vellum-ai 0.5.2__py3-none-any.whl → 0.6.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (76) hide show
  1. vellum/__init__.py +160 -18
  2. vellum/core/client_wrapper.py +1 -1
  3. vellum/resources/document_indexes/client.py +61 -52
  4. vellum/resources/documents/client.py +8 -4
  5. vellum/types/__init__.py +179 -17
  6. vellum/types/add_openai_api_key_enum.py +3 -0
  7. vellum/types/array_variable_value_item.py +0 -24
  8. vellum/types/array_vellum_value_item.py +82 -0
  9. vellum/types/{rejected_function_call.py → basic_vectorizer_intfloat_multilingual_e_5_large.py} +3 -6
  10. vellum/types/basic_vectorizer_intfloat_multilingual_e_5_large_request.py +29 -0
  11. vellum/types/basic_vectorizer_sentence_transformers_multi_qa_mpnet_base_cos_v_1.py +29 -0
  12. vellum/types/basic_vectorizer_sentence_transformers_multi_qa_mpnet_base_cos_v_1_request.py +29 -0
  13. vellum/types/basic_vectorizer_sentence_transformers_multi_qa_mpnet_base_dot_v_1.py +29 -0
  14. vellum/types/basic_vectorizer_sentence_transformers_multi_qa_mpnet_base_dot_v_1_request.py +29 -0
  15. vellum/types/document_index_chunking.py +46 -0
  16. vellum/types/document_index_chunking_request.py +46 -0
  17. vellum/types/document_index_indexing_config.py +28 -0
  18. vellum/types/document_index_indexing_config_request.py +28 -0
  19. vellum/types/document_index_read.py +2 -4
  20. vellum/types/function_call.py +20 -18
  21. vellum/types/{fulfilled_function_call_request.py → function_call_request.py} +2 -2
  22. vellum/types/function_call_vellum_value.py +1 -1
  23. vellum/types/hkunlp_instructor_xl_enum.py +5 -0
  24. vellum/types/hkunlp_instructor_xl_vectorizer.py +30 -0
  25. vellum/types/hkunlp_instructor_xl_vectorizer_request.py +30 -0
  26. vellum/types/{fulfilled_function_call.py → image_vellum_value.py} +4 -5
  27. vellum/types/indexing_config_vectorizer.py +106 -0
  28. vellum/types/indexing_config_vectorizer_request.py +106 -0
  29. vellum/types/instructor_vectorizer_config.py +31 -0
  30. vellum/types/instructor_vectorizer_config_request.py +31 -0
  31. vellum/types/intfloat_multilingual_e_5_large_enum.py +5 -0
  32. vellum/types/metric_enum.py +5 -0
  33. vellum/types/{chat_history_variable_value.py → metric_node_result.py} +4 -3
  34. vellum/types/named_test_case_function_call_variable_value.py +2 -2
  35. vellum/types/named_test_case_function_call_variable_value_request.py +2 -2
  36. vellum/types/node_output_compiled_array_value.py +2 -2
  37. vellum/types/{search_results_variable_value.py → number_vellum_value.py} +6 -3
  38. vellum/types/open_ai_vectorizer_config.py +30 -0
  39. vellum/types/open_ai_vectorizer_config_request.py +30 -0
  40. vellum/types/open_ai_vectorizer_text_embedding_3_large.py +30 -0
  41. vellum/types/open_ai_vectorizer_text_embedding_3_large_request.py +30 -0
  42. vellum/types/open_ai_vectorizer_text_embedding_3_small.py +30 -0
  43. vellum/types/open_ai_vectorizer_text_embedding_3_small_request.py +30 -0
  44. vellum/types/open_ai_vectorizer_text_embedding_ada_002.py +30 -0
  45. vellum/types/open_ai_vectorizer_text_embedding_ada_002_request.py +30 -0
  46. vellum/types/reducto_chunker_config.py +29 -0
  47. vellum/types/reducto_chunker_config_request.py +29 -0
  48. vellum/types/reducto_chunker_enum.py +5 -0
  49. vellum/types/reducto_chunking.py +30 -0
  50. vellum/types/reducto_chunking_request.py +30 -0
  51. vellum/types/sentence_chunker_config.py +30 -0
  52. vellum/types/sentence_chunker_config_request.py +30 -0
  53. vellum/types/sentence_chunker_enum.py +5 -0
  54. vellum/types/sentence_chunking.py +30 -0
  55. vellum/types/sentence_chunking_request.py +30 -0
  56. vellum/types/sentence_transformers_multi_qa_mpnet_base_cos_v_1_enum.py +5 -0
  57. vellum/types/sentence_transformers_multi_qa_mpnet_base_dot_v_1_enum.py +5 -0
  58. vellum/types/test_case_function_call_variable_value.py +2 -2
  59. vellum/types/test_suite_run_execution_function_call_output.py +2 -2
  60. vellum/types/text_embedding_3_large_enum.py +5 -0
  61. vellum/types/text_embedding_3_small_enum.py +5 -0
  62. vellum/types/text_embedding_ada_002_enum.py +5 -0
  63. vellum/types/token_overlapping_window_chunker_config.py +30 -0
  64. vellum/types/token_overlapping_window_chunker_config_request.py +30 -0
  65. vellum/types/token_overlapping_window_chunker_enum.py +5 -0
  66. vellum/types/token_overlapping_window_chunking.py +30 -0
  67. vellum/types/token_overlapping_window_chunking_request.py +30 -0
  68. vellum/types/workflow_execution_actual_chat_history_request.py +5 -0
  69. vellum/types/workflow_execution_actual_json_request.py +5 -0
  70. vellum/types/workflow_execution_actual_string_request.py +5 -0
  71. vellum/types/workflow_node_result_data.py +12 -0
  72. vellum/types/workflow_output_array.py +2 -2
  73. {vellum_ai-0.5.2.dist-info → vellum_ai-0.6.0.dist-info}/METADATA +1 -1
  74. {vellum_ai-0.5.2.dist-info → vellum_ai-0.6.0.dist-info}/RECORD +76 -28
  75. {vellum_ai-0.5.2.dist-info → vellum_ai-0.6.0.dist-info}/LICENSE +0 -0
  76. {vellum_ai-0.5.2.dist-info → vellum_ai-0.6.0.dist-info}/WHEEL +0 -0
@@ -0,0 +1,30 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+ from .sentence_chunker_config_request import SentenceChunkerConfigRequest
9
+
10
+
11
+ class SentenceChunkingRequest(pydantic_v1.BaseModel):
12
+ """
13
+ Sentence chunking
14
+ """
15
+
16
+ chunker_config: typing.Optional[SentenceChunkerConfigRequest] = None
17
+
18
+ def json(self, **kwargs: typing.Any) -> str:
19
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
+ return super().json(**kwargs_with_defaults)
21
+
22
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().dict(**kwargs_with_defaults)
25
+
26
+ class Config:
27
+ frozen = True
28
+ smart_union = True
29
+ extra = pydantic_v1.Extra.allow
30
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,5 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import typing
4
+
5
+ SentenceTransformersMultiQaMpnetBaseCosV1Enum = typing.Literal["sentence-transformers/multi-qa-mpnet-base-cos-v1"]
@@ -0,0 +1,5 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import typing
4
+
5
+ SentenceTransformersMultiQaMpnetBaseDotV1Enum = typing.Literal["sentence-transformers/multi-qa-mpnet-base-dot-v1"]
@@ -5,7 +5,7 @@ import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
7
  from ..core.pydantic_utilities import pydantic_v1
8
- from .fulfilled_function_call import FulfilledFunctionCall
8
+ from .function_call import FunctionCall
9
9
 
