warp-lang 1.8.0__py3-none-win_amd64.whl → 1.9.0__py3-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +282 -103
- warp/__init__.pyi +482 -110
- warp/bin/warp-clang.dll +0 -0
- warp/bin/warp.dll +0 -0
- warp/build.py +93 -30
- warp/build_dll.py +48 -63
- warp/builtins.py +955 -137
- warp/codegen.py +327 -209
- warp/config.py +1 -1
- warp/context.py +1363 -800
- warp/examples/core/example_marching_cubes.py +1 -0
- warp/examples/core/example_render_opengl.py +100 -3
- warp/examples/fem/example_apic_fluid.py +98 -52
- warp/examples/fem/example_convection_diffusion_dg.py +25 -4
- warp/examples/fem/example_diffusion_mgpu.py +8 -3
- warp/examples/fem/utils.py +68 -22
- warp/examples/interop/example_jax_callable.py +34 -4
- warp/examples/interop/example_jax_kernel.py +27 -1
- warp/fabric.py +1 -1
- warp/fem/cache.py +27 -19
- warp/fem/domain.py +2 -2
- warp/fem/field/nodal_field.py +2 -2
- warp/fem/field/virtual.py +266 -166
- warp/fem/geometry/geometry.py +5 -5
- warp/fem/integrate.py +200 -91
- warp/fem/space/restriction.py +4 -0
- warp/fem/space/shape/tet_shape_function.py +3 -10
- warp/jax_experimental/custom_call.py +1 -1
- warp/jax_experimental/ffi.py +203 -54
- warp/marching_cubes.py +708 -0
- warp/native/array.h +103 -8
- warp/native/builtin.h +90 -9
- warp/native/bvh.cpp +64 -28
- warp/native/bvh.cu +58 -58
- warp/native/bvh.h +2 -2
- warp/native/clang/clang.cpp +7 -7
- warp/native/coloring.cpp +13 -3
- warp/native/crt.cpp +2 -2
- warp/native/crt.h +3 -5
- warp/native/cuda_util.cpp +42 -11
- warp/native/cuda_util.h +10 -4
- warp/native/exports.h +1842 -1908
- warp/native/fabric.h +2 -1
- warp/native/hashgrid.cpp +37 -37
- warp/native/hashgrid.cu +2 -2
- warp/native/initializer_array.h +1 -1
- warp/native/intersect.h +4 -4
- warp/native/mat.h +1913 -119
- warp/native/mathdx.cpp +43 -43
- warp/native/mesh.cpp +24 -24
- warp/native/mesh.cu +26 -26
- warp/native/mesh.h +5 -3
- warp/native/nanovdb/GridHandle.h +179 -12
- warp/native/nanovdb/HostBuffer.h +8 -7
- warp/native/nanovdb/NanoVDB.h +517 -895
- warp/native/nanovdb/NodeManager.h +323 -0
- warp/native/nanovdb/PNanoVDB.h +2 -2
- warp/native/quat.h +337 -16
- warp/native/rand.h +7 -7
- warp/native/range.h +7 -1
- warp/native/reduce.cpp +10 -10
- warp/native/reduce.cu +13 -14
- warp/native/runlength_encode.cpp +2 -2
- warp/native/runlength_encode.cu +5 -5
- warp/native/scan.cpp +3 -3
- warp/native/scan.cu +4 -4
- warp/native/sort.cpp +10 -10
- warp/native/sort.cu +22 -22
- warp/native/sparse.cpp +8 -8
- warp/native/sparse.cu +14 -14
- warp/native/spatial.h +366 -17
- warp/native/svd.h +23 -8
- warp/native/temp_buffer.h +2 -2
- warp/native/tile.h +303 -70
- warp/native/tile_radix_sort.h +5 -1
- warp/native/tile_reduce.h +16 -25
- warp/native/tuple.h +2 -2
- warp/native/vec.h +385 -18
- warp/native/volume.cpp +54 -54
- warp/native/volume.cu +1 -1
- warp/native/volume.h +2 -1
- warp/native/volume_builder.cu +30 -37
- warp/native/warp.cpp +150 -149
- warp/native/warp.cu +337 -193
- warp/native/warp.h +227 -226
- warp/optim/linear.py +736 -271
- warp/render/imgui_manager.py +289 -0
- warp/render/render_opengl.py +137 -57
- warp/render/render_usd.py +0 -1
- warp/sim/collide.py +1 -2
- warp/sim/graph_coloring.py +2 -2
- warp/sim/integrator_vbd.py +10 -2
- warp/sparse.py +559 -176
- warp/tape.py +2 -0
- warp/tests/aux_test_module_aot.py +7 -0
- warp/tests/cuda/test_async.py +3 -3
- warp/tests/cuda/test_conditional_captures.py +101 -0
- warp/tests/geometry/test_marching_cubes.py +233 -12
- warp/tests/sim/test_cloth.py +89 -6
- warp/tests/sim/test_coloring.py +82 -7
- warp/tests/test_array.py +56 -5
- warp/tests/test_assert.py +53 -0
- warp/tests/test_atomic_cas.py +127 -114
- warp/tests/test_codegen.py +3 -2
- warp/tests/test_context.py +8 -15
- warp/tests/test_enum.py +136 -0
- warp/tests/test_examples.py +2 -2
- warp/tests/test_fem.py +45 -2
- warp/tests/test_fixedarray.py +229 -0
- warp/tests/test_func.py +18 -15
- warp/tests/test_future_annotations.py +7 -5
- warp/tests/test_linear_solvers.py +30 -0
- warp/tests/test_map.py +1 -1
- warp/tests/test_mat.py +1540 -378
- warp/tests/test_mat_assign_copy.py +178 -0
- warp/tests/test_mat_constructors.py +574 -0
- warp/tests/test_module_aot.py +287 -0
- warp/tests/test_print.py +69 -0
- warp/tests/test_quat.py +162 -34
- warp/tests/test_quat_assign_copy.py +145 -0
- warp/tests/test_reload.py +2 -1
- warp/tests/test_sparse.py +103 -0
- warp/tests/test_spatial.py +140 -34
- warp/tests/test_spatial_assign_copy.py +160 -0
- warp/tests/test_static.py +48 -0
- warp/tests/test_struct.py +43 -3
- warp/tests/test_tape.py +38 -0
