vivarium-public-health 3.0.3__py3-none-any.whl → 3.0.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vivarium_public_health/_version.py +1 -1
- vivarium_public_health/disease/state.py +24 -19
- vivarium_public_health/mslt/delay.py +13 -5
- vivarium_public_health/mslt/disease.py +35 -14
- vivarium_public_health/mslt/intervention.py +12 -9
- vivarium_public_health/mslt/observer.py +56 -17
- vivarium_public_health/mslt/population.py +7 -10
- vivarium_public_health/plugins/parser.py +29 -80
- vivarium_public_health/population/add_new_birth_cohorts.py +8 -9
- vivarium_public_health/population/base_population.py +0 -5
- vivarium_public_health/population/data_transformations.py +1 -8
- vivarium_public_health/population/mortality.py +3 -3
- vivarium_public_health/results/columns.py +1 -1
- vivarium_public_health/results/disability.py +89 -15
- vivarium_public_health/results/disease.py +128 -5
- vivarium_public_health/results/mortality.py +82 -6
- vivarium_public_health/results/observer.py +151 -6
- vivarium_public_health/results/risk.py +66 -5
- vivarium_public_health/results/simple_cause.py +30 -5
- vivarium_public_health/results/stratification.py +39 -14
- vivarium_public_health/risks/base_risk.py +14 -16
- vivarium_public_health/risks/data_transformations.py +3 -1
- vivarium_public_health/risks/distributions.py +0 -1
- vivarium_public_health/risks/effect.py +31 -29
- vivarium_public_health/risks/implementations/low_birth_weight_and_short_gestation.py +51 -30
- vivarium_public_health/treatment/scale_up.py +6 -10
- vivarium_public_health/treatment/therapeutic_inertia.py +3 -1
- {vivarium_public_health-3.0.3.dist-info → vivarium_public_health-3.0.5.dist-info}/METADATA +1 -1
- vivarium_public_health-3.0.5.dist-info/RECORD +49 -0
- {vivarium_public_health-3.0.3.dist-info → vivarium_public_health-3.0.5.dist-info}/WHEEL +1 -1
- vivarium_public_health-3.0.3.dist-info/RECORD +0 -49
- {vivarium_public_health-3.0.3.dist-info → vivarium_public_health-3.0.5.dist-info}/LICENSE.txt +0 -0
- {vivarium_public_health-3.0.3.dist-info → vivarium_public_health-3.0.5.dist-info}/top_level.txt +0 -0
@@ -1,14 +1,14 @@
|
|
1
1
|
"""
|
2
|
-
|
3
|
-
Disability
|
4
|
-
|
2
|
+
====================
|
3
|
+
Disability Observers
|
4
|
+
====================
|
5
5
|
|
6
6
|
This module contains tools for observing years lived with disability (YLDs)
|
7
7
|
in the simulation.
|
8
8
|
|
9
9
|
"""
|
10
10
|
|
11
|
-
from typing import
|
11
|
+
from typing import Union
|
12
12
|
|
13
13
|
import pandas as pd
|
14
14
|
from layered_config_tree import LayeredConfigTree
|
@@ -42,6 +42,17 @@ class DisabilityObserver(PublicHealthObserver):
|
|
42
42
|
- "sex"
|
43
43
|
include:
|
44
44
|
- "sample_stratification"
|
45
|
+
Attributes
|
46
|
+
----------
|
47
|
+
disability_weight_pipeline_name
|
48
|
+
The name of the pipeline that produces disability weights.
|
49
|
+
step_size
|
50
|
+
The time step size of the simulation.
|
51
|
+
disability_weight
|
52
|
+
The pipeline that produces disability weights.
|
53
|
+
causes_of_disability
|
54
|
+
The causes of disability to be observed.
|
55
|
+
|
45
56
|
"""
|
46
57
|
|
47
58
|
##############
|
@@ -50,7 +61,7 @@ class DisabilityObserver(PublicHealthObserver):
|
|
50
61
|
|
51
62
|
@property
|
52
63
|
def disability_classes(self) -> list[type]:
|
53
|
-
"""The classes to be considered
|
64
|
+
"""The classes to be considered as causes of disability."""
