vivarium-public-health 3.0.3__py3-none-any.whl → 3.0.5__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- vivarium_public_health/_version.py +1 -1
- vivarium_public_health/disease/state.py +24 -19
- vivarium_public_health/mslt/delay.py +13 -5
- vivarium_public_health/mslt/disease.py +35 -14
- vivarium_public_health/mslt/intervention.py +12 -9
- vivarium_public_health/mslt/observer.py +56 -17
- vivarium_public_health/mslt/population.py +7 -10
- vivarium_public_health/plugins/parser.py +29 -80
- vivarium_public_health/population/add_new_birth_cohorts.py +8 -9
- vivarium_public_health/population/base_population.py +0 -5
- vivarium_public_health/population/data_transformations.py +1 -8
- vivarium_public_health/population/mortality.py +3 -3
- vivarium_public_health/results/columns.py +1 -1
- vivarium_public_health/results/disability.py +89 -15
- vivarium_public_health/results/disease.py +128 -5
- vivarium_public_health/results/mortality.py +82 -6
- vivarium_public_health/results/observer.py +151 -6
- vivarium_public_health/results/risk.py +66 -5
- vivarium_public_health/results/simple_cause.py +30 -5
- vivarium_public_health/results/stratification.py +39 -14
- vivarium_public_health/risks/base_risk.py +14 -16
- vivarium_public_health/risks/data_transformations.py +3 -1
- vivarium_public_health/risks/distributions.py +0 -1
- vivarium_public_health/risks/effect.py +31 -29
- vivarium_public_health/risks/implementations/low_birth_weight_and_short_gestation.py +51 -30
- vivarium_public_health/treatment/scale_up.py +6 -10
- vivarium_public_health/treatment/therapeutic_inertia.py +3 -1
- {vivarium_public_health-3.0.3.dist-info → vivarium_public_health-3.0.5.dist-info}/METADATA +1 -1
- vivarium_public_health-3.0.5.dist-info/RECORD +49 -0
- {vivarium_public_health-3.0.3.dist-info → vivarium_public_health-3.0.5.dist-info}/WHEEL +1 -1
- vivarium_public_health-3.0.3.dist-info/RECORD +0 -49
- {vivarium_public_health-3.0.3.dist-info → vivarium_public_health-3.0.5.dist-info}/LICENSE.txt +0 -0
- {vivarium_public_health-3.0.3.dist-info → vivarium_public_health-3.0.5.dist-info}/top_level.txt +0 -0
@@ -17,8 +17,6 @@ import scipy
|
|
17
17
|
from layered_config_tree import ConfigurationError
|
18
18
|
from vivarium import Component
|
19
19
|
from vivarium.framework.engine import Builder
|
20
|
-
from vivarium.framework.event import Event
|
21
|
-
from vivarium.framework.population import SimulantData
|
22
20
|
|
23
21
|
from vivarium_public_health.risks import Risk
|
24
22
|
from vivarium_public_health.risks.data_transformations import (
|
@@ -30,10 +28,12 @@ from vivarium_public_health.utilities import EntityString, TargetString, get_loo
|
|
30
28
|
|
31
29
|
|
32
30
|
class RiskEffect(Component):
|
33
|
-
"""A component to model the
|
34
|
-
|
35
|
-
builder.data or from parameters
|
36
|
-
|
31
|
+
"""A component to model the effect of a risk factor on an affected entity's target rate.
|
32
|
+
|
33
|
+
This component can source data either from builder.data or from parameters
|
34
|
+
supplied in the configuration.
|
35
|
+
|
36
|
+
For a risk named 'risk' that affects 'affected_risk' and 'affected_cause',
|
37
37
|
the configuration would look like:
|
38
38
|
|
39
39
|
.. code-block:: yaml
|
@@ -59,10 +59,7 @@ class RiskEffect(Component):
|
|
59
59
|
|
60
60
|
@property
|
61
61
|
def configuration_defaults(self) -> Dict[str, Any]:
|
62
|
-
"""
|
63
|
-
A dictionary containing the defaults for any configurations managed by
|
64
|
-
this component.
|
65
|
-
"""
|
62
|
+
"""Default values for any configurations managed by this component."""
|
66
63
|
return {
|
67
64
|
self.name: {
|
68
65
|
"data_sources": {
|
@@ -89,13 +86,14 @@ class RiskEffect(Component):
|
|
89
86
|
|
90
87
|
def __init__(self, risk: str, target: str):
|
91
88
|
"""
|
89
|
+
|
92
90
|
Parameters
|
93
91
|
----------
|
94
|
-
risk
|
92
|
+
risk
|
95
93
|
Type and name of risk factor, supplied in the form
|
96
94
|
"risk_type.risk_name" where risk_type should be singular (e.g.,
|
97
95
|
risk_factor instead of risk_factors).