- warp/tests/test_types.py +0 -20
- warp/tests/test_vec.py +216 -441
- warp/tests/test_vec_assign_copy.py +143 -0
- warp/tests/test_vec_constructors.py +325 -0
- warp/tests/tile/test_tile.py +206 -152
- warp/tests/tile/test_tile_cholesky.py +605 -0
- warp/tests/tile/test_tile_load.py +169 -0
- warp/tests/tile/test_tile_mathdx.py +2 -558
- warp/tests/tile/test_tile_matmul.py +179 -0
- warp/tests/tile/test_tile_mlp.py +1 -1
- warp/tests/tile/test_tile_reduce.py +100 -11
- warp/tests/tile/test_tile_shared_memory.py +16 -16
- warp/tests/tile/test_tile_sort.py +59 -55
- warp/tests/unittest_suites.py +16 -0
- warp/tests/walkthrough_debug.py +1 -1
- warp/thirdparty/unittest_parallel.py +108 -9
- warp/types.py +554 -264
- warp/utils.py +68 -86
- {warp_lang-1.8.0.dist-info → warp_lang-1.9.0.dist-info}/METADATA +28 -65
- {warp_lang-1.8.0.dist-info → warp_lang-1.9.0.dist-info}/RECORD +150 -138
- warp/native/marching.cpp +0 -19
- warp/native/marching.cu +0 -514
- warp/native/marching.h +0 -19
- {warp_lang-1.8.0.dist-info → warp_lang-1.9.0.dist-info}/WHEEL +0 -0
- {warp_lang-1.8.0.dist-info → warp_lang-1.9.0.dist-info}/licenses/LICENSE.md +0 -0
- {warp_lang-1.8.0.dist-info → warp_lang-1.9.0.dist-info}/top_level.txt +0 -0
warp/__init__.pyi
CHANGED
|
@@ -36,120 +36,299 @@ FabricArray = Generic[DType]
|
|
|
36
36
|
IndexedFabricArray = Generic[DType]
|
|
37
37
|
Tile = Generic[DType, Shape]
|
|
38
38
|
|
|
39
|
-
from warp.types import array
|
|
40
|
-
from warp.types import
|
|
41
|
-
from warp.
|
|
42
|
-
from warp.types import
|
|
43
|
-
|
|
44
|
-
from warp.types import
|
|
45
|
-
from warp.types import
|
|
46
|
-
from warp.types import
|
|
47
|
-
from warp.types import
|
|
48
|
-
from warp.types import
|
|
49
|
-
from warp.types import
|
|
50
|
-
from warp.types import
|
|
51
|
-
from warp.types import
|
|
52
|
-
from warp.
|
|
53
|
-
from warp.
|
|
54
|
-
from warp.
|
|
55
|
-
|
|
56
|
-
from warp.types import
|
|
57
|
-
|
|
58
|
-
from warp.types import
|
|
59
|
-
from warp.types import
|
|
60
|
-
|
|
61
|
-
from warp.types import
|
|
39
|
+
from warp.types import array as array
|
|
40
|
+
from warp.types import array1d as array1d
|
|
41
|
+
from warp.types import array2d as array2d
|
|
42
|
+
from warp.types import array3d as array3d
|
|
43
|
+
from warp.types import array4d as array4d
|
|
44
|
+
from warp.types import constant as constant
|
|
45
|
+
from warp.types import from_ptr as from_ptr
|
|
46
|
+
from warp.types import fixedarray as fixedarray
|
|
47
|
+
from warp.types import indexedarray as indexedarray
|
|
48
|
+
from warp.types import indexedarray1d as indexedarray1d
|
|
49
|
+
from warp.types import indexedarray2d as indexedarray2d
|
|
50
|
+
from warp.types import indexedarray3d as indexedarray3d
|
|
51
|
+
from warp.types import indexedarray4d as indexedarray4d
|
|
52
|
+
from warp.fabric import fabricarray as fabricarray
|
|
53
|
+
from warp.fabric import fabricarrayarray as fabricarrayarray
|
|
54
|
+
from warp.fabric import indexedfabricarray as indexedfabricarray
|
|
55
|
+
from warp.fabric import indexedfabricarrayarray as indexedfabricarrayarray
|
|
56
|
+
from warp.types import tile as tile
|
|
57
|
+
|
|
58
|
+
from warp.types import bool as bool
|
|
59
|
+
from warp.types import int8 as int8
|
|
60
|
+
from warp.types import uint8 as uint8
|
|
61
|
+
from warp.types import int16 as int16
|
|
62
|
+
from warp.types import uint16 as uint16
|
|
63
|
+
from warp.types import int32 as int32
|
|
64
|
+
from warp.types import uint32 as uint32
|
|
65
|
+
from warp.types import int64 as int64
|
|
66
|
+
from warp.types import uint64 as uint64
|
|
67
|
+
from warp.types import float16 as float16
|
|
68
|
+
from warp.types import float32 as float32
|
|
69
|
+
from warp.types import float64 as float64
|
|
70
|
+
|
|
71
|
+
from warp.types import vec2 as vec2
|
|
72
|
+
from warp.types import vec2b as vec2b
|
|
73
|
+
from warp.types import vec2ub as vec2ub
|
|
74
|
+
from warp.types import vec2s as vec2s
|
|
75
|
+
from warp.types import vec2us as vec2us
|
|
76
|
+
from warp.types import vec2i as vec2i
|
|
77
|
+
from warp.types import vec2ui as vec2ui
|
|
78
|
+
from warp.types import vec2l as vec2l
|
|
79
|
+
from warp.types import vec2ul as vec2ul
|
|
80
|
+
from warp.types import vec2h as vec2h
|
|
81
|
+
from warp.types import vec2f as vec2f
|
|
82
|
+
from warp.types import vec2d as vec2d
|
|
83
|
+
|
|
84
|
+
from warp.types import vec3 as vec3
|
|
85
|
+
from warp.types import vec3b as vec3b
|
|
86
|
+
from warp.types import vec3ub as vec3ub
|
|
87
|
+
from warp.types import vec3s as vec3s
|
|