|
54
65
|
return [DiseaseState, RiskAttributableDisease]
|
55
66
|
|
56
67
|
#####################
|
@@ -66,23 +77,32 @@ class DisabilityObserver(PublicHealthObserver):
|
|
66
77
|
#################
|
67
78
|
|
68
79
|
def setup(self, builder: Builder) -> None:
|
80
|
+
"""Set up the observer."""
|
69
81
|
self.step_size = pd.Timedelta(days=builder.configuration.time.step_size)
|
70
82
|
self.disability_weight = self.get_disability_weight_pipeline(builder)
|
71
83
|
self.set_causes_of_disability(builder)
|
72
84
|
|
73
85
|
def set_causes_of_disability(self, builder: Builder) -> None:
|
74
|
-
"""Set the causes of disability to be observed
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
86
|
+
"""Set the causes of disability to be observed.
|
87
|
+
|
88
|
+
The causes to be observed are any registered components of class types
|
89
|
+
found in the ``disability_classes`` property *excluding* any listed in
|
90
|
+
the model spec as ``excluded_categories``.
|
91
|
+
|
92
|
+
Notes
|
93
|
+
-----
|
94
|
+
We implement exclusions here instead of during the stratification call
|
95
|
+
like most other categories because disabilities are unique in that they are
|
96
|
+
*not* actually registered stratifications.
|
97
|
+
|
98
|
+
Also note that we add an 'all_causes' category here.
|
79
99
|
"""
|
80
100
|
causes_of_disability = builder.components.get_components_by_type(
|
81
101
|
self.disability_classes
|
82
102
|
)
|
83
103
|
# Convert to SimpleCause instances and add on all_causes
|
84
104
|
causes_of_disability = [
|
85
|
-
SimpleCause.
|
105
|
+
SimpleCause.create_from_specific_cause(cause) for cause in causes_of_disability
|
86
106
|
] + [SimpleCause("all_causes", "all_causes", "cause")]
|
87
107
|
|
88
108
|
excluded_causes = (
|
@@ -111,9 +131,21 @@ class DisabilityObserver(PublicHealthObserver):
|
|
111
131
|
]
|
112
132
|
|
113
133
|
def get_configuration(self, builder: Builder) -> LayeredConfigTree:
|
134
|
+
"""Get the stratification configuration for this observer.
|
135
|
+
|
136
|
+
Parameters
|
137
|
+
----------
|
138
|
+
builder
|
139
|
+
The builder object for the simulation.
|
140
|
+
|
141
|
+
Returns
|
142
|
+
-------
|
143
|
+
The stratification configuration for this observer.
|
144
|
+
"""
|
114
145
|
return builder.configuration.stratification.disability
|
115
146
|
|
116
147
|
def register_observations(self, builder: Builder) -> None:
|
148
|
+
"""Register an observation for years lived with disability."""
|
117
149
|
cause_pipelines = [
|
118
150
|
f"{cause.state_id}.disability_weight" for cause in self.causes_of_disability
|
119
151
|
]
|
@@ -131,6 +163,17 @@ class DisabilityObserver(PublicHealthObserver):
|
|
131
163
|
)
|
132
164
|
|
133
165
|
def get_disability_weight_pipeline(self, builder: Builder) -> Pipeline:
|
166
|
+
"""Register (and return) the pipeline that produces disability weights.
|
167
|
+
|
168
|
+
Parameters
|
169
|
+
----------
|
170
|
+
builder
|
171
|
+
The builder object for the simulation.
|
172
|
+
|
173
|
+
Returns
|
174
|
+
-------
|
175
|
+
The pipeline that produces disability weights.
|
176
|
+
"""
|
134
177
|
return builder.value.register_value_producer(
|
135
178
|
self.disability_weight_pipeline_name,
|
136
179
|
source=lambda index: [pd.Series(0.0, index=index)],
|
@@ -143,6 +186,17 @@ class DisabilityObserver(PublicHealthObserver):
|
|
143
186
|
###############
|
144
187
|
|
145
188
|
def disability_weight_aggregator(self, dw: pd.DataFrame) -> Union[float, pd.Series]:
|
189
|
+
"""Aggregate disability weights for the time step.
