vivarium-public-health 3.0.3__py3-none-any.whl → 3.0.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- vivarium_public_health/_version.py +1 -1
- vivarium_public_health/disease/state.py +24 -19
- vivarium_public_health/mslt/delay.py +13 -5
- vivarium_public_health/mslt/disease.py +35 -14
- vivarium_public_health/mslt/intervention.py +12 -9
- vivarium_public_health/mslt/observer.py +56 -17
- vivarium_public_health/mslt/population.py +7 -10
- vivarium_public_health/plugins/parser.py +29 -80
- vivarium_public_health/population/add_new_birth_cohorts.py +8 -9
- vivarium_public_health/population/base_population.py +0 -5
- vivarium_public_health/population/data_transformations.py +1 -8
- vivarium_public_health/population/mortality.py +3 -3
- vivarium_public_health/results/columns.py +1 -1
- vivarium_public_health/results/disability.py +89 -15
- vivarium_public_health/results/disease.py +128 -5
- vivarium_public_health/results/mortality.py +82 -6
- vivarium_public_health/results/observer.py +151 -6
- vivarium_public_health/results/risk.py +66 -5
- vivarium_public_health/results/simple_cause.py +30 -5
- vivarium_public_health/results/stratification.py +39 -14
- vivarium_public_health/risks/base_risk.py +14 -16
- vivarium_public_health/risks/data_transformations.py +3 -1
- vivarium_public_health/risks/distributions.py +0 -1
- vivarium_public_health/risks/effect.py +31 -29
- vivarium_public_health/risks/implementations/low_birth_weight_and_short_gestation.py +51 -30
- vivarium_public_health/treatment/scale_up.py +6 -10
- vivarium_public_health/treatment/therapeutic_inertia.py +3 -1
- {vivarium_public_health-3.0.3.dist-info → vivarium_public_health-3.0.5.dist-info}/METADATA +1 -1
- vivarium_public_health-3.0.5.dist-info/RECORD +49 -0
- {vivarium_public_health-3.0.3.dist-info → vivarium_public_health-3.0.5.dist-info}/WHEEL +1 -1
- vivarium_public_health-3.0.3.dist-info/RECORD +0 -49
- {vivarium_public_health-3.0.3.dist-info → vivarium_public_health-3.0.5.dist-info}/LICENSE.txt +0 -0
- {vivarium_public_health-3.0.3.dist-info → vivarium_public_health-3.0.5.dist-info}/top_level.txt +0 -0
@@ -1,3 +1,13 @@
|
|
1
|
+
"""
|
2
|
+
===============
|
3
|
+
Basic Observers
|
4
|
+
===============
|
5
|
+
|
6
|
+
This module contains convenience classes for building concrete observers in
|
7
|
+
public health models.
|
8
|
+
|
9
|
+
"""
|
10
|
+
|
1
11
|
from typing import Callable, List, Optional, Union
|
2
12
|
|
3
13
|
import pandas as pd
|
@@ -8,16 +18,19 @@ from vivarium_public_health.results.columns import COLUMNS
|
|
8
18
|
|
9
19
|
|
10
20
|
class PublicHealthObserver(Observer):
|
11
|
-
"""A convenience class for typical public health observers.
|
12
|
-
|
13
|
-
|
21
|
+
"""A convenience class for typical public health observers.
|
22
|
+
|
23
|
+
It exposes a method for registering the most common observation type
|
24
|
+
(adding observation) as well methods for formatting public health results
|
25
|
+
in a standardized way (to be overwritten as necessary).
|
26
|
+
|
14
27
|
"""
|
15
28
|
|
16
29
|
def register_adding_observation(
|
17
30
|
self,
|
18
31
|
builder: Builder,
|
19
|
-
name,
|
20
|
-
pop_filter,
|
32
|
+
name: str,
|
33
|
+
pop_filter: str,
|
21
34
|
when: str = "collect_metrics",
|
22
35
|
requires_columns: List[str] = [],
|
23
36
|
requires_values: List[str] = [],
|
@@ -25,7 +38,42 @@ class PublicHealthObserver(Observer):
|
|
25
38
|
excluded_stratifications: List[str] = [],
|
26
39
|
aggregator_sources: Optional[List[str]] = None,
|
27
40
|
aggregator: Callable[[pd.DataFrame], Union[float, pd.Series]] = len,
|
28
|
-
):
|
41
|
+
) -> None:
|
42
|
+
"""Registers an adding observation to the results system.