88
|
+
from warp.types import vec3us as vec3us
|
|
89
|
+
from warp.types import vec3i as vec3i
|
|
90
|
+
from warp.types import vec3ui as vec3ui
|
|
91
|
+
from warp.types import vec3l as vec3l
|
|
92
|
+
from warp.types import vec3ul as vec3ul
|
|
93
|
+
from warp.types import vec3h as vec3h
|
|
94
|
+
from warp.types import vec3f as vec3f
|
|
95
|
+
from warp.types import vec3d as vec3d
|
|
96
|
+
|
|
97
|
+
from warp.types import vec4 as vec4
|
|
98
|
+
from warp.types import vec4b as vec4b
|
|
99
|
+
from warp.types import vec4ub as vec4ub
|
|
100
|
+
from warp.types import vec4s as vec4s
|
|
101
|
+
from warp.types import vec4us as vec4us
|
|
102
|
+
from warp.types import vec4i as vec4i
|
|
103
|
+
from warp.types import vec4ui as vec4ui
|
|
104
|
+
from warp.types import vec4l as vec4l
|
|
105
|
+
from warp.types import vec4ul as vec4ul
|
|
106
|
+
from warp.types import vec4h as vec4h
|
|
107
|
+
from warp.types import vec4f as vec4f
|
|
108
|
+
from warp.types import vec4d as vec4d
|
|
109
|
+
|
|
110
|
+
from warp.types import mat22 as mat22
|
|
111
|
+
from warp.types import mat22h as mat22h
|
|
112
|
+
from warp.types import mat22f as mat22f
|
|
113
|
+
from warp.types import mat22d as mat22d
|
|
114
|
+
|
|
115
|
+
from warp.types import mat33 as mat33
|
|
116
|
+
from warp.types import mat33h as mat33h
|
|
117
|
+
from warp.types import mat33f as mat33f
|
|
118
|
+
from warp.types import mat33d as mat33d
|
|
119
|
+
|
|
120
|
+
from warp.types import mat44 as mat44
|
|
121
|
+
from warp.types import mat44h as mat44h
|
|
122
|
+
from warp.types import mat44f as mat44f
|
|
123
|
+
from warp.types import mat44d as mat44d
|
|
124
|
+
|
|
125
|
+
from warp.types import quat as quat
|
|
126
|
+
from warp.types import quath as quath
|
|
127
|
+
from warp.types import quatf as quatf
|
|
128
|
+
from warp.types import quatd as quatd
|
|
129
|
+
|
|
130
|
+
from warp.types import transform as transform
|
|
131
|
+
from warp.types import transformh as transformh
|
|
132
|
+
from warp.types import transformf as transformf
|
|
133
|
+
from warp.types import transformd as transformd
|
|
134
|
+
|
|
135
|
+
from warp.types import spatial_vector as spatial_vector
|
|
136
|
+
from warp.types import spatial_vectorh as spatial_vectorh
|
|
137
|
+
from warp.types import spatial_vectorf as spatial_vectorf
|
|
138
|
+
from warp.types import spatial_vectord as spatial_vectord
|
|
139
|
+
|
|
140
|
+
from warp.types import spatial_matrix as spatial_matrix
|
|
141
|
+
from warp.types import spatial_matrixh as spatial_matrixh
|
|
142
|
+
from warp.types import spatial_matrixf as spatial_matrixf
|
|
143
|
+
from warp.types import spatial_matrixd as spatial_matrixd
|
|
144
|
+
|
|
145
|
+
from warp.types import Int as Int
|
|
146
|
+
from warp.types import Float as Float
|
|
147
|
+
from warp.types import Scalar as Scalar
|
|
148
|
+
|
|
149
|
+
from warp.types import Bvh as Bvh
|
|
150
|
+
from warp.types import Mesh as Mesh
|
|
151
|
+
from warp.types import HashGrid as HashGrid
|
|
152
|
+
from warp.types import Volume as Volume
|
|
153
|
+
from warp.types import BvhQuery as BvhQuery
|
|
154
|
+
from warp.types import HashGridQuery as HashGridQuery
|
|
155
|
+
from warp.types import MeshQueryAABB as MeshQueryAABB
|
|
156
|
+
from warp.types import MeshQueryPoint as MeshQueryPoint
|
|
157
|
+
from warp.types import MeshQueryRay as MeshQueryRay
|
|
158
|
+
|
|
159
|
+
from warp.types import matmul as matmul
|
|
160
|
+
from warp.types import adj_matmul as adj_matmul
|
|
161
|
+
from warp.types import batched_matmul as batched_matmul
|
|
162
|
+
from warp.types import adj_batched_matmul as adj_batched_matmul
|
|
62
163
|
|
|
63
164
|
from warp.types import vector as vec
|
|
64
165
|
from warp.types import matrix as mat
|
|
65
166
|
|
|
66
|
-
from warp.types import
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
from warp.
|
|
71
|
-
|
|
72
|
-
from warp.
|
|
73
|
-
|
|
74
|
-
from warp.context import
|
|
75
|
-
from warp.context import
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
from warp.context import
|
|
95
|
-
from warp.context import
|
|
96
|
-
|
|
97
|
-
from warp.context import
|
|
98
|
-
from warp.context import
|
|
99
|
-
from warp.context import
|
|
100
|
-
from warp.context import
|
|
101
|
-
from warp.context import
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
from warp.context import
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
from warp.
|
|
111
|
-
from warp.
|
|
112
|
-
from warp.
|
|
113
|
-
from warp.
|
|
114
|
-
from warp.
|
|
115
|
-
from warp.
|
|
116
|
-
from warp.
