vivarium-public-health 3.0.3__py3-none-any.whl → 3.0.5__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (33) hide show
  1. vivarium_public_health/_version.py +1 -1
  2. vivarium_public_health/disease/state.py +24 -19
  3. vivarium_public_health/mslt/delay.py +13 -5
  4. vivarium_public_health/mslt/disease.py +35 -14
  5. vivarium_public_health/mslt/intervention.py +12 -9
  6. vivarium_public_health/mslt/observer.py +56 -17
  7. vivarium_public_health/mslt/population.py +7 -10
  8. vivarium_public_health/plugins/parser.py +29 -80
  9. vivarium_public_health/population/add_new_birth_cohorts.py +8 -9
  10. vivarium_public_health/population/base_population.py +0 -5
  11. vivarium_public_health/population/data_transformations.py +1 -8
  12. vivarium_public_health/population/mortality.py +3 -3
  13. vivarium_public_health/results/columns.py +1 -1
  14. vivarium_public_health/results/disability.py +89 -15
  15. vivarium_public_health/results/disease.py +128 -5
  16. vivarium_public_health/results/mortality.py +82 -6
  17. vivarium_public_health/results/observer.py +151 -6
  18. vivarium_public_health/results/risk.py +66 -5
  19. vivarium_public_health/results/simple_cause.py +30 -5
  20. vivarium_public_health/results/stratification.py +39 -14
  21. vivarium_public_health/risks/base_risk.py +14 -16
  22. vivarium_public_health/risks/data_transformations.py +3 -1
  23. vivarium_public_health/risks/distributions.py +0 -1
  24. vivarium_public_health/risks/effect.py +31 -29
  25. vivarium_public_health/risks/implementations/low_birth_weight_and_short_gestation.py +51 -30
  26. vivarium_public_health/treatment/scale_up.py +6 -10
  27. vivarium_public_health/treatment/therapeutic_inertia.py +3 -1
  28. {vivarium_public_health-3.0.3.dist-info → vivarium_public_health-3.0.5.dist-info}/METADATA +1 -1
  29. vivarium_public_health-3.0.5.dist-info/RECORD +49 -0
  30. {vivarium_public_health-3.0.3.dist-info → vivarium_public_health-3.0.5.dist-info}/WHEEL +1 -1
  31. vivarium_public_health-3.0.3.dist-info/RECORD +0 -49
  32. {vivarium_public_health-3.0.3.dist-info → vivarium_public_health-3.0.5.dist-info}/LICENSE.txt +0 -0
  33. {vivarium_public_health-3.0.3.dist-info → vivarium_public_health-3.0.5.dist-info}/top_level.txt +0 -0
@@ -17,8 +17,6 @@ import scipy
17
17
  from layered_config_tree import ConfigurationError
18
18
  from vivarium import Component
19
19
  from vivarium.framework.engine import Builder
20
- from vivarium.framework.event import Event
21
- from vivarium.framework.population import SimulantData
22
20
 
23
21
  from vivarium_public_health.risks import Risk
24
22
  from vivarium_public_health.risks.data_transformations import (
@@ -30,10 +28,12 @@ from vivarium_public_health.utilities import EntityString, TargetString, get_loo
30
28
 
31
29
 
32
30
  class RiskEffect(Component):
33
- """A component to model the impact of a risk factor on the target rate of
34
- some affected entity. This component can source data either from
35
- builder.data or from parameters supplied in the configuration.
36
- For a risk named 'risk' that affects 'affected_risk' and 'affected_cause',
31
+ """A component to model the effect of a risk factor on an affected entity's target rate.
32
+
33
+ This component can source data either from builder.data or from parameters
34
+ supplied in the configuration.
35
+
36
+ For a risk named 'risk' that affects 'affected_risk' and 'affected_cause',
37
37
  the configuration would look like:
38
38
 
39
39
  .. code-block:: yaml
@@ -59,10 +59,7 @@ class RiskEffect(Component):
59
59
 
60
60
  @property
61
61
  def configuration_defaults(self) -> Dict[str, Any]:
62
- """
63
- A dictionary containing the defaults for any configurations managed by
64
- this component.
65
- """
62
+ """Default values for any configurations managed by this component."""
66
63
  return {
67
64
  self.name: {
68
65
  "data_sources": {
@@ -89,13 +86,14 @@ class RiskEffect(Component):
89
86
 