10
10
 
11
11
  class TestCaseFunctionCallVariableValue(pydantic_v1.BaseModel):
@@ -15,7 +15,7 @@ class TestCaseFunctionCallVariableValue(pydantic_v1.BaseModel):
15
15
 
16
16
  variable_id: str
17
17
  name: str
18
- value: typing.Optional[FulfilledFunctionCall] = None
18
+ value: typing.Optional[FunctionCall] = None
19
19
 
20
20
  def json(self, **kwargs: typing.Any) -> str:
21
21
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -5,7 +5,7 @@ import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
7
  from ..core.pydantic_utilities import pydantic_v1
8
- from .fulfilled_function_call import FulfilledFunctionCall
8
+ from .function_call import FunctionCall
9
9
 
10
10
 
11
11
  class TestSuiteRunExecutionFunctionCallOutput(pydantic_v1.BaseModel):
@@ -14,7 +14,7 @@ class TestSuiteRunExecutionFunctionCallOutput(pydantic_v1.BaseModel):
14
14
  """
15
15
 
16
16
  name: str
17
- value: typing.Optional[FulfilledFunctionCall] = None
17
+ value: typing.Optional[FunctionCall] = None
18
18
  output_variable_id: str
19
19
 
20
20
  def json(self, **kwargs: typing.Any) -> str:
@@ -0,0 +1,5 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import typing
4
+
5
+ TextEmbedding3LargeEnum = typing.Literal["text-embedding-3-large"]
@@ -0,0 +1,5 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import typing
4
+
5
+ TextEmbedding3SmallEnum = typing.Literal["text-embedding-3-small"]
@@ -0,0 +1,5 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import typing
4
+
5
+ TextEmbeddingAda002Enum = typing.Literal["text-embedding-ada-002"]
@@ -0,0 +1,30 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+
9
+
10
+ class TokenOverlappingWindowChunkerConfig(pydantic_v1.BaseModel):
11
+ """
12
+ Configuration for token overlapping window chunking
13
+ """
14
+
15
+ token_limit: typing.Optional[int] = None
16
+ overlap_ratio: typing.Optional[float] = None
17
+
18
+ def json(self, **kwargs: typing.Any) -> str:
19
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
+ return super().json(**kwargs_with_defaults)
21
+
22
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().dict(**kwargs_with_defaults)
25
+
26
+ class Config:
27
+ frozen = True
28
+ smart_union = True
29
+ extra = pydantic_v1.Extra.allow
30
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,30 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+
9
+
10
+ class TokenOverlappingWindowChunkerConfigRequest(pydantic_v1.BaseModel):
11
+ """
12
+ Configuration for token overlapping window chunking
13
+ """
14
+
15
+ token_limit: typing.Optional[int] = None
16
+ overlap_ratio: typing.Optional[float] = None
17
+
18
+ def json(self, **kwargs: typing.Any) -> str:
19
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
+ return super().json(**kwargs_with_defaults)
21
+
22
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().dict(**kwargs_with_defaults)
25
+
26
+ class Config:
27
+ frozen = True
28
+ smart_union = True
29
+ extra = pydantic_v1.Extra.allow
30
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,5 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import typing
4
+
5
+ TokenOverlappingWindowChunkerEnum = typing.Literal["token-overlapping-window-chunker"]
@@ -0,0 +1,30 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+ from .token_overlapping_window_chunker_config import TokenOverlappingWindowChunkerConfig
9
+
10
+
11
+ class TokenOverlappingWindowChunking(pydantic_v1.BaseModel):
12
+ """
13
+ Token overlapping window chunking
14
+ """
15
+
16
+ chunker_config: typing.Optional[TokenOverlappingWindowChunkerConfig] = None
17
+
18
+ def json(self, **kwargs: typing.Any) -> str:
19
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
+ return super().json(**kwargs_with_defaults)
21
+
22
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().dict(**kwargs_with_defaults)
25
+
26
+ class Config:
27
+ frozen = True
28
+ smart_union = True
29
+ extra = pydantic_v1.Extra.allow
30
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,30 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+ from .token_overlapping_window_chunker_config_request import TokenOverlappingWindowChunkerConfigRequest
9
+
10
+
11
+ class TokenOverlappingWindowChunkingRequest(pydantic_v1.BaseModel):
12
+ """
13
+ Token overlapping window chunking
14
+ """
15
+
16
+ chunker_config: typing.Optional[TokenOverlappingWindowChunkerConfigRequest] = None
17
+
18
+ def json(self, **kwargs: typing.Any) -> str:
19
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
+ return super().json(**kwargs_with_defaults)
21
+
22
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().dict(**kwargs_with_defaults)
25
+
26
+ class Config:
27
+ frozen = True
28
+ smart_union = True
29
+ extra = pydantic_v1.Extra.allow
30
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -24,6 +24,11 @@ class WorkflowExecutionActualChatHistoryRequest(pydantic_v1.BaseModel):
24
24
  Optionally provide a decimal number between 0.0 and 1.0 (inclusive) representing the quality of the output. 0 is the worst, 1 is the best.
25
25
  """
26
26
 