|
98
|
-
target
|
96
|
+
target
|
99
97
|
Type, name, and target rate of entity to be affected by risk factor,
|
100
98
|
supplied in the form "entity_type.entity_name.measure"
|
101
99
|
where entity_type should be singular (e.g., cause instead of causes).
|
@@ -210,7 +208,9 @@ class RiskEffect(Component):
|
|
210
208
|
def rebin_relative_risk_data(
|
211
209
|
self, builder, relative_risk_data: pd.DataFrame
|
212
210
|
) -> pd.DataFrame:
|
213
|
-
"""
|
211
|
+
"""Rebin relative risk data.
|
212
|
+
|
213
|
+
When the polytomous risk is rebinned, matching relative risk needs to be rebinned.
|
214
214
|
After rebinning, rr for both exposed and unexposed categories should be the weighted sum of relative risk
|
215
215
|
of the component categories where weights are relative proportions of exposure of those categories.
|
216
216
|
For example, if cat1, cat2, cat3 are exposed categories and cat4 is unexposed with exposure [0.1,0.2,0.3,0.4],
|
@@ -319,18 +319,22 @@ class RiskEffect(Component):
|
|
319
319
|
|
320
320
|
|
321
321
|
class NonLogLinearRiskEffect(RiskEffect):
|
322
|
-
"""A component to model the
|
323
|
-
|
324
|
-
|
325
|
-
|
326
|
-
|
327
|
-
|
328
|
-
|
329
|
-
|
330
|
-
|
331
|
-
|
332
|
-
|
333
|
-
|
322
|
+
"""A component to model the exposure-parametrized effect of a risk factor.
|
323
|
+
|
324
|
+
More specifically, this models the effect of the risk factor on the target rate of
|
325
|
+
some affected entity.
|
326
|
+
|
327
|
+
This component:
|
328
|
+
1) reads TMRED data from the artifact and define the TMREL
|
329
|
+
2) calculates the relative risk at TMREL by linearly interpolating over
|
330
|
+
relative risk data defined in the configuration
|
331
|
+
3) divides relative risk data from configuration by RR at TMREL
|
332
|
+
and clip to be greater than 1
|
333
|
+
4) builds a LookupTable which returns the exposure and RR of the left and right edges
|
334
|
+
of the RR bin containing a simulant's exposure
|
335
|
+
5) uses this LookupTable to modify the target pipeline by linearly interpolating
|
336
|
+
a simulant's RR value and multiplying it by the intended target rate
|
337
|
+
|
334
338
|
"""
|
335
339
|
|
336
340
|
##############
|
@@ -339,10 +343,7 @@ class NonLogLinearRiskEffect(RiskEffect):
|
|
339
343
|
|
340
344
|
@property
|
341
345
|
def configuration_defaults(self) -> Dict[str, Any]:
|
342
|
-
"""
|
343
|
-
A dictionary containing the defaults for any configurations managed by
|
344
|
-
this component.
|
345
|
-
"""
|
346
|
+
"""Default values for any configurations managed by this component."""
|
346
347
|
return {
|
347
348
|
self.name: {
|
348
349
|
"data_sources": {
|
@@ -485,6 +486,7 @@ class NonLogLinearRiskEffect(RiskEffect):
|
|
485
486
|
##############
|
486
487
|
|
487
488
|
def validate_rr_data(self, rr_data: pd.DataFrame) -> None:
|
489
|
+
"""Validate the relative risk data."""
|
488
490
|
# check that rr_data has numeric parameter data
|
489
491
|
parameter_data_is_numeric = rr_data["parameter"].dtype.kind in "biufc"
|
490
492
|
if not parameter_data_is_numeric:
|
@@ -5,6 +5,7 @@ Low Birth Weight and Short Gestation
|
|
5
5
|
|
6
6
|
Low birth weight and short gestation (LBWSG) is a non-standard risk
|
7
7
|
implementation that has been used in several public health models.
|
8
|
+
|
8
9
|
"""
|
9
10
|
|
10
11
|
import pickle
|
@@ -39,12 +40,16 @@ class LBWSGDistribution(PolytomousDistribution):
|
|
39
40
|
self.category_intervals = self.get_category_intervals(builder)
|
40
41
|
|
41
42
|
def get_category_intervals(self, builder: Builder) -> Dict[str, Dict[str, pd.Interval]]:
|
42
|
-
"""
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
43
|
+
"""Gets the intervals for each category.