90
87
  def __init__(self, risk: str, target: str):
91
88
  """
89
+
92
90
  Parameters
93
91
  ----------
94
- risk :
92
+ risk
95
93
  Type and name of risk factor, supplied in the form
96
94
  "risk_type.risk_name" where risk_type should be singular (e.g.,
97
95
  risk_factor instead of risk_factors).
98
- target :
96
+ target
99
97
  Type, name, and target rate of entity to be affected by risk factor,
100
98
  supplied in the form "entity_type.entity_name.measure"
101
99
  where entity_type should be singular (e.g., cause instead of causes).
@@ -210,7 +208,9 @@ class RiskEffect(Component):
210
208
  def rebin_relative_risk_data(
211
209
  self, builder, relative_risk_data: pd.DataFrame
212
210
  ) -> pd.DataFrame:
213
- """When the polytomous risk is rebinned, matching relative risk needs to be rebinned.
211
+ """Rebin relative risk data.
212
+
213
+ When the polytomous risk is rebinned, matching relative risk needs to be rebinned.
214
214
  After rebinning, rr for both exposed and unexposed categories should be the weighted sum of relative risk
215
215
  of the component categories where weights are relative proportions of exposure of those categories.
216
216
  For example, if cat1, cat2, cat3 are exposed categories and cat4 is unexposed with exposure [0.1,0.2,0.3,0.4],
@@ -319,18 +319,22 @@ class RiskEffect(Component):
319
319
 
320
320
 
321
321
  class NonLogLinearRiskEffect(RiskEffect):
322
- """A component to model the impact of an exposure-parametrized risk factor on
323
- the target rate of some affected entity. This component will
324
-
325
- 1) read TMRED data from the artifact and define the TMREL
326
- 2) calculate the relative risk at TMREL by linearly interpolating over
327
- relative risk data defined in the configuration
328
- 3) divide relative risk data from configuration by RR at TMREL
329
- and clip to be greater than 1
330
- 4) build a LookupTable which returns the exposure and RR of the left and right edges
331
- of the RR bin containing a simulant's exposure
332
- 5) use this LookupTable to modify the target pipeline by linearly interpolating
333
- a simulant's RR value and multiplying it by the intended target rate
322
+ """A component to model the exposure-parametrized effect of a risk factor.
323
+
324
+ More specifically, this models the effect of the risk factor on the target rate of
325
+ some affected entity.
326
+
327
+ This component:
328
+ 1) reads TMRED data from the artifact and define the TMREL
329
+ 2) calculates the relative risk at TMREL by linearly interpolating over
330
+ relative risk data defined in the configuration
331
+ 3) divides relative risk data from configuration by RR at TMREL
332
+ and clip to be greater than 1
333
+ 4) builds a LookupTable which returns the exposure and RR of the left and right edges
334
+ of the RR bin containing a simulant's exposure
335
+ 5) uses this LookupTable to modify the target pipeline by linearly interpolating
336
+ a simulant's RR value and multiplying it by the intended target rate
337
+
334
338
  """
335
339
 
336
340
  ##############
@@ -339,10 +343,7 @@ class NonLogLinearRiskEffect(RiskEffect):
339
343
 
340
344
  @property
341
345
  def configuration_defaults(self) -> Dict[str, Any]:
342
- """
343
- A dictionary containing the defaults for any configurations managed by
344
- this component.
345
- """
346
+ """Default values for any configurations managed by this component."""
346
347
  return {
347
348
  self.name: {
348
349
  "data_sources": {
@@ -485,6 +486,7 @@ class NonLogLinearRiskEffect(RiskEffect):
485
486
  ##############
486
487
 
487
488
  def validate_rr_data(self, rr_data: pd.DataFrame) -> None:
489
+ """Validate the relative risk data."""
488
490
  # check that rr_data has numeric parameter data
489
491
  parameter_data_is_numeric = rr_data["parameter"].dtype.kind in "biufc"
490
492
  if not parameter_data_is_numeric:
@@ -5,6 +5,7 @@ Low Birth Weight and Short Gestation
5
5
 
