vivarium-public-health 3.0.3__py3-none-any.whl → 3.0.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vivarium_public_health/_version.py +1 -1
- vivarium_public_health/disease/state.py +24 -19
- vivarium_public_health/mslt/delay.py +13 -5
- vivarium_public_health/mslt/disease.py +35 -14
- vivarium_public_health/mslt/intervention.py +12 -9
- vivarium_public_health/mslt/observer.py +56 -17
- vivarium_public_health/mslt/population.py +7 -10
- vivarium_public_health/plugins/parser.py +29 -80
- vivarium_public_health/population/add_new_birth_cohorts.py +8 -9
- vivarium_public_health/population/base_population.py +0 -5
- vivarium_public_health/population/data_transformations.py +1 -8
- vivarium_public_health/population/mortality.py +3 -3
- vivarium_public_health/results/columns.py +1 -1
- vivarium_public_health/results/disability.py +89 -15
- vivarium_public_health/results/disease.py +128 -5
- vivarium_public_health/results/mortality.py +82 -6
- vivarium_public_health/results/observer.py +151 -6
- vivarium_public_health/results/risk.py +66 -5
- vivarium_public_health/results/simple_cause.py +30 -5
- vivarium_public_health/results/stratification.py +39 -14
- vivarium_public_health/risks/base_risk.py +14 -16
- vivarium_public_health/risks/data_transformations.py +3 -1
- vivarium_public_health/risks/distributions.py +0 -1
- vivarium_public_health/risks/effect.py +31 -29
- vivarium_public_health/risks/implementations/low_birth_weight_and_short_gestation.py +51 -30
- vivarium_public_health/treatment/scale_up.py +6 -10
- vivarium_public_health/treatment/therapeutic_inertia.py +3 -1
- {vivarium_public_health-3.0.3.dist-info → vivarium_public_health-3.0.5.dist-info}/METADATA +1 -1
- vivarium_public_health-3.0.5.dist-info/RECORD +49 -0
- {vivarium_public_health-3.0.3.dist-info → vivarium_public_health-3.0.5.dist-info}/WHEEL +1 -1
- vivarium_public_health-3.0.3.dist-info/RECORD +0 -49
- {vivarium_public_health-3.0.3.dist-info → vivarium_public_health-3.0.5.dist-info}/LICENSE.txt +0 -0
- {vivarium_public_health-3.0.3.dist-info → vivarium_public_health-3.0.5.dist-info}/top_level.txt +0 -0
@@ -17,8 +17,6 @@ import scipy
|
|
17
17
|
from layered_config_tree import ConfigurationError
|
18
18
|
from vivarium import Component
|
19
19
|
from vivarium.framework.engine import Builder
|
20
|
-
from vivarium.framework.event import Event
|
21
|
-
from vivarium.framework.population import SimulantData
|
22
20
|
|
23
21
|
from vivarium_public_health.risks import Risk
|
24
22
|
from vivarium_public_health.risks.data_transformations import (
|
@@ -30,10 +28,12 @@ from vivarium_public_health.utilities import EntityString, TargetString, get_loo
|
|
30
28
|
|
31
29
|
|
32
30
|
class RiskEffect(Component):
|
33
|
-
"""A component to model the
|
34
|
-
|
35
|
-
builder.data or from parameters
|
36
|
-
|
31
|
+
"""A component to model the effect of a risk factor on an affected entity's target rate.
|
32
|
+
|
33
|
+
This component can source data either from builder.data or from parameters
|
34
|
+
supplied in the configuration.
|
35
|
+
|
36
|
+
For a risk named 'risk' that affects 'affected_risk' and 'affected_cause',
|
37
37
|
the configuration would look like:
|
38
38
|
|
39
39
|
.. code-block:: yaml
|
@@ -59,10 +59,7 @@ class RiskEffect(Component):
|
|
59
59
|
|
60
60
|
@property
|
61
61
|
def configuration_defaults(self) -> Dict[str, Any]:
|
62
|
-
"""
|
63
|
-
A dictionary containing the defaults for any configurations managed by
|
64
|
-
this component.
|
65
|
-
"""
|
62
|
+
"""Default values for any configurations managed by this component."""
|
66
63
|
return {
|
67
64
|
self.name: {
|
68
65
|
"data_sources": {
|
@@ -89,13 +86,14 @@ class RiskEffect(Component):
|
|
89
86
|
|
90
87
|
def __init__(self, risk: str, target: str):
|
91
88
|
"""
|
89
|
+
|
92
90
|
Parameters
|
93
91
|
----------
|
94
|
-
risk
|
92
|
+
risk
|
95
93
|
Type and name of risk factor, supplied in the form
|
96
94
|
"risk_type.risk_name" where risk_type should be singular (e.g.,
|
97
95
|
risk_factor instead of risk_factors).