|
44
|
+
|
45
|
+
Parameters
|
46
|
+
----------
|
47
|
+
builder
|
48
|
+
The builder object.
|
49
|
+
|
50
|
+
Returns
|
51
|
+
-------
|
52
|
+
The intervals for each category.
|
48
53
|
"""
|
49
54
|
categories: Dict[str, str] = builder.data.load(f"{self.risk}.categories")
|
50
55
|
category_intervals = {
|
@@ -61,16 +66,19 @@ class LBWSGDistribution(PolytomousDistribution):
|
|
61
66
|
##################
|
62
67
|
|
63
68
|
def ppf(self, propensities: pd.DataFrame) -> pd.DataFrame:
|
64
|
-
"""
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
69
|
+
"""Calculate continuous exposures from propensities.
|
70
|
+
|
71
|
+
Parameters
|
72
|
+
----------
|
73
|
+
propensities
|
74
|
+
Propensities DataFrame for each simulant with three columns:
|
75
|
+
'categorical.propensity', 'birth_weight.propensity', and
|
76
|
+
'gestational_age.propensity'.
|
77
|
+
|
78
|
+
Returns
|
79
|
+
-------
|
80
|
+
A DataFrame with two columns for birth-weight and gestational age
|
81
|
+
exposures.
|
74
82
|
"""
|
75
83
|
|
76
84
|
categorical_exposure = super().ppf(propensities[f"{CATEGORICAL}_propensity"])
|
@@ -88,10 +96,11 @@ class LBWSGDistribution(PolytomousDistribution):
|
|
88
96
|
self,
|
89
97
|
axis: str,
|
90
98
|
propensity: pd.Series,
|
91
|
-
categorical_propensity: pd.Series = None,
|
92
|
-
categorical_exposure: pd.Series = None,
|
99
|
+
categorical_propensity: Optional[pd.Series] = None,
|
100
|
+
categorical_exposure: Optional[pd.Series] = None,
|
93
101
|
) -> pd.Series:
|
94
|
-
"""
|
102
|
+
"""Calculate continuous exposures from propensities for a single axis.
|
103
|
+
|
95
104
|
Takes an axis (either 'birth_weight' or 'gestational_age'), a propensity
|
96
105
|
and either a categorical propensity or a categorical exposure and
|
97
106
|
returns continuous exposures for that axis.
|
@@ -101,11 +110,27 @@ class LBWSGDistribution(PolytomousDistribution):
|
|
101
110
|
categorical exposure parameters pipeline
|
102
111
|
("risk_factor.low_birth_weight_and_short_gestation.exposure_parameters").
|
103
112
|
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
113
|
+
Parameters
|
114
|
+
----------
|
115
|
+
axis
|
116
|
+
The axis for which to calculate continuous exposures ('birth_weight'
|
117
|
+
or 'gestational_age').
|
118
|
+
propensity
|
119
|
+
The propensity for the axis.
|
120
|
+
categorical_propensity
|
121
|
+
The categorical propensity for the axis.
|
122
|
+
categorical_exposure
|
123
|
+
The categorical exposure for the axis.
|
124
|
+
|
125
|
+
Returns
|
126
|
+
-------
|
127
|
+
The continuous exposures for the axis.
|
128
|
+
|
129
|
+
Raises
|
130
|
+
------
|
131
|
+
ValueError
|
132
|
+
If neither categorical propensity nor categorical exposure is provided
|
133
|
+
or both are provided.
|
109
134
|
"""
|
110
135
|
|
111
136
|
if (categorical_propensity is None) == (categorical_exposure is None):
|
@@ -133,19 +158,15 @@ class LBWSGDistribution(PolytomousDistribution):
|
|
133
158
|
|
134
159
|
@staticmethod
|
135
160
|
def _parse_description(axis: str, description: str) -> pd.Interval:
|
136
|
-
"""
|
137
|
-
Parses a string corresponding to a low birth weight and short gestation
|
161
|
+
"""Parses a string corresponding to a low birth weight and short gestation
|
138
162
|
category to an Interval.