6
6
  Low birth weight and short gestation (LBWSG) is a non-standard risk
7
7
  implementation that has been used in several public health models.
8
+
8
9
  """
9
10
 
10
11
  import pickle
@@ -39,12 +40,16 @@ class LBWSGDistribution(PolytomousDistribution):
39
40
  self.category_intervals = self.get_category_intervals(builder)
40
41
 
41
42
  def get_category_intervals(self, builder: Builder) -> Dict[str, Dict[str, pd.Interval]]:
42
- """
43
- Gets the intervals for each category. It is a dictionary from the string
44
- "birth_weight" or "gestational_age" to a dictionary from the category
45
- name to the interval
46
- :param builder:
47
- :return:
43
+ """Gets the intervals for each category.
44
+
45
+ Parameters
46
+ ----------
47
+ builder
48
+ The builder object.
49
+
50
+ Returns
51
+ -------
52
+ The intervals for each category.
48
53
  """
49
54
  categories: Dict[str, str] = builder.data.load(f"{self.risk}.categories")
50
55
  category_intervals = {
@@ -61,16 +66,19 @@ class LBWSGDistribution(PolytomousDistribution):
61
66
  ##################
62
67
 
63
68
  def ppf(self, propensities: pd.DataFrame) -> pd.DataFrame:
64
- """
65
- Takes a DataFrame with three columns: 'categorical.propensity',
66
- 'birth_weight.propensity', and 'gestational_age.propensity' which
67
- contain each of those propensities for each simulant.
68
-
69
- Returns a DataFrame with two columns for birth-weight and gestational
70
- age exposures.
71
-
72
- :param propensities:
73
- :return:
69
+ """Calculate continuous exposures from propensities.
70
+
71
+ Parameters
72
+ ----------
73
+ propensities
74
+ Propensities DataFrame for each simulant with three columns:
75
+ 'categorical.propensity', 'birth_weight.propensity', and
76
+ 'gestational_age.propensity'.
77
+
78
+ Returns
79
+ -------
80
+ A DataFrame with two columns for birth-weight and gestational age
81
+ exposures.
74
82
  """
75
83
 
76
84
  categorical_exposure = super().ppf(propensities[f"{CATEGORICAL}_propensity"])
@@ -88,10 +96,11 @@ class LBWSGDistribution(PolytomousDistribution):
88
96
  self,
89
97
  axis: str,
90
98
  propensity: pd.Series,
91
- categorical_propensity: pd.Series = None,
92
- categorical_exposure: pd.Series = None,
99
+ categorical_propensity: Optional[pd.Series] = None,
100
+ categorical_exposure: Optional[pd.Series] = None,
93
101
  ) -> pd.Series:
94
- """
102
+ """Calculate continuous exposures from propensities for a single axis.
103
+
95
104
  Takes an axis (either 'birth_weight' or 'gestational_age'), a propensity
96
105
  and either a categorical propensity or a categorical exposure and
97
106
  returns continuous exposures for that axis.
@@ -101,11 +110,27 @@ class LBWSGDistribution(PolytomousDistribution):
101
110
  categorical exposure parameters pipeline
102
111
  ("risk_factor.low_birth_weight_and_short_gestation.exposure_parameters").
103
112
 
104
- :param axis:
105
- :param propensity:
106
- :param categorical_propensity:
107
- :param categorical_exposure:
108
- :return:
113
+ Parameters
114
+ ----------
115
+ axis
116
+ The axis for which to calculate continuous exposures ('birth_weight'
117
+ or 'gestational_age').
118
+ propensity
119
+ The propensity for the axis.
120
+ categorical_propensity
121
+ The categorical propensity for the axis.
122
+ categorical_exposure
123
+ The categorical exposure for the axis.
124
+
125
+ Returns
126
+ -------
127
+ The continuous exposures for the axis.
128
+
129
+ Raises
130
+ ------
131
+ ValueError
132
+ If neither categorical propensity nor categorical exposure is provided
133
+ or both are provided.
109
134
  """
110
135
 
111
136
  if (categorical_propensity is None) == (categorical_exposure is None):
@@ -133,19 +158,15 @@ class LBWSGDistribution(PolytomousDistribution):
133
158
 