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
from warp.
|
|
125
|
-
|
|
126
|
-
from warp.
|
|
127
|
-
from warp.
|
|
128
|
-
|
|
129
|
-
from warp.
|
|
130
|
-
|
|
131
|
-
from warp.
|
|
132
|
-
|
|
133
|
-
from warp.
|
|
134
|
-
|
|
135
|
-
from warp.
|
|
136
|
-
|
|
137
|
-
from warp.
|
|
138
|
-
|
|
139
|
-
from warp.
|
|
140
|
-
from warp.
|
|
141
|
-
|
|
142
|
-
from warp.
|
|
143
|
-
from warp.
|
|
167
|
+
from warp.types import matrix_from_cols as matrix_from_cols
|
|
168
|
+
from warp.types import matrix_from_rows as matrix_from_rows
|
|
169
|
+
|
|
170
|
+
from warp.types import dtype_from_numpy as dtype_from_numpy
|
|
171
|
+
from warp.types import dtype_to_numpy as dtype_to_numpy
|
|
172
|
+
|
|
173
|
+
from warp.types import from_ipc_handle as from_ipc_handle
|
|
174
|
+
|
|
175
|
+
from warp.context import init as init
|
|
176
|
+
from warp.context import func as func
|
|
177
|
+
from warp.context import func_grad as func_grad
|
|
178
|
+
from warp.context import func_replay as func_replay
|
|
179
|
+
from warp.context import func_native as func_native
|
|
180
|
+
from warp.context import kernel as kernel
|
|
181
|
+
from warp.context import struct as struct
|
|
182
|
+
from warp.context import overload as overload
|
|
183
|
+
|
|
184
|
+
from warp.context import is_cpu_available as is_cpu_available
|
|
185
|
+
from warp.context import is_cuda_available as is_cuda_available
|
|
186
|
+
from warp.context import is_device_available as is_device_available
|
|
187
|
+
from warp.context import get_devices as get_devices
|
|
188
|
+
from warp.context import get_preferred_device as get_preferred_device
|
|
189
|
+
from warp.context import get_cuda_devices as get_cuda_devices
|
|
190
|
+
from warp.context import get_cuda_device_count as get_cuda_device_count
|
|
191
|
+
from warp.context import get_cuda_device as get_cuda_device
|
|
192
|
+
from warp.context import map_cuda_device as map_cuda_device
|
|
193
|
+
from warp.context import unmap_cuda_device as unmap_cuda_device
|
|
194
|
+
from warp.context import get_device as get_device
|
|
195
|
+
from warp.context import set_device as set_device
|
|
196
|
+
from warp.context import synchronize_device as synchronize_device
|
|
197
|
+
|
|
198
|
+
from warp.context import zeros as zeros
|
|
199
|
+
from warp.context import zeros_like as zeros_like
|
|
200
|
+
from warp.context import ones as ones
|
|
201
|
+
from warp.context import ones_like as ones_like
|
|
202
|
+
from warp.context import full as full
|
|
203
|
+
from warp.context import full_like as full_like
|
|
204
|
+
from warp.context import clone as clone
|
|
205
|
+
from warp.context import empty as empty
|
|
206
|
+
from warp.context import empty_like as empty_like
|
|
207
|
+
from warp.context import copy as copy
|
|
208
|
+
from warp.context import from_numpy as from_numpy
|
|
209
|
+
|
|
210
|
+
from warp.context import launch as launch
|
|
211
|
+
from warp.context import launch_tiled as launch_tiled
|
|
212
|
+
from warp.context import synchronize as synchronize
|
|
213
|
+
from warp.context import compile_aot_module as compile_aot_module
|
|
214
|
+
from warp.context import force_load as force_load
|
|
215
|
+
from warp.context import load_module as load_module
|
|
216
|
+
from warp.context import load_aot_module as load_aot_module
|
|
217
|
+
from warp.context import event_from_ipc_handle as event_from_ipc_handle
|
|
218
|
+
|
|
219
|
+
from warp.context import set_module_options as set_module_options
|
|
220
|
+
from warp.context import get_module_options as get_module_options
|
|
221
|
+
from warp.context import get_module as get_module
|
|
222
|
+
|
|
223
|
+
from warp.context import capture_begin as capture_begin
|
|
224
|
+
from warp.context import capture_end as capture_end
|
|
225
|
+
from warp.context import capture_launch as capture_launch
|
|
226
|
+
from warp.context import capture_if as capture_if
|
|
227
|
+
from warp.context import capture_while as capture_while
|
|
228
|
+
from warp.context import capture_debug_dot_print as capture_debug_dot_print
|
|
229
|
+
|
|
230
|
+
from warp.context import Kernel as Kernel
|
|
231
|
+
from warp.context import Function as Function
|
|
232
|
+
from warp.context import Launch as Launch
|
|
233
|
+
|
|
234
|
+
from warp.context import Stream as Stream
|
|
235
|
+
from warp.context import get_stream as get_stream
|
|
236
|
+
from warp.context import set_stream as set_stream
|
|
237
|
+
from warp.context import wait_stream as wait_stream
|
|
238
|
+
from warp.context import synchronize_stream as synchronize_stream
|
|
239
|
+
|
|
240
|
+
from warp.context import Event as Event
|
|
241
|
+
from warp.context import record_event as record_event
|
|
242
|
+
from warp.context import wait_event as wait_event
|
|
243
|
+
from warp.context import synchronize_event as synchronize_event
|
|
244
|
+
from warp.context import get_event_elapsed_time as get_event_elapsed_time
|
|
245
|
+
|
|
246
|
+
from warp.context import RegisteredGLBuffer as RegisteredGLBuffer
|
|
247
|
+
|
|
248
|
+
from warp.context import is_mempool_supported as is_mempool_supported
|
|
249
|
+
from warp.context import is_mempool_enabled as is_mempool_enabled
|
|