|
163
|
+
|
139
164
|
An example of a standard description:
|
140
165
|
'Neonatal preterm and LBWSG (estimation years) - [0, 24) wks, [0, 500) g'
|
141
166
|
An example of an edge case for gestational age:
|
142
167
|
'Neonatal preterm and LBWSG (estimation years) - [40, 42+] wks, [2000, 2500) g'
|
143
168
|
An example of an edge case of birth weight:
|
144
169
|
'Neonatal preterm and LBWSG (estimation years) - [36, 37) wks, [4000, 9999] g'
|
145
|
-
|
146
|
-
:param axis:
|
147
|
-
:param description:
|
148
|
-
:return:
|
149
170
|
"""
|
150
171
|
endpoints = {
|
151
172
|
BIRTH_WEIGHT: [
|
@@ -20,8 +20,7 @@ from vivarium_public_health.utilities import EntityString
|
|
20
20
|
|
21
21
|
|
22
22
|
class LinearScaleUp(Component):
|
23
|
-
"""
|
24
|
-
A model for applying a linear scale-up to an intervention.
|
23
|
+
"""A model for applying a linear scale-up to an intervention.
|
25
24
|
|
26
25
|
This component requires input data for beginning and end dates, as well as
|
27
26
|
beginning and end values. Scale-up start and end dates are by default the
|
@@ -75,10 +74,11 @@ class LinearScaleUp(Component):
|
|
75
74
|
|
76
75
|
def __init__(self, treatment: str):
|
77
76
|
"""
|
77
|
+
|
78
78
|
Parameters
|
79
79
|
----------
|
80
|
-
treatment
|
81
|
-
|
80
|
+
treatment
|
81
|
+
The type and name of a treatment, specified as "type.name". Type is singular.
|
82
82
|
"""
|
83
83
|
super().__init__()
|
84
84
|
self.treatment = EntityString(treatment)
|
@@ -113,8 +113,7 @@ class LinearScaleUp(Component):
|
|
113
113
|
return pd.Timestamp(scale_up_config["start"]), pd.Timestamp(scale_up_config["end"])
|
114
114
|
|
115
115
|
def get_scale_up_values(self, builder: Builder) -> Tuple[LookupTable, LookupTable]:
|
116
|
-
"""
|
117
|
-
Get the values at the start and end of the scale-up period.
|
116
|
+
"""Get the values at the start and end of the scale-up period.
|
118
117
|
|
119
118
|
Parameters
|
120
119
|
----------
|
@@ -123,7 +122,6 @@ class LinearScaleUp(Component):
|
|
123
122
|
|
124
123
|
Returns
|
125
124
|
-------
|
126
|
-
LookupTable
|
127
125
|
A tuple of lookup tables returning the values at the start and end
|
128
126
|
of the scale-up period.
|
129
127
|
"""
|
@@ -172,8 +170,7 @@ class LinearScaleUp(Component):
|
|
172
170
|
def get_endpoint_value_from_data(
|
173
171
|
self, builder: Builder, endpoint_type: str
|
174
172
|
) -> LookupTable:
|
175
|
-
"""
|
176
|
-
Get the value at the start or end of the scale-up period from data.
|
173
|
+
"""Get the value at the start or end of the scale-up period from data.
|
177
174
|
|
178
175
|
Parameters
|
179
176
|
----------
|
@@ -185,7 +182,6 @@ class LinearScaleUp(Component):
|
|
185
182
|
|
186
183
|
Returns
|
187
184
|
-------
|
188
|
-
LookupTable
|
189
185
|
A lookup table returning the value at the start or end of the
|
190
186
|
scale-up period.
|
191
187
|
"""
|
@@ -17,7 +17,9 @@ from vivarium.framework.engine import Builder
|
|
17
17
|
class TherapeuticInertia(Component):
|
18
18
|
"""Expose a therapeutic inertia pipeline that defines
|
19
19
|
a population-level therapeutic inertia.
|
20
|
-
|
20
|
+
|
21
|
+
This is the probability of treatment during a healthcare visit.
|
22
|
+
"""
|
21
23
|
|
22
24
|
CONFIGURATION_DEFAULTS = {
|
23
25
|
"therapeutic_inertia": {
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: vivarium_public_health
|
3
|
-
Version: 3.0.