|
190
|
+
|
191
|
+
Parameters
|
192
|
+
----------
|
193
|
+
dw
|
194
|
+
The disability weights to aggregate.
|
195
|
+
|
196
|
+
Returns
|
197
|
+
-------
|
198
|
+
The aggregated disability weights.
|
199
|
+
"""
|
146
200
|
aggregated_dw = (dw * to_years(self.step_size)).sum().squeeze()
|
147
201
|
if isinstance(aggregated_dw, pd.Series):
|
148
202
|
aggregated_dw.index.name = "cause_of_disability"
|
@@ -153,10 +207,27 @@ class DisabilityObserver(PublicHealthObserver):
|
|
153
207
|
##############################
|
154
208
|
|
155
209
|
def format(self, measure: str, results: pd.DataFrame) -> pd.DataFrame:
|
156
|
-
"""Format
|
157
|
-
|
158
|
-
|
159
|
-
|
210
|
+
"""Format wide YLD results to match typical/long stratified results.
|
211
|
+
|
212
|
+
YLDs are unique in that we can't stratify by cause of disability (because
|
213
|
+
there can be multiple at once), and so the results here are actually wide
|
214
|
+
by disability weight pipeline name. This method formats the results to be
|
215
|
+
long by cause of disability.
|
216
|
+
|
217
|
+
Parameters
|
218
|
+
----------
|
219
|
+
measure
|
220
|
+
The measure.
|
221
|
+
results
|
222
|
+
The wide results to format.
|
223
|
+
|
224
|
+
Returns
|
225
|
+
-------
|
226
|
+
The results stacked by causes of disability.
|
227
|
+
|
228
|
+
Notes
|
229
|
+
-----
|
230
|
+
This method also adds the 'sub_entity' column to the results.
|
160
231
|
"""
|
161
232
|
if len(self.causes_of_disability) > 1:
|
162
233
|
# Drop the unused 'value' column and rename the remaining pipeline names to cause names
|
@@ -180,15 +251,18 @@ class DisabilityObserver(PublicHealthObserver):
|
|
180
251
|
return results
|
181
252
|
|
182
253
|
def get_entity_type_column(self, measure: str, results: pd.DataFrame) -> pd.Series:
|
254
|
+
"""Get the 'entity_type' column values."""
|
183
255
|
entity_type_map = {
|
184
256
|
cause.state_id: cause.cause_type for cause in self.causes_of_disability
|
185
257
|
}
|
186
258
|
return results[COLUMNS.SUB_ENTITY].map(entity_type_map).astype(CategoricalDtype())
|
187
259
|
|
188
260
|
def get_entity_column(self, measure: str, results: pd.DataFrame) -> pd.Series:
|
261
|
+
"""Get the 'entity' column values."""
|
189
262
|
entity_map = {cause.state_id: cause.model for cause in self.causes_of_disability}
|
190
263
|
return results[COLUMNS.SUB_ENTITY].map(entity_map).astype(CategoricalDtype())
|
191
264
|
|
192
265
|
def get_sub_entity_column(self, measure: str, results: pd.DataFrame) -> pd.Series:
|
266
|
+
"""Get the 'sub_entity' column values."""
|
193
267
|
# The sub-entity col was created in the 'format' method
|
194
268
|
return results[COLUMNS.SUB_ENTITY]
|
@@ -1,7 +1,7 @@
|
|
1
1
|
"""
|
2
|
-
|
3
|
-
Disease
|
4
|
-
|
2
|
+
=================
|
3
|
+
Disease Observers
|
4
|
+
=================
|
5
5
|
|
6
6
|
This module contains tools for observing disease incidence and prevalence
|
7
7
|
in the simulation.
|
@@ -41,6 +41,24 @@ class DiseaseObserver(PublicHealthObserver):
|
|
41
41
|
- "sex"
|
42
42
|
include:
|
43
43
|
- "sample_stratification"
|
44
|
+
|
45
|
+
Attributes
|
46
|
+
----------
|
47
|
+
disease
|
48
|
+
The name of the disease being observed.
|
49
|
+
previous_state_column_name
|
50
|
+
The name of the column that stores the previous state of the disease.
|
51
|
+
step_size
|
52
|
+
The time step size of the simulation.