27
+ metadata: typing.Optional[typing.Dict[str, typing.Any]] = pydantic_v1.Field(default=None)
28
+ """
29
+ Optionally provide additional metadata about the feedback submission.
30
+ """
31
+
27
32
  timestamp: typing.Optional[float] = pydantic_v1.Field(default=None)
28
33
  """
29
34
  Optionally provide the timestamp representing when this feedback was collected. Used for reporting purposes.
@@ -23,6 +23,11 @@ class WorkflowExecutionActualJsonRequest(pydantic_v1.BaseModel):
23
23
  Optionally provide a decimal number between 0.0 and 1.0 (inclusive) representing the quality of the output. 0 is the worst, 1 is the best.
24
24
  """
25
25
 
26
+ metadata: typing.Optional[typing.Dict[str, typing.Any]] = pydantic_v1.Field(default=None)
27
+ """
28
+ Optionally provide additional metadata about the feedback submission.
29
+ """
30
+
26
31
  timestamp: typing.Optional[float] = pydantic_v1.Field(default=None)
27
32
  """
28
33
  Optionally provide the timestamp representing when this feedback was collected. Used for reporting purposes.
@@ -23,6 +23,11 @@ class WorkflowExecutionActualStringRequest(pydantic_v1.BaseModel):
23
23
  Optionally provide a decimal number between 0.0 and 1.0 (inclusive) representing the quality of the output. 0 is the worst, 1 is the best.
24
24
  """
25
25
 
26
+ metadata: typing.Optional[typing.Dict[str, typing.Any]] = pydantic_v1.Field(default=None)
27
+ """
28
+ Optionally provide additional metadata about the feedback submission.
29
+ """
30
+
26
31
  timestamp: typing.Optional[float] = pydantic_v1.Field(default=None)
27
32
  """
28
33
  Optionally provide the timestamp representing when this feedback was collected. Used for reporting purposes.
@@ -7,6 +7,7 @@ import typing
7
7
  from .api_node_result import ApiNodeResult
8
8
  from .code_execution_node_result import CodeExecutionNodeResult
9
9
  from .conditional_node_result import ConditionalNodeResult
10
+ from .metric_node_result import MetricNodeResult
10
11
  from .prompt_node_result import PromptNodeResult
11
12
  from .search_node_result import SearchNodeResult
12
13
  from .subworkflow_node_result import SubworkflowNodeResult
@@ -94,6 +95,16 @@ class WorkflowNodeResultData_Subworkflow(SubworkflowNodeResult):
94
95
  populate_by_name = True
95
96
 
96
97
 
98
+ class WorkflowNodeResultData_Metric(MetricNodeResult):
99
+ type: typing.Literal["METRIC"] = "METRIC"
100
+
101
+ class Config:
102
+ frozen = True
103
+ smart_union = True
104
+ allow_population_by_field_name = True
105
+ populate_by_name = True
106
+
107
+
97
108
  WorkflowNodeResultData = typing.Union[
98
109
  WorkflowNodeResultData_Prompt,
99
110
  WorkflowNodeResultData_Search,
@@ -103,4 +114,5 @@ WorkflowNodeResultData = typing.Union[
103
114
  WorkflowNodeResultData_Api,
104
115
  WorkflowNodeResultData_Terminal,
105
116
  WorkflowNodeResultData_Subworkflow,
117
+ WorkflowNodeResultData_Metric,
106
118
  ]
@@ -5,7 +5,7 @@ import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
7
  from ..core.pydantic_utilities import pydantic_v1
8
- from .array_variable_value_item import ArrayVariableValueItem
8
+ from .array_vellum_value_item import ArrayVellumValueItem
9
9
 
10
10
 
11
11
  class WorkflowOutputArray(pydantic_v1.BaseModel):
@@ -19,7 +19,7 @@ class WorkflowOutputArray(pydantic_v1.BaseModel):
19
19
  The output's name, as defined in the workflow
20
20
  """
21
21
 
22
- value: typing.Optional[typing.List[ArrayVariableValueItem]] = None
22
+ value: typing.Optional[typing.List[ArrayVellumValueItem]] = None
23
23
 