|
3
|
+
Version: 3.0.5
|
4
4
|
Summary: Components for modelling diseases, risks, and interventions with ``vivarium``
|
5
5
|
Home-page: https://github.com/ihmeuw/vivarium_public_health
|
6
6
|
Author: The vivarium developers
|
@@ -0,0 +1,49 @@
|
|
1
|
+
vivarium_public_health/__about__.py,sha256=RgWycPypKZS80TpSX7o41cREnG8PfguNHDHLuLyl820,487
|
2
|
+
vivarium_public_health/__init__.py,sha256=tomMOl3PI7O8GdxDWGBiBjT0Bwd31GpyQTYTzwIv108,361
|
3
|
+
vivarium_public_health/_version.py,sha256=3kxZhPRWwAKER8BleEtUBQTUGwcBGPmrbjLu-HEi-hI,22
|
4
|
+
vivarium_public_health/utilities.py,sha256=5cl9jjVkOQ1UeXT4DjDMAhaBNNjAsDo-SVJwpv6FDw0,3071
|
5
|
+
vivarium_public_health/disease/__init__.py,sha256=RuuiRcvAJfX9WQGt_WZZjxN7Cu3E5rMTmuaRS-UaFPM,419
|
6
|
+
vivarium_public_health/disease/model.py,sha256=0WIYDEx-hwlUJp6Zl8m8bUMoWxuVkOWsJvh_YlZiOPs,8234
|
7
|
+
vivarium_public_health/disease/models.py,sha256=01UK7yB2zGPFzmlIpvhd-XnGe6vSCMDza3QTidgY7Nc,3479
|
8
|
+
vivarium_public_health/disease/special_disease.py,sha256=3vS1WsO__IwOK0Oe_CUmh3aaKrXIf2CANtmiqlS3pjc,14614
|
9
|
+
vivarium_public_health/disease/state.py,sha256=PUSDE1UlvoCPT6jPEyCTQO1bXjjYxqzdIa6-Bxpd-7I,22370
|
10
|
+
vivarium_public_health/disease/transition.py,sha256=ZxYXZBo2EEXzuQCbaj2pHTyj61hYkdqBH1ce2Htdnb4,6412
|
11
|
+
vivarium_public_health/mslt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
12
|
+
vivarium_public_health/mslt/delay.py,sha256=aOYjMpMSHEVlJs0FuC2gdq3uj6_vKmkhDjoBtC4i9G0,22812
|
13
|
+
vivarium_public_health/mslt/disease.py,sha256=TBqa7yj6k1oUbgkAe0rIgLpbdMLMFs4DiZ1Igi2BQBg,16663
|
14
|
+
vivarium_public_health/mslt/intervention.py,sha256=m6LT0CdJNwhz9X0FQNap1y9K5N4MhUDcvfDaHVukJZQ,10331
|
15
|
+
vivarium_public_health/mslt/magic_wand_components.py,sha256=pnl-7MwIJIus6UjtvVmM15pIZOCbSS1mNfP7nS2bAtw,3981
|
16
|
+
vivarium_public_health/mslt/observer.py,sha256=O4rysQzAGE5oDkdXb0E-qjD9TPFphQHTn7_3Qj7pBL0,15225
|
17
|
+
vivarium_public_health/mslt/population.py,sha256=v_p5VkjndAVJMuXaJQc3lAdzUWHlWCEQWH4A-c4phPA,7255
|
18
|
+
vivarium_public_health/plugins/__init__.py,sha256=oBW_zfgG_LbwfgTDjUe0btfy9FaDvAbtXho1zQFnz0Y,76
|
19
|
+
vivarium_public_health/plugins/parser.py,sha256=v78mj8awpdrB-oqK8udPI_7MZBChoKJOQN_e17fNEj8,31841
|
20
|
+
vivarium_public_health/population/__init__.py,sha256=17rtbcNVK5LtCCxAex7P7Q_vYpwbeTepyf3nazS90Yc,225
|
21
|
+
vivarium_public_health/population/add_new_birth_cohorts.py,sha256=k65Li0LYWl-JFHBUvLjJxkRv12EJw_FVxrOYgbd44q8,9078
|
22
|
+
vivarium_public_health/population/base_population.py,sha256=4lUc8EZwzj5Ba36lSmW9yyxcRuBSMLqi_8Fy69ssq5E,17026
|
23
|
+
vivarium_public_health/population/data_transformations.py,sha256=QVh_63Wwg9BUkaQm1pMSvBb-wsYrsgyADKIERAiEOVg,22188
|
24
|
+
vivarium_public_health/population/mortality.py,sha256=w7b_TUssHjRcnULdXu7MXKfZBjCrlYWbB94oO3JWogI,10264