134
159
  @staticmethod
135
160
  def _parse_description(axis: str, description: str) -> pd.Interval:
136
- """
137
- Parses a string corresponding to a low birth weight and short gestation
161
+ """Parses a string corresponding to a low birth weight and short gestation
138
162
  category to an Interval.
163
+
139
164
  An example of a standard description:
140
165
  'Neonatal preterm and LBWSG (estimation years) - [0, 24) wks, [0, 500) g'
141
166
  An example of an edge case for gestational age:
142
167
  'Neonatal preterm and LBWSG (estimation years) - [40, 42+] wks, [2000, 2500) g'
143
168
  An example of an edge case of birth weight:
144
169
  'Neonatal preterm and LBWSG (estimation years) - [36, 37) wks, [4000, 9999] g'
145
-
146
- :param axis:
147
- :param description:
148
- :return:
149
170
  """
150
171
  endpoints = {
151
172
  BIRTH_WEIGHT: [
@@ -20,8 +20,7 @@ from vivarium_public_health.utilities import EntityString
20
20
 
21
21
 
22
22
  class LinearScaleUp(Component):
23
- """
24
- A model for applying a linear scale-up to an intervention.
23
+ """A model for applying a linear scale-up to an intervention.
25
24
 
26
25
  This component requires input data for beginning and end dates, as well as
27
26
  beginning and end values. Scale-up start and end dates are by default the
@@ -75,10 +74,11 @@ class LinearScaleUp(Component):
75
74
 
76
75
  def __init__(self, treatment: str):
77
76
  """
77
+
78
78
  Parameters
79
79
  ----------
80
- treatment :
81
- the type and name of a treatment, specified as "type.name". Type is singular.
80
+ treatment
81
+ The type and name of a treatment, specified as "type.name". Type is singular.
82
82
  """
83
83
  super().__init__()
84
84
  self.treatment = EntityString(treatment)
@@ -113,8 +113,7 @@ class LinearScaleUp(Component):
113
113
  return pd.Timestamp(scale_up_config["start"]), pd.Timestamp(scale_up_config["end"])
114
114
 
115
115
  def get_scale_up_values(self, builder: Builder) -> Tuple[LookupTable, LookupTable]:
116
- """
117
- Get the values at the start and end of the scale-up period.
116
+ """Get the values at the start and end of the scale-up period.
118
117
 
119
118
  Parameters
120
119
  ----------
@@ -123,7 +122,6 @@ class LinearScaleUp(Component):
123
122
 
124
123
  Returns
125
124
  -------
126
- LookupTable
127
125
  A tuple of lookup tables returning the values at the start and end
128
126
  of the scale-up period.
129
127
  """
@@ -172,8 +170,7 @@ class LinearScaleUp(Component):
172
170
  def get_endpoint_value_from_data(
173
171
  self, builder: Builder, endpoint_type: str
174
172
  ) -> LookupTable:
175
- """
176
- Get the value at the start or end of the scale-up period from data.
173
+ """Get the value at the start or end of the scale-up period from data.
177
174
 
178
175
  Parameters
179
176
  ----------
@@ -185,7 +182,6 @@ class LinearScaleUp(Component):
185
182
 
186
183
  Returns
187
184
  -------
188
- LookupTable
189
185
  A lookup table returning the value at the start or end of the
190
186
  scale-up period.
191
187
  """
@@ -17,7 +17,9 @@ from vivarium.framework.engine import Builder
17
17
  class TherapeuticInertia(Component):
18
18
  """Expose a therapeutic inertia pipeline that defines
19
19
  a population-level therapeutic inertia.
20
- This is the probability of treatment during a healthcare visit."""
20
+
21
+ This is the probability of treatment during a healthcare visit.
22
+ """
21
23
 