|
43
|
+
|
44
|
+
An "adding" observation is one that adds/sums new results to existing
|
45
|
+
result values. It is the most common type of observation used in public
|
46
|
+
health models.
|
47
|
+
|
48
|
+
Parameters
|
49
|
+
----------
|
50
|
+
builder
|
51
|
+
The builder object.
|
52
|
+
name
|
53
|
+
Name of the observation. It will also be the name of the output results
|
54
|
+
file for this particular observation.
|
55
|
+
pop_filter
|
56
|
+
A Pandas query filter string to filter the population down to the
|
57
|
+
simulants who should be considered for the observation.
|
58
|
+
when
|
59
|
+
Name of the lifecycle phase the observation should happen. Valid values are:
|
60
|
+
"time_step__prepare", "time_step", "time_step__cleanup", or "collect_metrics".
|
61
|
+
requires_columns
|
62
|
+
List of the state table columns that are required by either the `pop_filter`
|
63
|
+
or the `aggregator`.
|
64
|
+
requires_values
|
65
|
+
List of the value pipelines that are required by either the `pop_filter`
|
66
|
+
or the `aggregator`.
|
67
|
+
additional_stratifications
|
68
|
+
List of additional stratification names by which to stratify this
|
69
|
+
observation by.
|
70
|
+
excluded_stratifications
|
71
|
+
List of default stratification names to remove from this observation.
|
72
|
+
aggregator_sources
|
73
|
+
List of population view columns to be used in the `aggregator`.
|
74
|
+
aggregator
|
75
|
+
Function that computes the quantity for this observation.
|
76
|
+
"""
|
29
77
|
builder.results.register_adding_observation(
|
30
78
|
name=name,
|
31
79
|
pop_filter=pop_filter,
|
@@ -42,6 +90,27 @@ class PublicHealthObserver(Observer):
|
|
42
90
|
def format_results(self, measure: str, results: pd.DataFrame) -> pd.DataFrame:
|
43
91
|
"""Top-level results formatter that calls standard sub-methods to be
|
44
92
|
overwritten as necessary.
|
93
|
+
|
94
|
+
Public health observations typically require four columns in addition to
|
95
|
+
any stratifications and results columns: 'measure', 'entity_type', 'entity',
|
96
|
+
and 'sub_entity'. This method provides a standardized way to format
|
97
|
+
results by providing five sub-methods to be overwritten as necessary:
|
98
|
+
- format()
|
99
|
+
- get_measure_column()
|
100
|
+
- get_entity_type_column()
|
101
|
+
- get_entity_column()
|
102
|
+
- get_sub_entity_column()
|
103
|
+
|
104
|
+
Parameters
|
105
|
+
----------
|
106
|
+
measure
|
107
|
+
The measure name.
|
108
|
+
results
|
109
|
+
The raw results.
|
110
|
+
|
111
|
+
Returns
|
112
|
+
-------
|
113
|
+
The formatted results.
|
45
114
|
"""
|
46
115
|
|
47
116
|
results = self.format(measure, results)
|
@@ -63,16 +132,92 @@ class PublicHealthObserver(Observer):
|
|
63
132
|
return results[ordered_columns]
|
64
133
|
|
65
134
|
def format(self, measure: str, results: pd.DataFrame) -> pd.DataFrame:
|
135
|
+
"""Format results.
|
136
|
+
|
137
|
+
This method should be overwritten in subclasses to provide custom formatting
|
138
|
+
for the results.
|
139
|
+
|
140
|
+
Parameters
|
141
|
+
----------
|
142
|
+
measure
|
143
|
+
The measure name.
|
144
|
+
results
|
145
|
+
The raw results.
|
146
|
+
|
147
|
+
Returns
|
148
|
+
-------
|
149
|
+
The formatted results.