|
25
|
+
vivarium_public_health/results/__init__.py,sha256=XKuX9HTXUur1kpHM7zuMSnkJxlg-W7eMAPmh8LP9Xp4,281
|
26
|
+
vivarium_public_health/results/columns.py,sha256=V-L3JgTcsk51Zx9PcUwSgaE1iZjuGyfZ8aShPjynadU,495
|
27
|
+
vivarium_public_health/results/disability.py,sha256=JQm3Q7CoGCT2AgxaoH6MKkvnq4xF83wfFmEvEOvTmvA,9876
|
28
|
+
vivarium_public_health/results/disease.py,sha256=OwxhPrfDsCnCZSaw8Yiq2AnibWikoqI-gM7xDdhFLcM,12529
|
29
|
+
vivarium_public_health/results/mortality.py,sha256=imH5OGze_rb0i60hmFs-JUjE6XXoH8Gt9wWeut0sk_M,9656
|
30
|
+
vivarium_public_health/results/observer.py,sha256=SQmKL1OCs2gDS8clIuJvZ3WiuspMkGEVDhnuNMJAvHc,7300
|
31
|
+
vivarium_public_health/results/risk.py,sha256=GS4qJVjW3MqsDeRDDac2etFQlqIluxOxIZFMy1Ytmp8,6622
|
32
|
+
vivarium_public_health/results/simple_cause.py,sha256=ibdE6KwhDfQWntCVkOEooBcmUydEoupmd3_poHSHyu8,1007
|
33
|
+
vivarium_public_health/results/stratification.py,sha256=4I3YGHVabNAZENE7YboOtWsWU4X-8LUBJ9iwYMbpl6E,5387
|
34
|
+
vivarium_public_health/risks/__init__.py,sha256=z8DcnZGxqNVAyFZm2WAV-IVNGvrSS4izju_0DNe2Ghw,212
|
35
|
+
vivarium_public_health/risks/base_risk.py,sha256=WhvB0RRYIsGsPQvJEWckcBlOVSh4Rx-B-VGZDSWWb7s,10416
|
36
|
+
vivarium_public_health/risks/data_transformations.py,sha256=SgdPKc95BBqgMNUdlAQM8k6iaXcpxnjk5B2ySTES1Yg,9269
|
37
|
+
vivarium_public_health/risks/distributions.py,sha256=7xCI2zSpnKUEWow4ywRirVbvbpeJaxo6g9us0-Lh0kE,18197
|
38
|
+
vivarium_public_health/risks/effect.py,sha256=Oc_3A0fbMDUBAJAMJ9aeDRDqdgW_aF75B3SbGv9QELw,20351
|
39
|
+
vivarium_public_health/risks/implementations/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
40
|
+
vivarium_public_health/risks/implementations/low_birth_weight_and_short_gestation.py,sha256=o3Uo6_AQoUHJeGo4HpB0PlouNqKst9NFmm3PRiTr5bg,17924
|
41
|
+
vivarium_public_health/treatment/__init__.py,sha256=wONElu9aJbBYwpYIovYPYaN_GYfVhPXtTeFWSdQMgA0,222
|
42
|
+
vivarium_public_health/treatment/magic_wand.py,sha256=i9N57-MEuQv5B6dQ5iVMTAdOPghYcgiRRz-dTzigf1s,1980
|
43
|
+
vivarium_public_health/treatment/scale_up.py,sha256=aKJmZ2G6N80n7oPkJM8IpqZOhftUBkAMBn4hR4EZzhE,7015
|
44
|
+
vivarium_public_health/treatment/therapeutic_inertia.py,sha256=8Z97s7GfcpfLu1U1ESJSqeEk4L__a3M0GbBV21MFg2s,2346
|
45
|
+
vivarium_public_health-3.0.5.dist-info/LICENSE.txt,sha256=mN4bNLUQNcN9njYRc_3jCZkfPySVpmM6MRps104FxA4,1548
|
46
|
+
vivarium_public_health-3.0.5.dist-info/METADATA,sha256=FX6CeaoApBMGJFO3USOMhAIsMpl7srL1gQIkUV8Ay54,4061
|
47
|
+
vivarium_public_health-3.0.5.dist-info/WHEEL,sha256=UvcQYKBHoFqaQd6LKyqHw9fxEolWLQnlzP0h_LgJAfI,91
|
48
|
+
vivarium_public_health-3.0.5.dist-info/top_level.txt,sha256=VVInlpzCFD0UNNhjOq_j-a29odzjwUwYFTGfvqbi4dY,23
|
49
|
+
vivarium_public_health-3.0.5.dist-info/RECORD,,
|
@@ -1,49 +0,0 @@
