wandb 0.19.1rc1__py3-none-musllinux_1_2_aarch64.whl
Sign up to get free protection for your applications and to get access to all the features.
- package_readme.md +97 -0
- wandb/__init__.py +252 -0
- wandb/__init__.pyi +1197 -0
- wandb/__main__.py +3 -0
- wandb/_globals.py +19 -0
- wandb/agents/__init__.py +0 -0
- wandb/agents/pyagent.py +363 -0
- wandb/analytics/__init__.py +3 -0
- wandb/analytics/sentry.py +263 -0
- wandb/apis/__init__.py +48 -0
- wandb/apis/attrs.py +51 -0
- wandb/apis/importers/__init__.py +1 -0
- wandb/apis/importers/internals/internal.py +385 -0
- wandb/apis/importers/internals/protocols.py +103 -0
- wandb/apis/importers/internals/util.py +78 -0
- wandb/apis/importers/mlflow.py +254 -0
- wandb/apis/importers/validation.py +108 -0
- wandb/apis/importers/wandb.py +1603 -0
- wandb/apis/internal.py +232 -0
- wandb/apis/normalize.py +73 -0
- wandb/apis/paginator.py +81 -0
- wandb/apis/public/__init__.py +34 -0
- wandb/apis/public/api.py +1387 -0
- wandb/apis/public/artifacts.py +1095 -0
- wandb/apis/public/const.py +4 -0
- wandb/apis/public/files.py +263 -0
- wandb/apis/public/history.py +149 -0
- wandb/apis/public/jobs.py +653 -0
- wandb/apis/public/projects.py +154 -0
- wandb/apis/public/query_generator.py +166 -0
- wandb/apis/public/reports.py +458 -0
- wandb/apis/public/runs.py +1012 -0
- wandb/apis/public/sweeps.py +240 -0
- wandb/apis/public/teams.py +198 -0
- wandb/apis/public/users.py +136 -0
- wandb/apis/public/utils.py +68 -0
- wandb/apis/reports/__init__.py +1 -0
- wandb/apis/reports/v1/__init__.py +8 -0
- wandb/apis/reports/v2/__init__.py +8 -0
- wandb/apis/workspaces/__init__.py +8 -0
- wandb/beta/workflows.py +288 -0
- wandb/bin/gpu_stats +0 -0
- wandb/bin/wandb-core +0 -0
- wandb/cli/__init__.py +0 -0
- wandb/cli/beta.py +178 -0
- wandb/cli/cli.py +2812 -0
- wandb/data_types.py +66 -0
- wandb/docker/__init__.py +343 -0
- wandb/docker/auth.py +435 -0
- wandb/docker/wandb-entrypoint.sh +33 -0
- wandb/docker/www_authenticate.py +94 -0
- wandb/env.py +513 -0
- wandb/errors/__init__.py +17 -0
- wandb/errors/errors.py +37 -0
- wandb/errors/links.py +73 -0
- wandb/errors/term.py +415 -0
- wandb/errors/util.py +57 -0
- wandb/errors/warnings.py +2 -0
- wandb/filesync/__init__.py +0 -0
- wandb/filesync/dir_watcher.py +403 -0
- wandb/filesync/stats.py +100 -0
- wandb/filesync/step_checksum.py +142 -0
- wandb/filesync/step_prepare.py +179 -0
- wandb/filesync/step_upload.py +287 -0
- wandb/filesync/upload_job.py +142 -0
- wandb/integration/__init__.py +0 -0
- wandb/integration/catboost/__init__.py +5 -0
- wandb/integration/catboost/catboost.py +178 -0
- wandb/integration/cohere/__init__.py +3 -0
- wandb/integration/cohere/cohere.py +21 -0
- wandb/integration/cohere/resolver.py +347 -0
- wandb/integration/diffusers/__init__.py +3 -0
- wandb/integration/diffusers/autologger.py +76 -0
- wandb/integration/diffusers/pipeline_resolver.py +50 -0
- wandb/integration/diffusers/resolvers/__init__.py +9 -0
- wandb/integration/diffusers/resolvers/multimodal.py +882 -0
- wandb/integration/diffusers/resolvers/utils.py +102 -0
- wandb/integration/fastai/__init__.py +245 -0
- wandb/integration/gym/__init__.py +99 -0
- wandb/integration/huggingface/__init__.py +3 -0
- wandb/integration/huggingface/huggingface.py +18 -0
- wandb/integration/huggingface/resolver.py +213 -0
- wandb/integration/keras/__init__.py +11 -0
- wandb/integration/keras/callbacks/__init__.py +5 -0
- wandb/integration/keras/callbacks/metrics_logger.py +129 -0
- wandb/integration/keras/callbacks/model_checkpoint.py +188 -0
- wandb/integration/keras/callbacks/tables_builder.py +228 -0
- wandb/integration/keras/keras.py +1089 -0
- wandb/integration/kfp/__init__.py +6 -0
- wandb/integration/kfp/helpers.py +28 -0
- wandb/integration/kfp/kfp_patch.py +334 -0
- wandb/integration/kfp/wandb_logging.py +182 -0
- wandb/integration/langchain/__init__.py +3 -0
- wandb/integration/langchain/wandb_tracer.py +48 -0
- wandb/integration/lightgbm/__init__.py +239 -0
- wandb/integration/lightning/__init__.py +0 -0
- wandb/integration/lightning/fabric/__init__.py +3 -0
- wandb/integration/lightning/fabric/logger.py +764 -0
- wandb/integration/metaflow/__init__.py +3 -0
- wandb/integration/metaflow/metaflow.py +383 -0
- wandb/integration/openai/__init__.py +3 -0
- wandb/integration/openai/fine_tuning.py +480 -0
- wandb/integration/openai/openai.py +22 -0
- wandb/integration/openai/resolver.py +240 -0
- wandb/integration/prodigy/__init__.py +3 -0
- wandb/integration/prodigy/prodigy.py +299 -0
- wandb/integration/sacred/__init__.py +117 -0
- wandb/integration/sagemaker/__init__.py +12 -0
- wandb/integration/sagemaker/auth.py +28 -0
- wandb/integration/sagemaker/config.py +49 -0
- wandb/integration/sagemaker/files.py +3 -0
- wandb/integration/sagemaker/resources.py +34 -0
- wandb/integration/sb3/__init__.py +3 -0
- wandb/integration/sb3/sb3.py +147 -0
- wandb/integration/sklearn/__init__.py +37 -0
- wandb/integration/sklearn/calculate/__init__.py +32 -0
- wandb/integration/sklearn/calculate/calibration_curves.py +125 -0
- wandb/integration/sklearn/calculate/class_proportions.py +68 -0
- wandb/integration/sklearn/calculate/confusion_matrix.py +93 -0
- wandb/integration/sklearn/calculate/decision_boundaries.py +40 -0
- wandb/integration/sklearn/calculate/elbow_curve.py +55 -0
- wandb/integration/sklearn/calculate/feature_importances.py +67 -0
- wandb/integration/sklearn/calculate/learning_curve.py +64 -0
- wandb/integration/sklearn/calculate/outlier_candidates.py +69 -0
- wandb/integration/sklearn/calculate/residuals.py +86 -0
- wandb/integration/sklearn/calculate/silhouette.py +118 -0
- wandb/integration/sklearn/calculate/summary_metrics.py +62 -0
- wandb/integration/sklearn/plot/__init__.py +35 -0
- wandb/integration/sklearn/plot/classifier.py +329 -0
- wandb/integration/sklearn/plot/clusterer.py +146 -0
- wandb/integration/sklearn/plot/regressor.py +121 -0
- wandb/integration/sklearn/plot/shared.py +91 -0
- wandb/integration/sklearn/utils.py +183 -0
- wandb/integration/tensorboard/__init__.py +10 -0
- wandb/integration/tensorboard/log.py +354 -0
- wandb/integration/tensorboard/monkeypatch.py +186 -0
- wandb/integration/tensorflow/__init__.py +5 -0
- wandb/integration/tensorflow/estimator_hook.py +54 -0
- wandb/integration/torch/__init__.py +0 -0
- wandb/integration/torch/wandb_torch.py +554 -0
- wandb/integration/ultralytics/__init__.py +11 -0
- wandb/integration/ultralytics/bbox_utils.py +215 -0
- wandb/integration/ultralytics/callback.py +524 -0
- wandb/integration/ultralytics/classification_utils.py +83 -0
- wandb/integration/ultralytics/mask_utils.py +202 -0
- wandb/integration/ultralytics/pose_utils.py +103 -0
- wandb/integration/xgboost/__init__.py +11 -0
- wandb/integration/xgboost/xgboost.py +189 -0
- wandb/integration/yolov8/__init__.py +0 -0
- wandb/integration/yolov8/yolov8.py +284 -0
- wandb/jupyter.py +513 -0
- wandb/mpmain/__init__.py +0 -0
- wandb/mpmain/__main__.py +1 -0
- wandb/old/__init__.py +0 -0
- wandb/old/core.py +53 -0
- wandb/old/settings.py +173 -0
- wandb/old/summary.py +440 -0
- wandb/plot/__init__.py +28 -0
- wandb/plot/bar.py +70 -0
- wandb/plot/confusion_matrix.py +181 -0
- wandb/plot/custom_chart.py +124 -0
- wandb/plot/histogram.py +65 -0
- wandb/plot/line.py +74 -0
- wandb/plot/line_series.py +176 -0
- wandb/plot/pr_curve.py +185 -0
- wandb/plot/roc_curve.py +163 -0
- wandb/plot/scatter.py +66 -0
- wandb/plot/utils.py +183 -0
- wandb/plot/viz.py +41 -0
- wandb/proto/__init__.py +0 -0
- wandb/proto/v3/__init__.py +0 -0
- wandb/proto/v3/wandb_base_pb2.py +55 -0
- wandb/proto/v3/wandb_internal_pb2.py +1658 -0
- wandb/proto/v3/wandb_server_pb2.py +228 -0
- wandb/proto/v3/wandb_settings_pb2.py +122 -0
- wandb/proto/v3/wandb_telemetry_pb2.py +106 -0
- wandb/proto/v4/__init__.py +0 -0
- wandb/proto/v4/wandb_base_pb2.py +30 -0
- wandb/proto/v4/wandb_internal_pb2.py +370 -0
- wandb/proto/v4/wandb_server_pb2.py +67 -0
- wandb/proto/v4/wandb_settings_pb2.py +47 -0
- wandb/proto/v4/wandb_telemetry_pb2.py +41 -0
- wandb/proto/v5/wandb_base_pb2.py +31 -0
- wandb/proto/v5/wandb_internal_pb2.py +371 -0
- wandb/proto/v5/wandb_server_pb2.py +68 -0
- wandb/proto/v5/wandb_settings_pb2.py +48 -0
- wandb/proto/v5/wandb_telemetry_pb2.py +42 -0
- wandb/proto/wandb_base_pb2.py +10 -0
- wandb/proto/wandb_deprecated.py +45 -0
- wandb/proto/wandb_generate_deprecated.py +30 -0
- wandb/proto/wandb_generate_proto.py +49 -0
- wandb/proto/wandb_internal_pb2.py +16 -0
- wandb/proto/wandb_server_pb2.py +10 -0
- wandb/proto/wandb_settings_pb2.py +10 -0
- wandb/proto/wandb_telemetry_pb2.py +10 -0
- wandb/py.typed +0 -0
- wandb/sdk/__init__.py +37 -0
- wandb/sdk/artifacts/__init__.py +0 -0
- wandb/sdk/artifacts/_validators.py +121 -0
- wandb/sdk/artifacts/artifact.py +2364 -0
- wandb/sdk/artifacts/artifact_download_logger.py +43 -0
- wandb/sdk/artifacts/artifact_file_cache.py +249 -0
- wandb/sdk/artifacts/artifact_instance_cache.py +17 -0
- wandb/sdk/artifacts/artifact_manifest.py +75 -0
- wandb/sdk/artifacts/artifact_manifest_entry.py +249 -0
- wandb/sdk/artifacts/artifact_manifests/__init__.py +0 -0
- wandb/sdk/artifacts/artifact_manifests/artifact_manifest_v1.py +92 -0
- wandb/sdk/artifacts/artifact_saver.py +265 -0
- wandb/sdk/artifacts/artifact_state.py +11 -0
- wandb/sdk/artifacts/artifact_ttl.py +7 -0
- wandb/sdk/artifacts/exceptions.py +57 -0
- wandb/sdk/artifacts/staging.py +25 -0
- wandb/sdk/artifacts/storage_handler.py +62 -0
- wandb/sdk/artifacts/storage_handlers/__init__.py +0 -0
- wandb/sdk/artifacts/storage_handlers/azure_handler.py +213 -0
- wandb/sdk/artifacts/storage_handlers/gcs_handler.py +224 -0
- wandb/sdk/artifacts/storage_handlers/http_handler.py +114 -0
- wandb/sdk/artifacts/storage_handlers/local_file_handler.py +139 -0
- wandb/sdk/artifacts/storage_handlers/multi_handler.py +56 -0
- wandb/sdk/artifacts/storage_handlers/s3_handler.py +298 -0
- wandb/sdk/artifacts/storage_handlers/tracking_handler.py +72 -0
- wandb/sdk/artifacts/storage_handlers/wb_artifact_handler.py +135 -0
- wandb/sdk/artifacts/storage_handlers/wb_local_artifact_handler.py +74 -0
- wandb/sdk/artifacts/storage_layout.py +6 -0
- wandb/sdk/artifacts/storage_policies/__init__.py +4 -0
- wandb/sdk/artifacts/storage_policies/register.py +1 -0
- wandb/sdk/artifacts/storage_policies/wandb_storage_policy.py +378 -0
- wandb/sdk/artifacts/storage_policy.py +72 -0
- wandb/sdk/backend/__init__.py +0 -0
- wandb/sdk/backend/backend.py +221 -0
- wandb/sdk/data_types/__init__.py +0 -0
- wandb/sdk/data_types/_dtypes.py +918 -0
- wandb/sdk/data_types/_private.py +10 -0
- wandb/sdk/data_types/audio.py +165 -0
- wandb/sdk/data_types/base_types/__init__.py +0 -0
- wandb/sdk/data_types/base_types/json_metadata.py +55 -0
- wandb/sdk/data_types/base_types/media.py +376 -0
- wandb/sdk/data_types/base_types/wb_value.py +282 -0
- wandb/sdk/data_types/bokeh.py +70 -0
- wandb/sdk/data_types/graph.py +405 -0
- wandb/sdk/data_types/helper_types/__init__.py +0 -0
- wandb/sdk/data_types/helper_types/bounding_boxes_2d.py +305 -0