|
150
|
+
"""
|
66
151
|
return results
|
67
152
|
|
68
153
|
def get_measure_column(self, measure: str, results: pd.DataFrame) -> pd.Series:
|
154
|
+
"""Get the 'measure' column.
|
155
|
+
|
156
|
+
This method should be overwritten in subclasses to provide the 'measure' column.
|
157
|
+
|
158
|
+
Parameters
|
159
|
+
----------
|
160
|
+
measure
|
161
|
+
The measure name.
|
162
|
+
results
|
163
|
+
The raw results.
|
164
|
+
|
165
|
+
Returns
|
166
|
+
-------
|
167
|
+
The 'measure' column values.
|
168
|
+
"""
|
69
169
|
return pd.Series(measure, index=results.index)
|
70
170
|
|
71
171
|
def get_entity_type_column(self, measure: str, results: pd.DataFrame) -> pd.Series:
|
172
|
+
"""Get the 'entity_type' column.
|
173
|
+
|
174
|
+
This method should be overwritten in subclasses to provide the 'entity_type' column.
|
175
|
+
|
176
|
+
Parameters
|
177
|
+
----------
|
178
|
+
measure
|
179
|
+
The measure name.
|
180
|
+
results
|
181
|
+
The raw results.
|
182
|
+
|
183
|
+
Returns
|
184
|
+
-------
|
185
|
+
The 'entity_type' column values.
|
186
|
+
"""
|
72
187
|
return pd.Series(None, index=results.index)
|
73
188
|
|
74
189
|
def get_entity_column(self, measure: str, results: pd.DataFrame) -> pd.Series:
|
190
|
+
"""Get the 'entity' column.
|
191
|
+
|
192
|
+
This method should be overwritten in subclasses to provide the 'entity' column.
|
193
|
+
|
194
|
+
Parameters
|
195
|
+
----------
|
196
|
+
measure
|
197
|
+
The measure name.
|
198
|
+
results
|
199
|
+
The raw results.
|
200
|
+
|
201
|
+
Returns
|
202
|
+
-------
|
203
|
+
The 'entity' column values.
|
204
|
+
"""
|
75
205
|
return pd.Series(None, index=results.index)
|
76
206
|
|
77
207
|
def get_sub_entity_column(self, measure: str, results: pd.DataFrame) -> pd.Series:
|
208
|
+
"""Get the 'sub_entity' column.
|
209
|
+
|
210
|
+
This method should be overwritten in subclasses to provide the 'sub_entity' column.
|
211
|
+
|
212
|
+
Parameters
|
213
|
+
----------
|
214
|
+
measure
|
215
|
+
The measure name.
|
216
|
+
results
|
217
|
+
The raw results.
|
218
|
+
|
219
|
+
Returns
|
220
|
+
-------
|
221
|
+
The 'sub_entity' column values.
|
222
|
+
"""
|
78
223
|
return pd.Series(None, index=results.index)
|
@@ -40,6 +40,18 @@ class CategoricalRiskObserver(PublicHealthObserver):
|
|
40
40
|
- "sex"
|
41
41
|
include:
|
42
42
|
- "sample_stratification"
|
43
|
+
|
44
|
+
Attributes
|
45
|
+
----------
|
46
|
+
risk
|
47
|
+
The name of the risk factor.
|
48
|
+
exposure_pipeline_name
|
49
|
+
The name of the pipeline that produces the risk factor exposure.
|
50
|
+
step_size
|
51
|
+
The time step size of the simulation.
|
52
|
+
categories
|
53
|
+
The categories of the risk factor.
|
54
|
+
|
43
55
|
"""
|
44
56
|
|
45
57
|
##############
|
@@ -48,8 +60,7 @@ class CategoricalRiskObserver(PublicHealthObserver):
|
|
48
60
|
|
49
61
|
@property
|
50
62
|
def configuration_defaults(self) -> Dict[str, Any]:
|
51
|
-
"""
|
52
|
-
A dictionary containing the defaults for any configurations managed by
|
63
|
+
"""A dictionary containing the defaults for any configurations managed by
|
53
64
|
this component.