|
|
1
|
-
vivarium_public_health/__about__.py,sha256=RgWycPypKZS80TpSX7o41cREnG8PfguNHDHLuLyl820,487
|
2
|
-
vivarium_public_health/__init__.py,sha256=tomMOl3PI7O8GdxDWGBiBjT0Bwd31GpyQTYTzwIv108,361
|
3
|
-
vivarium_public_health/_version.py,sha256=3PslnGRHLeT8kAWbhtBM110cQkzH_QzfQO5_B6lHOuU,22
|
4
|
-
vivarium_public_health/utilities.py,sha256=5cl9jjVkOQ1UeXT4DjDMAhaBNNjAsDo-SVJwpv6FDw0,3071
|
5
|
-
vivarium_public_health/disease/__init__.py,sha256=RuuiRcvAJfX9WQGt_WZZjxN7Cu3E5rMTmuaRS-UaFPM,419
|
6
|
-
vivarium_public_health/disease/model.py,sha256=0WIYDEx-hwlUJp6Zl8m8bUMoWxuVkOWsJvh_YlZiOPs,8234
|
7
|
-
vivarium_public_health/disease/models.py,sha256=01UK7yB2zGPFzmlIpvhd-XnGe6vSCMDza3QTidgY7Nc,3479
|
8
|
-
vivarium_public_health/disease/special_disease.py,sha256=3vS1WsO__IwOK0Oe_CUmh3aaKrXIf2CANtmiqlS3pjc,14614
|
9
|
-
vivarium_public_health/disease/state.py,sha256=G9rmbpH-l9OZyM2-glLpV_Zefz800cNx6t-N-irg0t8,22106
|
10
|
-
vivarium_public_health/disease/transition.py,sha256=ZxYXZBo2EEXzuQCbaj2pHTyj61hYkdqBH1ce2Htdnb4,6412
|
11
|
-
vivarium_public_health/mslt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
12
|
-
vivarium_public_health/mslt/delay.py,sha256=X_MPxcHYkGHORW8RKPNbx5m85yilJK1_6DaCVQQUpiM,22582
|
13
|
-
vivarium_public_health/mslt/disease.py,sha256=FaA9bpKpkaopRCeKNHMh7qWuCtLpGdEyUEo59HuORyM,15684
|
14
|
-
vivarium_public_health/mslt/intervention.py,sha256=33HZqYo335H9nxILymoDqmBvmqTJDijRBv8i9u05pLY,10336
|
15
|
-
vivarium_public_health/mslt/magic_wand_components.py,sha256=pnl-7MwIJIus6UjtvVmM15pIZOCbSS1mNfP7nS2bAtw,3981
|
16
|
-
vivarium_public_health/mslt/observer.py,sha256=UUQBVH47-MhtcMX1_IpaGt2xqbCECY-Txx8Og_raCEk,13941
|
17
|
-
vivarium_public_health/mslt/population.py,sha256=6XedM2ZZzaU7U70GQLXj2VcyAvLp0Yjpq5rini-_g6s,7286
|
18
|
-
vivarium_public_health/plugins/__init__.py,sha256=oBW_zfgG_LbwfgTDjUe0btfy9FaDvAbtXho1zQFnz0Y,76
|
19
|
-
vivarium_public_health/plugins/parser.py,sha256=dlH-tafOGCFvOUZx_QdOkSScMCwH4CbqR8dwPwX7dVw,32851
|
20
|
-
vivarium_public_health/population/__init__.py,sha256=17rtbcNVK5LtCCxAex7P7Q_vYpwbeTepyf3nazS90Yc,225
|
21
|
-
vivarium_public_health/population/add_new_birth_cohorts.py,sha256=NhrPZBoFrHvYnwmG0Od_VCU_ptNECe7ZfdqUIqvOWrE,9157
|
22
|
-
vivarium_public_health/population/base_population.py,sha256=Xn0sjPOT9KJZKILr1NchCwQFarvb3qWtgQ3Uvu999UU,17091
|
23
|
-
vivarium_public_health/population/data_transformations.py,sha256=PsvE1-S-Q_K4viBgF2Ss0DaaoH0WyhRX26ZJYwJ0O84,22322
|
24
|
-
vivarium_public_health/population/mortality.py,sha256=8T5W4D3oxx-4wjHT-0P1jCLiQI6_zznGLuJ-wobF1BY,10272
|
25
|
-
vivarium_public_health/results/__init__.py,sha256=XKuX9HTXUur1kpHM7zuMSnkJxlg-W7eMAPmh8LP9Xp4,281
|
26
|
-
vivarium_public_health/results/columns.py,sha256=YUI43jdJ3KwvTrm2Gmxk7By2CJjNFzocLwYHhO2pnn0,447