- wandb/sdk/data_types/helper_types/classes.py +159 -0
- wandb/sdk/data_types/helper_types/image_mask.py +241 -0
- wandb/sdk/data_types/histogram.py +94 -0
- wandb/sdk/data_types/html.py +115 -0
- wandb/sdk/data_types/image.py +847 -0
- wandb/sdk/data_types/molecule.py +241 -0
- wandb/sdk/data_types/object_3d.py +470 -0
- wandb/sdk/data_types/plotly.py +82 -0
- wandb/sdk/data_types/saved_model.py +445 -0
- wandb/sdk/data_types/table.py +1204 -0
- wandb/sdk/data_types/trace_tree.py +438 -0
- wandb/sdk/data_types/utils.py +228 -0
- wandb/sdk/data_types/video.py +268 -0
- wandb/sdk/integration_utils/__init__.py +0 -0
- wandb/sdk/integration_utils/auto_logging.py +232 -0
- wandb/sdk/integration_utils/data_logging.py +475 -0
- wandb/sdk/interface/__init__.py +0 -0
- wandb/sdk/interface/constants.py +4 -0
- wandb/sdk/interface/interface.py +1010 -0
- wandb/sdk/interface/interface_queue.py +53 -0
- wandb/sdk/interface/interface_relay.py +53 -0
- wandb/sdk/interface/interface_shared.py +546 -0
- wandb/sdk/interface/interface_sock.py +61 -0
- wandb/sdk/interface/message_future.py +27 -0
- wandb/sdk/interface/message_future_poll.py +50 -0
- wandb/sdk/interface/router.py +115 -0
- wandb/sdk/interface/router_queue.py +41 -0
- wandb/sdk/interface/router_relay.py +37 -0
- wandb/sdk/interface/router_sock.py +36 -0
- wandb/sdk/interface/summary_record.py +67 -0
- wandb/sdk/internal/__init__.py +0 -0
- wandb/sdk/internal/context.py +89 -0
- wandb/sdk/internal/datastore.py +297 -0
- wandb/sdk/internal/file_pusher.py +181 -0
- wandb/sdk/internal/file_stream.py +695 -0
- wandb/sdk/internal/flow_control.py +263 -0
- wandb/sdk/internal/handler.py +905 -0
- wandb/sdk/internal/internal.py +403 -0
- wandb/sdk/internal/internal_api.py +4587 -0
- wandb/sdk/internal/internal_util.py +97 -0
- wandb/sdk/internal/job_builder.py +638 -0
- wandb/sdk/internal/profiler.py +78 -0
- wandb/sdk/internal/progress.py +79 -0
- wandb/sdk/internal/run.py +25 -0
- wandb/sdk/internal/sample.py +70 -0
- wandb/sdk/internal/sender.py +1696 -0
- wandb/sdk/internal/sender_config.py +197 -0
- wandb/sdk/internal/settings_static.py +97 -0
- wandb/sdk/internal/system/__init__.py +0 -0
- wandb/sdk/internal/system/assets/__init__.py +25 -0
- wandb/sdk/internal/system/assets/aggregators.py +37 -0
- wandb/sdk/internal/system/assets/asset_registry.py +20 -0
- wandb/sdk/internal/system/assets/cpu.py +163 -0
- wandb/sdk/internal/system/assets/disk.py +210 -0
- wandb/sdk/internal/system/assets/gpu.py +416 -0
- wandb/sdk/internal/system/assets/gpu_amd.py +233 -0
- wandb/sdk/internal/system/assets/interfaces.py +205 -0
- wandb/sdk/internal/system/assets/ipu.py +177 -0
- wandb/sdk/internal/system/assets/memory.py +166 -0
- wandb/sdk/internal/system/assets/network.py +125 -0
- wandb/sdk/internal/system/assets/open_metrics.py +293 -0
- wandb/sdk/internal/system/assets/tpu.py +154 -0
- wandb/sdk/internal/system/assets/trainium.py +393 -0
- wandb/sdk/internal/system/env_probe_helpers.py +13 -0
- wandb/sdk/internal/system/system_info.py +250 -0
- wandb/sdk/internal/system/system_monitor.py +222 -0
- wandb/sdk/internal/tb_watcher.py +519 -0
- wandb/sdk/internal/thread_local_settings.py +18 -0
- wandb/sdk/internal/writer.py +204 -0
- wandb/sdk/launch/__init__.py +15 -0
- wandb/sdk/launch/_launch.py +331 -0
- wandb/sdk/launch/_launch_add.py +255 -0
- wandb/sdk/launch/_project_spec.py +566 -0
- wandb/sdk/launch/agent/__init__.py +5 -0
- wandb/sdk/launch/agent/agent.py +924 -0
- wandb/sdk/launch/agent/config.py +296 -0
- wandb/sdk/launch/agent/job_status_tracker.py +53 -0
- wandb/sdk/launch/agent/run_queue_item_file_saver.py +39 -0
- wandb/sdk/launch/builder/__init__.py +0 -0
- wandb/sdk/launch/builder/abstract.py +156 -0
- wandb/sdk/launch/builder/build.py +297 -0
- wandb/sdk/launch/builder/context_manager.py +235 -0
- wandb/sdk/launch/builder/docker_builder.py +177 -0
- wandb/sdk/launch/builder/kaniko_builder.py +594 -0
- wandb/sdk/launch/builder/noop.py +58 -0
- wandb/sdk/launch/builder/templates/_wandb_bootstrap.py +188 -0
- wandb/sdk/launch/builder/templates/dockerfile.py +92 -0
- wandb/sdk/launch/create_job.py +528 -0
- wandb/sdk/launch/environment/abstract.py +29 -0
- wandb/sdk/launch/environment/aws_environment.py +322 -0
- wandb/sdk/launch/environment/azure_environment.py +105 -0
- wandb/sdk/launch/environment/gcp_environment.py +335 -0
- wandb/sdk/launch/environment/local_environment.py +65 -0
- wandb/sdk/launch/errors.py +13 -0
- wandb/sdk/launch/git_reference.py +109 -0
- wandb/sdk/launch/inputs/files.py +148 -0
- wandb/sdk/launch/inputs/internal.py +315 -0
- wandb/sdk/launch/inputs/manage.py +113 -0
- wandb/sdk/launch/inputs/schema.py +39 -0
- wandb/sdk/launch/loader.py +249 -0
- wandb/sdk/launch/registry/abstract.py +48 -0
- wandb/sdk/launch/registry/anon.py +29 -0
- wandb/sdk/launch/registry/azure_container_registry.py +124 -0
- wandb/sdk/launch/registry/elastic_container_registry.py +192 -0
- wandb/sdk/launch/registry/google_artifact_registry.py +219 -0
- wandb/sdk/launch/registry/local_registry.py +65 -0
- wandb/sdk/launch/runner/__init__.py +0 -0
- wandb/sdk/launch/runner/abstract.py +185 -0
- wandb/sdk/launch/runner/kubernetes_monitor.py +472 -0
- wandb/sdk/launch/runner/kubernetes_runner.py +963 -0
- wandb/sdk/launch/runner/local_container.py +301 -0
- wandb/sdk/launch/runner/local_process.py +78 -0
- wandb/sdk/launch/runner/sagemaker_runner.py +426 -0
- wandb/sdk/launch/runner/vertex_runner.py +230 -0
- wandb/sdk/launch/sweeps/__init__.py +37 -0
- wandb/sdk/launch/sweeps/scheduler.py +740 -0
- wandb/sdk/launch/sweeps/scheduler_sweep.py +90 -0
- wandb/sdk/launch/sweeps/utils.py +316 -0
- wandb/sdk/launch/utils.py +747 -0
- wandb/sdk/launch/wandb_reference.py +138 -0
- wandb/sdk/lib/__init__.py +5 -0
- wandb/sdk/lib/apikey.py +269 -0
- wandb/sdk/lib/capped_dict.py +26 -0
- wandb/sdk/lib/config_util.py +101 -0
- wandb/sdk/lib/credentials.py +141 -0
- wandb/sdk/lib/deprecate.py +42 -0
- wandb/sdk/lib/disabled.py +29 -0
- wandb/sdk/lib/exit_hooks.py +54 -0
- wandb/sdk/lib/file_stream_utils.py +118 -0
- wandb/sdk/lib/filenames.py +64 -0
- wandb/sdk/lib/filesystem.py +372 -0
- wandb/sdk/lib/fsm.py +180 -0
- wandb/sdk/lib/gitlib.py +239 -0
- wandb/sdk/lib/gql_request.py +65 -0
- wandb/sdk/lib/handler_util.py +21 -0
- wandb/sdk/lib/hashutil.py +84 -0
- wandb/sdk/lib/import_hooks.py +275 -0
- wandb/sdk/lib/ipython.py +126 -0
- wandb/sdk/lib/json_util.py +80 -0
- wandb/sdk/lib/lazyloader.py +63 -0
- wandb/sdk/lib/mailbox.py +456 -0
- wandb/sdk/lib/module.py +78 -0
- wandb/sdk/lib/paths.py +106 -0
- wandb/sdk/lib/preinit.py +42 -0
- wandb/sdk/lib/printer.py +548 -0
- wandb/sdk/lib/progress.py +273 -0
- wandb/sdk/lib/proto_util.py +90 -0
- wandb/sdk/lib/redirect.py +845 -0
- wandb/sdk/lib/retry.py +289 -0
- wandb/sdk/lib/run_moment.py +72 -0
- wandb/sdk/lib/runid.py +12 -0
- wandb/sdk/lib/server.py +38 -0
- wandb/sdk/lib/service_connection.py +216 -0
- wandb/sdk/lib/service_token.py +94 -0
- wandb/sdk/lib/sock_client.py +290 -0
- wandb/sdk/lib/sparkline.py +44 -0
- wandb/sdk/lib/telemetry.py +100 -0
- wandb/sdk/lib/timed_input.py +133 -0
- wandb/sdk/lib/timer.py +19 -0
- wandb/sdk/service/__init__.py +0 -0
- wandb/sdk/service/_startup_debug.py +22 -0
- wandb/sdk/service/port_file.py +53 -0
- wandb/sdk/service/server.py +107 -0
- wandb/sdk/service/server_sock.py +274 -0
- wandb/sdk/service/service.py +242 -0
- wandb/sdk/service/streams.py +425 -0
- wandb/sdk/verify/__init__.py +0 -0
- wandb/sdk/verify/verify.py +501 -0
- wandb/sdk/wandb_alerts.py +12 -0
- wandb/sdk/wandb_config.py +322 -0
- wandb/sdk/wandb_helper.py +54 -0
- wandb/sdk/wandb_init.py +1313 -0
- wandb/sdk/wandb_login.py +339 -0
- wandb/sdk/wandb_metric.py +110 -0
- wandb/sdk/wandb_require.py +94 -0
- wandb/sdk/wandb_require_helpers.py +44 -0
- wandb/sdk/wandb_run.py +4066 -0
- wandb/sdk/wandb_settings.py +1309 -0
- wandb/sdk/wandb_setup.py +402 -0
- wandb/sdk/wandb_summary.py +150 -0
- wandb/sdk/wandb_sweep.py +119 -0
- wandb/sdk/wandb_sync.py +82 -0
- wandb/sdk/wandb_watch.py +150 -0
- wandb/sklearn.py +35 -0
- wandb/sync/__init__.py +3 -0
- wandb/sync/sync.py +442 -0
- wandb/trigger.py +29 -0
- wandb/util.py +1955 -0
- wandb/vendor/__init__.py +0 -0
- wandb/vendor/gql-0.2.0/setup.py +40 -0
- wandb/vendor/gql-0.2.0/tests/__init__.py +0 -0
- wandb/vendor/gql-0.2.0/tests/starwars/__init__.py +0 -0
- wandb/vendor/gql-0.2.0/tests/starwars/fixtures.py +96 -0
- wandb/vendor/gql-0.2.0/tests/starwars/schema.py +146 -0
- wandb/vendor/gql-0.2.0/tests/starwars/test_dsl.py +293 -0
- wandb/vendor/gql-0.2.0/tests/starwars/test_query.py +355 -0
- wandb/vendor/gql-0.2.0/tests/starwars/test_validation.py +171 -0
- wandb/vendor/gql-0.2.0/tests/test_client.py +31 -0
- wandb/vendor/gql-0.2.0/tests/test_transport.py +89 -0
- wandb/vendor/gql-0.2.0/wandb_gql/__init__.py +4 -0
- wandb/vendor/gql-0.2.0/wandb_gql/client.py +75 -0
- wandb/vendor/gql-0.2.0/wandb_gql/dsl.py +152 -0
- wandb/vendor/gql-0.2.0/wandb_gql/gql.py +10 -0
- wandb/vendor/gql-0.2.0/wandb_gql/transport/__init__.py +0 -0
- wandb/vendor/gql-0.2.0/wandb_gql/transport/http.py +6 -0
- wandb/vendor/gql-0.2.0/wandb_gql/transport/local_schema.py +15 -0
- wandb/vendor/gql-0.2.0/wandb_gql/transport/requests.py +46 -0
- wandb/vendor/gql-0.2.0/wandb_gql/utils.py +21 -0
- wandb/vendor/graphql-core-1.1/setup.py +86 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/__init__.py +287 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/error/__init__.py +6 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/error/base.py +42 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/error/format_error.py +11 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/error/located_error.py +29 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/error/syntax_error.py +36 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/execution/__init__.py +26 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/execution/base.py +311 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/execution/executor.py +398 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/execution/executors/__init__.py +0 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/execution/executors/asyncio.py +53 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/execution/executors/gevent.py +22 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/execution/executors/process.py +32 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/execution/executors/sync.py +7 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/execution/executors/thread.py +35 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/execution/executors/utils.py +6 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/execution/experimental/__init__.py +0 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/execution/experimental/executor.py +66 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/execution/experimental/fragment.py +252 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/execution/experimental/resolver.py +151 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/execution/experimental/utils.py +7 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/execution/middleware.py +57 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/execution/values.py +145 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/graphql.py +60 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/language/__init__.py +0 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/language/ast.py +1349 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/language/base.py +19 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/language/lexer.py +435 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/language/location.py +30 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/language/parser.py +779 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/language/printer.py +193 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/language/source.py +18 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/language/visitor.py +222 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/language/visitor_meta.py +82 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/pyutils/__init__.py +0 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/pyutils/cached_property.py +17 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/pyutils/contain_subset.py +28 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/pyutils/default_ordered_dict.py +40 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/pyutils/ordereddict.py +8 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/pyutils/pair_set.py +43 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/pyutils/version.py +78 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/type/__init__.py +67 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/type/definition.py +619 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/type/directives.py +132 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/type/introspection.py +440 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/type/scalars.py +131 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/type/schema.py +100 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/type/typemap.py +145 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/utils/__init__.py +0 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/utils/assert_valid_name.py +9 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/utils/ast_from_value.py +65 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/utils/ast_to_code.py +49 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/utils/ast_to_dict.py +24 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/utils/base.py +75 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/utils/build_ast_schema.py +291 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/utils/build_client_schema.py +250 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/utils/concat_ast.py +9 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/utils/extend_schema.py +357 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/utils/get_field_def.py +27 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/utils/get_operation_ast.py +21 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/utils/introspection_query.py +90 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/utils/is_valid_literal_value.py +67 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/utils/is_valid_value.py +66 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/utils/quoted_or_list.py +21 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/utils/schema_printer.py +168 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/utils/suggestion_list.py +56 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/utils/type_comparators.py +69 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/utils/type_from_ast.py +21 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/utils/type_info.py +149 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/utils/value_from_ast.py +69 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/validation/__init__.py +4 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/__init__.py +79 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/arguments_of_correct_type.py +24 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/base.py +8 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/default_values_of_correct_type.py +44 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/fields_on_correct_type.py +113 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/fragments_on_composite_types.py +33 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/known_argument_names.py +70 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/known_directives.py +97 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/known_fragment_names.py +19 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/known_type_names.py +43 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/lone_anonymous_operation.py +23 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/no_fragment_cycles.py +59 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/no_undefined_variables.py +36 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/no_unused_fragments.py +38 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/no_unused_variables.py +37 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/overlapping_fields_can_be_merged.py +529 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/possible_fragment_spreads.py +44 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/provided_non_null_arguments.py +46 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/scalar_leafs.py +33 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/unique_argument_names.py +32 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/unique_fragment_names.py +28 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/unique_input_field_names.py +33 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/unique_operation_names.py +31 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/unique_variable_names.py +27 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/variables_are_input_types.py +21 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/validation/rules/variables_in_allowed_position.py +53 -0
- wandb/vendor/graphql-core-1.1/wandb_graphql/validation/validation.py +158 -0
- wandb/vendor/promise-2.3.0/conftest.py +30 -0
- wandb/vendor/promise-2.3.0/setup.py +64 -0
- wandb/vendor/promise-2.3.0/tests/__init__.py +0 -0
- wandb/vendor/promise-2.3.0/tests/conftest.py +8 -0
- wandb/vendor/promise-2.3.0/tests/test_awaitable.py +32 -0
- wandb/vendor/promise-2.3.0/tests/test_awaitable_35.py +47 -0
- wandb/vendor/promise-2.3.0/tests/test_benchmark.py +116 -0
- wandb/vendor/promise-2.3.0/tests/test_complex_threads.py +23 -0
- wandb/vendor/promise-2.3.0/tests/test_dataloader.py +452 -0
- wandb/vendor/promise-2.3.0/tests/test_dataloader_awaitable_35.py +99 -0
- wandb/vendor/promise-2.3.0/tests/test_dataloader_extra.py +65 -0
- wandb/vendor/promise-2.3.0/tests/test_extra.py +670 -0
- wandb/vendor/promise-2.3.0/tests/test_issues.py +132 -0
- wandb/vendor/promise-2.3.0/tests/test_promise_list.py +70 -0
- wandb/vendor/promise-2.3.0/tests/test_spec.py +584 -0
- wandb/vendor/promise-2.3.0/tests/test_thread_safety.py +115 -0
- wandb/vendor/promise-2.3.0/tests/utils.py +3 -0
- wandb/vendor/promise-2.3.0/wandb_promise/__init__.py +38 -0
- wandb/vendor/promise-2.3.0/wandb_promise/async_.py +135 -0
- wandb/vendor/promise-2.3.0/wandb_promise/compat.py +32 -0
- wandb/vendor/promise-2.3.0/wandb_promise/dataloader.py +326 -0
- wandb/vendor/promise-2.3.0/wandb_promise/iterate_promise.py +12 -0
- wandb/vendor/promise-2.3.0/wandb_promise/promise.py +848 -0
- wandb/vendor/promise-2.3.0/wandb_promise/promise_list.py +151 -0
- wandb/vendor/promise-2.3.0/wandb_promise/pyutils/__init__.py +0 -0
- wandb/vendor/promise-2.3.0/wandb_promise/pyutils/version.py +83 -0
- wandb/vendor/promise-2.3.0/wandb_promise/schedulers/__init__.py +0 -0
- wandb/vendor/promise-2.3.0/wandb_promise/schedulers/asyncio.py +22 -0
- wandb/vendor/promise-2.3.0/wandb_promise/schedulers/gevent.py +21 -0
- wandb/vendor/promise-2.3.0/wandb_promise/schedulers/immediate.py +27 -0
- wandb/vendor/promise-2.3.0/wandb_promise/schedulers/thread.py +18 -0
- wandb/vendor/promise-2.3.0/wandb_promise/utils.py +56 -0
- wandb/vendor/pygments/__init__.py +90 -0
- wandb/vendor/pygments/cmdline.py +568 -0
- wandb/vendor/pygments/console.py +74 -0
- wandb/vendor/pygments/filter.py +74 -0
- wandb/vendor/pygments/filters/__init__.py +350 -0
- wandb/vendor/pygments/formatter.py +95 -0
- wandb/vendor/pygments/formatters/__init__.py +153 -0
- wandb/vendor/pygments/formatters/_mapping.py +85 -0
- wandb/vendor/pygments/formatters/bbcode.py +109 -0
- wandb/vendor/pygments/formatters/html.py +851 -0
- wandb/vendor/pygments/formatters/img.py +600 -0
- wandb/vendor/pygments/formatters/irc.py +182 -0
- wandb/vendor/pygments/formatters/latex.py +482 -0
- wandb/vendor/pygments/formatters/other.py +160 -0
- wandb/vendor/pygments/formatters/rtf.py +147 -0
- wandb/vendor/pygments/formatters/svg.py +153 -0
- wandb/vendor/pygments/formatters/terminal.py +136 -0
- wandb/vendor/pygments/formatters/terminal256.py +309 -0
- wandb/vendor/pygments/lexer.py +871 -0
- wandb/vendor/pygments/lexers/__init__.py +329 -0
- wandb/vendor/pygments/lexers/_asy_builtins.py +1645 -0
- wandb/vendor/pygments/lexers/_cl_builtins.py +232 -0
- wandb/vendor/pygments/lexers/_cocoa_builtins.py +72 -0
- wandb/vendor/pygments/lexers/_csound_builtins.py +1346 -0
- wandb/vendor/pygments/lexers/_lasso_builtins.py +5327 -0
- wandb/vendor/pygments/lexers/_lua_builtins.py +295 -0
- wandb/vendor/pygments/lexers/_mapping.py +500 -0
- wandb/vendor/pygments/lexers/_mql_builtins.py +1172 -0
- wandb/vendor/pygments/lexers/_openedge_builtins.py +2547 -0
- wandb/vendor/pygments/lexers/_php_builtins.py +4756 -0
- wandb/vendor/pygments/lexers/_postgres_builtins.py +621 -0
- wandb/vendor/pygments/lexers/_scilab_builtins.py +3094 -0
- wandb/vendor/pygments/lexers/_sourcemod_builtins.py +1163 -0
- wandb/vendor/pygments/lexers/_stan_builtins.py +532 -0
- wandb/vendor/pygments/lexers/_stata_builtins.py +419 -0
- wandb/vendor/pygments/lexers/_tsql_builtins.py +1004 -0
- wandb/vendor/pygments/lexers/_vim_builtins.py +1939 -0
- wandb/vendor/pygments/lexers/actionscript.py +240 -0
- wandb/vendor/pygments/lexers/agile.py +24 -0
- wandb/vendor/pygments/lexers/algebra.py +221 -0
- wandb/vendor/pygments/lexers/ambient.py +76 -0
- wandb/vendor/pygments/lexers/ampl.py +87 -0
- wandb/vendor/pygments/lexers/apl.py +101 -0
- wandb/vendor/pygments/lexers/archetype.py +318 -0
- wandb/vendor/pygments/lexers/asm.py +641 -0
- wandb/vendor/pygments/lexers/automation.py +374 -0
- wandb/vendor/pygments/lexers/basic.py +500 -0
- wandb/vendor/pygments/lexers/bibtex.py +160 -0
- wandb/vendor/pygments/lexers/business.py +612 -0
- wandb/vendor/pygments/lexers/c_cpp.py +252 -0
- wandb/vendor/pygments/lexers/c_like.py +541 -0