|
54
65
|
"""
|
55
66
|
return {
|
@@ -62,6 +73,7 @@ class CategoricalRiskObserver(PublicHealthObserver):
|
|
62
73
|
|
63
74
|
@property
|
64
75
|
def columns_required(self) -> Optional[List[str]]:
|
76
|
+
"""The columns required by this observer."""
|
65
77
|
return ["alive"]
|
66
78
|
|
67
79
|
#####################
|
@@ -69,11 +81,12 @@ class CategoricalRiskObserver(PublicHealthObserver):
|
|
69
81
|
#####################
|
70
82
|
|
71
83
|
def __init__(self, risk: str) -> None:
|
72
|
-
"""
|
84
|
+
"""Constructor for this observer.
|
85
|
+
|
73
86
|
Parameters
|
74
87
|
----------
|
75
|
-
risk
|
76
|
-
|
88
|
+
risk
|
89
|
+
The name of the risk being observed
|
77
90
|
"""
|
78
91
|
super().__init__()
|
79
92
|
self.risk = risk
|
@@ -84,13 +97,37 @@ class CategoricalRiskObserver(PublicHealthObserver):
|
|
84
97
|
#################
|
85
98
|
|
86
99
|
def setup(self, builder: Builder) -> None:
|
100
|
+
"""Set up the observer."""
|
87
101
|
self.step_size = builder.time.step_size()
|
88
102
|
self.categories = builder.data.load(f"risk_factor.{self.risk}.categories")
|
89
103
|
|
90
104
|
def get_configuration(self, builder: Builder) -> LayeredConfigTree:
|
105
|
+
"""Get the stratification configuration for this observer.
|
106
|
+
|
107
|
+
Parameters
|
108
|
+
----------
|
109
|
+
builder
|
110
|
+
The builder object for the simulation.
|
111
|
+
|
112
|
+
Returns
|
113
|
+
-------
|
114
|
+
The stratification configuration for this observer.
|
115
|
+
"""
|
91
116
|
return builder.configuration.stratification[self.risk]
|
92
117
|
|
93
118
|
def register_observations(self, builder: Builder) -> None:
|
119
|
+
"""Register a stratification and observation.
|
120
|
+
|
121
|
+
Notes
|
122
|
+
-----
|
123
|
+
While it's typical for all stratification registrations to be encapsulated
|
124
|
+
in a single class (i.e. the
|
125
|
+
:class:ResultsStratifier <vivarium_public_health.results.stratification.ResultsStratifier),
|
126
|
+
this observer registers an additional one. While it could be registered
|
127
|
+
in the ``ResultsStratifier`` as well, it is specific to this observer and
|
128
|
+
so it is registered here while we have easy access to the required categories
|
129
|
+
and value names.
|
130
|
+
"""
|
94
131
|
builder.results.register_stratification(
|
95
132
|
f"{self.risk}",
|
96
133
|
list(self.categories.keys()),
|
@@ -113,6 +150,7 @@ class CategoricalRiskObserver(PublicHealthObserver):
|
|
113
150
|
###############
|
114
151
|
|
115
152
|
def aggregate_risk_category_person_time(self, x: pd.DataFrame) -> float:
|
153
|
+
"""Aggregate the person time for this time step."""
|
116
154
|
return len(x) * to_years(self.step_size())
|
117
155
|
|
118
156
|
##############################
|
@@ -120,19 +158,42 @@ class CategoricalRiskObserver(PublicHealthObserver):
|
|
120
158
|
##############################
|
121
159
|
|
122
160
|
def format(self, measure: str, results: pd.DataFrame) -> pd.DataFrame:
|
161
|
+
"""Rename the appropriate column to 'sub_entity'.
|
162
|
+
|
163
|
+
The primary thing this method does is rename the risk column
|
164
|
+
to 'sub_entity'. We do this here instead of the 'get_sub_entity_column'
|
165
|
+
method simply because we do not want the risk column at all. If we keep
|
166
|
+
it here and then return it as the sub-entity column later, the final
|
167
|
+
results would have both.
|
168
|
+
|
169
|
+
Parameters
|
170
|
+
----------
|
171
|
+
measure
|
172
|
+
The measure.
