrix_from_rows(
|
|
3163
|
+
vec4(101.0, 105.0, 117.0, 121.0),
|
|
3164
|
+
vec4(139.0, 142.0, 125.0, 128.0),
|
|
3165
|
+
vec4(140.0, 143.0, 135.0, 137.0),
|
|
3166
|
+
vec4(141.0, 144.0, 136.0, 138.0),
|
|
3167
|
+
),
|
|
3168
|
+
True,
|
|
3169
|
+
)
|
|
3170
|
+
|
|
3171
|
+
m[:1, 2:] = wp.matrix_from_cols(
|
|
3172
|
+
vec1(145.0),
|
|
3173
|
+
vec1(146.0),
|
|
3174
|
+
)
|
|
3175
|
+
wp.expect_eq(
|
|
3176
|
+
m
|
|
3177
|
+
== wp.matrix_from_rows(
|
|
3178
|
+
vec4(101.0, 105.0, 145.0, 146.0),
|
|
3179
|
+
vec4(139.0, 142.0, 125.0, 128.0),
|
|
3180
|
+
vec4(140.0, 143.0, 135.0, 137.0),
|
|
3181
|
+
vec4(141.0, 144.0, 136.0, 138.0),
|
|
3182
|
+
),
|
|
3183
|
+
True,
|
|
3184
|
+
)
|
|
3185
|
+
|
|
3186
|
+
m[:2, 0] = vec2(147.0, 148.0)
|
|
3187
|
+
wp.expect_eq(
|
|
3188
|
+
m
|
|
3189
|
+
== wp.matrix_from_rows(
|
|
3190
|
+
vec4(147.0, 105.0, 145.0, 146.0),
|
|
3191
|
+
vec4(148.0, 142.0, 125.0, 128.0),
|
|
3192
|
+
vec4(140.0, 143.0, 135.0, 137.0),
|
|
3193
|
+
vec4(141.0, 144.0, 136.0, 138.0),
|
|
3194
|
+
),
|
|
3195
|
+
True,
|
|
3196
|
+
)
|
|
3197
|
+
|
|
3198
|
+
m[2:, 1] = vec2(149.0, 150.0)
|
|
3199
|
+
wp.expect_eq(
|
|
3200
|
+
m
|
|
3201
|
+
== wp.matrix_from_rows(
|
|
3202
|
+
vec4(147.0, 105.0, 145.0, 146.0),
|
|
3203
|
+
vec4(148.0, 142.0, 125.0, 128.0),
|
|
3204
|
+
vec4(140.0, 149.0, 135.0, 137.0),
|
|
3205
|
+
vec4(141.0, 150.0, 136.0, 138.0),
|
|
3206
|
+
),
|
|
3207
|
+
True,
|
|
3208
|
+
)
|
|
3209
|
+
|
|
3210
|
+
m[0, :3] = vec3(151.0, 152.0, 153.0)
|
|
3211
|
+
wp.expect_eq(
|
|
3212
|
+
m
|
|
3213
|
+
== wp.matrix_from_rows(
|
|
3214
|
+
vec4(151.0, 152.0, 153.0, 146.0),
|
|
3215
|
+
vec4(148.0, 142.0, 125.0, 128.0),
|
|
3216
|
+
vec4(140.0, 149.0, 135.0, 137.0),
|
|
3217
|
+
vec4(141.0, 150.0, 136.0, 138.0),
|
|
3218
|
+
),
|
|
3219
|
+
True,
|
|
3220
|
+
)
|
|
3221
|
+
|
|
3222
|
+
m[1, 1:] = vec3(154.0, 155.0, 156.0)
|
|
3223
|
+
wp.expect_eq(
|
|
3224
|
+
m
|
|
3225
|
+
== wp.matrix_from_rows(
|
|
3226
|
+
vec4(151.0, 152.0, 153.0, 146.0),
|
|
3227
|
+
vec4(148.0, 154.0, 155.0, 156.0),
|
|
3228
|
+
vec4(140.0, 149.0, 135.0, 137.0),
|
|
3229
|
+
vec4(141.0, 150.0, 136.0, 138.0),
|
|
3230
|
+
),
|
|
3231
|
+
True,
|
|
3232
|
+
)
|
|
3233
|
+
|
|
3234
|
+
m[0, 2] = 157.0
|
|
3235
|
+
wp.expect_eq(
|
|
3236
|
+
m
|
|
3237
|
+
== wp.matrix_from_rows(
|
|
3238
|
+
vec4(151.0, 152.0, 157.0, 146.0),
|
|
3239
|
+
vec4(148.0, 154.0, 155.0, 156.0),
|
|
3240
|
+
vec4(140.0, 149.0, 135.0, 137.0),
|
|
3241
|
+
vec4(141.0, 150.0, 136.0, 138.0),
|
|
3242
|
+
),
|
|
3243
|
+
True,
|
|
3244
|
+
)
|
|
3245
|
+
|
|
3246
|
+
m[3, 1:] += vec3(158.0, 159.0, 160.0)
|
|
3247
|
+
wp.expect_eq(
|
|
3248
|
+