- wandb/vendor/pygments/lexers/capnproto.py +78 -0
- wandb/vendor/pygments/lexers/chapel.py +102 -0
- wandb/vendor/pygments/lexers/clean.py +288 -0
- wandb/vendor/pygments/lexers/compiled.py +34 -0
- wandb/vendor/pygments/lexers/configs.py +833 -0
- wandb/vendor/pygments/lexers/console.py +114 -0
- wandb/vendor/pygments/lexers/crystal.py +393 -0
- wandb/vendor/pygments/lexers/csound.py +366 -0
- wandb/vendor/pygments/lexers/css.py +689 -0
- wandb/vendor/pygments/lexers/d.py +251 -0
- wandb/vendor/pygments/lexers/dalvik.py +125 -0
- wandb/vendor/pygments/lexers/data.py +555 -0
- wandb/vendor/pygments/lexers/diff.py +165 -0
- wandb/vendor/pygments/lexers/dotnet.py +691 -0
- wandb/vendor/pygments/lexers/dsls.py +878 -0
- wandb/vendor/pygments/lexers/dylan.py +289 -0
- wandb/vendor/pygments/lexers/ecl.py +125 -0
- wandb/vendor/pygments/lexers/eiffel.py +65 -0
- wandb/vendor/pygments/lexers/elm.py +121 -0
- wandb/vendor/pygments/lexers/erlang.py +533 -0
- wandb/vendor/pygments/lexers/esoteric.py +277 -0
- wandb/vendor/pygments/lexers/ezhil.py +69 -0
- wandb/vendor/pygments/lexers/factor.py +344 -0
- wandb/vendor/pygments/lexers/fantom.py +250 -0
- wandb/vendor/pygments/lexers/felix.py +273 -0
- wandb/vendor/pygments/lexers/forth.py +177 -0
- wandb/vendor/pygments/lexers/fortran.py +205 -0
- wandb/vendor/pygments/lexers/foxpro.py +428 -0
- wandb/vendor/pygments/lexers/functional.py +21 -0
- wandb/vendor/pygments/lexers/go.py +101 -0
- wandb/vendor/pygments/lexers/grammar_notation.py +213 -0
- wandb/vendor/pygments/lexers/graph.py +80 -0
- wandb/vendor/pygments/lexers/graphics.py +553 -0
- wandb/vendor/pygments/lexers/haskell.py +843 -0
- wandb/vendor/pygments/lexers/haxe.py +936 -0
- wandb/vendor/pygments/lexers/hdl.py +382 -0
- wandb/vendor/pygments/lexers/hexdump.py +103 -0
- wandb/vendor/pygments/lexers/html.py +602 -0
- wandb/vendor/pygments/lexers/idl.py +270 -0
- wandb/vendor/pygments/lexers/igor.py +288 -0
- wandb/vendor/pygments/lexers/inferno.py +96 -0
- wandb/vendor/pygments/lexers/installers.py +322 -0
- wandb/vendor/pygments/lexers/int_fiction.py +1343 -0
- wandb/vendor/pygments/lexers/iolang.py +63 -0
- wandb/vendor/pygments/lexers/j.py +146 -0
- wandb/vendor/pygments/lexers/javascript.py +1525 -0
- wandb/vendor/pygments/lexers/julia.py +333 -0
- wandb/vendor/pygments/lexers/jvm.py +1573 -0
- wandb/vendor/pygments/lexers/lisp.py +2621 -0
- wandb/vendor/pygments/lexers/make.py +202 -0
- wandb/vendor/pygments/lexers/markup.py +595 -0
- wandb/vendor/pygments/lexers/math.py +21 -0
- wandb/vendor/pygments/lexers/matlab.py +663 -0
- wandb/vendor/pygments/lexers/ml.py +769 -0
- wandb/vendor/pygments/lexers/modeling.py +358 -0
- wandb/vendor/pygments/lexers/modula2.py +1561 -0
- wandb/vendor/pygments/lexers/monte.py +204 -0
- wandb/vendor/pygments/lexers/ncl.py +894 -0
- wandb/vendor/pygments/lexers/nimrod.py +159 -0
- wandb/vendor/pygments/lexers/nit.py +64 -0
- wandb/vendor/pygments/lexers/nix.py +136 -0
- wandb/vendor/pygments/lexers/oberon.py +105 -0
- wandb/vendor/pygments/lexers/objective.py +504 -0
- wandb/vendor/pygments/lexers/ooc.py +85 -0
- wandb/vendor/pygments/lexers/other.py +41 -0
- wandb/vendor/pygments/lexers/parasail.py +79 -0
- wandb/vendor/pygments/lexers/parsers.py +835 -0
- wandb/vendor/pygments/lexers/pascal.py +644 -0
- wandb/vendor/pygments/lexers/pawn.py +199 -0
- wandb/vendor/pygments/lexers/perl.py +620 -0
- wandb/vendor/pygments/lexers/php.py +267 -0
- wandb/vendor/pygments/lexers/praat.py +294 -0
- wandb/vendor/pygments/lexers/prolog.py +306 -0
- wandb/vendor/pygments/lexers/python.py +939 -0
- wandb/vendor/pygments/lexers/qvt.py +152 -0
- wandb/vendor/pygments/lexers/r.py +453 -0
- wandb/vendor/pygments/lexers/rdf.py +270 -0
- wandb/vendor/pygments/lexers/rebol.py +431 -0
- wandb/vendor/pygments/lexers/resource.py +85 -0
- wandb/vendor/pygments/lexers/rnc.py +67 -0
- wandb/vendor/pygments/lexers/roboconf.py +82 -0
- wandb/vendor/pygments/lexers/robotframework.py +560 -0
- wandb/vendor/pygments/lexers/ruby.py +519 -0
- wandb/vendor/pygments/lexers/rust.py +220 -0
- wandb/vendor/pygments/lexers/sas.py +228 -0
- wandb/vendor/pygments/lexers/scripting.py +1222 -0
- wandb/vendor/pygments/lexers/shell.py +794 -0
- wandb/vendor/pygments/lexers/smalltalk.py +195 -0
- wandb/vendor/pygments/lexers/smv.py +79 -0
- wandb/vendor/pygments/lexers/snobol.py +83 -0
- wandb/vendor/pygments/lexers/special.py +103 -0
- wandb/vendor/pygments/lexers/sql.py +681 -0
- wandb/vendor/pygments/lexers/stata.py +108 -0
- wandb/vendor/pygments/lexers/supercollider.py +90 -0
- wandb/vendor/pygments/lexers/tcl.py +145 -0
- wandb/vendor/pygments/lexers/templates.py +2283 -0
- wandb/vendor/pygments/lexers/testing.py +207 -0
- wandb/vendor/pygments/lexers/text.py +25 -0
- wandb/vendor/pygments/lexers/textedit.py +169 -0
- wandb/vendor/pygments/lexers/textfmts.py +297 -0
- wandb/vendor/pygments/lexers/theorem.py +458 -0
- wandb/vendor/pygments/lexers/trafficscript.py +54 -0
- wandb/vendor/pygments/lexers/typoscript.py +226 -0
- wandb/vendor/pygments/lexers/urbi.py +133 -0
- wandb/vendor/pygments/lexers/varnish.py +190 -0
- wandb/vendor/pygments/lexers/verification.py +111 -0
- wandb/vendor/pygments/lexers/web.py +24 -0
- wandb/vendor/pygments/lexers/webmisc.py +988 -0
- wandb/vendor/pygments/lexers/whiley.py +116 -0
- wandb/vendor/pygments/lexers/x10.py +69 -0
- wandb/vendor/pygments/modeline.py +44 -0
- wandb/vendor/pygments/plugin.py +68 -0
- wandb/vendor/pygments/regexopt.py +92 -0
- wandb/vendor/pygments/scanner.py +105 -0
- wandb/vendor/pygments/sphinxext.py +158 -0
- wandb/vendor/pygments/style.py +155 -0
- wandb/vendor/pygments/styles/__init__.py +80 -0
- wandb/vendor/pygments/styles/abap.py +29 -0
- wandb/vendor/pygments/styles/algol.py +63 -0
- wandb/vendor/pygments/styles/algol_nu.py +63 -0
- wandb/vendor/pygments/styles/arduino.py +98 -0
- wandb/vendor/pygments/styles/autumn.py +65 -0
- wandb/vendor/pygments/styles/borland.py +51 -0
- wandb/vendor/pygments/styles/bw.py +49 -0
- wandb/vendor/pygments/styles/colorful.py +81 -0
- wandb/vendor/pygments/styles/default.py +73 -0
- wandb/vendor/pygments/styles/emacs.py +72 -0
- wandb/vendor/pygments/styles/friendly.py +72 -0
- wandb/vendor/pygments/styles/fruity.py +42 -0
- wandb/vendor/pygments/styles/igor.py +29 -0
- wandb/vendor/pygments/styles/lovelace.py +97 -0
- wandb/vendor/pygments/styles/manni.py +75 -0
- wandb/vendor/pygments/styles/monokai.py +106 -0
- wandb/vendor/pygments/styles/murphy.py +80 -0
- wandb/vendor/pygments/styles/native.py +65 -0
- wandb/vendor/pygments/styles/paraiso_dark.py +125 -0
- wandb/vendor/pygments/styles/paraiso_light.py +125 -0
- wandb/vendor/pygments/styles/pastie.py +75 -0
- wandb/vendor/pygments/styles/perldoc.py +69 -0
- wandb/vendor/pygments/styles/rainbow_dash.py +89 -0
- wandb/vendor/pygments/styles/rrt.py +33 -0
- wandb/vendor/pygments/styles/sas.py +44 -0
- wandb/vendor/pygments/styles/stata.py +40 -0
- wandb/vendor/pygments/styles/tango.py +141 -0
- wandb/vendor/pygments/styles/trac.py +63 -0
- wandb/vendor/pygments/styles/vim.py +63 -0
- wandb/vendor/pygments/styles/vs.py +38 -0
- wandb/vendor/pygments/styles/xcode.py +51 -0
- wandb/vendor/pygments/token.py +213 -0
- wandb/vendor/pygments/unistring.py +217 -0
- wandb/vendor/pygments/util.py +388 -0
- wandb/vendor/pynvml/__init__.py +0 -0
- wandb/vendor/pynvml/pynvml.py +4779 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/__init__.py +17 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/events.py +615 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/observers/__init__.py +98 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/observers/api.py +369 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/observers/fsevents.py +172 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/observers/fsevents2.py +239 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/observers/inotify.py +218 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/observers/inotify_buffer.py +81 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/observers/inotify_c.py +575 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/observers/kqueue.py +730 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/observers/polling.py +145 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/observers/read_directory_changes.py +133 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/observers/winapi.py +348 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/patterns.py +265 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/tricks/__init__.py +174 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/utils/__init__.py +151 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/utils/bricks.py +249 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/utils/compat.py +29 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/utils/decorators.py +198 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/utils/delayed_queue.py +88 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/utils/dirsnapshot.py +293 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/utils/echo.py +157 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/utils/event_backport.py +41 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/utils/importlib2.py +40 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/utils/platform.py +57 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/utils/unicode_paths.py +64 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/utils/win32stat.py +123 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/version.py +28 -0
- wandb/vendor/watchdog_0_9_0/wandb_watchdog/watchmedo.py +577 -0
- wandb/wandb_agent.py +588 -0
- wandb/wandb_controller.py +719 -0
- wandb/wandb_run.py +9 -0
- wandb-0.19.1rc1.dist-info/METADATA +223 -0
- wandb-0.19.1rc1.dist-info/RECORD +822 -0
- wandb-0.19.1rc1.dist-info/WHEEL +5 -0
- wandb-0.19.1rc1.dist-info/entry_points.txt +3 -0
- wandb-0.19.1rc1.dist-info/licenses/LICENSE +21 -0
@@ -0,0 +1,1089 @@
|
|
1
|
+
"""keras init."""
|
2
|
+
|
3
|
+
import logging
|
4
|
+
import operator
|
5
|
+
import os
|
6
|
+
import shutil
|
7
|
+
import sys
|
8
|
+
from itertools import chain
|
9
|
+
|
10
|
+
import numpy as np
|
11
|
+
import tensorflow as tf
|
12
|
+
import tensorflow.keras.backend as K # noqa: N812
|
13
|
+
|
14
|
+
import wandb
|
15
|
+
from wandb.sdk.integration_utils.data_logging import ValidationDataLogger
|
16
|
+
from wandb.sdk.lib.deprecate import Deprecated, deprecate
|
17
|
+
from wandb.util import add_import_hook
|
18
|
+
|
19
|
+
|
20
|
+
def _check_keras_version():
|
21
|
+
from keras import __version__ as keras_version
|
22
|
+
|
23
|
+
from wandb.util import parse_version
|
24
|
+
|
25
|
+
if parse_version(keras_version) < parse_version("2.4.0"):
|
26
|
+
wandb.termwarn(
|
27
|
+
f"Keras version {keras_version} is not fully supported. Required keras >= 2.4.0"
|
28
|
+
)
|
29
|
+
|
30
|
+
|
31
|
+
def _can_compute_flops() -> bool:
|
32
|
+
"""FLOPS computation is restricted to TF 2.x as it requires tf.compat.v1."""