|
53
|
+
disease_model
|
54
|
+
The disease model for the disease being observed.
|
55
|
+
entity_type
|
56
|
+
The type of entity being observed.
|
57
|
+
entity
|
58
|
+
The entity being observed.
|
59
|
+
transition_stratification_name
|
60
|
+
The stratification name for transitions between disease states.
|
61
|
+
|
44
62
|
"""
|
45
63
|
|
46
64
|
##############
|
@@ -49,6 +67,9 @@ class DiseaseObserver(PublicHealthObserver):
|
|
49
67
|
|
50
68
|
@property
|
51
69
|
def configuration_defaults(self) -> Dict[str, Any]:
|
70
|
+
"""A dictionary containing the defaults for any configurations managed by
|
71
|
+
this component.
|
72
|
+
"""
|
52
73
|
return {
|
53
74
|
"stratification": {
|
54
75
|
self.disease: super().configuration_defaults["stratification"][
|
@@ -59,14 +80,17 @@ class DiseaseObserver(PublicHealthObserver):
|
|
59
80
|
|
60
81
|
@property
|
61
82
|
def columns_created(self) -> List[str]:
|
83
|
+
"""Columns created by this observer."""
|
62
84
|
return [self.previous_state_column_name]
|
63
85
|
|
64
86
|
@property
|
65
87
|
def columns_required(self) -> List[str]:
|
88
|
+
"""Columns required by this observer."""
|
66
89
|
return [self.disease]
|
67
90
|
|
68
91
|
@property
|
69
92
|
def initialization_requirements(self) -> Dict[str, List[str]]:
|
93
|
+
"""Requirements for observer initialization."""
|
70
94
|
return {
|
71
95
|
"requires_columns": [self.disease],
|
72
96
|
}
|
@@ -76,6 +100,13 @@ class DiseaseObserver(PublicHealthObserver):
|
|
76
100
|
#####################
|
77
101
|
|
78
102
|
def __init__(self, disease: str) -> None:
|
103
|
+
"""Constructor for this observer.
|
104
|
+
|
105
|
+
Parameters
|
106
|
+
----------
|
107
|
+
disease
|
108
|
+
The name of the disease being observed.
|
109
|
+
"""
|
79
110
|
super().__init__()
|
80
111
|
self.disease = disease
|
81
112
|
self.previous_state_column_name = f"previous_{self.disease}"
|
@@ -85,6 +116,7 @@ class DiseaseObserver(PublicHealthObserver):
|
|
85
116
|
#################
|
86
117
|
|
87
118
|
def setup(self, builder: Builder) -> None:
|
119
|
+
"""Set up the observer."""
|
88
120
|
self.step_size = builder.time.step_size()
|
89
121
|
self.disease_model = builder.components.get_component(f"disease_model.{self.disease}")
|
90
122
|
self.entity_type = self.disease_model.cause_type
|
@@ -92,10 +124,35 @@ class DiseaseObserver(PublicHealthObserver):
|
|
92
124
|
self.transition_stratification_name = f"transition_{self.disease}"
|
93
125
|
|
94
126
|
def get_configuration(self, builder: Builder) -> LayeredConfigTree:
|
127
|
+
"""Get the stratification configuration for this observer.
|
128
|
+
|
129
|
+
Parameters
|
130
|
+
----------
|
131
|
+
builder
|
132
|
+
The builder object for the simulation.
|
133
|
+
|
134
|
+
Returns
|
135
|
+
-------
|
136
|
+
The stratification configuration for this observer.
|
137
|
+
"""
|
95
138
|
return builder.configuration.stratification[self.disease]
|
96
139
|
|
97
140
|
def register_observations(self, builder: Builder) -> None:
|
98
|
-
|
141
|
+
"""Register stratifications and observations.
|
142
|
+
|
143
|
+
Notes
|
144
|
+
-----
|
145
|
+
Ideally, each observer registers a single observation. This one, however,
|
146
|
+
registeres two.
|
147
|
+
|
148
|
+
While it's typical for all stratification registrations to be encapsulated
|
149
|
+
in a single class (i.e. the
|
150
|
+
:class:ResultsStratifier <vivarium_public_health.results.stratification.ResultsStratifier),
|
151
|
+
this observer registers two additional stratifications. While they could
|
152
|
+
be registered in the ``ResultsStratifier`` as well, they are specific to
|
153
|
+
this observer and so they are registered here while we have easy access
|
154
|
+
to the required names and categories.