m
|
|
3249
|
+
== wp.matrix_from_rows(
|
|
3250
|
+
vec4(151.0, 152.0, 157.0, 146.0),
|
|
3251
|
+
vec4(148.0, 154.0, 155.0, 156.0),
|
|
3252
|
+
vec4(140.0, 149.0, 135.0, 137.0),
|
|
3253
|
+
vec4(141.0, 308.0, 295.0, 298.0),
|
|
3254
|
+
),
|
|
3255
|
+
True,
|
|
3256
|
+
)
|
|
3257
|
+
|
|
3258
|
+
m[2:, 1] += vec2(161.0, 162.0)
|
|
3259
|
+
wp.expect_eq(
|
|
3260
|
+
m
|
|
3261
|
+
== wp.matrix_from_rows(
|
|
3262
|
+
vec4(151.0, 152.0, 157.0, 146.0),
|
|
3263
|
+
vec4(148.0, 154.0, 155.0, 156.0),
|
|
3264
|
+
vec4(140.0, 310.0, 135.0, 137.0),
|
|
3265
|
+
vec4(141.0, 470.0, 295.0, 298.0),
|
|
3266
|
+
),
|
|
3267
|
+
True,
|
|
3268
|
+
)
|
|
3269
|
+
|
|
3270
|
+
m[2:, 3] -= vec2(163.0, 164.0)
|
|
3271
|
+
wp.expect_eq(
|
|
3272
|
+
m
|
|
3273
|
+
== wp.matrix_from_rows(
|
|
3274
|
+
vec4(151.0, 152.0, 157.0, 146.0),
|
|
3275
|
+
vec4(148.0, 154.0, 155.0, 156.0),
|
|
3276
|
+
vec4(140.0, 310.0, 135.0, -26.0),
|
|
3277
|
+
vec4(141.0, 470.0, 295.0, 134.0),
|
|
3278
|
+
),
|
|
3279
|
+
True,
|
|
3280
|
+
)
|
|
3281
|
+
|
|
3282
|
+
m[1, :3] -= vec3(165.0, 166.0, 167.0)
|
|
3283
|
+
wp.expect_eq(
|
|
3284
|
+
m
|
|
3285
|
+
== wp.matrix_from_rows(
|
|
3286
|
+
vec4(151.0, 152.0, 157.0, 146.0),
|
|
3287
|
+
vec4(-17.0, -12.0, -12.0, 156.0),
|
|
3288
|
+
vec4(140.0, 310.0, 135.0, -26.0),
|
|
3289
|
+
vec4(141.0, 470.0, 295.0, 134.0),
|
|
3290
|
+
),
|
|
3291
|
+
True,
|
|
3292
|
+
)
|
|
3293
|
+
|
|
3294
|
+
m[:-2, 2:] *= 3.0
|
|
3295
|
+
wp.expect_eq(
|
|
3296
|
+
m
|
|
3297
|
+
== wp.matrix_from_rows(
|
|
3298
|
+
vec4(151.0, 152.0, 471.0, 438.0),
|
|
3299
|
+
vec4(-17.0, -12.0, -36.0, 468.0),
|
|
3300
|
+
vec4(140.0, 310.0, 135.0, -26.0),
|
|
3301
|
+
vec4(141.0, 470.0, 295.0, 134.0),
|
|
3302
|
+
),
|
|
3303
|
+
True,
|
|
3304
|
+
)
|
|
3305
|
+
|
|
3306
|
+
m[-2:, 1] *= 4.0
|
|
3307
|
+
wp.expect_eq(
|
|
3308
|
+
m
|
|
3309
|
+
== wp.matrix_from_rows(
|
|
3310
|
+
vec4(151.0, 152.0, 471.0, 438.0),
|
|
3311
|
+
vec4(-17.0, -12.0, -36.0, 468.0),
|
|
3312
|
+
vec4(140.0, 1240.0, 135.0, -26.0),
|
|
3313
|
+
vec4(141.0, 1880.0, 295.0, 134.0),
|
|
3314
|
+
),
|
|
3315
|
+
True,
|
|
3316
|
+
)
|
|
3317
|
+
|
|
3318
|
+
m[3, :1] *= 5.0
|
|
3319
|
+
wp.expect_eq(
|
|
3320
|
+
m
|
|
3321
|
+
== wp.matrix_from_rows(
|
|
3322
|
+
vec4(151.0, 152.0, 471.0, 438.0),
|
|
3323
|
+
vec4(-17.0, -12.0, -36.0, 468.0),
|
|
3324
|
+
vec4(140.0, 1240.0, 135.0, -26.0),
|
|
3325
|
+
vec4(705.0, 1880.0, 295.0, 134.0),
|
|
3326
|
+
),
|
|
3327
|
+
True,
|
|
3328
|
+
)
|
|
3329
|
+
|
|
3330
|
+
m[:2, :2] /= 2.0
|
|
3331
|
+
wp.expect_eq(
|
|
3332
|
+
m
|
|
3333
|
+
== wp.matrix_from_rows(
|
|
3334
|
+
vec4(75.5, 76.0, 471.0, 438.0),
|
|
3335