|
33
|
+
from wandb.util import parse_version
|
34
|
+
|
35
|
+
if parse_version(tf.__version__) >= parse_version("2.0.0"):
|
36
|
+
return True
|
37
|
+
|
38
|
+
return False
|
39
|
+
|
40
|
+
|
41
|
+
if "keras" in sys.modules:
|
42
|
+
_check_keras_version()
|
43
|
+
else:
|
44
|
+
add_import_hook("keras", _check_keras_version)
|
45
|
+
|
46
|
+
|
47
|
+
logger = logging.getLogger(__name__)
|
48
|
+
|
49
|
+
|
50
|
+
def is_dataset(data):
|
51
|
+
dataset_ops = wandb.util.get_module("tensorflow.python.data.ops.dataset_ops")
|
52
|
+
if dataset_ops and hasattr(dataset_ops, "DatasetV2"):
|
53
|
+
dataset_types = (dataset_ops.DatasetV2,)
|
54
|
+
if hasattr(dataset_ops, "DatasetV1"):
|
55
|
+
dataset_types = dataset_types + (dataset_ops.DatasetV1,)
|
56
|
+
return isinstance(data, dataset_types)
|
57
|
+
else:
|
58
|
+
return False
|
59
|
+
|
60
|
+
|
61
|
+
def is_generator_like(data):
|
62
|
+
# Checks if data is a generator, Sequence, or Iterator.
|
63
|
+
|
64
|
+
types = (tf.keras.utils.Sequence,)
|
65
|
+
iterator_ops = wandb.util.get_module("tensorflow.python.data.ops.iterator_ops")
|
66
|
+
if iterator_ops:
|
67
|
+
types = types + (iterator_ops.Iterator,)
|
68
|
+
# EagerIterator was in tensorflow < 2
|
69
|
+
if hasattr(iterator_ops, "EagerIterator"):
|
70
|
+
types = types + (iterator_ops.EagerIterator,)
|
71
|
+
elif hasattr(iterator_ops, "IteratorV2"):
|
72
|
+
types = types + (iterator_ops.IteratorV2,)
|
73
|
+
return hasattr(data, "next") or hasattr(data, "__next__") or isinstance(data, types)
|
74
|
+
|
75
|
+
|
76
|
+
def patch_tf_keras(): # noqa: C901
|
77
|
+
from tensorflow.python.eager import context
|
78
|
+
|
79
|
+
from wandb.util import parse_version
|
80
|
+
|
81
|
+
if (
|
82
|
+
parse_version("2.6.0")
|
83
|
+
<= parse_version(tf.__version__)
|
84
|
+
< parse_version("2.13.0")
|
85
|
+
):
|
86
|
+
keras_engine = "keras.engine"
|
87
|
+
try:
|
88
|
+
from keras.engine import training
|
89
|
+
from keras.engine import training_arrays_v1 as training_arrays
|
90
|
+
from keras.engine import training_generator_v1 as training_generator
|
91
|
+
except (ImportError, AttributeError):
|
92
|
+
wandb.termerror("Unable to patch Tensorflow/Keras")
|
93
|
+
logger.exception("exception while trying to patch_tf_keras")
|
94
|
+
return
|
95
|
+
else:
|
96
|
+
keras_engine = "tensorflow.python.keras.engine"
|
97
|
+
|
98
|
+
from tensorflow.python.keras.engine import training
|
99
|
+
|
100
|
+
try:
|
101
|
+
from tensorflow.python.keras.engine import (
|
102
|
+
training_arrays_v1 as training_arrays,
|
103
|
+
)
|
104
|
+
from tensorflow.python.keras.engine import (
|
105
|
+
training_generator_v1 as training_generator,
|
106
|
+
)
|
107
|
+
except (ImportError, AttributeError):
|
108
|
+
try:
|
109
|
+
from tensorflow.python.keras.engine import (
|
110
|
+
training_arrays,
|
111
|
+
training_generator,
|
112
|
+
)
|
113
|
+
except (ImportError, AttributeError):
|
114
|
+
wandb.termerror("Unable to patch Tensorflow/Keras")
|
115
|
+
logger.exception("exception while trying to patch_tf_keras")
|
116
|
+
return
|
117
|
+
|
118
|
+
# Tensorflow 2.1
|
119
|
+
training_v2_1 = wandb.util.get_module("tensorflow.python.keras.engine.training_v2")
|
120
|
+
# Tensorflow 2.2
|
121
|
+
training_v2_2 = wandb.util.get_module(f"{keras_engine}.training_v1")
|
122
|
+
|
123
|
+
if training_v2_1:
|
124
|
+
old_v2 = training_v2_1.Loop.fit
|
125
|
+
elif training_v2_2:
|
126
|
+
old_v2 = training.Model.fit
|
127
|
+
|
128
|
+
old_arrays = training_arrays.fit_loop
|
129
|
+
old_generator = training_generator.fit_generator
|
130
|
+
|
131
|
+
def set_wandb_attrs(cbk, val_data):
|
132
|
+
if isinstance(cbk, WandbCallback):
|
133
|
+
if is_generator_like(val_data):
|
134
|
+
cbk.generator = val_data
|
135
|
+
elif is_dataset(val_data):
|
136
|
+
if context.executing_eagerly():
|
137
|
+
cbk.generator = iter(val_data)
|
138
|
+
else:
|
139
|
+
wandb.termwarn(
|
140
|
+
"Found a validation dataset in graph mode, can't patch Keras."
|
141
|
+
)
|
142
|
+
elif isinstance(val_data, tuple) and isinstance(val_data[0], tf.Tensor):
|
143
|
+
# Graph mode dataset generator
|
144
|
+
def gen():
|
145
|
+
while True:
|
146
|
+
yield K.get_session().run(val_data)
|
147
|
+
|
148
|
+
cbk.generator = gen()
|
149
|
+
else:
|
150
|
+
cbk.validation_data = val_data
|
151
|
+
|
152
|
+
def new_arrays(*args, **kwargs):
|
153
|
+
cbks = kwargs.get("callbacks", [])
|
154
|
+
val_inputs = kwargs.get("val_inputs")
|
155
|
+
val_targets = kwargs.get("val_targets")
|
156
|
+
# TODO: these could be generators, why index 0?
|
157
|
+
if val_inputs and val_targets:
|
158
|
+
for cbk in cbks:
|
159
|
+
set_wandb_attrs(cbk, (val_inputs[0], val_targets[0]))
|
160
|
+
return old_arrays(*args, **kwargs)
|
161
|
+
|
162
|
+
def new_generator(*args, **kwargs):
|
163
|
+
cbks = kwargs.get("callbacks", [])
|
164
|
+
val_data = kwargs.get("validation_data")
|
165
|
+
if val_data:
|
166
|
+
for cbk in cbks:
|
167
|
+
set_wandb_attrs(cbk, val_data)
|
168
|
+
return old_generator(*args, **kwargs)
|
169
|
+
|
170
|
+
def new_v2(*args, **kwargs):
|
171
|
+
cbks = kwargs.get("callbacks", [])
|
172
|
+
val_data = kwargs.get("validation_data")
|
173
|
+
if val_data:
|
174
|
+
for cbk in cbks:
|
175
|
+
set_wandb_attrs(cbk, val_data)
|
176
|
+
return old_v2(*args, **kwargs)
|
177
|
+
|
178
|
+
training_arrays.orig_fit_loop = old_arrays
|
179
|
+
training_arrays.fit_loop = new_arrays
|
180
|
+
training_generator.orig_fit_generator = old_generator
|
181
|
+
training_generator.fit_generator = new_generator
|
182
|
+
wandb.patched["keras"].append([f"{keras_engine}.training_arrays", "fit_loop"])
|
183
|
+
wandb.patched["keras"].append(
|
184
|
+
[f"{keras_engine}.training_generator", "fit_generator"]
|
185
|
+
)
|
186
|
+
|
187
|
+
if training_v2_1:
|
188
|
+
training_v2_1.Loop.fit = new_v2
|
189
|
+
wandb.patched["keras"].append(
|
190
|
+
["tensorflow.python.keras.engine.training_v2.Loop", "fit"]
|
191
|
+
)
|
192
|
+
elif training_v2_2:
|
193
|
+
training.Model.fit = new_v2
|
194
|
+
wandb.patched["keras"].append([f"{keras_engine}.training.Model", "fit"])
|
195
|
+
|
196
|
+
|
197
|
+
def _array_has_dtype(array):
|
198
|
+
return hasattr(array, "dtype")
|
199
|
+
|
200
|
+
|
201
|
+
def _update_if_numeric(metrics, key, values):
|
202
|
+
if not _array_has_dtype(values):
|
203
|
+
_warn_not_logging(key)
|
204
|
+
return
|
205
|
+
|
206
|
+
if not is_numeric_array(values):
|
207
|
+
_warn_not_logging_non_numeric(key)
|
208
|
+
return
|
209
|
+
|
210
|
+
metrics[key] = wandb.Histogram(values)
|
211
|
+
|
212
|
+
|
213
|
+
def is_numeric_array(array):
|
214
|
+
return np.issubdtype(array.dtype, np.number)
|
215
|
+
|
216
|
+
|
217
|
+
def _warn_not_logging_non_numeric(name):
|
218
|
+
wandb.termwarn(
|
219
|
+
f"Non-numeric values found in layer: {name}, not logging this layer",
|
220
|
+
repeat=False,
|
221
|
+
)
|
222
|
+
|
223
|
+
|
224
|
+
def _warn_not_logging(name):
|
225
|
+
wandb.termwarn(
|
226
|
+
f"Layer {name} has undetermined datatype not logging this layer",
|
227
|
+
repeat=False,
|
228
|
+
)
|
229
|
+
|
230
|
+
|
231
|
+
tf_logger = tf.get_logger()
|
232
|
+
|
233
|
+
patch_tf_keras()
|
234
|
+
|
235
|
+
|
236
|
+
### For gradient logging ###
|
237
|
+
|
238
|
+
|
239
|
+
def _get_custom_optimizer_parent_class():
|
240
|
+
from wandb.util import parse_version
|
241
|
+
|
242
|
+
if parse_version(tf.__version__) >= parse_version("2.9.0"):
|
243
|
+
custom_optimizer_parent_class = tf.keras.optimizers.legacy.Optimizer
|
244
|
+
else:
|
245
|
+
custom_optimizer_parent_class = tf.keras.optimizers.Optimizer
|
246
|
+
|
247
|
+
return custom_optimizer_parent_class
|
248
|
+
|
249
|
+
|
250
|
+
_custom_optimizer_parent_class = _get_custom_optimizer_parent_class()
|
251
|
+
|
252
|
+
|
253
|
+
class _CustomOptimizer(_custom_optimizer_parent_class):
|
254
|
+
def __init__(self):
|
255
|
+
super().__init__(name="CustomOptimizer")
|
256
|
+
self._resource_apply_dense = tf.function(self._resource_apply_dense)
|
257
|
+
self._resource_apply_sparse = tf.function(self._resource_apply_sparse)
|
258
|
+
|
259
|
+
def _resource_apply_dense(self, grad, var):
|
260
|
+
var.assign(grad)
|
261
|
+
|
262
|
+
# this needs to be implemented to prevent a NotImplementedError when
|
263
|
+
# using Lookup layers.
|
264
|
+
def _resource_apply_sparse(self, grad, var, indices):
|
265
|
+
pass
|
266
|
+
|
267
|
+
def get_config(self):
|
268
|
+
return super().get_config()
|
269
|
+
|
270
|
+
|
271
|
+
class _GradAccumulatorCallback(tf.keras.callbacks.Callback):
|
272
|
+
"""Accumulates gradients during a fit() call when used in conjunction with the CustomOptimizer above."""
|
273
|
+
|
274
|
+
def set_model(self, model):
|
275
|
+
super().set_model(model)
|
276
|
+
self.og_weights = model.get_weights()
|
277
|
+
self.grads = [np.zeros(tuple(w.shape)) for w in model.trainable_weights]
|
278
|
+
|
279
|
+
def on_batch_end(self, batch, logs=None):
|
280
|
+
for g, w in zip(self.grads, self.model.trainable_weights):
|
281
|
+
g += w.numpy()
|
282
|
+
self.model.set_weights(self.og_weights)
|
283
|
+
|
284
|
+
def get_grads(self):
|
285
|
+
return [g.copy() for g in self.grads]
|
286
|
+
|
287
|
+
|
288
|
+
###
|
289
|
+
|
290
|
+
|
291
|
+
class WandbCallback(tf.keras.callbacks.Callback):
|
292
|
+
"""`WandbCallback` automatically integrates keras with wandb.
|
293
|
+
|
294
|
+
Example:
|
295
|
+
```python
|
296
|
+
model.fit(
|
297
|
+
X_train,
|
298
|
+
y_train,
|
299
|
+
validation_data=(X_test, y_test),
|
300
|
+
callbacks=[WandbCallback()],
|
301
|
+
)
|
302
|
+
```
|
303
|
+
|
304
|
+
`WandbCallback` will automatically log history data from any
|
305
|
+
metrics collected by keras: loss and anything passed into `keras_model.compile()`.
|
306
|
+
|
307
|
+
`WandbCallback` will set summary metrics for the run associated with the "best" training
|
308
|
+
step, where "best" is defined by the `monitor` and `mode` attributes. This defaults
|
309
|
+
to the epoch with the minimum `val_loss`. `WandbCallback` will by default save the model
|
310
|
+
associated with the best `epoch`.
|
311
|
+
|
312
|
+
`WandbCallback` can optionally log gradient and parameter histograms.
|
313
|
+
|
314
|
+
`WandbCallback` can optionally save training and validation data for wandb to visualize.
|
315
|
+
|
316
|
+
Args:
|
317
|
+
monitor: (str) name of metric to monitor. Defaults to `val_loss`.
|
318
|
+
mode: (str) one of {`auto`, `min`, `max`}.
|
319
|
+
`min` - save model when monitor is minimized
|
320
|
+
`max` - save model when monitor is maximized
|
321
|
+
`auto` - try to guess when to save the model (default).
|
322
|
+
save_model:
|
323
|
+
True - save a model when monitor beats all previous epochs
|
324
|
+
False - don't save models
|
325
|
+
save_graph: (boolean) if True save model graph to wandb (default to True).
|
326
|
+
save_weights_only: (boolean) if True, then only the model's weights will be
|
327
|
+
saved (`model.save_weights(filepath)`), else the full model
|
328
|
+
is saved (`model.save(filepath)`).
|
329
|
+
log_weights: (boolean) if True save histograms of the model's layer's weights.