22
24
  CONFIGURATION_DEFAULTS = {
23
25
  "therapeutic_inertia": {
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: vivarium_public_health
3
- Version: 3.0.3
3
+ Version: 3.0.5
4
4
  Summary: Components for modelling diseases, risks, and interventions with ``vivarium``
5
5
  Home-page: https://github.com/ihmeuw/vivarium_public_health
6
6
  Author: The vivarium developers
@@ -0,0 +1,49 @@
1
+ vivarium_public_health/__about__.py,sha256=RgWycPypKZS80TpSX7o41cREnG8PfguNHDHLuLyl820,487
2
+ vivarium_public_health/__init__.py,sha256=tomMOl3PI7O8GdxDWGBiBjT0Bwd31GpyQTYTzwIv108,361
3
+ vivarium_public_health/_version.py,sha256=3kxZhPRWwAKER8BleEtUBQTUGwcBGPmrbjLu-HEi-hI,22
4
+ vivarium_public_health/utilities.py,sha256=5cl9jjVkOQ1UeXT4DjDMAhaBNNjAsDo-SVJwpv6FDw0,3071
5
+ vivarium_public_health/disease/__init__.py,sha256=RuuiRcvAJfX9WQGt_WZZjxN7Cu3E5rMTmuaRS-UaFPM,419
6
+ vivarium_public_health/disease/model.py,sha256=0WIYDEx-hwlUJp6Zl8m8bUMoWxuVkOWsJvh_YlZiOPs,8234
7
+ vivarium_public_health/disease/models.py,sha256=01UK7yB2zGPFzmlIpvhd-XnGe6vSCMDza3QTidgY7Nc,3479
8
+ vivarium_public_health/disease/special_disease.py,sha256=3vS1WsO__IwOK0Oe_CUmh3aaKrXIf2CANtmiqlS3pjc,14614
9
+ vivarium_public_health/disease/state.py,sha256=PUSDE1UlvoCPT6jPEyCTQO1bXjjYxqzdIa6-Bxpd-7I,22370
10
+ vivarium_public_health/disease/transition.py,sha256=ZxYXZBo2EEXzuQCbaj2pHTyj61hYkdqBH1ce2Htdnb4,6412
11
+ vivarium_public_health/mslt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
12
+ vivarium_public_health/mslt/delay.py,sha256=aOYjMpMSHEVlJs0FuC2gdq3uj6_vKmkhDjoBtC4i9G0,22812
13
+ vivarium_public_health/mslt/disease.py,sha256=TBqa7yj6k1oUbgkAe0rIgLpbdMLMFs4DiZ1Igi2BQBg,16663
14
+ vivarium_public_health/mslt/intervention.py,sha256=m6LT0CdJNwhz9X0FQNap1y9K5N4MhUDcvfDaHVukJZQ,10331
15
+ vivarium_public_health/mslt/magic_wand_components.py,sha256=pnl-7MwIJIus6UjtvVmM15pIZOCbSS1mNfP7nS2bAtw,3981
16
+ vivarium_public_health/mslt/observer.py,sha256=O4rysQzAGE5oDkdXb0E-qjD9TPFphQHTn7_3Qj7pBL0,15225
17
+ vivarium_public_health/mslt/population.py,sha256=v_p5VkjndAVJMuXaJQc3lAdzUWHlWCEQWH4A-c4phPA,7255
18
+ vivarium_public_health/plugins/__init__.py,sha256=oBW_zfgG_LbwfgTDjUe0btfy9FaDvAbtXho1zQFnz0Y,76
19
+ vivarium_public_health/plugins/parser.py,sha256=v78mj8awpdrB-oqK8udPI_7MZBChoKJOQN_e17fNEj8,31841
20
+ vivarium_public_health/population/__init__.py,sha256=17rtbcNVK5LtCCxAex7P7Q_vYpwbeTepyf3nazS90Yc,225
21
+ vivarium_public_health/population/add_new_birth_cohorts.py,sha256=k65Li0LYWl-JFHBUvLjJxkRv12EJw_FVxrOYgbd44q8,9078
22
+ vivarium_public_health/population/base_population.py,sha256=4lUc8EZwzj5Ba36lSmW9yyxcRuBSMLqi_8Fy69ssq5E,17026
23