24
24
  def json(self, **kwargs: typing.Any) -> str:
25
25
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: vellum-ai
3
- Version: 0.5.2
3
+ Version: 0.6.0
4
4
  Summary:
5
5
  Requires-Python: >=3.8,<4.0
6
6
  Classifier: Programming Language :: Python :: 3
@@ -1,8 +1,8 @@
1
- vellum/__init__.py,sha256=2ostXxge8NAc5scrfOy_CJzYTDB3vZ-UqMc6C1_QDb4,35797
1
+ vellum/__init__.py,sha256=7bxQL-tedbBVxsVRww71qLi2ner_qwl4L0ObgQnB8aU,42011
2
2
  vellum/client.py,sha256=7JaU104s0u_WhB8QAqIZcMv9IyvU-a0nKVZhTPKiEpw,97089
3
3
  vellum/core/__init__.py,sha256=1pNSKkwyQvMl_F0wohBqmoQAITptg3zlvCwsoSSzy7c,853
4
4
  vellum/core/api_error.py,sha256=RE8LELok2QCjABadECTvtDp7qejA1VmINCh6TbqPwSE,426
5
- vellum/core/client_wrapper.py,sha256=C_FHM-HHkz96oVY21a1pLVEWqbSwaz0w-rVEwzOUL4E,1697
5
+ vellum/core/client_wrapper.py,sha256=J9irQrkIEo-ZYhJJ8lGoYr0m_II3FN5pC5lqtfemXrg,1697
6
6
  vellum/core/datetime_utils.py,sha256=nBys2IsYrhPdszxGKCNRPSOCwa-5DWOHG95FB8G9PKo,1047
7
7
  vellum/core/file.py,sha256=sy1RUGZ3aJYuw998bZytxxo6QdgKmlnlgBaMvwEKCGg,1480
8
8
  vellum/core/http_client.py,sha256=5ok6hqgZDJhg57EHvMnr0BBaHdG50QxFPKaCZ9aVWTc,5059
@@ -32,11 +32,11 @@ vellum/resources/deployments/client.py,sha256=zCIRHxHX7DZ8ja5px7jq28-ZzMwiazWxy-
32
32
  vellum/resources/deployments/types/__init__.py,sha256=IhwnmoXJ0r_QEhh1b2tBcaAm_x3fWMVuIhYmAapp_ZA,183
33
33
  vellum/resources/deployments/types/deployments_list_request_status.py,sha256=CxlQD16KZXme7x31YYCe_3aAgEueutDTeJo5A4Au-aU,174
34
34
  vellum/resources/document_indexes/__init__.py,sha256=YpOl_9IV7xOlH4OmusQxtAJB11kxQfCSMDyT1_UD0oM,165
35
- vellum/resources/document_indexes/client.py,sha256=wbmWs9VPKypndRqZl8nirMznHHKckW7yHTg79eHfib8,39845
35
+ vellum/resources/document_indexes/client.py,sha256=ps7XrRmNptUsS4aZGlyhLVg_jWqjzC0JN2wGxinoFXI,40388
36
36
  vellum/resources/document_indexes/types/__init__.py,sha256=IoFqKHN_VBdEhC7VL8_6Jbatrn0e0zuYEJAJUahcUR0,196
37
37
  vellum/resources/document_indexes/types/document_indexes_list_request_status.py,sha256=sfUEB0cvOSmlE2iITqnMVyHv05Zy2fWP4QjCIYqMg0M,178
38
38
  vellum/resources/documents/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
39
- vellum/resources/documents/client.py,sha256=x0Hf_oHlBYhHsK_R7CIQrJKj-cXrF0ezUaEGPy6ADkQ,34010
39
+ vellum/resources/documents/client.py,sha256=lzi8zUVIo8eJA_fyqIjzho1FRGZrCTvNaIcFDQfaGEk,34322
40
40
  vellum/resources/folder_entities/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
41
41
  vellum/resources/folder_entities/client.py,sha256=dbq-WQ9Rh7zvB4i_U_FXqF1qvRhSEsJqOq6dKr7_PzY,6435
42
42
  vellum/resources/sandboxes/__init__.py,sha256=FTtvy8EDg9nNNg9WCatVgKTRYV8-_v1roeGPAKoa_pw,65
@@ -58,7 +58,8 @@ vellum/terraform/document_index/__init__.py,sha256=qq2zENI22bUvqGk_a1lmsoTr5O_xC
58
58
  vellum/terraform/provider/__init__.py,sha256=K1yLlTZkYBxhD4bhUV1v23hxDGgbfsAIGsSyeB54dNQ,10298
59
59
  vellum/terraform/py.typed,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
60
60
  vellum/terraform/versions.json,sha256=STW6Mg3BKDacFmbWHXziHxE90GWncZf4AIzCLiXm_7o,56
61
- vellum/types/__init__.py,sha256=m1fh7wzVhKpXcxYmWjnmo78UxekJQh30pCrNjwHAXyA,47652
61
+ vellum/types/__init__.py,sha256=ei9w0p8R1WpK8ouyjHDhOqVh_RmXqMW87iQHySk1lhE,56092
62
+ vellum/types/add_openai_api_key_enum.py,sha256=GB7sLK_Ou7-Xn73sKJHUo6Gx3TjyhU7uJvWZAg4UeaI,92
62
63
  vellum/types/api_node_result.py,sha256=SvYIi1T-N_P3FVjzv9I91PaCT0IN958A3easp5Q7jqE,983
63
64
  vellum/types/api_node_result_data.py,sha256=KFBmmizcEg73GwQMXUtEdJ4e9YGFpRLYAnalwxIcDug,1161
64
65
  vellum/types/array_chat_message_content.py,sha256=vWO6D2eUf9N5wWvu3WPgLIdoKVRWa0tIV8UmGRbgW3c,1030
@@ -66,10 +67,16 @@ vellum/types/array_chat_message_content_item.py,sha256=OI-Egmo1nCHcHxAPyIiVE6cl9
66
67
  vellum/types/array_chat_message_content_item_request.py,sha256=BDCVgQ578urGkM_118yAXWv4BZlWLPk22oBZGJIF6wo,1421