|
98
|
-
target
|
96
|
+
target
|
99
97
|
Type, name, and target rate of entity to be affected by risk factor,
|
100
98
|
supplied in the form "entity_type.entity_name.measure"
|
101
99
|
where entity_type should be singular (e.g., cause instead of causes).
|
@@ -210,7 +208,9 @@ class RiskEffect(Component):
|
|
210
208
|
def rebin_relative_risk_data(
|
211
209
|
self, builder, relative_risk_data: pd.DataFrame
|
212
210
|
) -> pd.DataFrame:
|
213
|
-
"""
|
211
|
+
"""Rebin relative risk data.
|
212
|
+
|
213
|
+
When the polytomous risk is rebinned, matching relative risk needs to be rebinned.
|
214
214
|
After rebinning, rr for both exposed and unexposed categories should be the weighted sum of relative risk
|
215
215
|
of the component categories where weights are relative proportions of exposure of those categories.
|
216
216
|
For example, if cat1, cat2, cat3 are exposed categories and cat4 is unexposed with exposure [0.1,0.2,0.3,0.4],
|
@@ -319,18 +319,22 @@ class RiskEffect(Component):
|
|
319
319
|
|
320
320
|
|
321
321
|
class NonLogLinearRiskEffect(RiskEffect):
|
322
|
-
"""A component to model the
|
323
|
-
|
324
|
-
|
325
|
-
|
326
|
-
|
327
|
-
|
328
|
-
|
329
|
-
|
330
|
-
|
331
|
-
|
332
|
-
|
333
|
-
|
322
|
+
"""A component to model the exposure-parametrized effect of a risk factor.
|
323
|
+
|
324
|
+
More specifically, this models the effect of the risk factor on the target rate of
|
325
|
+
some affected entity.
|
326
|
+
|
327
|
+
This component:
|
328
|
+
1) reads TMRED data from the artifact and define the TMREL
|
329
|
+
2) calculates the relative risk at TMREL by linearly interpolating over
|
330
|
+
relative risk data defined in the configuration
|
331
|
+
3) divides relative risk data from configuration by RR at TMREL
|
332
|
+
and clip to be greater than 1
|
333
|
+
4) builds a LookupTable which returns the exposure and RR of the left and right edges
|
334
|
+
of the RR bin containing a simulant's exposure
|
335
|
+
5) uses this LookupTable to modify the target pipeline by linearly interpolating
|
336
|
+
a simulant's RR value and multiplying it by the intended target rate
|
337
|
+
|
334
338
|
"""
|
335
339
|
|
336
340
|
##############
|
@@ -339,10 +343,7 @@ class NonLogLinearRiskEffect(RiskEffect):
|
|
339
343
|
|
340
344
|
@property
|
341
345
|
def configuration_defaults(self) -> Dict[str, Any]:
|
342
|
-
"""
|
343
|
-
A dictionary containing the defaults for any configurations managed by
|
344
|
-
this component.
|
345
|
-
"""
|
346
|
+
"""Default values for any configurations managed by this component."""
|
346
347
|
return {
|
347
348
|
self.name: {
|
348
349
|
"data_sources": {
|
@@ -485,6 +486,7 @@ class NonLogLinearRiskEffect(RiskEffect):
|
|
485
486
|
##############
|
486
487
|
|
487
488
|
def validate_rr_data(self, rr_data: pd.DataFrame) -> None:
|
489
|
+
"""Validate the relative risk data."""
|
488
490
|
# check that rr_data has numeric parameter data
|
489
491
|
parameter_data_is_numeric = rr_data["parameter"].dtype.kind in "biufc"
|
490
492
|
if not parameter_data_is_numeric:
|
@@ -5,6 +5,7 @@ Low Birth Weight and Short Gestation
|
|
5
5
|
|
6
6
|
Low birth weight and short gestation (LBWSG) is a non-standard risk
|
7
7
|
implementation that has been used in several public health models.
|
8
|
+
|
8
9
|
"""
|
9
10
|
|
10
11
|
import pickle
|
@@ -39,12 +40,16 @@ class LBWSGDistribution(PolytomousDistribution):
|
|
39
40
|
self.category_intervals = self.get_category_intervals(builder)
|
40
41
|
|
41
42
|
def get_category_intervals(self, builder: Builder) -> Dict[str, Dict[str, pd.Interval]]:
|
42
|
-
"""
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
43
|
+
"""Gets the intervals for each category.