|
173
|
+
results
|
174
|
+
The results to format.
|
175
|
+
|
176
|
+
Returns
|
177
|
+
-------
|
178
|
+
The formatted results.
|
179
|
+
"""
|
123
180
|
results = results.reset_index()
|
124
181
|
results.rename(columns={self.risk: COLUMNS.SUB_ENTITY}, inplace=True)
|
125
182
|
return results
|
126
183
|
|
127
184
|
def get_measure_column(self, measure: str, results: pd.DataFrame) -> pd.Series:
|
185
|
+
"""Get the 'measure' column values."""
|
128
186
|
return pd.Series("person_time", index=results.index)
|
129
187
|
|
130
188
|
def get_entity_type_column(self, measure: str, results: pd.DataFrame) -> pd.Series:
|
189
|
+
"""Get the 'entity_type' column values."""
|
131
190
|
return pd.Series("rei", index=results.index)
|
132
191
|
|
133
192
|
def get_entity_column(self, measure: str, results: pd.DataFrame) -> pd.Series:
|
193
|
+
"""Get the 'entity' column values."""
|
134
194
|
return pd.Series(self.risk, index=results.index)
|
135
195
|
|
136
196
|
def get_sub_entity_column(self, measure: str, results: pd.DataFrame) -> pd.Series:
|
197
|
+
"""Get the 'sub_entity' column values."""
|
137
198
|
# The sub-entity col was created in the 'format' method
|
138
199
|
return results[COLUMNS.SUB_ENTITY]
|
@@ -1,18 +1,43 @@
|
|
1
|
+
"""
|
2
|
+
============
|
3
|
+
Simple Cause
|
4
|
+
============
|
5
|
+
|
6
|
+
This module contains tools for creating a minimal representation of a cause
|
7
|
+
as required by observers.
|
8
|
+
|
9
|
+
"""
|
10
|
+
|
1
11
|
from dataclasses import dataclass
|
2
12
|
|
3
13
|
|
4
14
|
@dataclass
|
5
15
|
class SimpleCause:
|
6
|
-
"""A simple dataclass to represent the bare minimum information needed
|
7
|
-
|
8
|
-
includes a class method to convert a provided
|
16
|
+
"""A simple dataclass to represent the bare minimum information needed by observers.
|
17
|
+
|
18
|
+
It also includes a class method to convert a provided cause into a
|
9
19
|
``SimpleCause`` instance.
|
20
|
+
|
10
21
|
"""
|
11
22
|
|
12
23
|
state_id: str
|
24
|
+
"""The state_id of the cause."""
|
13
25
|
model: str
|
26
|
+
"""The model of the cause."""
|
14
27
|
cause_type: str
|
28
|
+
"""The cause type of the cause."""
|
15
29
|
|
16
30
|
@classmethod
|
17
|
-
def
|
18
|
-
|
31
|
+
def create_from_specific_cause(cls, cause: type) -> "SimpleCause":
|
32
|
+
"""Create a SimpleCause instance from a more specific cause.
|
33
|
+
|
34
|
+
Parameters
|
35
|
+
----------
|
36
|
+
cause
|
37
|
+
The cause to be converted into a SimpleCause instance.
|
38
|
+
|
39
|
+
Returns
|
40
|
+
-------
|
41
|
+
A SimpleCause instance.
|
42
|
+
"""
|
43
|
+
return cls(cause.state_id, cause.model, cause.cause_type)
|
@@ -5,9 +5,8 @@ Results Stratifier
|
|
5
5
|
|
6
6
|
This module contains tools for stratifying observed quantities
|
7
7
|
by specified characteristics through the vivarium results interface.
|
8
|
-
"""
|
9
8
|
|
10
|
-
|
9
|
+
"""
|
11
10
|
|
12
11
|
import pandas as pd
|
13
12
|
from vivarium import Component
|
@@ -15,6 +14,22 @@ from vivarium.framework.engine import Builder
|
|
15
14
|
|
16
15
|
|
17
16
|
class ResultsStratifier(Component):
|
17
|
+
"""A component for registering common public health stratifications.