67
68
  vellum/types/array_chat_message_content_request.py,sha256=RjOzVEKHKqOTLHCT0D1XkH34IDHp4XVwTwxLFPgKeng,1059
68
69
  vellum/types/array_enum.py,sha256=4p5fpx2piS8FhkPAEz6Xu3OIOKFuDZF-aokSW6-dV0E,116
69
- vellum/types/array_variable_value_item.py,sha256=xkX151Bfx4p9y6rVLIhz1m8rQLcyULrfBFUuyJJPnT8,3002
70
+ vellum/types/array_variable_value_item.py,sha256=MHfgHHXxVOPJRFk3oK4ORsOw8Q06VWcs2JIsGSP5v9I,2228
71
+ vellum/types/array_vellum_value_item.py,sha256=KjXgZLvRL8WI5vT5nyn5mXFJjS9AkF3wKK3tng_NwuA,2166
72
+ vellum/types/basic_vectorizer_intfloat_multilingual_e_5_large.py,sha256=P9B-Ofq4V1KV5lBiX4tZzV76L76Usy4RqVuKn5K8dzE,1004
73
+ vellum/types/basic_vectorizer_intfloat_multilingual_e_5_large_request.py,sha256=DwIOSqUudFZygt84XPryCGCy3fyArDEa0eelSuGQDQs,1011
74
+ vellum/types/basic_vectorizer_sentence_transformers_multi_qa_mpnet_base_cos_v_1.py,sha256=Rb8q5E5_MG3Ht7rR5BVxkFAcO83_iicc0Zim6rdkdiU,1036
75
+ vellum/types/basic_vectorizer_sentence_transformers_multi_qa_mpnet_base_cos_v_1_request.py,sha256=grnDm5vh1wofvXLCQVUfA2wYYFce03hRGHCECNFJ7kk,1043
76
+ vellum/types/basic_vectorizer_sentence_transformers_multi_qa_mpnet_base_dot_v_1.py,sha256=HbB1bJpoUuRt-orgOThdrcB0RiBTNHVuTBOehitN3tQ,1036
77
+ vellum/types/basic_vectorizer_sentence_transformers_multi_qa_mpnet_base_dot_v_1_request.py,sha256=0N_YrysJ-HVPBaUDD56V1Fxu1aZQJNMt7O6heY-Z5hY,1043
70
78
  vellum/types/chat_history_enum.py,sha256=etXbSJGuOjEcYXyCoQEw0bd9sfbZZNctMQyFoCdnywM,129
71
79
  vellum/types/chat_history_input_request.py,sha256=iBqK5uT7wzR2C9TPvtQfugUeL1-4kOg_KQAc7fWYpnk,1121
72
- vellum/types/chat_history_variable_value.py,sha256=9k3JQuS2HK8wvxbIXNV-3Fk72rVdKhrnzQkDsiUbUA4,945
73
80
  vellum/types/chat_message.py,sha256=jROO5ASj_l0MoGGmno1TCUP7aMLIk48miMDWHpKUn_w,1213
74
81
  vellum/types/chat_message_content.py,sha256=jUdD6bGK6hpbgV4xzXOhlX1VZvATICxqxBe6rL2AYRg,1573
75
82
  vellum/types/chat_message_content_request.py,sha256=-Ar1P-EdzMlIMedySF_t33N1jGPGxTb_IpP_teXq-6c,1737
@@ -91,7 +98,11 @@ vellum/types/conditional_node_result_data.py,sha256=BoSK8B_qDx-CztZw5qwl2Gk0Ow56
91
98
  vellum/types/deployment_provider_payload_response.py,sha256=nEw7v0EVo3NgKDVtsBMjd9XLWmFAGk59U1Z-qSs-Stc,898
92
99
  vellum/types/deployment_read.py,sha256=q3xfBEKQ8HsXc9en1c3oKSGQbyTc-xY54puIEe20okM,1938
93
100
  vellum/types/document_document_to_document_index.py,sha256=kCPPJFnXu9HFZbk7PgRCtRDj5Cw2_0yEPjAStm-YC2E,1532
94
- vellum/types/document_index_read.py,sha256=woSzXnq-EPqycq-MV1J0q_lHoAMOrlm8D0NqLphofMc,1783
101
+ vellum/types/document_index_chunking.py,sha256=78_EoJAh_9G8I50rryj-XPT5Zh_C1r8Eap_9swOoJAo,1383
102
+ vellum/types/document_index_chunking_request.py,sha256=7Sr45IKRYCgnCvDts5Jn7idcNp09BVr2iI5pPzm_luk,1498
103
+ vellum/types/document_index_indexing_config.py,sha256=LoAc65mDdDtk2FXkY1giTajJGyU3FC7-OclTSZLCpTo,1075
104
+ vellum/types/document_index_indexing_config_request.py,sha256=C1OxKzeGwiLBIDmi6vcU_5M9GDu1fr5JzFEvNkxDliQ,1126
105
+ vellum/types/document_index_read.py,sha256=2Np5cg_vIr1JwR0iZFrGNeggYcA1u-DcCncGYD1ljZc,1753
95
106
  vellum/types/document_read.py,sha256=3Lml49Shj9yBf_bEKctD9j20HOPjAWPnxDinWdKWOY4,2200
96
107
  vellum/types/document_status.py,sha256=GD_TSoFmZUBJnPl-chAmaQFzQ2_TYO3PSqi3-9QfEHE,122
97
108
  vellum/types/enriched_normalized_completion.py,sha256=encGXlb20RydLkPKmY_5gy7Hx2---yvSpQkyTZY9SCY,2108
@@ -123,18 +134,17 @@ vellum/types/fulfilled_enum.py,sha256=MenrGneRMBvsq-n8tkMXAx0wppGWLJgkqdKnfklGP9
123
134
  vellum/types/fulfilled_execute_prompt_event.py,sha256=AuB-s-9Z7UVv_MEvQx2ncYIQ0SvdvYxWcEO85hD-00I,1235
124
135
  vellum/types/fulfilled_execute_prompt_response.py,sha256=APRSwGVBh3H6-N1D_HrQKuWFkhPWAVqgn5nnp9YUADY,1457
125
136