|
44
|
+
|
45
|
+
Parameters
|
46
|
+
----------
|
47
|
+
builder
|
48
|
+
The builder object.
|
49
|
+
|
50
|
+
Returns
|
51
|
+
-------
|
52
|
+
The intervals for each category.
|
48
53
|
"""
|
49
54
|
categories: Dict[str, str] = builder.data.load(f"{self.risk}.categories")
|
50
55
|
category_intervals = {
|
@@ -61,16 +66,19 @@ class LBWSGDistribution(PolytomousDistribution):
|
|
61
66
|
##################
|
62
67
|
|
63
68
|
def ppf(self, propensities: pd.DataFrame) -> pd.DataFrame:
|
64
|
-
"""
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
69
|
+
"""Calculate continuous exposures from propensities.
|
70
|
+
|
71
|
+
Parameters
|
72
|
+
----------
|
73
|
+
propensities
|
74
|
+
Propensities DataFrame for each simulant with three columns:
|
75
|
+
'categorical.propensity', 'birth_weight.propensity', and
|
76
|
+
'gestational_age.propensity'.
|
77
|
+
|
78
|
+
Returns
|
79
|
+
-------
|
80
|
+
A DataFrame with two columns for birth-weight and gestational age
|
81
|
+
exposures.
|
74
82
|
"""
|
75
83
|
|
76
84
|
categorical_exposure = super().ppf(propensities[f"{CATEGORICAL}_propensity"])
|
@@ -88,10 +96,11 @@ class LBWSGDistribution(PolytomousDistribution):
|
|
88
96
|
self,
|
89
97
|
axis: str,
|
90
98
|
propensity: pd.Series,
|
91
|
-
categorical_propensity: pd.Series = None,
|
92
|
-
categorical_exposure: pd.Series = None,
|
99
|
+
categorical_propensity: Optional[pd.Series] = None,
|
100
|
+
categorical_exposure: Optional[pd.Series] = None,
|
93
101
|
) -> pd.Series:
|
94
|
-
"""
|
102
|
+
"""Calculate continuous exposures from propensities for a single axis.
|
103
|
+
|
95
104
|
Takes an axis (either 'birth_weight' or 'gestational_age'), a propensity
|
96
105
|
and either a categorical propensity or a categorical exposure and
|
97
106
|
returns continuous exposures for that axis.
|
@@ -101,11 +110,27 @@ class LBWSGDistribution(PolytomousDistribution):
|
|
101
110
|
categorical exposure parameters pipeline
|
102
111
|
("risk_factor.low_birth_weight_and_short_gestation.exposure_parameters").
|
103
112
|
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
113
|
+
Parameters
|
114
|
+
----------
|
115
|
+
axis
|
116
|
+
The axis for which to calculate continuous exposures ('birth_weight'
|
117
|
+
or 'gestational_age').
|
118
|
+
propensity
|
119
|
+
The propensity for the axis.
|
120
|
+
categorical_propensity
|
121
|
+
The categorical propensity for the axis.
|
122
|
+
categorical_exposure
|
123
|
+
The categorical exposure for the axis.
|
124
|
+
|
125
|
+
Returns
|
126
|
+
-------
|
127
|
+
The continuous exposures for the axis.
|
128
|
+
|
129
|
+
Raises
|
130
|
+
------
|
131
|
+
ValueError
|
132
|
+
If neither categorical propensity nor categorical exposure is provided
|
133
|
+
or both are provided.
|
109
134
|
"""
|
110
135
|
|
111
136
|
if (categorical_propensity is None) == (categorical_exposure is None):
|
@@ -133,19 +158,15 @@ class LBWSGDistribution(PolytomousDistribution):
|
|
133
158
|
|
134
159
|
@staticmethod
|
135
160
|
def _parse_description(axis: str, description: str) -> pd.Interval:
|
136
|
-
"""
|
137
|
-
Parses a string corresponding to a low birth weight and short gestation
|
161
|
+
"""Parses a string corresponding to a low birth weight and short gestation
|
138
162
|
category to an Interval.