|
27
|
-
vivarium_public_health/results/disability.py,sha256=ryb5SiTQ3MCTf5WPWk_1TPN6IC9Z_fY3Wd6XBv3Q9AY,7818
|
28
|
-
vivarium_public_health/results/disease.py,sha256=7xUcyxx_d2T3DQD-WFRHaRxb0qKIOCCpIGWNpEXzixg,8209
|
29
|
-
vivarium_public_health/results/mortality.py,sha256=4KUEPzzo1-kD4TdG0PeRMWW69aJcMQJtho9ED0cpErs,6865
|
30
|
-
vivarium_public_health/results/observer.py,sha256=mzQEmWpY910eRUpdIxsS9S9eDwDMKm6SB_60EeH4Zyo,3079
|
31
|
-
vivarium_public_health/results/risk.py,sha256=80kQoWrC4oxAMKAmPGpYLHk2k1GtzH1uzxrm8d619KA,4453
|
32
|
-
vivarium_public_health/results/simple_cause.py,sha256=sr8M8zxCqf2mqAGfc46WNXtML5hZV4fqnCMrRbyk1xY,561
|
33
|
-
vivarium_public_health/results/stratification.py,sha256=I7YWUjN2WtWshePwJM38XHTn4tp5qy6LHgP_pknJaPI,4692
|
34
|
-
vivarium_public_health/risks/__init__.py,sha256=z8DcnZGxqNVAyFZm2WAV-IVNGvrSS4izju_0DNe2Ghw,212
|
35
|
-
vivarium_public_health/risks/base_risk.py,sha256=CTKx3eywW1pi0XL6zoQfPu9tlgAfLqnJvGJ3wQ45SsQ,10494
|
36
|
-
vivarium_public_health/risks/data_transformations.py,sha256=xfhi1nbH49c-fO6q7-41ZJcHGWmpfVWFBhS2UQNztv4,9225
|
37
|
-
vivarium_public_health/risks/distributions.py,sha256=roQf8sluFGXlbTptl7KclXYyV_uLSkcYvEnBn_ugWQs,18198
|
38
|
-
vivarium_public_health/risks/effect.py,sha256=0B7x0IcoU8Kd6XlhtZbPH3qCMobC78mFEtGK67QsSJs,20410
|
39
|
-
vivarium_public_health/risks/implementations/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
40
|
-
vivarium_public_health/risks/implementations/low_birth_weight_and_short_gestation.py,sha256=MtxlBioQ_EdJb6a-1eAaOx5IxTfzhBEdHsWG_KGiPqA,17366
|
41
|
-
vivarium_public_health/treatment/__init__.py,sha256=wONElu9aJbBYwpYIovYPYaN_GYfVhPXtTeFWSdQMgA0,222
|
42
|
-
vivarium_public_health/treatment/magic_wand.py,sha256=i9N57-MEuQv5B6dQ5iVMTAdOPghYcgiRRz-dTzigf1s,1980
|
43
|
-
vivarium_public_health/treatment/scale_up.py,sha256=kifn7oKTjCJ2l1XiYm4U3FAH98USZ1gLPvf4z5-3wsU,7079
|
44
|
-
vivarium_public_health/treatment/therapeutic_inertia.py,sha256=uOvMgIj-Bl5qTk4z7ZnTPUwOVH-xGeKs1pw8WYuE1f4,2340
|
45
|
-
vivarium_public_health-3.0.3.dist-info/LICENSE.txt,sha256=mN4bNLUQNcN9njYRc_3jCZkfPySVpmM6MRps104FxA4,1548
|
46
|
-
vivarium_public_health-3.0.3.dist-info/METADATA,sha256=gkZN4BNaL61XIp1c3TLatmgAEUWE9myE94R7BpLb1_o,4061
|
47
|
-
vivarium_public_health-3.0.3.dist-info/WHEEL,sha256=Mdi9PDNwEZptOjTlUcAth7XJDFtKrHYaQMPulZeBCiQ,91
|
48
|
-
vivarium_public_health-3.0.3.dist-info/top_level.txt,sha256=VVInlpzCFD0UNNhjOq_j-a29odzjwUwYFTGfvqbi4dY,23
|
49
|
-
vivarium_public_health-3.0.3.dist-info/RECORD,,
|
{vivarium_public_health-3.0.3.dist-info → vivarium_public_health-3.0.5.dist-info}/LICENSE.txt
RENAMED
File without changes
|
{vivarium_public_health-3.0.3.dist-info → vivarium_public_health-3.0.5.dist-info}/top_level.txt
RENAMED
File without changes
|