250
|
+
from warp.context import set_mempool_enabled as set_mempool_enabled
|
|
251
|
+
|
|
252
|
+
from warp.context import set_mempool_release_threshold as set_mempool_release_threshold
|
|
253
|
+
from warp.context import get_mempool_release_threshold as get_mempool_release_threshold
|
|
254
|
+
from warp.context import get_mempool_used_mem_current as get_mempool_used_mem_current
|
|
255
|
+
from warp.context import get_mempool_used_mem_high as get_mempool_used_mem_high
|
|
256
|
+
|
|
257
|
+
from warp.context import is_mempool_access_supported as is_mempool_access_supported
|
|
258
|
+
from warp.context import is_mempool_access_enabled as is_mempool_access_enabled
|
|
259
|
+
from warp.context import set_mempool_access_enabled as set_mempool_access_enabled
|
|
260
|
+
|
|
261
|
+
from warp.context import is_peer_access_supported as is_peer_access_supported
|
|
262
|
+
from warp.context import is_peer_access_enabled as is_peer_access_enabled
|
|
263
|
+
from warp.context import set_peer_access_enabled as set_peer_access_enabled
|
|
264
|
+
|
|
265
|
+
from warp.tape import Tape as Tape
|
|
266
|
+
|
|
267
|
+
from warp.utils import ScopedTimer as ScopedTimer
|
|
268
|
+
from warp.utils import ScopedDevice as ScopedDevice
|
|
269
|
+
from warp.utils import ScopedStream as ScopedStream
|
|
270
|
+
from warp.utils import ScopedMempool as ScopedMempool
|
|
271
|
+
from warp.utils import ScopedMempoolAccess as ScopedMempoolAccess
|
|
272
|
+
from warp.utils import ScopedPeerAccess as ScopedPeerAccess
|
|
273
|
+
from warp.utils import ScopedCapture as ScopedCapture
|
|
274
|
+
|
|
275
|
+
from warp.utils import transform_expand as transform_expand
|
|
276
|
+
from warp.utils import quat_between_vectors as quat_between_vectors
|
|
277
|
+
|
|
278
|
+
from warp.utils import TimingResult as TimingResult
|
|
279
|
+
from warp.utils import timing_begin as timing_begin
|
|
280
|
+
from warp.utils import timing_end as timing_end
|
|
281
|
+
from warp.utils import timing_print as timing_print
|
|
282
|
+
|
|
283
|
+
from warp.utils import TIMING_KERNEL as TIMING_KERNEL
|
|
284
|
+
from warp.utils import TIMING_KERNEL_BUILTIN as TIMING_KERNEL_BUILTIN
|
|
285
|
+
from warp.utils import TIMING_MEMCPY as TIMING_MEMCPY
|
|
286
|
+
from warp.utils import TIMING_MEMSET as TIMING_MEMSET
|
|
287
|
+
from warp.utils import TIMING_GRAPH as TIMING_GRAPH
|
|
288
|
+
from warp.utils import TIMING_ALL as TIMING_ALL
|
|
289
|
+
|
|
290
|
+
from warp.utils import map as map
|
|
291
|
+
|
|
292
|
+
from warp.marching_cubes import MarchingCubes as MarchingCubes
|
|
293
|
+
|
|
294
|
+
from warp.torch import from_torch as from_torch
|
|
295
|
+
from warp.torch import to_torch as to_torch
|
|
296
|
+
from warp.torch import dtype_from_torch as dtype_from_torch
|
|
297
|
+
from warp.torch import dtype_to_torch as dtype_to_torch
|
|
298
|
+
from warp.torch import device_from_torch as device_from_torch
|
|
299
|
+
from warp.torch import device_to_torch as device_to_torch
|
|
300
|
+
from warp.torch import stream_from_torch as stream_from_torch
|
|
301
|
+
from warp.torch import stream_to_torch as stream_to_torch
|
|
302
|
+
|
|
303
|
+
from warp.jax import from_jax as from_jax
|
|
304
|
+
from warp.jax import to_jax as to_jax
|
|
305
|
+
from warp.jax import dtype_from_jax as dtype_from_jax
|
|
306
|
+
from warp.jax import dtype_to_jax as dtype_to_jax
|
|
307
|
+
from warp.jax import device_from_jax as device_from_jax
|
|
308
|
+
from warp.jax import device_to_jax as device_to_jax
|
|
309
|
+
|
|
310
|
+
from warp.dlpack import from_dlpack as from_dlpack
|
|
311
|
+
from warp.dlpack import to_dlpack as to_dlpack
|
|
312
|
+
|
|
313
|
+
from warp.paddle import from_paddle as from_paddle
|
|
314
|
+
from warp.paddle import to_paddle as to_paddle
|
|
315
|
+
from warp.paddle import dtype_from_paddle as dtype_from_paddle
|
|
316
|
+
from warp.paddle import dtype_to_paddle as dtype_to_paddle
|
|
317
|
+
from warp.paddle import device_from_paddle as device_from_paddle
|
|
318
|
+
from warp.paddle import device_to_paddle as device_to_paddle
|
|
319
|
+
from warp.paddle import stream_from_paddle as stream_from_paddle
|
|
320
|
+
|
|
321
|
+
from warp.build import clear_kernel_cache as clear_kernel_cache
|
|
322
|
+
from warp.build import clear_lto_cache as clear_lto_cache
|
|
144
323
|
|
|
145
324
|
from warp.constants import *
|
|
146
325
|
|
|
147
326
|
from . import builtins
|
|
148
|
-
from warp.builtins import static
|
|
327
|
+
from warp.builtins import static as static
|
|
149
328
|
|
|
150
329
|
from warp.math import *
|
|
151
330
|
|
|
152
|
-
import
|
|
331
|
+
from . import config as config
|
|
153
332
|
|
|
154
333
|
__version__ = config.version
|
|
155
334
|
|
|
@@ -924,7 +1103,7 @@ def tile_arange(*args: Scalar, dtype: Scalar, storage: str) -> Tile[Scalar, Tupl
|
|
|
924
1103
|
|
|
925
1104
|
@over
|
|
926
1105
|
def tile_load(
|
|
927
|
-
a: Array[Any], shape: Tuple[int, ...], offset: Tuple[int, ...], storage: str
|
|
1106
|
+
a: Array[Any], shape: Tuple[int, ...], offset: Tuple[int, ...], storage: str, bounds_check: bool
|
|
928
1107
|
) -> Tile[Any, Tuple[int, ...]]:
|
|
929
1108
|
"""Loads a tile from a global memory array.