|
18
|
+
|
19
|
+
The purpose of this component is to encapsulate all common public health
|
20
|
+
stratification registrations in one place. This is not enforced, however,
|
21
|
+
and stratification registrations can be done in any component.
|
22
|
+
|
23
|
+
Attributes
|
24
|
+
----------
|
25
|
+
age_bins
|
26
|
+
The age bins for stratifying by age.
|
27
|
+
start_year
|
28
|
+
The start year of the simulation.
|
29
|
+
end_year
|
30
|
+
The end year of the simulation.
|
31
|
+
"""
|
32
|
+
|
18
33
|
#####################
|
19
34
|
# Lifecycle methods #
|
20
35
|
#####################
|
@@ -32,6 +47,7 @@ class ResultsStratifier(Component):
|
|
32
47
|
#################
|
33
48
|
|
34
49
|
def register_stratifications(self, builder: Builder) -> None:
|
50
|
+
"""Register stratifications for the simulation."""
|
35
51
|
builder.results.register_stratification(
|
36
52
|
"age_group",
|
37
53
|
self.age_bins["age_group_name"].to_list(),
|
@@ -80,18 +96,17 @@ class ResultsStratifier(Component):
|
|
80
96
|
# Mappers #
|
81
97
|
###########
|
82
98
|
|
83
|
-
def map_age_groups(self, pop: pd.DataFrame) -> pd.Series
|
84
|
-
"""Map age with age group name strings
|
99
|
+
def map_age_groups(self, pop: pd.DataFrame) -> pd.Series:
|
100
|
+
"""Map age with age group name strings.
|
85
101
|
|
86
102
|
Parameters
|
87
103
|
----------
|
88
104
|
pop
|
89
|
-
A
|
105
|
+
A table with one column, an age to be mapped to an age group name string.
|
90
106
|
|
91
107
|
Returns
|
92
|
-
|
93
|
-
|
94
|
-
A pd.Series with age group name string corresponding to the pop passed into the function
|
108
|
+
-------
|
109
|
+
The age group name strings corresponding to the pop passed into the function.
|
95
110
|
"""
|
96
111
|
bins = self.age_bins["age_start"].to_list() + [self.age_bins["age_end"].iloc[-1]]
|
97
112
|
labels = self.age_bins["age_group_name"].to_list()
|
@@ -99,23 +114,33 @@ class ResultsStratifier(Component):
|
|
99
114
|
return age_group
|
100
115
|
|
101
116
|
@staticmethod
|
102
|
-
def map_year(pop: pd.DataFrame) -> pd.Series
|
103
|
-
"""Map datetime with year
|
117
|
+
def map_year(pop: pd.DataFrame) -> pd.Series:
|
118
|
+
"""Map datetime with year.
|
104
119
|
|
105
120
|
Parameters
|
106
121
|
----------
|
107
122
|
pop
|
108
|
-
A
|
123
|
+
A table with one column, a datetime to be mapped to year.
|
109
124
|
|
110
125
|
Returns
|
111
|
-
|
112
|
-
|
113
|
-
A pd.Series with years corresponding to the pop passed into the function
|
126
|
+
-------
|
127
|
+
The years corresponding to the pop passed into the function.
|
114
128
|
"""
|
115
129
|
return pop.squeeze(axis=1).dt.year.apply(str)
|
116
130
|
|
117
131
|
@staticmethod
|
118
132
|
def get_age_bins(builder: Builder) -> pd.DataFrame:
|
133
|
+
"""Get the age bins for stratifying by age.
|
134
|
+
|
135
|
+
Parameters
|
136
|
+
----------
|
137
|
+
builder
|
138
|
+
The builder object for the simulation.
|
139
|
+
|
140
|
+
Returns
|
141
|
+
-------
|
142
|
+
The age bins for stratifying by age.
|
143
|
+
"""
|
119
144
|
raw_age_bins = builder.data.load("population.age_bins")
|
120
145
|
age_start = builder.configuration.population.initialization_age_min
|
121
146
|
exit_age = builder.configuration.population.untracking_age
|
@@ -30,8 +30,9 @@ from vivarium_public_health.utilities import EntityString, get_lookup_columns
|
|
30
30
|
|
31
31
|
|
32
32
|
class Risk(Component):
|
33
|
-
"""A model for a risk factor defined by either a continuous or a categorical
|
34
|
-
|
33
|
+
"""A model for a risk factor defined by either a continuous or a categorical value.