|
163
|
+
|
139
164
|
An example of a standard description:
|
140
165
|
'Neonatal preterm and LBWSG (estimation years) - [0, 24) wks, [0, 500) g'
|
141
166
|
An example of an edge case for gestational age:
|
142
167
|
'Neonatal preterm and LBWSG (estimation years) - [40, 42+] wks, [2000, 2500) g'
|
143
168
|
An example of an edge case of birth weight:
|
144
169
|
'Neonatal preterm and LBWSG (estimation years) - [36, 37) wks, [4000, 9999] g'
|
145
|
-
|
146
|
-
:param axis:
|
147
|
-
:param description:
|
148
|
-
:return:
|
149
170
|
"""
|
150
171
|
endpoints = {
|
151
172
|
BIRTH_WEIGHT: [
|
@@ -20,8 +20,7 @@ from vivarium_public_health.utilities import EntityString
|
|
20
20
|
|
21
21
|
|
22
22
|
class LinearScaleUp(Component):
|
23
|
-
"""
|
24
|
-
A model for applying a linear scale-up to an intervention.
|
23
|
+
"""A model for applying a linear scale-up to an intervention.
|
25
24
|
|
26
25
|
This component requires input data for beginning and end dates, as well as
|
27
26
|
beginning and end values. Scale-up start and end dates are by default the
|
@@ -75,10 +74,11 @@ class LinearScaleUp(Component):
|
|
75
74
|
|
76
75
|
def __init__(self, treatment: str):
|
77
76
|
"""
|
77
|
+
|
78
78
|
Parameters
|
79
79
|
----------
|
80
|
-
treatment
|
81
|
-
|
80
|
+
treatment
|
81
|
+
The type and name of a treatment, specified as "type.name". Type is singular.
|
82
82
|
"""
|
83
83
|
super().__init__()
|
84
84
|
self.treatment = EntityString(treatment)
|
@@ -113,8 +113,7 @@ class LinearScaleUp(Component):
|
|
113
113
|
return pd.Timestamp(scale_up_config["start"]), pd.Timestamp(scale_up_config["end"])
|
114
114
|
|
115
115
|
def get_scale_up_values(self, builder: Builder) -> Tuple[LookupTable, LookupTable]:
|
116
|
-
"""
|
117
|
-
Get the values at the start and end of the scale-up period.
|
116
|
+
"""Get the values at the start and end of the scale-up period.
|
118
117
|
|
119
118
|
Parameters
|
120
119
|
----------
|
@@ -123,7 +122,6 @@ class LinearScaleUp(Component):
|
|
123
122
|
|
124
123
|
Returns
|
125
124
|
-------
|
126
|
-
LookupTable
|
127
125
|
A tuple of lookup tables returning the values at the start and end
|
128
126
|
of the scale-up period.
|
129
127
|
"""
|
@@ -172,8 +170,7 @@ class LinearScaleUp(Component):
|
|
172
170
|
def get_endpoint_value_from_data(
|
173
171
|
self, builder: Builder, endpoint_type: str
|
174
172
|
) -> LookupTable:
|
175
|
-
"""
|
176
|
-
Get the value at the start or end of the scale-up period from data.
|
173
|
+
"""Get the value at the start or end of the scale-up period from data.
|
177
174
|
|
178
175
|
Parameters
|
179
176
|
----------
|
@@ -185,7 +182,6 @@ class LinearScaleUp(Component):
|
|
185
182
|
|
186
183
|
Returns
|
187
184
|
-------
|
188
|
-
LookupTable
|
189
185
|
A lookup table returning the value at the start or end of the
|
190
186
|
scale-up period.
|
191
187
|
"""
|
@@ -17,7 +17,9 @@ from vivarium.framework.engine import Builder
|
|
17
17
|
class TherapeuticInertia(Component):
|
18
18
|
"""Expose a therapeutic inertia pipeline that defines
|
19
19
|
a population-level therapeutic inertia.
|
20
|
-
|
20
|
+
|
21
|
+
This is the probability of treatment during a healthcare visit.
|
22
|
+
"""
|
21
23
|
|
22
24
|
CONFIGURATION_DEFAULTS = {
|
23
25
|
"therapeutic_inertia": {
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: vivarium_public_health
|
3
|
-
Version: 3.0.