|
|
930
1109
|
|
|
@@ -935,12 +1114,80 @@ def tile_load(
|
|
|
935
1114
|
:param offset: Offset in the source array to begin reading from (optional)
|
|
936
1115
|
:param storage: The storage location for the tile: ``"register"`` for registers
|
|
937
1116
|
(default) or ``"shared"`` for shared memory.
|
|
1117
|
+
:param bounds_check: Needed for unaligned tiles, but can disable for memory-aligned tiles for faster load times
|
|
938
1118
|
:returns: A tile with shape as specified and data type the same as the source array
|
|
939
1119
|
"""
|
|
940
1120
|
...
|
|
941
1121
|
|
|
942
1122
|
@over
|
|
943
|
-
def
|
|
1123
|
+
def tile_load_indexed(
|
|
1124
|
+
a: Array[Any],
|
|
1125
|
+
indices: Tile[int32, Tuple[int]],
|
|
1126
|
+
shape: Tuple[int, ...],
|
|
1127
|
+
offset: Tuple[int, ...],
|
|
1128
|
+
axis: int32,
|
|
1129
|
+
storage: str,
|
|
1130
|
+
) -> Tile[Any, Tuple[int, ...]]:
|
|
1131
|
+
"""Loads a tile from a global memory array, with loads along a specified axis mapped according to a 1D tile of indices.
|
|
1132
|
+
|
|
1133
|
+
:param a: The source array in global memory
|
|
1134
|
+
:param indices: A 1D tile of integer indices mapping to elements in ``a``.
|
|
1135
|
+
:param shape: Shape of the tile to load, must have the same number of dimensions as ``a``, and along ``axis``, it must have the same number of elements as the ``indices`` tile.
|
|
1136
|
+
:param offset: Offset in the source array to begin reading from (optional)
|
|
1137
|
+
:param axis: Axis of ``a`` that indices refer to
|
|
1138
|
+
:param storage: The storage location for the tile: ``"register"`` for registers (default) or ``"shared"`` for shared memory.
|
|
1139
|
+
:returns: A tile with shape as specified and data type the same as the source array
|
|
1140
|
+
|
|
1141
|
+
This example shows how to select and store the even indexed rows from a 2D array:
|
|
1142
|
+
|
|
1143
|
+
.. code-block:: python
|
|
1144
|
+
|
|
1145
|
+
TILE_M = wp.constant(2)
|
|
1146
|
+
TILE_N = wp.constant(2)
|
|
1147
|
+
HALF_M = wp.constant(TILE_M // 2)
|
|
1148
|
+
HALF_N = wp.constant(TILE_N // 2)
|
|
1149
|
+
|
|
1150
|
+
@wp.kernel
|
|
1151
|
+
def compute(x: wp.array2d(dtype=float), y: wp.array2d(dtype=float)):
|
|
1152
|
+
i, j = wp.tid()
|
|
1153
|
+
|
|
1154
|
+
evens = wp.tile_arange(HALF_M, dtype=int, storage="shared") * 2
|
|
1155
|
+
|
|
1156
|
+
t0 = wp.tile_load_indexed(
|
|
1157
|
+
x, indices=evens, shape=(HALF_M, TILE_N), offset=(i * TILE_M, j * TILE_N), axis=0, storage="register"
|
|
1158
|
+
)
|
|
1159
|
+
wp.tile_store(y, t0, offset=(i * HALF_M, j * TILE_N))
|
|
1160
|
+
|
|
1161
|
+
M = TILE_M * 2
|
|
1162
|
+
N = TILE_N * 2
|
|
1163
|
+
|
|
1164
|
+
arr = np.arange(M * N).reshape(M, N)
|
|
1165
|
+
|
|
1166
|
+
x = wp.array(arr, dtype=float)
|
|
1167
|
+
y = wp.zeros((M // 2, N), dtype=float)
|
|
1168
|
+
|
|
1169
|
+
wp.launch_tiled(compute, dim=[2, 2], inputs=[x], outputs=[y], block_dim=32, device=device)
|
|
1170
|
+
|
|
1171
|
+
print(x.numpy())
|
|
1172
|
+
print(y.numpy())
|
|
1173
|
+
|
|
1174
|
+
Prints:
|
|
1175
|
+
|
|
1176
|
+
.. code-block:: text
|
|
1177
|
+
|
|
1178
|
+
[[ 0. 1. 2. 3.]
|
|
1179
|
+
[ 4. 5. 6. 7.]
|
|
1180
|
+
[ 8. 9. 10. 11.]
|
|
1181
|
+
[12. 13. 14. 15.]]
|
|
1182
|
+
|
|
1183
|
+
[[ 0. 1. 2. 3.]
|
|
1184
|
+
[ 8. 9. 10. 11.]]
|
|
1185
|
+
|
|
1186
|
+
"""
|
|
1187
|
+
...
|
|
1188
|
+
|
|
1189
|
+
@over
|
|
1190
|
+
def tile_store(a: Array[Any], t: Tile[Any, Tuple[int, ...]], offset: Tuple[int, ...], bounds_check: bool):
|
|
944
1191
|
"""Store a tile to a global memory array.
|
|
945
1192
|
|
|
946
1193
|
This method will cooperatively store a tile to global memory using all threads in the block.
|
|
@@ -948,22 +1195,147 @@ def tile_store(a: Array[Any], t: Tile[Any, Tuple[int, ...]], offset: Tuple[int,
|
|
|
948
1195
|
:param a: The destination array in global memory
|
|
949
1196
|
:param t: The source tile to store data from, must have the same data type and number of dimensions as the destination array
|
|
950
1197
|
:param offset: Offset in the destination array (optional)
|
|
1198
|
+
:param bounds_check: Needed for unaligned tiles, but can disable for memory-aligned tiles for faster write times
|
|
1199
|
+
|
|
1200
|
+
"""
|
|
1201
|
+
...