+ vivarium_public_health/population/data_transformations.py,sha256=QVh_63Wwg9BUkaQm1pMSvBb-wsYrsgyADKIERAiEOVg,22188
24
+ vivarium_public_health/population/mortality.py,sha256=w7b_TUssHjRcnULdXu7MXKfZBjCrlYWbB94oO3JWogI,10264
25
+ vivarium_public_health/results/__init__.py,sha256=XKuX9HTXUur1kpHM7zuMSnkJxlg-W7eMAPmh8LP9Xp4,281
26
+ vivarium_public_health/results/columns.py,sha256=V-L3JgTcsk51Zx9PcUwSgaE1iZjuGyfZ8aShPjynadU,495
27
+ vivarium_public_health/results/disability.py,sha256=JQm3Q7CoGCT2AgxaoH6MKkvnq4xF83wfFmEvEOvTmvA,9876
28
+ vivarium_public_health/results/disease.py,sha256=OwxhPrfDsCnCZSaw8Yiq2AnibWikoqI-gM7xDdhFLcM,12529
29
+ vivarium_public_health/results/mortality.py,sha256=imH5OGze_rb0i60hmFs-JUjE6XXoH8Gt9wWeut0sk_M,9656
30
+ vivarium_public_health/results/observer.py,sha256=SQmKL1OCs2gDS8clIuJvZ3WiuspMkGEVDhnuNMJAvHc,7300
31
+ vivarium_public_health/results/risk.py,sha256=GS4qJVjW3MqsDeRDDac2etFQlqIluxOxIZFMy1Ytmp8,6622
32
+ vivarium_public_health/results/simple_cause.py,sha256=ibdE6KwhDfQWntCVkOEooBcmUydEoupmd3_poHSHyu8,1007
33
+ vivarium_public_health/results/stratification.py,sha256=4I3YGHVabNAZENE7YboOtWsWU4X-8LUBJ9iwYMbpl6E,5387
34
+ vivarium_public_health/risks/__init__.py,sha256=z8DcnZGxqNVAyFZm2WAV-IVNGvrSS4izju_0DNe2Ghw,212
35
+ vivarium_public_health/risks/base_risk.py,sha256=WhvB0RRYIsGsPQvJEWckcBlOVSh4Rx-B-VGZDSWWb7s,10416
36
+ vivarium_public_health/risks/data_transformations.py,sha256=SgdPKc95BBqgMNUdlAQM8k6iaXcpxnjk5B2ySTES1Yg,9269
37
+ vivarium_public_health/risks/distributions.py,sha256=7xCI2zSpnKUEWow4ywRirVbvbpeJaxo6g9us0-Lh0kE,18197
38
+ vivarium_public_health/risks/effect.py,sha256=Oc_3A0fbMDUBAJAMJ9aeDRDqdgW_aF75B3SbGv9QELw,20351
39
+ vivarium_public_health/risks/implementations/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
40
+ vivarium_public_health/risks/implementations/low_birth_weight_and_short_gestation.py,sha256=o3Uo6_AQoUHJeGo4HpB0PlouNqKst9NFmm3PRiTr5bg,17924
41
+ vivarium_public_health/treatment/__init__.py,sha256=wONElu9aJbBYwpYIovYPYaN_GYfVhPXtTeFWSdQMgA0,222
42
+ vivarium_public_health/treatment/magic_wand.py,sha256=i9N57-MEuQv5B6dQ5iVMTAdOPghYcgiRRz-dTzigf1s,1980
43
+ vivarium_public_health/treatment/scale_up.py,sha256=aKJmZ2G6N80n7oPkJM8IpqZOhftUBkAMBn4hR4EZzhE,7015
44
+ vivarium_public_health/treatment/therapeutic_inertia.py,sha256=8Z97s7GfcpfLu1U1ESJSqeEk4L__a3M0GbBV21MFg2s,2346
45
+ vivarium_public_health-3.0.5.dist-info/LICENSE.txt,sha256=mN4bNLUQNcN9njYRc_3jCZkfPySVpmM6MRps104FxA4,1548
46
+ vivarium_public_health-3.0.5.dist-info/METADATA,sha256=FX6CeaoApBMGJFO3USOMhAIsMpl7srL1gQIkUV8Ay54,4061
47
+ vivarium_public_health-3.0.5.dist-info/WHEEL,sha256=UvcQYKBHoFqaQd6LKyqHw9fxEolWLQnlzP0h_LgJAfI,91
48