|
3
|
+
Version: 3.0.5
|
4
4
|
Summary: Components for modelling diseases, risks, and interventions with ``vivarium``
|
5
5
|
Home-page: https://github.com/ihmeuw/vivarium_public_health
|
6
6
|
Author: The vivarium developers
|
@@ -0,0 +1,49 @@
|
|
1
|
+
vivarium_public_health/__about__.py,sha256=RgWycPypKZS80TpSX7o41cREnG8PfguNHDHLuLyl820,487
|
2
|
+
vivarium_public_health/__init__.py,sha256=tomMOl3PI7O8GdxDWGBiBjT0Bwd31GpyQTYTzwIv108,361
|
3
|
+
vivarium_public_health/_version.py,sha256=3kxZhPRWwAKER8BleEtUBQTUGwcBGPmrbjLu-HEi-hI,22
|
4
|
+
vivarium_public_health/utilities.py,sha256=5cl9jjVkOQ1UeXT4DjDMAhaBNNjAsDo-SVJwpv6FDw0,3071
|
5
|
+
vivarium_public_health/disease/__init__.py,sha256=RuuiRcvAJfX9WQGt_WZZjxN7Cu3E5rMTmuaRS-UaFPM,419
|
6
|
+
vivarium_public_health/disease/model.py,sha256=0WIYDEx-hwlUJp6Zl8m8bUMoWxuVkOWsJvh_YlZiOPs,8234
|
7
|
+
vivarium_public_health/disease/models.py,sha256=01UK7yB2zGPFzmlIpvhd-XnGe6vSCMDza3QTidgY7Nc,3479
|
8
|
+
vivarium_public_health/disease/special_disease.py,sha256=3vS1WsO__IwOK0Oe_CUmh3aaKrXIf2CANtmiqlS3pjc,14614
|
9
|
+
vivarium_public_health/disease/state.py,sha256=PUSDE1UlvoCPT6jPEyCTQO1bXjjYxqzdIa6-Bxpd-7I,22370
|
10
|
+
vivarium_public_health/disease/transition.py,sha256=ZxYXZBo2EEXzuQCbaj2pHTyj61hYkdqBH1ce2Htdnb4,6412
|
11
|
+
vivarium_public_health/mslt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
12
|
+
vivarium_public_health/mslt/delay.py,sha256=aOYjMpMSHEVlJs0FuC2gdq3uj6_vKmkhDjoBtC4i9G0,22812
|
13
|
+
vivarium_public_health/mslt/disease.py,sha256=TBqa7yj6k1oUbgkAe0rIgLpbdMLMFs4DiZ1Igi2BQBg,16663
|
14
|
+
vivarium_public_health/mslt/intervention.py,sha256=m6LT0CdJNwhz9X0FQNap1y9K5N4MhUDcvfDaHVukJZQ,10331
|
15
|
+
vivarium_public_health/mslt/magic_wand_components.py,sha256=pnl-7MwIJIus6UjtvVmM15pIZOCbSS1mNfP7nS2bAtw,3981
|
16
|
+
vivarium_public_health/mslt/observer.py,sha256=O4rysQzAGE5oDkdXb0E-qjD9TPFphQHTn7_3Qj7pBL0,15225
|
17
|
+
vivarium_public_health/mslt/population.py,sha256=v_p5VkjndAVJMuXaJQc3lAdzUWHlWCEQWH4A-c4phPA,7255
|
18
|
+
vivarium_public_health/plugins/__init__.py,sha256=oBW_zfgG_LbwfgTDjUe0btfy9FaDvAbtXho1zQFnz0Y,76
|
19
|
+
vivarium_public_health/plugins/parser.py,sha256=v78mj8awpdrB-oqK8udPI_7MZBChoKJOQN_e17fNEj8,31841
|
20
|
+
vivarium_public_health/population/__init__.py,sha256=17rtbcNVK5LtCCxAex7P7Q_vYpwbeTepyf3nazS90Yc,225
|
21
|
+
vivarium_public_health/population/add_new_birth_cohorts.py,sha256=k65Li0LYWl-JFHBUvLjJxkRv12EJw_FVxrOYgbd44q8,9078
|
22
|
+
vivarium_public_health/population/base_population.py,sha256=4lUc8EZwzj5Ba36lSmW9yyxcRuBSMLqi_8Fy69ssq5E,17026
|
23
|
+
vivarium_public_health/population/data_transformations.py,sha256=QVh_63Wwg9BUkaQm1pMSvBb-wsYrsgyADKIERAiEOVg,22188
|
24
|
+
vivarium_public_health/population/mortality.py,sha256=w7b_TUssHjRcnULdXu7MXKfZBjCrlYWbB94oO3JWogI,10264