|
155
|
+
"""
|
99
156
|
self.register_disease_state_stratification(builder)
|
100
157
|
self.register_transition_stratification(builder)
|
101
158
|
|
@@ -104,6 +161,7 @@ class DiseaseObserver(PublicHealthObserver):
|
|
104
161
|
self.register_transition_count_observation(builder, pop_filter)
|
105
162
|
|
106
163
|
def register_disease_state_stratification(self, builder: Builder) -> None:
|
164
|
+
"""Register the disease state stratification."""
|
107
165
|
builder.results.register_stratification(
|
108
166
|
self.disease,
|
109
167
|
[state.state_id for state in self.disease_model.states],
|
@@ -111,6 +169,20 @@ class DiseaseObserver(PublicHealthObserver):
|
|
111
169
|
)
|
112
170
|
|
113
171
|
def register_transition_stratification(self, builder: Builder) -> None:
|
172
|
+
"""Register the transition stratification.
|
173
|
+
|
174
|
+
This stratification is used to track transitions between disease states.
|
175
|
+
It appends 'no_transition' to the list of transition categories and also
|
176
|
+
includes it as an exluded category.
|
177
|
+
|
178
|
+
Notes
|
179
|
+
-----
|
180
|
+
It is important to include 'no_transition' in bith the list of transition
|
181
|
+
categories as well as the list of excluded categories. This is because
|
182
|
+
it must exist as a category for the transition mapping to work correctly,
|
183
|
+
but then we don't want to include it later during the actual stratification
|
184
|
+
process.
|
185
|
+
"""
|
114
186
|
transitions = [
|
115
187
|
str(transition) for transition in self.disease_model.transition_names
|
116
188
|
] + ["no_transition"]
|
@@ -130,6 +202,7 @@ class DiseaseObserver(PublicHealthObserver):
|
|
130
202
|
)
|
131
203
|
|
132
204
|
def register_person_time_observation(self, builder: Builder, pop_filter: str) -> None:
|
205
|
+
"""Register a person time observation."""
|
133
206
|
self.register_adding_observation(
|
134
207
|
builder=builder,
|
135
208
|
name=f"person_time_{self.disease}",
|
@@ -144,6 +217,7 @@ class DiseaseObserver(PublicHealthObserver):
|
|
144
217
|
def register_transition_count_observation(
|
145
218
|
self, builder: Builder, pop_filter: str
|
146
219
|
) -> None:
|
220
|
+
"""Register a transition count observation."""
|
147
221
|
self.register_adding_observation(
|
148
222
|
builder=builder,
|
149
223
|
name=f"transition_count_{self.disease}",
|
@@ -158,6 +232,17 @@ class DiseaseObserver(PublicHealthObserver):
|
|
158
232
|
)
|
159
233
|
|
160
234
|
def map_transitions(self, df: pd.DataFrame) -> pd.Series:
|
235
|
+
"""Map previous and current disease states to transition string.
|
236
|
+
|
237
|
+
Parameters
|
238
|
+
----------
|
239
|
+
df
|
240
|
+
The DataFrame containing the disease states.
|
241
|
+
|
242
|
+
Returns
|
243
|
+
-------
|
244
|
+
The transitions between disease states.
|
245
|
+
"""
|
161
246
|
transitions = pd.Series(index=df.index, dtype=str)
|
162
247
|
transition_mask = df[self.previous_state_column_name] != df[self.disease]
|
163
248
|
transitions[~transition_mask] = "no_transition"
|
@@ -179,7 +264,10 @@ class DiseaseObserver(PublicHealthObserver):
|
|
179
264
|
self.population_view.update(pop)
|
180
265
|
|
181
266
|
def on_time_step_prepare(self, event: Event) -> None:
|
182
|
-
|
267
|
+
"""Update the previous state column to the current state.
|
268
|
+
|
269
|
+
This enables tracking of transitions between states.