|
330
|
+
log_gradients: (boolean) if True log histograms of the training gradients
|
331
|
+
training_data: (tuple) Same format `(X,y)` as passed to `model.fit`. This is needed
|
332
|
+
for calculating gradients - this is mandatory if `log_gradients` is `True`.
|
333
|
+
validation_data: (tuple) Same format `(X,y)` as passed to `model.fit`. A set of data
|
334
|
+
for wandb to visualize. If this is set, every epoch, wandb will
|
335
|
+
make a small number of predictions and save the results for later visualization. In case
|
336
|
+
you are working with image data, please also set `input_type` and `output_type` in order
|
337
|
+
to log correctly.
|
338
|
+
generator: (generator) a generator that returns validation data for wandb to visualize. This
|
339
|
+
generator should return tuples `(X,y)`. Either `validate_data` or generator should
|
340
|
+
be set for wandb to visualize specific data examples. In case you are working with image data,
|
341
|
+
please also set `input_type` and `output_type` in order to log correctly.
|
342
|
+
validation_steps: (int) if `validation_data` is a generator, how many
|
343
|
+
steps to run the generator for the full validation set.
|
344
|
+
labels: (list) If you are visualizing your data with wandb this list of labels
|
345
|
+
will convert numeric output to understandable string if you are building a
|
346
|
+
multiclass classifier. If you are making a binary classifier you can pass in
|
347
|
+
a list of two labels ["label for false", "label for true"]. If `validate_data`
|
348
|
+
and generator are both false, this won't do anything.
|
349
|
+
predictions: (int) the number of predictions to make for visualization each epoch, max
|
350
|
+
is 100.
|
351
|
+
input_type: (string) type of the model input to help visualization. can be one of:
|
352
|
+
(`image`, `images`, `segmentation_mask`, `auto`).
|
353
|
+
output_type: (string) type of the model output to help visualization. can be one of:
|
354
|
+
(`image`, `images`, `segmentation_mask`, `label`).
|
355
|
+
log_evaluation: (boolean) if True, save a Table containing validation data and the
|
356
|
+
model's predictions at each epoch. See `validation_indexes`,
|
357
|
+
`validation_row_processor`, and `output_row_processor` for additional details.
|
358
|
+
class_colors: ([float, float, float]) if the input or output is a segmentation mask,
|
359
|
+
an array containing an rgb tuple (range 0-1) for each class.
|
360
|
+
log_batch_frequency: (integer) if None, callback will log every epoch.
|
361
|
+
If set to integer, callback will log training metrics every `log_batch_frequency`
|
362
|
+
batches.
|
363
|
+
log_best_prefix: (string) if None, no extra summary metrics will be saved.
|
364
|
+
If set to a string, the monitored metric and epoch will be prepended with this value
|
365
|
+
and stored as summary metrics.
|
366
|
+
validation_indexes: ([wandb.data_types._TableLinkMixin]) an ordered list of index keys to associate
|
367
|
+
with each validation example. If log_evaluation is True and `validation_indexes` is provided,
|
368
|
+
then a Table of validation data will not be created and instead each prediction will
|
369
|
+
be associated with the row represented by the `TableLinkMixin`. The most common way to obtain
|
370
|
+
such keys are is use `Table.get_index()` which will return a list of row keys.
|
371
|
+
validation_row_processor: (Callable) a function to apply to the validation data, commonly used to visualize the data.
|
372
|
+
The function will receive an `ndx` (int) and a `row` (dict). If your model has a single input,
|
373
|
+
then `row["input"]` will be the input data for the row. Else, it will be keyed based on the name of the
|
374
|
+
input slot. If your fit function takes a single target, then `row["target"]` will be the target data for the row. Else,
|
375
|
+
it will be keyed based on the name of the output slots. For example, if your input data is a single ndarray,
|
376
|
+
but you wish to visualize the data as an Image, then you can provide `lambda ndx, row: {"img": wandb.Image(row["input"])}`
|
377
|
+
as the processor. Ignored if log_evaluation is False or `validation_indexes` are present.
|
378
|
+
output_row_processor: (Callable) same as `validation_row_processor`, but applied to the model's output. `row["output"]` will contain
|
379
|
+
the results of the model output.
|
380
|
+
infer_missing_processors: (bool) Determines if `validation_row_processor` and `output_row_processor`
|
381
|
+
should be inferred if missing. Defaults to True. If `labels` are provided, we will attempt to infer classification-type
|
382
|
+
processors where appropriate.
|
383
|
+
log_evaluation_frequency: (int) Determines the frequency which evaluation results will be logged. Default 0 (only at the end of training).
|
384
|
+
Set to 1 to log every epoch, 2 to log every other epoch, and so on. Has no effect when log_evaluation is False.
|
385
|
+
compute_flops: (bool) Compute the FLOPs of your Keras Sequential or Functional model in GigaFLOPs unit.
|
386
|
+
"""
|
387
|
+
|
388
|
+
def __init__(
|
389
|
+
self,
|
390
|
+
monitor="val_loss",
|
391
|
+
verbose=0,
|
392
|
+
mode="auto",
|
393
|
+
save_weights_only=False,
|
394
|
+
log_weights=False,
|
395
|
+
log_gradients=False,
|
396
|
+
save_model=True,
|
397
|
+
training_data=None,
|
398
|
+
validation_data=None,
|
399
|
+
labels=None,
|
400
|
+
predictions=36,
|
401
|
+
generator=None,
|
402
|
+
input_type=None,
|
403
|
+
output_type=None,
|
404
|
+
log_evaluation=False,
|
405
|
+
validation_steps=None,
|
406
|
+
class_colors=None,
|
407
|
+
log_batch_frequency=None,
|
408
|
+
log_best_prefix="best_",
|
409
|
+
save_graph=True,
|
410
|
+
validation_indexes=None,
|
411
|
+
validation_row_processor=None,
|
412
|
+
prediction_row_processor=None,
|
413
|
+
infer_missing_processors=True,
|
414
|
+
log_evaluation_frequency=0,
|
415
|
+
compute_flops=False,
|
416
|
+
**kwargs,
|
417
|
+
):
|
418
|
+
if wandb.run is None:
|
419
|
+
raise wandb.Error("You must call wandb.init() before WandbCallback()")
|
420
|
+
|
421
|
+
deprecate(
|
422
|
+
field_name=Deprecated.keras_callback,
|
423
|
+
warning_message=(
|
424
|
+
"WandbCallback is deprecated and will be removed in a future release. "
|
425
|
+
"Please use the WandbMetricsLogger, WandbModelCheckpoint, and WandbEvalCallback "
|
426
|
+
"callbacks instead. "
|
427
|
+
"See https://docs.wandb.ai/guides/integrations/keras for more information."
|
428
|
+
),
|
429
|
+
)
|
430
|
+
|
431
|
+
with wandb.wandb_lib.telemetry.context(run=wandb.run) as tel:
|
432
|
+
tel.feature.keras = True
|
433
|
+
self.validation_data = None
|
434
|
+
# This is kept around for legacy reasons
|
435
|
+
if validation_data is not None:
|
436
|
+
if is_generator_like(validation_data):
|
437
|
+
generator = validation_data
|
438
|
+
else:
|
439
|
+
self.validation_data = validation_data
|
440
|
+
if labels is None:
|
441
|
+
labels = []
|
442
|
+
self.labels = labels
|
443
|
+
self.predictions = min(predictions, 100)
|
444
|
+
|
445
|
+
self.monitor = monitor
|
446
|
+
self.verbose = verbose
|
447
|
+
self.save_weights_only = save_weights_only
|
448
|
+
self.save_graph = save_graph
|
449
|
+
|
450
|
+
wandb.save("model-best.h5")
|
451
|
+
self.filepath = os.path.join(wandb.run.dir, "model-best.h5")
|
452
|
+
self.save_model = save_model
|
453
|
+
if save_model:
|
454
|
+
deprecate(
|
455
|
+
field_name=Deprecated.keras_callback__save_model,
|
456
|
+
warning_message=(
|
457
|
+
"The save_model argument by default saves the model in the HDF5 format that cannot save "
|
458
|
+
"custom objects like subclassed models and custom layers. This behavior will be deprecated "
|
459
|
+
"in a future release in favor of the SavedModel format. Meanwhile, the HDF5 model is saved "
|
460
|
+
"as W&B files and the SavedModel as W&B Artifacts."
|
461
|
+
),
|
462
|
+
)
|
463
|
+
|
464
|
+
self.save_model_as_artifact = True
|
465
|
+
self.log_weights = log_weights
|
466
|
+
self.log_gradients = log_gradients
|
467
|
+
self.training_data = training_data
|
468
|
+
self.generator = generator
|
469
|
+
self._graph_rendered = False
|
470
|
+
|
471
|
+
data_type = kwargs.get("data_type", None)
|
472
|
+
if data_type is not None:
|
473
|
+
deprecate(
|
474
|
+
field_name=Deprecated.keras_callback__data_type,
|
475
|
+
warning_message=(
|
476
|
+
"The data_type argument of wandb.keras.WandbCallback is deprecated "
|
477
|
+
"and will be removed in a future release. Please use input_type instead.\n"
|
478
|
+
"Setting input_type = data_type."
|
479
|
+
),
|
480
|
+
)
|
481
|
+
input_type = data_type
|
482
|
+
self.input_type = input_type
|
483
|
+
self.output_type = output_type
|
484
|
+
self.log_evaluation = log_evaluation
|
485
|
+
self.validation_steps = validation_steps
|
486
|
+
self.class_colors = np.array(class_colors) if class_colors is not None else None
|
487
|
+
self.log_batch_frequency = log_batch_frequency
|
488
|
+
self.log_best_prefix = log_best_prefix
|
489
|
+
self.compute_flops = compute_flops
|
490
|
+
|
491
|
+
self._prediction_batch_size = None
|
492
|
+
|
493
|
+
if self.log_gradients:
|
494
|
+
if int(tf.__version__.split(".")[0]) < 2:
|
495
|
+
raise Exception("Gradient logging requires tensorflow 2.0 or higher.")
|
496
|
+
if self.training_data is None:
|
497
|
+
raise ValueError(
|
498
|
+
"training_data argument is required for gradient logging."
|
499
|
+
)
|
500
|
+
if isinstance(self.training_data, (list, tuple)):
|
501
|
+
if len(self.training_data) != 2:
|
502
|
+
raise ValueError("training data must be a tuple of length two")
|
503
|
+
self._training_data_x, self._training_data_y = self.training_data
|
504
|
+
else:
|
505
|
+
self._training_data_x = (
|
506
|
+
self.training_data
|
507
|
+
) # generator, tf.data.Dataset etc
|
508
|
+
self._training_data_y = None
|
509
|
+
|
510
|
+
# From Keras
|
511
|
+
if mode not in ["auto", "min", "max"]:
|
512
|
+
print(f"WandbCallback mode {mode} is unknown, fallback to auto mode.")