|
|
1202
|
+
|
|
1203
|
+
@over
|
|
1204
|
+
def tile_store_indexed(
|
|
1205
|
+
a: Array[Any], indices: Tile[int32, Tuple[int]], t: Tile[Any, Tuple[int, ...]], offset: Tuple[int, ...], axis: int32
|
|
1206
|
+
):
|
|
1207
|
+
"""Store a tile to a global memory array, with storage along a specified axis mapped according to a 1D tile of indices.
|
|
1208
|
+
|
|
1209
|
+
:param a: The destination array in global memory
|
|
1210
|
+
:param indices: A 1D tile of integer indices mapping to elements in ``a``.
|
|
1211
|
+
:param t: The source tile to store data from, must have the same data type and number of dimensions as the destination array, and along ``axis``, it must have the same number of elements as the ``indices`` tile.
|
|
1212
|
+
:param offset: Offset in the destination array (optional)
|
|
1213
|
+
:param axis: Axis of ``a`` that indices refer to
|
|
1214
|
+
|
|
1215
|
+
This example shows how to map tile rows to the even rows of a 2D array:
|
|
1216
|
+
|
|
1217
|
+
.. code-block:: python
|
|
1218
|
+
|
|
1219
|
+
TILE_M = wp.constant(2)
|
|
1220
|
+
TILE_N = wp.constant(2)
|
|
1221
|
+
TWO_M = wp.constant(TILE_M * 2)
|
|
1222
|
+
TWO_N = wp.constant(TILE_N * 2)
|
|
1223
|
+
|
|
1224
|
+
@wp.kernel
|
|
1225
|
+
def compute(x: wp.array2d(dtype=float), y: wp.array2d(dtype=float)):
|
|
1226
|
+
i, j = wp.tid()
|
|
1227
|
+
|
|
1228
|
+
t = wp.tile_load(x, shape=(TILE_M, TILE_N), offset=(i * TILE_M, j * TILE_N), storage="register")
|
|
1229
|
+
|
|
1230
|
+
evens_M = wp.tile_arange(TILE_M, dtype=int, storage="shared") * 2
|
|
1231
|
+
|
|
1232
|
+
wp.tile_store_indexed(y, indices=evens_M, t=t, offset=(i * TWO_M, j * TILE_N), axis=0)
|
|
1233
|
+
|
|
1234
|
+
M = TILE_M * 2
|
|
1235
|
+
N = TILE_N * 2
|
|
1236
|
+
|
|
1237
|
+
arr = np.arange(M * N, dtype=float).reshape(M, N)
|
|
1238
|
+
|
|
1239
|
+
x = wp.array(arr, dtype=float, requires_grad=True, device=device)
|
|
1240
|
+
y = wp.zeros((M * 2, N), dtype=float, requires_grad=True, device=device)
|
|
1241
|
+
|
|
1242
|
+
wp.launch_tiled(compute, dim=[2, 2], inputs=[x], outputs=[y], block_dim=32, device=device)
|
|
1243
|
+
|
|
1244
|
+
print(x.numpy())
|
|
1245
|
+
print(y.numpy())
|
|
1246
|
+
|
|
1247
|
+
Prints:
|
|
1248
|
+
|
|
1249
|
+
.. code-block:: text
|
|
1250
|
+
|
|
1251
|
+
[[ 0. 1. 2. 3.]
|
|
1252
|
+
[ 4. 5. 6. 7.]
|
|
1253
|
+
[ 8. 9. 10. 11.]
|
|
1254
|
+
[12. 13. 14. 15.]]
|
|
1255
|
+
|
|
1256
|
+
[[ 0. 1. 2. 3.]
|
|
1257
|
+
[ 0. 0. 0. 0.]
|
|
1258
|
+
[ 4. 5. 6. 7.]
|
|
1259
|
+
[ 0. 0. 0. 0.]
|
|
1260
|
+
[ 8. 9. 10. 11.]
|
|
1261
|
+
[ 0. 0. 0. 0.]
|
|
1262
|
+
[12. 13. 14. 15.]
|
|
1263
|
+
[ 0. 0. 0. 0.]]
|
|
1264
|
+
|
|
951
1265
|
"""
|
|
952
1266
|
...
|
|
953
1267
|
|
|
954
1268
|
@over
|
|
955
1269
|
def tile_atomic_add(
|
|
956
|
-
a: Array[Any], t: Tile[Any, Tuple[int, ...]], offset: Tuple[int, ...]
|
|
1270
|
+
a: Array[Any], t: Tile[Any, Tuple[int, ...]], offset: Tuple[int, ...], bounds_check: bool
|
|
957
1271
|
) -> Tile[Any, Tuple[int, ...]]:
|
|
958
1272
|
"""Atomically add a tile onto the array `a`, each element will be updated atomically.
|
|
959
1273
|
|
|
960
1274
|
:param a: Array in global memory, should have the same ``dtype`` as the input tile
|
|
961
1275
|
:param t: Source tile to add to the destination array
|
|
962
1276
|
:param offset: Offset in the destination array (optional)
|
|
1277
|
+
:param bounds_check: Needed for unaligned tiles, but can disable for memory-aligned tiles for faster write times
|
|
963
1278
|
:returns: A tile with the same dimensions and data type as the source tile, holding the original value of the destination elements
|
|
964
1279
|
"""
|
|
965
1280
|
...
|
|
966
1281
|
|
|
1282
|
+
@over
|
|
1283
|
+
def tile_atomic_add_indexed(
|
|
1284
|
+
a: Array[Any], indices: Tile[int32, Tuple[int]], t: Tile[Any, Tuple[int, ...]], offset: Tuple[int, ...], axis: int32
|
|
1285
|
+
) -> Tile[Any, Tuple[int, ...]]:
|
|
1286
|
+
"""Atomically add a tile to a global memory array, with storage along a specified axis mapped according to a 1D tile of indices.