|
270
|
+
"""
|
183
271
|
prior_state_pop = self.population_view.get(event.index)
|
184
272
|
prior_state_pop[self.previous_state_column_name] = prior_state_pop[self.disease]
|
185
273
|
self.population_view.update(prior_state_pop)
|
@@ -189,6 +277,17 @@ class DiseaseObserver(PublicHealthObserver):
|
|
189
277
|
###############
|
190
278
|
|
191
279
|
def aggregate_state_person_time(self, x: pd.DataFrame) -> float:
|
280
|
+
"""Aggregate person time for the time step.
|
281
|
+
|
282
|
+
Parameters
|
283
|
+
----------
|
284
|
+
x
|
285
|
+
The DataFrame containing the population.
|
286
|
+
|
287
|
+
Returns
|
288
|
+
-------
|
289
|
+
The aggregated person time.
|
290
|
+
"""
|
192
291
|
return len(x) * to_years(self.step_size())
|
193
292
|
|
194
293
|
##############################
|
@@ -196,6 +295,26 @@ class DiseaseObserver(PublicHealthObserver):
|
|
196
295
|
##############################
|
197
296
|
|
198
297
|
def format(self, measure: str, results: pd.DataFrame) -> pd.DataFrame:
|
298
|
+
"""Rename the appropriate column to 'sub_entity'.
|
299
|
+
|
300
|
+
The primary thing this method does is rename the appropriate column
|
301
|
+
(either the transition stratification name of the disease name, depending
|
302
|
+
on the measure) to 'sub_entity'. We do this here instead of the
|
303
|
+
'get_sub_entity_column' method simply because we do not want the original
|
304
|
+
column at all. If we keep it here and then return it as the sub-entity
|
305
|
+
column later, the final results would have both.
|
306
|
+
|
307
|
+
Parameters
|
308
|
+
----------
|
309
|
+
measure
|
310
|
+
The measure.
|
311
|
+
results
|
312
|
+
The results to format.
|
313
|
+
|
314
|
+
Returns
|
315
|
+
-------
|
316
|
+
The formatted results.
|
317
|
+
"""
|
199
318
|
results = results.reset_index()
|
200
319
|
if "transition_count_" in measure:
|
201
320
|
sub_entity = self.transition_stratification_name
|
@@ -205,6 +324,7 @@ class DiseaseObserver(PublicHealthObserver):
|
|
205
324
|
return results
|
206
325
|
|
207
326
|
def get_measure_column(self, measure: str, results: pd.DataFrame) -> pd.Series:
|
327
|
+
"""Get the 'measure' column values."""
|
208
328
|
if "transition_count_" in measure:
|
209
329
|
measure_name = "transition_count"
|
210
330
|
if "person_time_" in measure:
|
@@ -212,11 +332,14 @@ class DiseaseObserver(PublicHealthObserver):
|
|
212
332
|
return pd.Series(measure_name, index=results.index)
|
213
333
|
|
214
334
|
def get_entity_type_column(self, measure: str, results: pd.DataFrame) -> pd.Series:
|
335
|
+
"""Get the 'entity_type' column values."""
|
215
336
|
return pd.Series(self.entity_type, index=results.index)
|
216
337
|
|
217
338
|
def get_entity_column(self, measure: str, results: pd.DataFrame) -> pd.Series:
|
339
|
+
"""Get the 'entity' column values."""
|
218
340
|
return pd.Series(self.entity, index=results.index)
|
219
341
|
|
220
342
|
def get_sub_entity_column(self, measure: str, results: pd.DataFrame) -> pd.Series:
|
343
|
+
"""Get the 'sub_entity' column values."""
|
221
344
|
# The sub-entity col was created in the 'format' method
|
222
345
|
return results[COLUMNS.SUB_ENTITY]
|
@@ -1,7 +1,7 @@
|
|
1
1
|
"""
|
2
|
-
|
3
|
-
Mortality
|
4
|
-
|
2
|
+
===================
|
3
|
+
Mortality Observers
|
4
|
+
===================
|
5
5
|
|
6
6
|
This module contains tools for observing cause-specific and
|
7
7
|
excess mortality in the simulation, including "other causes".
|
@@ -47,6 +47,18 @@ class MortalityObserver(PublicHealthObserver):
|
|
47
47
|
This observer needs to access the has_excess_mortality attribute of the causes
|
48
48
|
we're observing, but this attribute gets defined in the setup of the cause models.