|
25
|
+
vivarium_public_health/results/__init__.py,sha256=XKuX9HTXUur1kpHM7zuMSnkJxlg-W7eMAPmh8LP9Xp4,281
|
26
|
+
vivarium_public_health/results/columns.py,sha256=V-L3JgTcsk51Zx9PcUwSgaE1iZjuGyfZ8aShPjynadU,495
|
27
|
+
vivarium_public_health/results/disability.py,sha256=JQm3Q7CoGCT2AgxaoH6MKkvnq4xF83wfFmEvEOvTmvA,9876
|
28
|
+
vivarium_public_health/results/disease.py,sha256=OwxhPrfDsCnCZSaw8Yiq2AnibWikoqI-gM7xDdhFLcM,12529
|
29
|
+
vivarium_public_health/results/mortality.py,sha256=imH5OGze_rb0i60hmFs-JUjE6XXoH8Gt9wWeut0sk_M,9656
|
30
|
+
vivarium_public_health/results/observer.py,sha256=SQmKL1OCs2gDS8clIuJvZ3WiuspMkGEVDhnuNMJAvHc,7300
|
31
|
+
vivarium_public_health/results/risk.py,sha256=GS4qJVjW3MqsDeRDDac2etFQlqIluxOxIZFMy1Ytmp8,6622
|
32
|
+
vivarium_public_health/results/simple_cause.py,sha256=ibdE6KwhDfQWntCVkOEooBcmUydEoupmd3_poHSHyu8,1007
|
33
|
+
vivarium_public_health/results/stratification.py,sha256=4I3YGHVabNAZENE7YboOtWsWU4X-8LUBJ9iwYMbpl6E,5387
|
34
|
+
vivarium_public_health/risks/__init__.py,sha256=z8DcnZGxqNVAyFZm2WAV-IVNGvrSS4izju_0DNe2Ghw,212
|
35
|
+
vivarium_public_health/risks/base_risk.py,sha256=WhvB0RRYIsGsPQvJEWckcBlOVSh4Rx-B-VGZDSWWb7s,10416
|
36
|
+
vivarium_public_health/risks/data_transformations.py,sha256=SgdPKc95BBqgMNUdlAQM8k6iaXcpxnjk5B2ySTES1Yg,9269
|
37
|
+
vivarium_public_health/risks/distributions.py,sha256=7xCI2zSpnKUEWow4ywRirVbvbpeJaxo6g9us0-Lh0kE,18197
|
38
|
+
vivarium_public_health/risks/effect.py,sha256=Oc_3A0fbMDUBAJAMJ9aeDRDqdgW_aF75B3SbGv9QELw,20351
|
39
|
+
vivarium_public_health/risks/implementations/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
40
|
+
vivarium_public_health/risks/implementations/low_birth_weight_and_short_gestation.py,sha256=o3Uo6_AQoUHJeGo4HpB0PlouNqKst9NFmm3PRiTr5bg,17924
|
41
|
+
vivarium_public_health/treatment/__init__.py,sha256=wONElu9aJbBYwpYIovYPYaN_GYfVhPXtTeFWSdQMgA0,222
|
42
|
+
vivarium_public_health/treatment/magic_wand.py,sha256=i9N57-MEuQv5B6dQ5iVMTAdOPghYcgiRRz-dTzigf1s,1980
|
43
|
+
vivarium_public_health/treatment/scale_up.py,sha256=aKJmZ2G6N80n7oPkJM8IpqZOhftUBkAMBn4hR4EZzhE,7015
|
44
|
+
vivarium_public_health/treatment/therapeutic_inertia.py,sha256=8Z97s7GfcpfLu1U1ESJSqeEk4L__a3M0GbBV21MFg2s,2346
|
45
|
+
vivarium_public_health-3.0.5.dist-info/LICENSE.txt,sha256=mN4bNLUQNcN9njYRc_3jCZkfPySVpmM6MRps104FxA4,1548
|
46
|
+
vivarium_public_health-3.0.5.dist-info/METADATA,sha256=FX6CeaoApBMGJFO3USOMhAIsMpl7srL1gQIkUV8Ay54,4061
|
47
|
+
vivarium_public_health-3.0.5.dist-info/WHEEL,sha256=UvcQYKBHoFqaQd6LKyqHw9fxEolWLQnlzP0h_LgJAfI,91
|
48
|
+
vivarium_public_health-3.0.5.dist-info/top_level.txt,sha256=VVInlpzCFD0UNNhjOq_j-a29odzjwUwYFTGfvqbi4dY,23
|
49
|
+
vivarium_public_health-3.0.5.dist-info/RECORD,,
|
@@ -1,49 +0,0 @@