|
34
|
+
|
35
|
+
For example,
|
35
36
|
|
36
37
|
#. high systolic blood pressure as a risk where the SBP is not dichotomized
|
37
38
|
into hypotension and normal but is treated as the actual SBP
|
@@ -138,9 +139,10 @@ class Risk(Component):
|
|
138
139
|
|
139
140
|
def __init__(self, risk: str):
|
140
141
|
"""
|
142
|
+
|
141
143
|
Parameters
|
142
144
|
----------
|
143
|
-
risk
|
145
|
+
risk
|
144
146
|
the type and name of a risk, specified as "type.name". Type is singular.
|
145
147
|
"""
|
146
148
|
super().__init__()
|
@@ -171,8 +173,7 @@ class Risk(Component):
|
|
171
173
|
self.exposure = self.get_exposure_pipeline(builder)
|
172
174
|
|
173
175
|
def get_distribution_type(self, builder: Builder) -> str:
|
174
|
-
"""
|
175
|
-
Get the distribution type for the risk from the configuration.
|
176
|
+
"""Get the distribution type for the risk from the configuration.
|
176
177
|
|
177
178
|
If the configured distribution type is not one of the supported types,
|
178
179
|
it is assumed to be a data source and the data is retrieved using the
|
@@ -180,13 +181,12 @@ class Risk(Component):
|
|
180
181
|
|
181
182
|
Parameters
|
182
183
|
----------
|
183
|
-
builder
|
184
|
-
|
184
|
+
builder
|
185
|
+
The builder object.
|
185
186
|
|
186
187
|
Returns
|
187
188
|
-------
|
188
|
-
|
189
|
-
the distribution type
|
189
|
+
The distribution type.
|
190
190
|
"""
|
191
191
|
if self.configuration is None:
|
192
192
|
self.configuration = self.get_configuration(builder)
|
@@ -207,24 +207,22 @@ class Risk(Component):
|
|
207
207
|
return distribution_type
|
208
208
|
|
209
209
|
def get_exposure_distribution(self, builder: Builder) -> RiskExposureDistribution:
|
210
|
-
"""
|
211
|
-
Creates and sets up the exposure distribution component for the Risk
|
210
|
+
"""Creates and sets up the exposure distribution component for the Risk
|
212
211
|
based on its distribution type.
|
213
212
|
|
214
213
|
Parameters
|
215
214
|
----------
|
216
|
-
builder
|
217
|
-
|
215
|
+
builder
|
216
|
+
The builder object.
|
218
217
|
|
219
218
|
Returns
|
220
219
|
-------
|
221
|
-
|
222
|
-
the exposure distribution
|
220
|
+
The exposure distribution.
|
223
221
|
|
224
222
|
Raises
|
225
223
|
------
|
226
224
|
NotImplementedError
|
227
|
-
|
225
|
+
If the distribution type is not supported.
|
228
226
|
"""
|
229
227
|
try:
|
230
228
|
exposure_distribution = self.exposure_distributions[self.distribution_type](
|
@@ -78,7 +78,9 @@ def load_exposure_data(builder: Builder, risk: EntityString) -> pd.DataFrame:
|
|
78
78
|
def rebin_relative_risk_data(
|
79
79
|
builder, risk: EntityString, relative_risk_data: pd.DataFrame
|
80
80
|
) -> pd.DataFrame:
|
81
|
-
"""
|
81
|
+
"""Rebin relative risk data if necessary.
|
82
|
+
|
83
|
+
When the polytomous risk is rebinned, matching relative risk needs to be rebinned.
|
82
84
|
After rebinning, rr for both exposed and unexposed categories should be the weighted sum of relative risk
|
83
85
|
of the component categories where weights are relative proportions of exposure of those categories.
|
84
86
|
For example, if cat1, cat2, cat3 are exposed categories and cat4 is unexposed with exposure [0.1,0.2,0.3,0.4],
|