  vellum/types/fulfilled_execute_workflow_workflow_result_event.py,sha256=75PfQJgP1Ddp0V3h1QDDh5J-wWa0FLqWxq1fMwGUUkQ,1089
126
- vellum/types/fulfilled_function_call.py,sha256=o4V5CPzM4yyShBv0c-JZMmqRQcDtZjACXTXhbvbbmzg,999
127
- vellum/types/fulfilled_function_call_request.py,sha256=TkFuko99xU9WWYZ7MbIcaS4K9GexM78f71c5avuClIs,1073
128
137
  vellum/types/fulfilled_prompt_execution_meta.py,sha256=PnbP6rGLHjNkM8XAPYwGF_zj_nyX80BuTCKCRoFWW_w,1228
129
138
  vellum/types/fulfilled_workflow_node_result_event.py,sha256=-I5Evq3KNxVHP86AcV_lKCZMA_0qAXz8ZOHqzXwjjL4,1373
130
- vellum/types/function_call.py,sha256=U1_fLhZ_VGnHYPX8rb7iqyyUhBzzbRAGR-ai4wLDrs4,813
139
+ vellum/types/function_call.py,sha256=GGHMaXDbH45vU6TWp0F73w5oZY-8GuakSr0d9bfo22Y,1081
131
140
  vellum/types/function_call_chat_message_content.py,sha256=HXtr_-jXi0xFrq8u2ZpBaq-svxuxn2Bl-BQIc_X2jLw,1065
132
141
  vellum/types/function_call_chat_message_content_request.py,sha256=UOtsUEmAQ66-UnNq1HB5vozK0ZAD6Mfdrkz_9RT9ogI,1094
133
142
  vellum/types/function_call_chat_message_content_value.py,sha256=sckkwTHSa8nvpjvk5Wj9sQ2Ml4AI5UoB6Fj0TJM8Xcg,1013
134
143
  vellum/types/function_call_chat_message_content_value_request.py,sha256=UJPQxmhOtbqGSt1-FfVmNHJG6VsKufu8H9ecStqU5aA,1020
135
144
  vellum/types/function_call_enum.py,sha256=QK__nqbfcaPx1d6paBAoCFth7mWOStqgutY3MIit_cE,131
145
+ vellum/types/function_call_request.py,sha256=gwhQfL0vKfDzSKR2Pt5Q2E8bkoQKcNQ2ItAAxT_dWlo,1088
136
146
  vellum/types/function_call_variable_value.py,sha256=3XFxR5zkeo4sc7fB_ot6x6fFT_QC4QKYC9c0cCQENlI,936
137
- vellum/types/function_call_vellum_value.py,sha256=osdRV9vw_45RafoBZEqInDitGQcxft4eIXcpfAmF1kw,969
147
+ vellum/types/function_call_vellum_value.py,sha256=Zn_tu4bfy569R9KJ9BiXx92N_AsB3KvMVv24DRbjvk8,993
138
148
  vellum/types/generate_error_response.py,sha256=Zrnq_Acm_2CfmZkZ60Axgw_uUISOjd6tbJBIkFuj2U0,940
139
149
  vellum/types/generate_options_request.py,sha256=SD-39FB3py_HAZzMTaFyNeDRG0QbPPnayKICo2p9fTk,1079
140
150
  vellum/types/generate_request.py,sha256=PdbtFLB-RfFJatIIB_b1prMWks-LSxChbXVszMIPIuw,1572
@@ -145,15 +155,24 @@ vellum/types/generate_result_error.py,sha256=DDDe86-afRaPwPF6h25OTotlUwRkSg5_Wmq
145
155
  vellum/types/generate_stream_response.py,sha256=Mig0fk-ZS3zNBAFr1mthnkMs2PcpYMa8mkC7Cs42ba8,934
146
156
  vellum/types/generate_stream_result.py,sha256=MVtPSf2xBtYpIoIgwtkE2xVit_bOS9cw0sJkCQu93iI,1101
147
157
  vellum/types/generate_stream_result_data.py,sha256=erZMO34Kcw01WFwx8Od2Yy8hbINOiYwehdCPUVsGd-w,991
158
+ vellum/types/hkunlp_instructor_xl_enum.py,sha256=wY1GNW1Swq9g7brDF5GWSpwEz9BedR3xIsPE77ybqDI,144
159
+ vellum/types/hkunlp_instructor_xl_vectorizer.py,sha256=8EGCFKR8mE3jhTdwjzlozsE6xwRTvZjiBi298cylQA0,1017
160
+ vellum/types/hkunlp_instructor_xl_vectorizer_request.py,sha256=LoX8-MxDtVZuLz6EftrQmrVplOs6s2YCv08RP1vZvmQ,1046
148
161
  vellum/types/image_chat_message_content.py,sha256=VxAfJFUmUwOdYmJGKdMtfX4NsEH--CF7Gr3NC8Sad6o,975
149
162
  vellum/types/image_chat_message_content_request.py,sha256=FelTpTbRUP_Fs5JW4FjdzTdF54E82olTWRs7l4IuaWQ,1004
150
163
  vellum/types/image_enum.py,sha256=tCaNHfgdFi9F5MInvgaRq19i9lghWolWWmZpBH5uSJQ,116
151
164
  vellum/types/image_variable_value.py,sha256=sTEWJjSx7Hh7uoZnH2eNpdF1lJltSw-yWQrbKYA5PzQ,1000
165
+ vellum/types/image_vellum_value.py,sha256=LBVZLsVItp_BSiDwxDVvbtOJyD0JJmzCNVzMsy3cWKI,998
166
+ vellum/types/indexing_config_vectorizer.py,sha256=zW4Fn0_gx4Ges-kXI0-rfOa6_2SwnCyxGQz4Ok18uYI,3802
167
+ vellum/types/indexing_config_vectorizer_request.py,sha256=3rqeTX2055DI9cybFS29M7DaFLszHIKqR51lvNQaT8M,4061
152
168
  vellum/types/indexing_state_enum.py,sha256=KWYMz5DwJnVhu3ZlSDdqiC5MtiTIdrxE4EvwFYiel1U,213
153
169
  vellum/types/initiated_enum.py,sha256=wLrGPYfE2-wOPUkceLglJheOUsHGAyROO0ropfSudJs,124
154
170
  vellum/types/initiated_execute_prompt_event.py,sha256=_mdYoNnLS1u39vVbEugn37Al72ZmWa_WC0JmcM5DOH4,1134