|
|
1
|
-
vivarium_public_health/__about__.py,sha256=RgWycPypKZS80TpSX7o41cREnG8PfguNHDHLuLyl820,487
|
2
|
-
vivarium_public_health/__init__.py,sha256=tomMOl3PI7O8GdxDWGBiBjT0Bwd31GpyQTYTzwIv108,361
|
3
|
-
vivarium_public_health/_version.py,sha256=3PslnGRHLeT8kAWbhtBM110cQkzH_QzfQO5_B6lHOuU,22
|
4
|
-
vivarium_public_health/utilities.py,sha256=5cl9jjVkOQ1UeXT4DjDMAhaBNNjAsDo-SVJwpv6FDw0,3071
|
5
|
-
vivarium_public_health/disease/__init__.py,sha256=RuuiRcvAJfX9WQGt_WZZjxN7Cu3E5rMTmuaRS-UaFPM,419
|
6
|
-
vivarium_public_health/disease/model.py,sha256=0WIYDEx-hwlUJp6Zl8m8bUMoWxuVkOWsJvh_YlZiOPs,8234
|
7
|
-
vivarium_public_health/disease/models.py,sha256=01UK7yB2zGPFzmlIpvhd-XnGe6vSCMDza3QTidgY7Nc,3479
|
8
|
-
vivarium_public_health/disease/special_disease.py,sha256=3vS1WsO__IwOK0Oe_CUmh3aaKrXIf2CANtmiqlS3pjc,14614
|
9
|
-
vivarium_public_health/disease/state.py,sha256=G9rmbpH-l9OZyM2-glLpV_Zefz800cNx6t-N-irg0t8,22106
|
10
|
-
vivarium_public_health/disease/transition.py,sha256=ZxYXZBo2EEXzuQCbaj2pHTyj61hYkdqBH1ce2Htdnb4,6412
|
11
|
-
vivarium_public_health/mslt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
12
|
-
vivarium_public_health/mslt/delay.py,sha256=X_MPxcHYkGHORW8RKPNbx5m85yilJK1_6DaCVQQUpiM,22582
|
13
|
-
vivarium_public_health/mslt/disease.py,sha256=FaA9bpKpkaopRCeKNHMh7qWuCtLpGdEyUEo59HuORyM,15684
|
14
|
-
vivarium_public_health/mslt/intervention.py,sha256=33HZqYo335H9nxILymoDqmBvmqTJDijRBv8i9u05pLY,10336
|
15
|
-
vivarium_public_health/mslt/magic_wand_components.py,sha256=pnl-7MwIJIus6UjtvVmM15pIZOCbSS1mNfP7nS2bAtw,3981
|
16
|
-
vivarium_public_health/mslt/observer.py,sha256=UUQBVH47-MhtcMX1_IpaGt2xqbCECY-Txx8Og_raCEk,13941
|
17
|
-
vivarium_public_health/mslt/population.py,sha256=6XedM2ZZzaU7U70GQLXj2VcyAvLp0Yjpq5rini-_g6s,7286
|
18
|
-
vivarium_public_health/plugins/__init__.py,sha256=oBW_zfgG_LbwfgTDjUe0btfy9FaDvAbtXho1zQFnz0Y,76
|
19
|
-
vivarium_public_health/plugins/parser.py,sha256=dlH-tafOGCFvOUZx_QdOkSScMCwH4CbqR8dwPwX7dVw,32851
|
20
|
-
vivarium_public_health/population/__init__.py,sha256=17rtbcNVK5LtCCxAex7P7Q_vYpwbeTepyf3nazS90Yc,225
|
21
|
-
vivarium_public_health/population/add_new_birth_cohorts.py,sha256=NhrPZBoFrHvYnwmG0Od_VCU_ptNECe7ZfdqUIqvOWrE,9157
|
22
|
-
vivarium_public_health/population/base_population.py,sha256=Xn0sjPOT9KJZKILr1NchCwQFarvb3qWtgQ3Uvu999UU,17091
|
23
|
-
vivarium_public_health/population/data_transformations.py,sha256=PsvE1-S-Q_K4viBgF2Ss0DaaoH0WyhRX26ZJYwJ0O84,22322
|
24
|
-
vivarium_public_health/population/mortality.py,sha256=8T5W4D3oxx-4wjHT-0P1jCLiQI6_zznGLuJ-wobF1BY,10272
|
25
|
-
vivarium_public_health/results/__init__.py,sha256=XKuX9HTXUur1kpHM7zuMSnkJxlg-W7eMAPmh8LP9Xp4,281
|
26
|
-
vivarium_public_health/results/columns.py,sha256=YUI43jdJ3KwvTrm2Gmxk7By2CJjNFzocLwYHhO2pnn0,447