|
49
49
|
As a result, the model specification should list this observer after causes.
|
50
|
+
|
51
|
+
Attributes
|
52
|
+
----------
|
53
|
+
required_death_columns
|
54
|
+
Columns required by the deaths observation.
|
55
|
+
required_yll_columns
|
56
|
+
Columns required by the ylls observation.
|
57
|
+
clock
|
58
|
+
The simulation clock.
|
59
|
+
causes_of_death
|
60
|
+
Causes of death to be observed.
|
61
|
+
|
50
62
|
"""
|
51
63
|
|
52
64
|
def __init__(self) -> None:
|
@@ -65,12 +77,12 @@ class MortalityObserver(PublicHealthObserver):
|
|
65
77
|
|
66
78
|
@property
|
67
79
|
def mortality_classes(self) -> list[type]:
|
80
|
+
"""The classes to be considered as causes of death."""
|
68
81
|
return [DiseaseState, RiskAttributableDisease]
|
69
82
|
|
70
83
|
@property
|
71
84
|
def configuration_defaults(self) -> Dict[str, Any]:
|
72
|
-
"""
|
73
|
-
A dictionary containing the defaults for any configurations managed by
|
85
|
+
"""A dictionary containing the defaults for any configurations managed by
|
74
86
|
this component.
|
75
87
|
"""
|
76
88
|
config_defaults = super().configuration_defaults
|
@@ -79,6 +91,7 @@ class MortalityObserver(PublicHealthObserver):
|
|
79
91
|
|
80
92
|
@property
|
81
93
|
def columns_required(self) -> List[str]:
|
94
|
+
"""Columns required by this observer."""
|
82
95
|
return [
|
83
96
|
"alive",
|
84
97
|
"years_of_life_lost",
|
@@ -91,10 +104,22 @@ class MortalityObserver(PublicHealthObserver):
|
|
91
104
|
#################
|
92
105
|
|
93
106
|
def setup(self, builder: Builder) -> None:
|
107
|
+
"""Set up the observer."""
|
94
108
|
self.clock = builder.time.clock()
|
95
109
|
self.set_causes_of_death(builder)
|
96
110
|
|
97
111
|
def set_causes_of_death(self, builder: Builder) -> None:
|
112
|
+
"""Set the causes of death to be observed.
|
113
|
+
|
114
|
+
The causes to be observed are any registered components of class types
|
115
|
+
found in the ``mortality_classes`` property.
|
116
|
+
|
117
|
+
Notes
|
118
|
+
-----
|
119
|
+
We do not actually exclude any categories in this method.
|
120
|
+
|
121
|
+
Also note that we add 'not_dead' and 'other_causes' categories here.
|
122
|
+
"""
|
98
123
|
causes_of_death = [
|
99
124
|
cause
|
100
125
|
for cause in builder.components.get_components_by_type(
|
@@ -105,16 +130,42 @@ class MortalityObserver(PublicHealthObserver):
|
|
105
130
|
|
106
131
|
# Convert to SimpleCauses and add on other_causes and not_dead
|
107
132
|
self.causes_of_death = [
|
108
|
-
SimpleCause.
|
133
|
+
SimpleCause.create_from_specific_cause(cause) for cause in causes_of_death
|
109
134
|
] + [
|
110
135
|
SimpleCause("not_dead", "not_dead", "cause"),
|
111
136
|
SimpleCause("other_causes", "other_causes", "cause"),
|
112
137
|
]
|
113
138
|
|
114
139
|
def get_configuration(self, builder: Builder) -> LayeredConfigTree:
|
140
|
+
"""Get the stratification configuration for this observer.
|
141
|
+
|
142
|
+
Parameters
|
143
|
+
----------
|
144
|
+
builder
|
145
|
+
The builder object for the simulation.
|
146
|
+
|
147
|
+
Returns
|
148
|
+
-------
|
149
|
+
The stratification configuration for this observer.
|
150
|
+
"""
|
115
151
|
return builder.configuration.stratification[self.get_configuration_name()]
|
116
152
|
|
117
153
|
def register_observations(self, builder: Builder) -> None:
|
154
|
+
"""Register stratifications and observations.