+ vivarium_public_health-3.0.5.dist-info/top_level.txt,sha256=VVInlpzCFD0UNNhjOq_j-a29odzjwUwYFTGfvqbi4dY,23
49
+ vivarium_public_health-3.0.5.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (73.0.1)
2
+ Generator: setuptools (74.0.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,49 +0,0 @@
1
- vivarium_public_health/__about__.py,sha256=RgWycPypKZS80TpSX7o41cREnG8PfguNHDHLuLyl820,487
2
- vivarium_public_health/__init__.py,sha256=tomMOl3PI7O8GdxDWGBiBjT0Bwd31GpyQTYTzwIv108,361
3
- vivarium_public_health/_version.py,sha256=3PslnGRHLeT8kAWbhtBM110cQkzH_QzfQO5_B6lHOuU,22
4
- vivarium_public_health/utilities.py,sha256=5cl9jjVkOQ1UeXT4DjDMAhaBNNjAsDo-SVJwpv6FDw0,3071
5
- vivarium_public_health/disease/__init__.py,sha256=RuuiRcvAJfX9WQGt_WZZjxN7Cu3E5rMTmuaRS-UaFPM,419
6
- vivarium_public_health/disease/model.py,sha256=0WIYDEx-hwlUJp6Zl8m8bUMoWxuVkOWsJvh_YlZiOPs,8234
7
- vivarium_public_health/disease/models.py,sha256=01UK7yB2zGPFzmlIpvhd-XnGe6vSCMDza3QTidgY7Nc,3479
8
- vivarium_public_health/disease/special_disease.py,sha256=3vS1WsO__IwOK0Oe_CUmh3aaKrXIf2CANtmiqlS3pjc,14614
9
- vivarium_public_health/disease/state.py,sha256=G9rmbpH-l9OZyM2-glLpV_Zefz800cNx6t-N-irg0t8,22106
10
- vivarium_public_health/disease/transition.py,sha256=ZxYXZBo2EEXzuQCbaj2pHTyj61hYkdqBH1ce2Htdnb4,6412
11
- vivarium_public_health/mslt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
12
- vivarium_public_health/mslt/delay.py,sha256=X_MPxcHYkGHORW8RKPNbx5m85yilJK1_6DaCVQQUpiM,22582
13
- vivarium_public_health/mslt/disease.py,sha256=FaA9bpKpkaopRCeKNHMh7qWuCtLpGdEyUEo59HuORyM,15684
14
- vivarium_public_health/mslt/intervention.py,sha256=33HZqYo335H9nxILymoDqmBvmqTJDijRBv8i9u05pLY,10336
15
- vivarium_public_health/mslt/magic_wand_components.py,sha256=pnl-7MwIJIus6UjtvVmM15pIZOCbSS1mNfP7nS2bAtw,3981
16
- vivarium_public_health/mslt/observer.py,sha256=UUQBVH47-MhtcMX1_IpaGt2xqbCECY-Txx8Og_raCEk,13941
17
- vivarium_public_health/mslt/population.py,sha256=6XedM2ZZzaU7U70GQLXj2VcyAvLp0Yjpq5rini-_g6s,7286
18
- vivarium_public_health/plugins/__init__.py,sha256=oBW_zfgG_LbwfgTDjUe0btfy9FaDvAbtXho1zQFnz0Y,76
19
- vivarium_public_health/plugins/parser.py,sha256=dlH-tafOGCFvOUZx_QdOkSScMCwH4CbqR8dwPwX7dVw,32851
20
- vivarium_public_health/population/__init__.py,sha256=17rtbcNVK5LtCCxAex7P7Q_vYpwbeTepyf3nazS90Yc,225
21
- vivarium_public_health/population/add_new_birth_cohorts.py,sha256=NhrPZBoFrHvYnwmG0Od_VCU_ptNECe7ZfdqUIqvOWrE,9157
22
- vivarium_public_health/population/base_population.py,sha256=Xn0sjPOT9KJZKILr1NchCwQFarvb3qWtgQ3Uvu999UU,17091
23
- vivarium_public_health/population/data_transformations.py,sha256=PsvE1-S-Q_K4viBgF2Ss0DaaoH0WyhRX26ZJYwJ0O84,22322
24