|
+
vec4(-8.5, -6.0, -36.0, 468.0),
|
|
3336
|
+
vec4(140.0, 1240.0, 135.0, -26.0),
|
|
3337
|
+
vec4(705.0, 1880.0, 295.0, 134.0),
|
|
3338
|
+
),
|
|
3339
|
+
True,
|
|
3340
|
+
)
|
|
3341
|
+
|
|
3342
|
+
m[3:, 3] /= 4.0
|
|
3343
|
+
wp.expect_eq(
|
|
3344
|
+
m
|
|
3345
|
+
== wp.matrix_from_rows(
|
|
3346
|
+
vec4(75.5, 76.0, 471.0, 438.0),
|
|
3347
|
+
vec4(-8.5, -6.0, -36.0, 468.0),
|
|
3348
|
+
vec4(140.0, 1240.0, 135.0, -26.0),
|
|
3349
|
+
vec4(705.0, 1880.0, 295.0, 33.5),
|
|
3350
|
+
),
|
|
3351
|
+
True,
|
|
3352
|
+
)
|
|
3353
|
+
|
|
3354
|
+
m[0, :2] /= 4.0
|
|
3355
|
+
wp.expect_eq(
|
|
3356
|
+
m
|
|
3357
|
+
== wp.matrix_from_rows(
|
|
3358
|
+
vec4(18.875, 19.0, 471.0, 438.0),
|
|
3359
|
+
vec4(-8.5, -6.0, -36.0, 468.0),
|
|
3360
|
+
vec4(140.0, 1240.0, 135.0, -26.0),
|
|
3361
|
+
vec4(705.0, 1880.0, 295.0, 33.5),
|
|
3362
|
+
),
|
|
3363
|
+
True,
|
|
3364
|
+
)
|
|
3365
|
+
|
|
3366
|
+
@wp.kernel(module="unique")
|
|
3367
|
+
def kernel():
|
|
3368
|
+
fn()
|
|
3369
|
+
|
|
3370
|
+
wp.launch(kernel, 1, device=device)
|
|
3371
|
+
wp.synchronize()
|
|
3372
|
+
fn()
|
|
3373
|
+
|
|
3374
|
+
|
|
3375
|
+
def test_mat_slicing_assign_backward(test, device):
|
|
3376
|
+
mat23 = wp.mat((2, 3), float)
|
|
3377
|
+
|
|
3378
|
+
@wp.kernel(module="unique")
|
|
3379
|
+
def kernel(
|
|
3380
|
+
arr_x: wp.array(dtype=wp.vec2),
|
|
3381
|
+
arr_y: wp.array(dtype=mat23),
|
|
3382
|
+
arr_z: wp.array(dtype=wp.mat44),
|
|
3383
|
+
):
|
|
3384
|
+
i = wp.tid()
|
|
3385
|
+
|
|
3386
|
+
z = arr_z[i]
|
|
3387
|
+
|
|
3388
|
+
z[0, :2] = arr_x[i]
|
|
3389
|
+
z[:2, 1:] = arr_y[i]
|
|
3390
|
+
|
|
3391
|
+
z[:2, 3] += arr_x[i][:2]
|
|
3392
|
+
z[1:-1, :2] += arr_y[i][::-1, :-1]
|
|
3393
|
+
|
|
3394
|
+
z[2:, 3] -= arr_x[i][0:]
|
|
3395
|
+
z[3:, -1:] -= arr_y[i][:1, :1]
|
|
3396
|
+
|
|
3397
|
+
arr_z[i] = z
|
|
3398
|
+
|
|
3399
|
+
x = wp.ones(1, dtype=wp.vec2, requires_grad=True, device=device)
|
|
3400
|
+
y = wp.ones(1, dtype=mat23, requires_grad=True, device=device)
|
|
3401
|
+
z = wp.zeros(1, dtype=wp.mat44, requires_grad=True, device=device)
|
|
3402
|
+
|
|
3403
|
+
tape = wp.Tape()
|
|
3404
|
+
with tape:
|
|
3405
|
+
wp.launch(kernel, 1, inputs=(x, y), outputs=(z,), device=device)
|
|
3406
|
+
|
|
3407
|
+
z.grad = wp.ones_like(z)
|
|
3408
|
+
tape.backward()
|
|
3409
|
+
|
|
3410
|
+
assert_np_equal(
|
|
3411
|
+
z.numpy(),
|
|
3412
|
+
np.array(
|
|
3413
|
+
(
|
|
3414
|
+
(
|
|
3415
|
+
(1.0, 1.0, 1.0, 2.0),
|
|
3416
|
+
(1.0, 2.0, 1.0, 2.0),
|
|
3417
|
+
(1.0, 1.0, 0.0, -1.0),
|
|
3418
|
+
(0.0, 0.0, 0.0, -2.0),
|
|
3419
|
+
),
|
|
3420
|
+
),
|
|
3421
|
+
dtype=float,
|
|
3422
|
+
),
|
|
3423
|
+