|
155
|
+
|
156
|
+
Notes
|
157
|
+
-----
|
158
|
+
Ideally, each observer registers a single observation. This one, however,
|
159
|
+
registeres two.
|
160
|
+
|
161
|
+
While it's typical for all stratification registrations to be encapsulated
|
162
|
+
in a single class (i.e. the
|
163
|
+
:class:ResultsStratifier <vivarium_public_health.results.stratification.ResultsStratifier),
|
164
|
+
this observer potentially registers an additional one. While it could
|
165
|
+
be registered in the ``ResultsStratifier`` as well, it is specific to
|
166
|
+
this observer and so it is registered here while we have easy access
|
167
|
+
to the required categories.
|
168
|
+
"""
|
118
169
|
pop_filter = 'alive == "dead" and tracked == True'
|
119
170
|
additional_stratifications = self.configuration.include
|
120
171
|
if not self.configuration.aggregate:
|
@@ -155,10 +206,12 @@ class MortalityObserver(PublicHealthObserver):
|
|
155
206
|
###############
|
156
207
|
|
157
208
|
def count_deaths(self, x: pd.DataFrame) -> float:
|
209
|
+
"""Count the number of deaths that occurred during this time step."""
|
158
210
|
died_of_cause = x["exit_time"] > self.clock()
|
159
211
|
return sum(died_of_cause)
|
160
212
|
|
161
213
|
def calculate_ylls(self, x: pd.DataFrame) -> float:
|
214
|
+
"""Calculate the years of life lost during this time step."""
|
162
215
|
died_of_cause = x["exit_time"] > self.clock()
|
163
216
|
return x.loc[died_of_cause, "years_of_life_lost"].sum()
|
164
217
|
|
@@ -167,6 +220,26 @@ class MortalityObserver(PublicHealthObserver):
|
|
167
220
|
##############################
|
168
221
|
|
169
222
|
def format(self, measure: str, results: pd.DataFrame) -> pd.DataFrame:
|
223
|
+
"""Rename the appropriate column to 'entity'.
|
224
|
+
|
225
|
+
The primary thing this method does is rename the 'cause_of_death' column
|
226
|
+
to 'entity' (or, it we are aggregating, and there is no 'cause_of_death'
|
227
|
+
column, we simply create a new 'entity' column). We do this here instead
|
228
|
+
of the 'get_entity_column' method simply because we do not want the
|
229
|
+
'cause_of_death' at all. If we keep it here and then return it as the
|
230
|
+
entity column later, the final results would have both.
|
231
|
+
|
232
|
+
Parameters
|
233
|
+
----------
|
234
|
+
measure
|
235
|
+
The measure.
|
236
|
+
results
|
237
|
+
The results to format.
|
238
|
+
|
239
|
+
Returns
|
240
|
+
-------
|
241
|
+
The formatted results.
|
242
|
+
"""
|
170
243
|
results = results.reset_index()
|
171
244
|
if self.configuration.aggregate:
|
172
245
|
results[COLUMNS.ENTITY] = "all_causes"
|
@@ -175,12 +248,15 @@ class MortalityObserver(PublicHealthObserver):
|
|
175
248
|
return results
|
176
249
|
|
177
250
|
def get_entity_type_column(self, measure: str, results: pd.DataFrame) -> pd.Series:
|
251
|
+
"""Get the 'entity_type' column values."""
|
178
252
|
entity_type_map = {cause.state_id: cause.cause_type for cause in self.causes_of_death}
|
179
253
|
return results[COLUMNS.ENTITY].map(entity_type_map).astype(CategoricalDtype())
|
180
254
|
|
181
255
|
def get_entity_column(self, measure: str, results: pd.DataFrame) -> pd.Series:
|
256
|
+
"""Get the 'entity' column values."""
|
182
257
|
# The entity col was created in the 'format' method
|
183
258
|
return results[COLUMNS.ENTITY]
|
184
259
|
|
185
260
|
def get_sub_entity_column(self, measure: str, results: pd.DataFrame) -> pd.Series:
|
261
|
+
"""Get the 'sub_entity' column values."""
|
186
262
|
return results[COLUMNS.ENTITY]
|