155
171
  vellum/types/initiated_prompt_execution_meta.py,sha256=SOLKLuVeSZeCm2CefjKX7hVGr5yijcRXHZCBHMxXBeU,1181
156
172
  vellum/types/initiated_workflow_node_result_event.py,sha256=21Q_wO3U1qbYuNUAWBaXX2JVmgZZXJ7c-89FqJFNRZM,1377
173
+ vellum/types/instructor_vectorizer_config.py,sha256=SjOqNyt2e1_4itwmORbDMvnJ3hJN-G1XYThez4rJanc,1025
174
+ vellum/types/instructor_vectorizer_config_request.py,sha256=SiR6BT6rFqmZ85iN6kj_GwHXmuZJ5-0YqXCULR18hno,1032
175
+ vellum/types/intfloat_multilingual_e_5_large_enum.py,sha256=hq41gaU723etcyr8--yEzHFqdR_x7ixSMRXTCHthknM,163
157
176
  vellum/types/json_enum.py,sha256=0Se0lTWxLGQe-JdQ8E9KwFt5NWXuI7BkOdWQcFKJg-8,114
158
177
  vellum/types/json_input_request.py,sha256=fpBb3QS-E0a3hZU_mHZ5Yjkwr10-qqbQoMJbfhfGu_4,1048
159
178
  vellum/types/json_variable_value.py,sha256=KdKz67NgVwVHpxXFgSxFPBeGBdjzTwZ_VKe22kcaWjo,904
@@ -163,6 +182,8 @@ vellum/types/logprobs_enum.py,sha256=D_458cZX2CAb6dX_ovrQ6HARlJkYcZRadKwsi1Cr-JM
163
182
  vellum/types/metadata_filter_config_request.py,sha256=_1CVIxmDmtXezTMWoaqeea9boe8hyCmmAn28u69NEUk,1355
164
183
  vellum/types/metadata_filter_rule_combinator.py,sha256=3Vpp1Mnv3As7efkxWTeV8qd4gdJ6OLoLhz_UeVBHAX8,165
165
184
  vellum/types/metadata_filter_rule_request.py,sha256=kHXDnPobjbdWXBWda2lZNeUjNgJ4S9tQBIALYh3UlAo,1371
185
+ vellum/types/metric_enum.py,sha256=wOJQ_CmwFLyFi5UDZ9IbvlhXOwIn7Eg9qjZtPRT9Wrs,118
186
+ vellum/types/metric_node_result.py,sha256=-MhXbtDU5W4QxjhjOOK77BK8IcVck94hC6H8R10GPs8,907
166
187
  vellum/types/ml_model_usage.py,sha256=NYnyJt7C3cG88REt2X2zsmRZMqx-RBJp07ld6eAc96k,1086
167
188
  vellum/types/named_scenario_input_chat_history_variable_value_request.py,sha256=swgyn_U0Mzz13GmRNUZ-V1190h---N1rNVuQYBOmiAE,1098
168
189
  vellum/types/named_scenario_input_request.py,sha256=v98mkxp2bZSWZur67dGxKM7UaIdk5H8b6mnK2myA4HE,1043
@@ -171,8 +192,8 @@ vellum/types/named_test_case_chat_history_variable_value.py,sha256=wLR-Vhb_XAevy
171
192
  vellum/types/named_test_case_chat_history_variable_value_request.py,sha256=OTCmtteEOw70ptFTubbfh_m5C4qE4-KfM8ABMQpW-DE,1073
172
193
  vellum/types/named_test_case_error_variable_value.py,sha256=HQI1CRF3K2fYxO_Gn5Y9KrrH4IEtzLN00rjt5wLJM0A,1018
173
194
  vellum/types/named_test_case_error_variable_value_request.py,sha256=_LDMPlAbs9Q_-SghJW2UFioEH-IkOJCoIba6kBFVUho,1047
174
- vellum/types/named_test_case_function_call_variable_value.py,sha256=7NrD4PlVYiUgFvYSIIJKnAwh4hgBY59SUu1VqrP52WI,1064
175
- vellum/types/named_test_case_function_call_variable_value_request.py,sha256=OTMAd-Kxx8fZqQiJCy5K8ymuJpNxVSx93UDe9G8gGF8,1093
195
+ vellum/types/named_test_case_function_call_variable_value.py,sha256=1nqkcIo5j_Hd5izJh5X7zygDyiI1_6--WDm3cQehrNY,1036
196
+ vellum/types/named_test_case_function_call_variable_value_request.py,sha256=v68meQwPOvNIiIKwrks2M4PvpzyN-D9GGBJ0oIU0CNU,1065
176
197
  vellum/types/named_test_case_json_variable_value.py,sha256=icQDs-Z8EqoTbs6JiC4LiTHpgYkaDxUelCTsKyBTX_U,995
177
198
  vellum/types/named_test_case_json_variable_value_request.py,sha256=F7L-Q5ZXiQDsv5JrUGMEY7Z7ILJ6UQIdBf3zyoJveJ0,1002
178
199
  vellum/types/named_test_case_number_variable_value.py,sha256=N3fQPqNEeRIW6actTMPnlYwpVC16eHKbjUiR01a_e1Y,976
@@ -192,7 +213,7 @@ vellum/types/node_input_compiled_number_value.py,sha256=Kpxo7ryDiOxylmzF1pz6jups
192
213
  vellum/types/node_input_compiled_search_results_value.py,sha256=ejJuUB42LO9l-E12uKa0Ezk_T0nP6q023uuqDEqN4TU,995
193
214
  vellum/types/node_input_compiled_string_value.py,sha256=cEssxmVjvY5SG2OINLYdw8pJPIJrKdEvdUgkU0xz_9k,926
194
215
  vellum/types/node_input_variable_compiled_value.py,sha256=iXSNb6wRYmPOOzQZk8AWB929hedtL_NwFox17MjMT4w,3354
195
- vellum/types/node_output_compiled_array_value.py,sha256=k0K0jLaKV5383hrx1CX_Lxg4bQLGIcdNvojAXqqWt8Y,1220