)
|
|
3424
|
+
assert_np_equal(x.grad.numpy(), np.array(((1.0, 1.0),), dtype=float))
|
|
3425
|
+
assert_np_equal(y.grad.numpy(), np.array((((1.0, 2.0, 1.0), (2.0, 2.0, 1.0)),), dtype=float))
|
|
3426
|
+
|
|
3427
|
+
|
|
2228
3428
|
devices = get_test_devices()
|
|
2229
3429
|
|
|
2230
3430
|
|
|
@@ -2243,12 +3443,6 @@ class TestMat(unittest.TestCase):
|
|
|
2243
3443
|
self.assertSequenceEqual(m, ((0.0, 1.0), (2.0, 3.0)))
|
|
2244
3444
|
|
|
2245
3445
|
|
|
2246
|
-
add_kernel_test(TestMat, test_constructors_explicit_precision, dim=1, devices=devices)
|
|
2247
|
-
add_kernel_test(TestMat, test_constructors_default_precision, dim=1, devices=devices)
|
|
2248
|
-
add_kernel_test(TestMat, test_constructors_constant_shape, dim=1, devices=devices)
|
|
2249
|
-
add_kernel_test(TestMat, test_matrix_constructor_value_func, dim=1, devices=devices)
|
|
2250
|
-
add_kernel_test(TestMat, test_matrix_from_vecs, dim=1, devices=devices)
|
|
2251
|
-
|
|
2252
3446
|
mat103 = wp.types.matrix(shape=(10, 3), dtype=float)
|
|
2253
3447
|
add_kernel_test(
|
|
2254
3448
|
TestMat,
|
|
@@ -2282,50 +3476,13 @@ for dtype in np_signed_int_types + np_float_types:
|
|
|
2282
3476
|
TestMat, f"test_matmul_{dtype.__name__}", test_matmul, devices=devices, dtype=dtype
|
|
2283
3477
|
)
|
|
2284
3478
|
|
|
2285
|
-
add_function_test(
|
|
2286
|
-
|
|
2287
|
-
"test_shape_mismatch",
|
|
2288
|
-
test_shape_mismatch,
|
|
2289
|
-
devices=devices,
|
|
2290
|
-
)
|
|
2291
|
-
add_function_test(
|
|
2292
|
-
TestMat,
|
|
2293
|
-
"test_anon_constructor_error_shape_arg_missing",
|
|
2294
|
-
test_anon_constructor_error_shape_arg_missing,
|
|
2295
|
-
devices=devices,
|
|
2296
|
-
)
|
|
2297
|
-
add_function_test(
|
|
2298
|
-
TestMat, "test_anon_constructor_error_shape_mismatch", test_anon_constructor_error_shape_mismatch, devices=devices
|
|
2299
|
-
)
|
|
2300
|
-
add_function_test(
|
|
2301
|
-
TestMat, "test_anon_constructor_error_type_mismatch", test_anon_constructor_error_type_mismatch, devices=devices
|
|
2302
|
-
)
|
|
2303
|
-
add_function_test(
|
|
2304
|
-
TestMat,
|
|
2305
|
-
"test_anon_constructor_error_invalid_arg_count",
|
|
2306
|
-
test_anon_constructor_error_invalid_arg_count,
|
|
2307
|
-
devices=devices,
|
|
2308
|
-
)
|
|
2309
|
-
add_function_test(
|
|
2310
|
-
TestMat,
|
|
2311
|
-
"test_tpl_constructor_error_incompatible_sizes",
|
|
2312
|
-
test_tpl_constructor_error_incompatible_sizes,
|
|
2313
|
-
devices=devices,
|
|
2314
|
-
)
|
|
2315
|
-
add_function_test(
|
|
2316
|
-
TestMat,
|
|
2317
|
-
"test_tpl_constructor_error_invalid_arg_count",
|
|
2318
|
-
test_tpl_constructor_error_invalid_arg_count,
|
|
2319
|
-
devices=devices,