- vivarium_public_health/population/mortality.py,sha256=8T5W4D3oxx-4wjHT-0P1jCLiQI6_zznGLuJ-wobF1BY,10272
25
- vivarium_public_health/results/__init__.py,sha256=XKuX9HTXUur1kpHM7zuMSnkJxlg-W7eMAPmh8LP9Xp4,281
26
- vivarium_public_health/results/columns.py,sha256=YUI43jdJ3KwvTrm2Gmxk7By2CJjNFzocLwYHhO2pnn0,447
27
- vivarium_public_health/results/disability.py,sha256=ryb5SiTQ3MCTf5WPWk_1TPN6IC9Z_fY3Wd6XBv3Q9AY,7818
28
- vivarium_public_health/results/disease.py,sha256=7xUcyxx_d2T3DQD-WFRHaRxb0qKIOCCpIGWNpEXzixg,8209
29
- vivarium_public_health/results/mortality.py,sha256=4KUEPzzo1-kD4TdG0PeRMWW69aJcMQJtho9ED0cpErs,6865
30
- vivarium_public_health/results/observer.py,sha256=mzQEmWpY910eRUpdIxsS9S9eDwDMKm6SB_60EeH4Zyo,3079
31
- vivarium_public_health/results/risk.py,sha256=80kQoWrC4oxAMKAmPGpYLHk2k1GtzH1uzxrm8d619KA,4453
32
- vivarium_public_health/results/simple_cause.py,sha256=sr8M8zxCqf2mqAGfc46WNXtML5hZV4fqnCMrRbyk1xY,561
33
- vivarium_public_health/results/stratification.py,sha256=I7YWUjN2WtWshePwJM38XHTn4tp5qy6LHgP_pknJaPI,4692
34
- vivarium_public_health/risks/__init__.py,sha256=z8DcnZGxqNVAyFZm2WAV-IVNGvrSS4izju_0DNe2Ghw,212
35
- vivarium_public_health/risks/base_risk.py,sha256=CTKx3eywW1pi0XL6zoQfPu9tlgAfLqnJvGJ3wQ45SsQ,10494
36
- vivarium_public_health/risks/data_transformations.py,sha256=xfhi1nbH49c-fO6q7-41ZJcHGWmpfVWFBhS2UQNztv4,9225
37
- vivarium_public_health/risks/distributions.py,sha256=roQf8sluFGXlbTptl7KclXYyV_uLSkcYvEnBn_ugWQs,18198
38
- vivarium_public_health/risks/effect.py,sha256=0B7x0IcoU8Kd6XlhtZbPH3qCMobC78mFEtGK67QsSJs,20410
39
- vivarium_public_health/risks/implementations/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
40
- vivarium_public_health/risks/implementations/low_birth_weight_and_short_gestation.py,sha256=MtxlBioQ_EdJb6a-1eAaOx5IxTfzhBEdHsWG_KGiPqA,17366
41
- vivarium_public_health/treatment/__init__.py,sha256=wONElu9aJbBYwpYIovYPYaN_GYfVhPXtTeFWSdQMgA0,222
42
- vivarium_public_health/treatment/magic_wand.py,sha256=i9N57-MEuQv5B6dQ5iVMTAdOPghYcgiRRz-dTzigf1s,1980
43
- vivarium_public_health/treatment/scale_up.py,sha256=kifn7oKTjCJ2l1XiYm4U3FAH98USZ1gLPvf4z5-3wsU,7079
44
- vivarium_public_health/treatment/therapeutic_inertia.py,sha256=uOvMgIj-Bl5qTk4z7ZnTPUwOVH-xGeKs1pw8WYuE1f4,2340
45
- vivarium_public_health-3.0.3.dist-info/LICENSE.txt,sha256=mN4bNLUQNcN9njYRc_3jCZkfPySVpmM6MRps104FxA4,1548
46
- vivarium_public_health-3.0.3.dist-info/METADATA,sha256=gkZN4BNaL61XIp1c3TLatmgAEUWE9myE94R7BpLb1_o,4061
47
- vivarium_public_health-3.0.3.dist-info/WHEEL,sha256=Mdi9PDNwEZptOjTlUcAth7XJDFtKrHYaQMPulZeBCiQ,91
48
- vivarium_public_health-3.0.3.dist-info/top_level.txt,sha256=VVInlpzCFD0UNNhjOq_j-a29odzjwUwYFTGfvqbi4dY,23
49
- vivarium_public_health-3.0.3.dist-info/RECORD,,