|
|
1287
|
+
|
|
1288
|
+
:param a: The destination array in global memory
|
|
1289
|
+
:param indices: A 1D tile of integer indices mapping to elements in ``a``.
|
|
1290
|
+
:param t: The source tile to extract data from, must have the same data type and number of dimensions as the destination array, and along ``axis``, it must have the same number of elements as the ``indices`` tile.
|
|
1291
|
+
:param offset: Offset in the destination array (optional)
|
|
1292
|
+
:param axis: Axis of ``a`` that indices refer to
|
|
1293
|
+
|
|
1294
|
+
This example shows how to compute a blocked, row-wise reduction:
|
|
1295
|
+
|
|
1296
|
+
.. code-block:: python
|
|
1297
|
+
|
|
1298
|
+
TILE_M = wp.constant(2)
|
|
1299
|
+
TILE_N = wp.constant(2)
|
|
1300
|
+
|
|
1301
|
+
@wp.kernel
|
|
1302
|
+
def tile_atomic_add_indexed(x: wp.array2d(dtype=float), y: wp.array2d(dtype=float)):
|
|
1303
|
+
i, j = wp.tid()
|
|
1304
|
+
|
|
1305
|
+
t = wp.tile_load(x, shape=(TILE_M, TILE_N), offset=(i * TILE_M, j * TILE_N), storage="register")
|
|
1306
|
+
|
|
1307
|
+
zeros = wp.tile_zeros(TILE_M, dtype=int, storage="shared")
|
|
1308
|
+
|
|
1309
|
+
wp.tile_atomic_add_indexed(y, indices=zeros, t=t, offset=(i, j * TILE_N), axis=0)
|
|
1310
|
+
|
|
1311
|
+
M = TILE_M * 2
|
|
1312
|
+
N = TILE_N * 2
|
|
1313
|
+
|
|
1314
|
+
arr = np.arange(M * N, dtype=float).reshape(M, N)
|
|
1315
|
+
|
|
1316
|
+
x = wp.array(arr, dtype=float, requires_grad=True, device=device)
|
|
1317
|
+
y = wp.zeros((2, N), dtype=float, requires_grad=True, device=device)
|
|
1318
|
+
|
|
1319
|
+
wp.launch_tiled(tile_atomic_add_indexed, dim=[2, 2], inputs=[x], outputs=[y], block_dim=32, device=device)
|
|
1320
|
+
|
|
1321
|
+
print(x.numpy())
|
|
1322
|
+
print(y.numpy())
|
|
1323
|
+
|
|
1324
|
+
Prints:
|
|
1325
|
+
|
|
1326
|
+
.. code-block:: text
|
|
1327
|
+
|
|
1328
|
+
[[ 0. 1. 2. 3.]
|
|
1329
|
+
[ 4. 5. 6. 7.]
|
|
1330
|
+
[ 8. 9. 10. 11.]
|
|
1331
|
+
[12. 13. 14. 15.]]
|
|
1332
|
+
|
|
1333
|
+
[[ 4. 6. 8. 10.]
|
|
1334
|
+
[20. 22. 24. 26.]]
|
|
1335
|
+
|
|
1336
|
+
"""
|
|
1337
|
+
...
|
|
1338
|
+
|
|
967
1339
|
@over
|
|
968
1340
|
def tile_view(
|
|
969
1341
|
t: Tile[Any, Tuple[int, ...]], offset: Tuple[int, ...], shape: Tuple[int, ...]
|
|
@@ -1370,7 +1742,7 @@ def tile_map(op: Callable, a: Tile[Scalar, Tuple[int, ...]]) -> Tile[Scalar, Tup
|
|
|
1370
1742
|
|
|
1371
1743
|
:param op: A callable function that accepts one argument and returns one argument, may be a user function or builtin
|
|
1372
1744
|
:param a: The input tile, the operator (or one of its overloads) must be able to accept the tile's data type
|
|
1373
|
-
:returns: A tile with the same dimensions
|
|
1745
|
+
:returns: A tile with the same dimensions as the input tile. Its datatype is specified by the return type of op
|
|
1374
1746
|
|
|
1375
1747
|
Example:
|
|
1376
1748
|
|
|
@@ -1401,12 +1773,12 @@ def tile_map(
|
|
|
1401
1773
|
"""Apply a binary function onto the tile.
|
|
1402
1774
|
|
|
1403
1775
|
This function cooperatively applies a binary function to each element of the tiles using all threads in the block.
|
|
1404
|
-
Both input tiles must have the same dimensions and
|
|
1776
|
+
Both input tiles must have the same dimensions, and if using a builtin op, the same datatypes.
|
|
1405
1777
|
|
|
1406
1778
|
:param op: A callable function that accepts two arguments and returns one argument, all of the same type, may be a user function or builtin
|
|
1407
1779
|
:param a: The first input tile, the operator (or one of its overloads) must be able to accept the tile's dtype
|
|
1408
1780
|
:param b: The second input tile, the operator (or one of its overloads) must be able to accept the tile's dtype
|
|
1409
|
-
:returns: A tile with the same dimensions
|
|
1781
|
+
:returns: A tile with the same dimensions as the input tiles. Its datatype is specified by the return type of op
|
|
1410
1782
|
|
|
1411
1783
|
Example:
|
|
1412
1784
|
|
|
@@ -2971,7 +3343,7 @@ def mod(a: Scalar, b: Scalar) -> Scalar:
|
|
|
2971
3343
|
...
|
|
2972
3344
|
|
|
2973
3345
|
@over
|
|
2974
|
-
def mod(a: Vector[Any, Scalar], b: Vector[Any, Scalar]) -> Scalar:
|
|
3346
|
+
def mod(a: Vector[Any, Scalar], b: Vector[Any, Scalar]) -> Vector[Any, Scalar]:
|
|
2975
3347
|
"""Modulo operation using truncated division."""
|
|
2976
3348
|
...
|
|
2977
3349
|
|
warp/bin/warp-clang.dll
CHANGED
|
Binary file
|
warp/bin/warp.dll
CHANGED
|
Binary file
|