|
|
2320
|
-
)
|
|
3479
|
+
add_function_test(TestMat, "test_shape_mismatch", test_shape_mismatch, devices=devices)
|
|
3480
|
+
|
|
2321
3481
|
|
|
2322
3482
|
for dtype in np_float_types:
|
|
2323
3483
|
add_function_test(
|
|
2324
3484
|
TestMat, f"test_py_arithmetic_ops_{dtype.__name__}", test_py_arithmetic_ops, devices=None, dtype=dtype
|
|
2325
3485
|
)
|
|
2326
|
-
add_function_test_register_kernel(
|
|
2327
|
-
TestMat, f"test_quat_constructor_{dtype.__name__}", test_quat_constructor, devices=devices, dtype=dtype
|
|
2328
|
-
)
|
|
2329
3486
|
add_function_test_register_kernel(
|
|
2330
3487
|
TestMat, f"test_inverse_{dtype.__name__}", test_inverse, devices=devices, dtype=dtype
|
|
2331
3488
|
)
|
|
@@ -2349,13 +3506,18 @@ for dtype in np_float_types:
|
|
|
2349
3506
|
add_function_test(TestMat, "test_matrix_len", test_matrix_len, devices=devices)
|
|
2350
3507
|
add_function_test(TestMat, "test_mat_extract", test_mat_extract, devices=devices)
|
|
2351
3508
|
add_function_test(TestMat, "test_mat_assign", test_mat_assign, devices=devices)
|
|
2352
|
-
add_function_test(TestMat, "test_matrix_assign_copy", test_matrix_assign_copy, devices=devices)
|
|
2353
3509
|
add_function_test(TestMat, "test_mat_array_extract", test_mat_array_extract, devices=devices)
|
|
2354
3510
|
# add_function_test(TestMat, "test_mat_array_assign", test_mat_array_assign, devices=devices)
|
|
2355
3511
|
add_function_test(TestMat, "test_mat_add_inplace", test_mat_add_inplace, devices=devices)
|
|
2356
3512
|
add_function_test(TestMat, "test_mat_sub_inplace", test_mat_sub_inplace, devices=devices)
|
|
2357
3513
|
add_function_test(TestMat, "test_mat_array_add_inplace", test_mat_array_add_inplace, devices=devices)
|
|
2358
3514
|
add_function_test(TestMat, "test_mat_array_sub_inplace", test_mat_array_sub_inplace, devices=devices)
|
|
3515
|
+
add_function_test(TestMat, "test_scalar_mat_div", test_scalar_mat_div, devices=devices)
|
|
3516
|
+
add_function_test(TestMat, "test_mat_from_rows_indexing_assign", test_mat_from_rows_indexing_assign, devices=devices)
|
|
3517
|
+
add_function_test(TestMat, "test_mat_from_cols_indexing_assign", test_mat_from_cols_indexing_assign, devices=devices)
|
|
3518
|
+
add_function_test(TestMat, "test_mat_from_rows_slicing_assign", test_mat_from_rows_slicing_assign, devices=devices)
|
|
3519
|
+
add_function_test(TestMat, "test_mat_from_cols_slicing_assign", test_mat_from_cols_slicing_assign, devices=devices)
|
|
3520
|
+
add_function_test(TestMat, "test_mat_slicing_assign_backward", test_mat_slicing_assign_backward, devices=devices)
|
|
2359
3521
|
|
|
2360
3522
|
|
|
2361
3523
|
if __name__ == "__main__":
|