|
513
|
+
mode = "auto"
|
514
|
+
|
515
|
+
if mode == "min":
|
516
|
+
self.monitor_op = operator.lt
|
517
|
+
self.best = float("inf")
|
518
|
+
elif mode == "max":
|
519
|
+
self.monitor_op = operator.gt
|
520
|
+
self.best = float("-inf")
|
521
|
+
else:
|
522
|
+
if "acc" in self.monitor or self.monitor.startswith("fmeasure"):
|
523
|
+
self.monitor_op = operator.gt
|
524
|
+
self.best = float("-inf")
|
525
|
+
else:
|
526
|
+
self.monitor_op = operator.lt
|
527
|
+
self.best = float("inf")
|
528
|
+
# Get the previous best metric for resumed runs
|
529
|
+
previous_best = wandb.run.summary.get(f"{self.log_best_prefix}{self.monitor}")
|
530
|
+
if previous_best is not None:
|
531
|
+
self.best = previous_best
|
532
|
+
|
533
|
+
self._validation_data_logger = None
|
534
|
+
self._validation_indexes = validation_indexes
|
535
|
+
self._validation_row_processor = validation_row_processor
|
536
|
+
self._prediction_row_processor = prediction_row_processor
|
537
|
+
self._infer_missing_processors = infer_missing_processors
|
538
|
+
self._log_evaluation_frequency = log_evaluation_frequency
|
539
|
+
self._model_trained_since_last_eval = False
|
540
|
+
|
541
|
+
def _build_grad_accumulator_model(self):
|
542
|
+
inputs = self.model.inputs
|
543
|
+
outputs = self.model(inputs)
|
544
|
+
grad_acc_model = tf.keras.models.Model(inputs, outputs)
|
545
|
+
grad_acc_model.compile(loss=self.model.loss, optimizer=_CustomOptimizer())
|
546
|
+
|
547
|
+
# make sure magic doesn't think this is a user model
|
548
|
+
grad_acc_model._wandb_internal_model = True
|
549
|
+
|
550
|
+
self._grad_accumulator_model = grad_acc_model
|
551
|
+
self._grad_accumulator_callback = _GradAccumulatorCallback()
|
552
|
+
|
553
|
+
def _implements_train_batch_hooks(self):
|
554
|
+
return self.log_batch_frequency is not None
|
555
|
+
|
556
|
+
def _implements_test_batch_hooks(self):
|
557
|
+
return self.log_batch_frequency is not None
|
558
|
+
|
559
|
+
def _implements_predict_batch_hooks(self):
|
560
|
+
return self.log_batch_frequency is not None
|
561
|
+
|
562
|
+
def set_params(self, params):
|
563
|
+
self.params = params
|
564
|
+
|
565
|
+
def set_model(self, model):
|
566
|
+
super().set_model(model)
|
567
|
+
if self.input_type == "auto" and len(model.inputs) == 1:
|
568
|
+
self.input_type = wandb.util.guess_data_type(
|
569
|
+
model.inputs[0].shape, risky=True
|
570
|
+
)
|
571
|
+
if self.input_type and self.output_type is None and len(model.outputs) == 1:
|
572
|
+
self.output_type = wandb.util.guess_data_type(model.outputs[0].shape)
|
573
|
+
if self.log_gradients:
|
574
|
+
self._build_grad_accumulator_model()
|
575
|
+
|
576
|
+
def _attempt_evaluation_log(self, commit=True):
|
577
|
+
if self.log_evaluation and self._validation_data_logger:
|
578
|
+
try:
|
579
|
+
if not self.model:
|
580
|
+
wandb.termwarn("WandbCallback unable to read model from trainer")
|
581
|
+
else:
|
582
|
+
self._validation_data_logger.log_predictions(
|
583
|
+
predictions=self._validation_data_logger.make_predictions(
|
584
|
+
self.model.predict
|
585
|
+
),
|
586
|
+
commit=commit,
|
587
|
+
)
|
588
|
+
self._model_trained_since_last_eval = False
|
589
|
+
except Exception as e:
|
590
|
+
wandb.termwarn("Error during prediction logging for epoch: " + str(e))
|
591
|
+
|
592
|
+
def on_epoch_end(self, epoch, logs=None):
|
593
|
+
if logs is None:
|
594
|
+
logs = {}
|
595
|
+
if self.log_weights:
|
596
|
+
wandb.log(self._log_weights(), commit=False)
|
597
|
+
|
598
|
+
if self.log_gradients:
|
599
|
+
wandb.log(self._log_gradients(), commit=False)
|
600
|
+
|
601
|
+
if self.input_type in (
|
602
|
+
"image",
|
603
|
+
"images",
|
604
|
+
"segmentation_mask",
|
605
|
+
) or self.output_type in ("image", "images", "segmentation_mask"):
|
606
|
+
if self.generator:
|
607
|
+
self.validation_data = next(self.generator)
|
608
|
+
if self.validation_data is None:
|
609
|
+
wandb.termwarn(
|
610
|
+
"No validation_data set, pass a generator to the callback."
|
611
|
+
)
|
612
|
+
elif self.validation_data and len(self.validation_data) > 0:
|
613
|
+
wandb.log(
|
614
|
+
{"examples": self._log_images(num_images=self.predictions)},
|
615
|
+
commit=False,
|
616
|
+
)
|
617
|
+
|
618
|
+
if (
|
619
|
+
self._log_evaluation_frequency > 0
|
620
|
+
and epoch % self._log_evaluation_frequency == 0
|
621
|
+
):
|
622
|
+
self._attempt_evaluation_log(commit=False)
|
623
|
+
|
624
|
+
wandb.log({"epoch": epoch}, commit=False)
|
625
|
+
wandb.log(logs, commit=True)
|
626
|
+
|
627
|
+
self.current = logs.get(self.monitor)
|
628
|
+
if self.current and self.monitor_op(self.current, self.best):
|
629
|
+
if self.log_best_prefix:
|
630
|
+
wandb.run.summary[f"{self.log_best_prefix}{self.monitor}"] = (
|
631
|
+
self.current
|
632
|
+
)
|
633
|
+
wandb.run.summary["{}{}".format(self.log_best_prefix, "epoch")] = epoch
|
634
|
+
if self.verbose and not self.save_model:
|
635
|
+
print(
|
636
|
+
f"Epoch {epoch:05d}: {self.monitor} improved from {self.best:.5f} to {self.current:.5f}"
|
637
|
+
)
|
638
|
+
if self.save_model:
|
639
|
+
self._save_model(epoch)
|
640
|
+
|
641
|
+
if self.save_model and self.save_model_as_artifact:
|
642
|
+
self._save_model_as_artifact(epoch)
|
643
|
+
|
644
|
+
self.best = self.current
|
645
|
+
|
646
|
+
# This is what keras used pre tensorflow.keras
|
647
|
+
def on_batch_begin(self, batch, logs=None):
|
648
|
+
pass
|
649
|
+
|
650
|
+
# This is what keras used pre tensorflow.keras
|
651
|
+
def on_batch_end(self, batch, logs=None):
|
652
|
+
if self.save_graph and not self._graph_rendered:
|
653
|
+
# Couldn't do this in train_begin because keras may still not be built
|
654
|
+
wandb.run.summary["graph"] = wandb.Graph.from_keras(self.model)
|
655
|
+
self._graph_rendered = True
|
656
|
+
|
657
|
+
if self.log_batch_frequency and batch % self.log_batch_frequency == 0:
|
658
|
+
wandb.log(logs, commit=True)
|
659
|
+
|
660
|
+
def on_train_batch_begin(self, batch, logs=None):
|
661
|
+
self._model_trained_since_last_eval = True
|
662
|
+
|
663
|
+
def on_train_batch_end(self, batch, logs=None):
|
664
|
+
if self.save_graph and not self._graph_rendered:
|
665
|
+
# Couldn't do this in train_begin because keras may still not be built
|
666
|
+
wandb.run.summary["graph"] = wandb.Graph.from_keras(self.model)
|
667
|
+
self._graph_rendered = True
|
668
|
+
|
669
|
+
if self.log_batch_frequency and batch % self.log_batch_frequency == 0:
|
670
|
+
wandb.log(logs, commit=True)
|
671
|
+
|
672
|
+
def on_test_begin(self, logs=None):
|
673
|
+
pass
|
674
|
+
|
675
|
+
def on_test_end(self, logs=None):
|
676
|
+
pass
|
677
|
+
|
678
|
+
def on_test_batch_begin(self, batch, logs=None):
|
679
|
+
pass
|
680
|
+
|
681
|
+
def on_test_batch_end(self, batch, logs=None):
|
682
|
+
pass
|
683
|
+
|
684
|
+
def on_train_begin(self, logs=None):
|
685
|
+
if self.log_evaluation:
|
686
|
+
try:
|
687
|
+
validation_data = None
|
688
|
+
if self.validation_data:
|
689
|
+
validation_data = self.validation_data
|
690
|
+
elif self.generator:
|
691
|
+
if not self.validation_steps:
|
692
|
+
wandb.termwarn(
|
693
|
+
"WandbCallback is unable to log validation data. "
|
694
|
+
"When using a generator for validation_data, you must pass validation_steps"
|
695
|
+
)
|
696
|
+
else:
|
697
|
+
x = None
|
698
|
+
y_true = None
|
699
|
+
for _ in range(self.validation_steps):
|
700
|
+
bx, by_true = next(self.generator)
|
701
|
+
if x is None:
|
702
|
+
x, y_true = bx, by_true
|
703
|
+
else:
|
704
|
+
x, y_true = (
|
705
|
+
np.append(x, bx, axis=0),
|
706
|
+
np.append(y_true, by_true, axis=0),
|
707
|
+
)
|
708
|
+
validation_data = (x, y_true)
|
709
|
+
else:
|
710
|
+
wandb.termwarn(
|
711
|
+
"WandbCallback is unable to read validation_data from trainer "
|
712
|
+
"and therefore cannot log validation data. Ensure Keras is properly "
|
713
|
+
"patched by calling `from wandb.keras import WandbCallback` at the top of your script."
|
714
|
+
)
|
715
|
+
if validation_data:
|
716
|
+
self._validation_data_logger = ValidationDataLogger(
|
717
|
+
inputs=validation_data[0],
|
718
|
+
targets=validation_data[1],
|
719
|
+
indexes=self._validation_indexes,
|
720
|
+
validation_row_processor=self._validation_row_processor,
|
721
|
+
prediction_row_processor=self._prediction_row_processor,
|
722
|
+
class_labels=self.labels,
|
723
|
+
infer_missing_processors=self._infer_missing_processors,
|
724
|
+
)
|
725
|
+
except Exception as e:
|
726
|
+
wandb.termwarn(
|
727
|
+
"Error initializing ValidationDataLogger in WandbCallback. "
|
728
|
+
f"Skipping logging validation data. Error: {str(e)}"
|
729
|
+
)
|
730
|
+
|
731
|
+
if self.compute_flops and _can_compute_flops():
|
732
|
+
try:
|
733
|
+
wandb.summary["GFLOPs"] = self.get_flops()
|
734
|
+
except Exception as e:
|
735
|
+
wandb.termwarn("Unable to compute FLOPs for this model.")
|
736
|
+
logger.exception(e)
|
737
|
+
|
738
|
+
def on_train_end(self, logs=None):
|
739
|
+
if self._model_trained_since_last_eval:
|
740
|
+
self._attempt_evaluation_log()
|
741
|
+
|
742
|
+
def on_predict_begin(self, logs=None):
|
743
|
+
pass
|
744
|
+
|
745
|
+
def on_predict_end(self, logs=None):
|
746
|
+
pass
|
747
|
+
|
748
|
+
def on_predict_batch_begin(self, batch, logs=None):
|
749
|
+
pass
|
750
|
+
|
751
|
+
def on_predict_batch_end(self, batch, logs=None):
|
752
|
+
pass
|
753
|
+
|
754
|
+
def _logits_to_captions(self, logits):
|
755
|
+
if logits[0].shape[-1] == 1:
|
756
|
+
# Scalar output from the model
|
757
|
+
# TODO: handle validation_y
|
758
|
+
if len(self.labels) == 2:
|
759
|
+
# User has named true and false
|
760
|
+
captions = [
|
761
|
+
self.labels[1] if logits[0] > 0.5 else self.labels[0]
|
762
|
+
for logit in logits
|
763
|
+
]
|
764
|
+
else:
|
765
|
+
if len(self.labels) != 0:
|
766
|
+
wandb.termwarn(
|
767
|
+
"keras model is producing a single output, "
|
768
|
+
'so labels should be a length two array: ["False label", "True label"].'