|
27
|
-
vivarium_public_health/results/disability.py,sha256=ryb5SiTQ3MCTf5WPWk_1TPN6IC9Z_fY3Wd6XBv3Q9AY,7818
|
28
|
-
vivarium_public_health/results/disease.py,sha256=7xUcyxx_d2T3DQD-WFRHaRxb0qKIOCCpIGWNpEXzixg,8209
|
29
|
-
vivarium_public_health/results/mortality.py,sha256=4KUEPzzo1-kD4TdG0PeRMWW69aJcMQJtho9ED0cpErs,6865
|
30
|
-
vivarium_public_health/results/observer.py,sha256=mzQEmWpY910eRUpdIxsS9S9eDwDMKm6SB_60EeH4Zyo,3079
|
31
|
-
vivarium_public_health/results/risk.py,sha256=80kQoWrC4oxAMKAmPGpYLHk2k1GtzH1uzxrm8d619KA,4453
|
32
|
-
vivarium_public_health/results/simple_cause.py,sha256=sr8M8zxCqf2mqAGfc46WNXtML5hZV4fqnCMrRbyk1xY,561
|
33
|
-
vivarium_public_health/results/stratification.py,sha256=I7YWUjN2WtWshePwJM38XHTn4tp5qy6LHgP_pknJaPI,4692
|
34
|
-
vivarium_public_health/risks/__init__.py,sha256=z8DcnZGxqNVAyFZm2WAV-IVNGvrSS4izju_0DNe2Ghw,212
|
35
|
-
vivarium_public_health/risks/base_risk.py,sha256=CTKx3eywW1pi0XL6zoQfPu9tlgAfLqnJvGJ3wQ45SsQ,10494
|
36
|
-
vivarium_public_health/risks/data_transformations.py,sha256=xfhi1nbH49c-fO6q7-41ZJcHGWmpfVWFBhS2UQNztv4,9225
|
37
|
-
vivarium_public_health/risks/distributions.py,sha256=roQf8sluFGXlbTptl7KclXYyV_uLSkcYvEnBn_ugWQs,18198
|
38
|
-
vivarium_public_health/risks/effect.py,sha256=0B7x0IcoU8Kd6XlhtZbPH3qCMobC78mFEtGK67QsSJs,20410
|
39
|
-
vivarium_public_health/risks/implementations/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
40
|
-
vivarium_public_health/risks/implementations/low_birth_weight_and_short_gestation.py,sha256=MtxlBioQ_EdJb6a-1eAaOx5IxTfzhBEdHsWG_KGiPqA,17366
|
41
|
-
vivarium_public_health/treatment/__init__.py,sha256=wONElu9aJbBYwpYIovYPYaN_GYfVhPXtTeFWSdQMgA0,222
|
42
|
-
vivarium_public_health/treatment/magic_wand.py,sha256=i9N57-MEuQv5B6dQ5iVMTAdOPghYcgiRRz-dTzigf1s,1980
|
43
|
-
vivarium_public_health/treatment/scale_up.py,sha256=kifn7oKTjCJ2l1XiYm4U3FAH98USZ1gLPvf4z5-3wsU,7079
|
44
|
-
vivarium_public_health/treatment/therapeutic_inertia.py,sha256=uOvMgIj-Bl5qTk4z7ZnTPUwOVH-xGeKs1pw8WYuE1f4,2340
|
45
|
-
vivarium_public_health-3.0.3.dist-info/LICENSE.txt,sha256=mN4bNLUQNcN9njYRc_3jCZkfPySVpmM6MRps104FxA4,1548
|
46
|
-
vivarium_public_health-3.0.3.dist-info/METADATA,sha256=gkZN4BNaL61XIp1c3TLatmgAEUWE9myE94R7BpLb1_o,4061
|
47
|
-
vivarium_public_health-3.0.3.dist-info/WHEEL,sha256=Mdi9PDNwEZptOjTlUcAth7XJDFtKrHYaQMPulZeBCiQ,91
|
48
|
-
vivarium_public_health-3.0.3.dist-info/top_level.txt,sha256=VVInlpzCFD0UNNhjOq_j-a29odzjwUwYFTGfvqbi4dY,23
|
49
|
-
vivarium_public_health-3.0.3.dist-info/RECORD,,
|
{vivarium_public_health-3.0.3.dist-info → vivarium_public_health-3.0.5.dist-info}/LICENSE.txt
RENAMED
File without changes
|
{vivarium_public_health-3.0.3.dist-info → vivarium_public_health-3.0.5.dist-info}/top_level.txt
RENAMED
File without changes
|