|
769
|
+
)
|
770
|
+
captions = [logit[0] for logit in logits]
|
771
|
+
else:
|
772
|
+
# Vector output from the model
|
773
|
+
# TODO: handle validation_y
|
774
|
+
labels = np.argmax(np.stack(logits), axis=1)
|
775
|
+
|
776
|
+
if len(self.labels) > 0:
|
777
|
+
# User has named the categories in self.labels
|
778
|
+
captions = []
|
779
|
+
for label in labels:
|
780
|
+
try:
|
781
|
+
captions.append(self.labels[label])
|
782
|
+
except IndexError:
|
783
|
+
captions.append(label)
|
784
|
+
else:
|
785
|
+
captions = labels
|
786
|
+
return captions
|
787
|
+
|
788
|
+
def _masks_to_pixels(self, masks):
|
789
|
+
# if its a binary mask, just return it as grayscale instead of picking the argmax
|
790
|
+
if len(masks[0].shape) == 2 or masks[0].shape[-1] == 1:
|
791
|
+
return masks
|
792
|
+
class_colors = (
|
793
|
+
self.class_colors
|
794
|
+
if self.class_colors is not None
|
795
|
+
else np.array(wandb.util.class_colors(masks[0].shape[2]))
|
796
|
+
)
|
797
|
+
imgs = class_colors[np.argmax(masks, axis=-1)]
|
798
|
+
return imgs
|
799
|
+
|
800
|
+
def _log_images(self, num_images=36):
|
801
|
+
validation_X = self.validation_data[0] # noqa: N806
|
802
|
+
validation_y = self.validation_data[1]
|
803
|
+
|
804
|
+
validation_length = len(validation_X)
|
805
|
+
|
806
|
+
if validation_length > num_images:
|
807
|
+
# pick some data at random
|
808
|
+
indices = np.random.choice(validation_length, num_images, replace=False)
|
809
|
+
else:
|
810
|
+
indices = range(validation_length)
|
811
|
+
|
812
|
+
test_data = []
|
813
|
+
test_output = []
|
814
|
+
for i in indices:
|
815
|
+
test_example = validation_X[i]
|
816
|
+
test_data.append(test_example)
|
817
|
+
test_output.append(validation_y[i])
|
818
|
+
|
819
|
+
if self.model.stateful:
|
820
|
+
predictions = self.model.predict(np.stack(test_data), batch_size=1)
|
821
|
+
self.model.reset_states()
|
822
|
+
else:
|
823
|
+
predictions = self.model.predict(
|
824
|
+
np.stack(test_data), batch_size=self._prediction_batch_size
|
825
|
+
)
|
826
|
+
if len(predictions) != len(test_data):
|
827
|
+
self._prediction_batch_size = 1
|
828
|
+
predictions = self.model.predict(
|
829
|
+
np.stack(test_data), batch_size=self._prediction_batch_size
|
830
|
+
)
|
831
|
+
|
832
|
+
if self.input_type == "label":
|
833
|
+
if self.output_type in ("image", "images", "segmentation_mask"):
|
834
|
+
captions = self._logits_to_captions(test_data)
|
835
|
+
output_image_data = (
|
836
|
+
self._masks_to_pixels(predictions)
|
837
|
+
if self.output_type == "segmentation_mask"
|
838
|
+
else predictions
|
839
|
+
)
|
840
|
+
reference_image_data = (
|
841
|
+
self._masks_to_pixels(test_output)
|
842
|
+
if self.output_type == "segmentation_mask"
|
843
|
+
else test_output
|
844
|
+
)
|
845
|
+
output_images = [
|
846
|
+
wandb.Image(data, caption=captions[i], grouping=2)
|
847
|
+
for i, data in enumerate(output_image_data)
|
848
|
+
]
|
849
|
+
reference_images = [
|
850
|
+
wandb.Image(data, caption=captions[i])
|
851
|
+
for i, data in enumerate(reference_image_data)
|
852
|
+
]
|
853
|
+
return list(chain.from_iterable(zip(output_images, reference_images)))
|
854
|
+
elif self.input_type in ("image", "images", "segmentation_mask"):
|
855
|
+
input_image_data = (
|
856
|
+
self._masks_to_pixels(test_data)
|
857
|
+
if self.input_type == "segmentation_mask"
|
858
|
+
else test_data
|
859
|
+
)
|
860
|
+
if self.output_type == "label":
|
861
|
+
# we just use the predicted label as the caption for now
|
862
|
+
captions = self._logits_to_captions(predictions)
|
863
|
+
return [
|
864
|
+
wandb.Image(data, caption=captions[i])
|
865
|
+
for i, data in enumerate(test_data)
|
866
|
+
]
|
867
|
+
elif self.output_type in ("image", "images", "segmentation_mask"):
|
868
|
+
output_image_data = (
|
869
|
+
self._masks_to_pixels(predictions)
|
870
|
+
if self.output_type == "segmentation_mask"
|
871
|
+
else predictions
|
872
|
+
)
|
873
|
+
reference_image_data = (
|
874
|
+
self._masks_to_pixels(test_output)
|
875
|
+
if self.output_type == "segmentation_mask"
|
876
|
+
else test_output
|
877
|
+
)
|
878
|
+
input_images = [
|
879
|
+
wandb.Image(data, grouping=3)
|
880
|
+
for i, data in enumerate(input_image_data)
|
881
|
+
]
|
882
|
+
output_images = [
|
883
|
+
wandb.Image(data) for i, data in enumerate(output_image_data)
|
884
|
+
]
|
885
|
+
reference_images = [
|
886
|
+
wandb.Image(data) for i, data in enumerate(reference_image_data)
|
887
|
+
]
|
888
|
+
return list(
|
889
|
+
chain.from_iterable(
|
890
|
+
zip(input_images, output_images, reference_images)
|
891
|
+
)
|
892
|
+
)
|
893
|
+
else:
|
894
|
+
# unknown output, just log the input images
|
895
|
+
return [wandb.Image(img) for img in test_data]
|
896
|
+
elif self.output_type in ("image", "images", "segmentation_mask"):
|
897
|
+
# unknown input, just log the predicted and reference outputs without captions
|
898
|
+
output_image_data = (
|
899
|
+
self._masks_to_pixels(predictions)
|
900
|
+
if self.output_type == "segmentation_mask"
|
901
|
+
else predictions
|
902
|
+
)
|
903
|
+
reference_image_data = (
|
904
|
+
self._masks_to_pixels(test_output)
|
905
|
+
if self.output_type == "segmentation_mask"
|
906
|
+
else test_output
|
907
|
+
)
|
908
|
+
output_images = [
|
909
|
+
wandb.Image(data, grouping=2)
|
910
|
+
for i, data in enumerate(output_image_data)
|
911
|
+
]
|
912
|
+
reference_images = [
|
913
|
+
wandb.Image(data) for i, data in enumerate(reference_image_data)
|
914
|
+
]
|
915
|
+
return list(chain.from_iterable(zip(output_images, reference_images)))
|
916
|
+
|
917
|
+
def _log_weights(self):
|
918
|
+
metrics = {}
|
919
|
+
for layer in self.model.layers:
|
920
|
+
weights = layer.get_weights()
|
921
|
+
if len(weights) == 1:
|
922
|
+
_update_if_numeric(
|
923
|
+
metrics, "parameters/" + layer.name + ".weights", weights[0]
|
924
|
+
)
|
925
|
+
elif len(weights) == 2:
|
926
|
+
_update_if_numeric(
|
927
|
+
metrics, "parameters/" + layer.name + ".weights", weights[0]
|
928
|
+
)
|
929
|
+
_update_if_numeric(
|
930
|
+
metrics, "parameters/" + layer.name + ".bias", weights[1]
|
931
|
+
)
|
932
|
+
return metrics
|
933
|
+
|
934
|
+
def _log_gradients(self):
|
935
|
+
# Suppress callback warnings grad accumulator
|
936
|
+
og_level = tf_logger.level
|
937
|
+
tf_logger.setLevel("ERROR")
|
938
|
+
|
939
|
+
self._grad_accumulator_model.fit(
|
940
|
+
self._training_data_x,
|
941
|
+
self._training_data_y,
|
942
|
+
verbose=0,
|
943
|
+
callbacks=[self._grad_accumulator_callback],
|
944
|
+
)
|
945
|
+
tf_logger.setLevel(og_level)
|
946
|
+
weights = self.model.trainable_weights
|
947
|
+
grads = self._grad_accumulator_callback.grads
|
948
|
+
metrics = {}
|
949
|
+
for weight, grad in zip(weights, grads):
|
950
|
+
metrics["gradients/" + weight.name.split(":")[0] + ".gradient"] = (
|
951
|
+
wandb.Histogram(grad)
|
952
|
+
)
|
953
|
+
return metrics
|
954
|
+
|
955
|
+
def _log_dataframe(self):
|
956
|
+
x, y_true, y_pred = None, None, None
|
957
|
+
|
958
|
+
if self.validation_data:
|
959
|
+
x, y_true = self.validation_data[0], self.validation_data[1]
|
960
|
+
y_pred = self.model.predict(x)
|
961
|
+
elif self.generator:
|
962
|
+
if not self.validation_steps:
|
963
|
+
wandb.termwarn(
|
964
|
+
"when using a generator for validation data with dataframes, "
|
965
|
+
"you must pass validation_steps. skipping"
|
966
|
+
)
|
967
|
+
return None
|
968
|
+
|
969
|
+
for _ in range(self.validation_steps):
|
970
|
+
bx, by_true = next(self.generator)
|
971
|
+
by_pred = self.model.predict(bx)
|
972
|
+
if x is None:
|
973
|
+
x, y_true, y_pred = bx, by_true, by_pred
|
974
|
+
else:
|
975
|
+
x, y_true, y_pred = (
|
976
|
+
np.append(x, bx, axis=0),
|
977
|
+
np.append(y_true, by_true, axis=0),
|
978
|
+
np.append(y_pred, by_pred, axis=0),
|
979
|
+
)
|
980
|
+
|
981
|
+
if self.input_type in ("image", "images") and self.output_type == "label":
|
982
|
+
return wandb.image_categorizer_dataframe(
|
983
|
+
x=x, y_true=y_true, y_pred=y_pred, labels=self.labels
|
984
|
+
)
|
985
|
+
elif (
|
986
|
+
self.input_type in ("image", "images")
|
987
|
+
and self.output_type == "segmentation_mask"
|
988
|
+
):
|
989
|
+
return wandb.image_segmentation_dataframe(
|
990
|
+
x=x,
|
991
|
+
y_true=y_true,
|
992
|
+
y_pred=y_pred,
|
993
|
+
labels=self.labels,
|
994
|
+
class_colors=self.class_colors,
|
995
|
+
)
|
996
|
+
else:
|
997
|
+
wandb.termwarn(
|
998
|
+
f"unknown dataframe type for input_type={self.input_type} and output_type={self.output_type}"
|
999
|
+
)
|
1000
|
+
return None
|
1001
|
+
|
1002
|
+
def _save_model(self, epoch):
|
1003
|
+
if wandb.run.disabled:
|
1004
|
+
return
|
1005
|
+
if self.verbose > 0:
|
1006
|
+
print(
|
1007
|
+
f"Epoch {epoch:05d}: {self.monitor} improved from {self.best:.5f} to {self.current:.5f}, "
|
1008
|
+
f"saving model to {self.filepath}"
|
1009
|
+
)
|
1010
|
+
|
1011
|
+
try:
|
1012
|
+
if self.save_weights_only:
|
1013
|
+
self.model.save_weights(self.filepath, overwrite=True)
|
1014
|
+
else:
|
1015
|
+
self.model.save(self.filepath, overwrite=True)
|
1016
|
+
# Was getting `RuntimeError: Unable to create link` in TF 1.13.1
|
1017
|
+
# also saw `TypeError: can't pickle _thread.RLock objects`
|
1018
|
+
except (ImportError, RuntimeError, TypeError, AttributeError) as e:
|
1019
|
+
wandb.termerror(
|
1020
|
+
"Can't save model in the h5py format. The model will be saved as "
|
1021
|
+
"as an W&B Artifact in the 'tf' format."
|
1022
|
+
)
|
1023
|
+
logger.exception(e)
|
1024
|
+
|
1025
|
+
def _save_model_as_artifact(self, epoch):
|
1026
|
+
if wandb.run.disabled:
|
1027
|
+
return
|
1028
|
+
|
1029
|
+
# Save the model in the SavedModel format.
|
1030
|
+
# TODO: Replace this manual artifact creation with the `log_model` method
|
1031
|
+
# after `log_model` is released from beta.
|
1032
|
+
self.model.save(self.filepath[:-3], overwrite=True, save_format="tf")
|
1033
|
+
|
1034
|
+
# Log the model as artifact.
|
1035
|
+
name = wandb.util.make_artifact_name_safe(f"model-{wandb.run.name}")
|
1036
|
+
model_artifact = wandb.Artifact(name, type="model")
|
1037
|
+
model_artifact.add_dir(self.filepath[:-3])
|
1038
|
+
wandb.run.log_artifact(model_artifact, aliases=["latest", f"epoch_{epoch}"])
|
1039
|
+
|
1040
|
+
# Remove the SavedModel from wandb dir as we don't want to log it to save memory.
|
1041
|
+
shutil.rmtree(self.filepath[:-3])
|
1042
|
+
|
1043
|
+
def get_flops(self) -> float:
|
1044
|
+
"""Calculate FLOPS [GFLOPs] for a tf.keras.Model or tf.keras.Sequential model in inference mode.
|
1045
|
+
|
1046
|
+
It uses tf.compat.v1.profiler under the hood.
|
1047
|
+
"""
|
1048
|
+
if not hasattr(self, "model"):
|
1049
|
+
raise wandb.Error("self.model must be set before using this method.")
|
1050
|
+
|
1051
|
+
if not isinstance(
|
1052
|
+
self.model, (tf.keras.models.Sequential, tf.keras.models.Model)
|
1053
|
+
):
|
1054
|
+
raise ValueError(
|
1055
|
+
"Calculating FLOPS is only supported for "
|
1056
|
+
"`tf.keras.Model` and `tf.keras.Sequential` instances."
|
1057
|
+
)
|
1058
|
+
|
1059
|
+
from tensorflow.python.framework.convert_to_constants import (
|
1060
|
+
convert_variables_to_constants_v2_as_graph,
|
1061
|
+
)
|
1062
|
+
|
1063
|
+
# Compute FLOPs for one sample
|
1064
|
+
batch_size = 1
|
1065
|
+
inputs = [
|
1066
|
+
tf.TensorSpec([batch_size] + inp.shape[1:], inp.dtype)
|
1067
|
+
for inp in self.model.inputs
|
1068
|
+
]
|
1069
|
+
|
1070
|
+
# convert tf.keras model into frozen graph to count FLOPs about operations used at inference
|
1071
|
+
real_model = tf.function(self.model).get_concrete_function(inputs)
|
1072
|
+
frozen_func, _ = convert_variables_to_constants_v2_as_graph(real_model)
|
1073
|
+
|
1074
|
+
# Calculate FLOPs with tf.profiler
|
1075
|
+
run_meta = tf.compat.v1.RunMetadata()
|
1076
|
+
opts = (
|
1077
|
+
tf.compat.v1.profiler.ProfileOptionBuilder(
|
1078
|
+
tf.compat.v1.profiler.ProfileOptionBuilder().float_operation()
|
1079
|
+
)
|
1080
|
+
.with_empty_output()
|
1081
|
+
.build()
|
1082
|
+
)
|
1083
|
+
|
1084
|
+
flops = tf.compat.v1.profiler.profile(
|
1085
|
+
graph=frozen_func.graph, run_meta=run_meta, cmd="scope", options=opts
|
1086
|
+
)
|
1087
|
+
|
1088
|
+
# convert to GFLOPs
|
1089
|
+
return (flops.total_float_ops / 1e9) / 2
|