216
+ vellum/types/node_output_compiled_array_value.py,sha256=Wsj7F6MB5RrfZg0fHzJl2VO-tAu_vFzg_OHkUDiY2uc,1214
196
217
  vellum/types/node_output_compiled_chat_history_value.py,sha256=G4uyylyx4pe9wroMruPaw8kFOmwVEzVCGl0xFRd3S_w,1198
197
218
  vellum/types/node_output_compiled_error_value.py,sha256=Y9Zk8yJ5HXhNyDb2-iSW5RnTSxDIuLHCgqtt9-1CIkE,1172
198
219
  vellum/types/node_output_compiled_function_call_value.py,sha256=-zKACRAG0jNpVWv4wRpJwi4BCoI368C0fglgEmKbnY0,1190
@@ -205,6 +226,15 @@ vellum/types/normalized_log_probs.py,sha256=LN6Ap1sDIZ5KZ_F6Xxc89SFAoLlV6sqPjju7
205
226
  vellum/types/normalized_token_log_probs.py,sha256=-PYJPYzykDfG9aeXqRselY8XHdIvr0K1s6qnecPCB-k,1008
206
227
  vellum/types/number_enum.py,sha256=M_h5PmC5HxQYpQbfqqyw1DualhKu1QOCU-o1NYTQz_o,118
207
228
  vellum/types/number_variable_value.py,sha256=lZxdWVR_VwlAXpqHK6bgWXE32JcBkKkylnaJLi5iVy0,883
229
+ vellum/types/number_vellum_value.py,sha256=ynO448qi8sVk15PSQBm_5aDcGL0gl7Sv_bTfA3KhumA,933
230
+ vellum/types/open_ai_vectorizer_config.py,sha256=sxtay8on0Gm_qOrFHDrMjxActxPMAu0jcm0hY2yR9VY,1037
231
+ vellum/types/open_ai_vectorizer_config_request.py,sha256=9z3iSr3e82og59FH_U0pNbhTu4hIg0GGhBYEJOCiK4U,1044
232
+ vellum/types/open_ai_vectorizer_text_embedding_3_large.py,sha256=fmopJSWa6oubljt2ljxvcjiB3Ic9CLnZn10oTW7-pTQ,1022
233
+ vellum/types/open_ai_vectorizer_text_embedding_3_large_request.py,sha256=0h31Ia__NqUOCSeQqFciubRjAHpgV_exxLKReJo-Csc,1051
234
+ vellum/types/open_ai_vectorizer_text_embedding_3_small.py,sha256=_QV2NEKExuQMNyKxvjejEjRzGRIdwXuZhd-gFQJnzpk,1022
235
+ vellum/types/open_ai_vectorizer_text_embedding_3_small_request.py,sha256=NpSLs_P3j_vqvlldmkhmwcVSI6gV5tZvNGqq88i1maQ,1051
236
+ vellum/types/open_ai_vectorizer_text_embedding_ada_002.py,sha256=fg9j6H6QuvkmX2mLGJ2qyR58NtHHFygoJQLyoLPTyQE,1022
237
+ vellum/types/open_ai_vectorizer_text_embedding_ada_002_request.py,sha256=_htzWvw56CXYqexYbg_HBAZDNxWewKxbrtfHYDsnZuY,1051
208
238
  vellum/types/paginated_document_index_read_list.py,sha256=RowLxggvXFAniLSNAZWrWDGHp91GJLcJv6xk5rdKubA,1091
209
239
  vellum/types/paginated_slim_deployment_read_list.py,sha256=SQSElvzHGApSBulXLzBuZhpS3JI_R3N96wV_p_LOXL4,1095
210
240
  vellum/types/paginated_slim_document_list.py,sha256=L8RyvP1ADem7HUnNjDr4KyoQjIJtLOjMcc8xSD_5AFg,1070
@@ -220,11 +250,15 @@ vellum/types/prompt_node_result.py,sha256=BVRnp6zIKocaPquCln0UtqW2M18j8k_OnHLGWC
220
250
  vellum/types/prompt_node_result_data.py,sha256=WaKh-Nh3vVklvitT3WxwVeMGt0VxAoeypDDW4gvcMpY,988
221
251
  vellum/types/prompt_output.py,sha256=wO0lz1HmPctCMt9lGLTsJRkL20wMXfmya5CxRhakOxU,1418
222
252
  vellum/types/raw_prompt_execution_overrides_request.py,sha256=Hwfjk35PsGSqMfcRwBzwjfpaRiaixTVi8xsG9g9pV3E,1210
253
+ vellum/types/reducto_chunker_config.py,sha256=x0LRCr3vMfn4Zu5KUKWbwaV3ab8SQ825NkmzLvbiojY,948
254
+ vellum/types/reducto_chunker_config_request.py,sha256=6LckEAC7KkIBXyLQjzzYQkRCSE2HA0j4L9eGA-FkdiQ,955
255
+ vellum/types/reducto_chunker_enum.py,sha256=fVzsgByOzOvrWI7MHX9co59ngPp66BIWY7Wjol0p6Pc,135
256
+ vellum/types/reducto_chunking.py,sha256=cWZxTXahuD_raLwQJHFW0BuXZSuxKJlioOqWb1Yj1rg,998
257
+ vellum/types/reducto_chunking_request.py,sha256=5epzSJ-84JjIh_xToEhw_31SOr02CaeGVDz1pUbcfvc,1027
223
258
  vellum/types/rejected_enum.py,sha256=ZatbMUdJos2j62CSK7lf2Pzv5xIh92XzRbzcsyc6NJg,122
224
259
  vellum/types/rejected_execute_prompt_event.py,sha256=2giB2PrFd7i2eL3moa9FpGkA4BcR1_gXqnJ9Y5XVmeQ,1159
225
260
  vellum/types/rejected_execute_prompt_response.py,sha256=dMzzZXvsVtLcnprXTbuPqwRJctJ1Bv07_4exvZRUKMQ,1417
226
261
  vellum/types/rejected_execute_workflow_workflow_result_event.py,sha256=acYvyXoZfPMq2a0xCqCr8wtBSb6WzumErf_RngsYzqg,1103
227
- vellum/types/rejected_function_call.py,sha256=KQrHybBgpZc1SSG_BxudlhZ1vOwu733XCCBGTeLOwDk,1038
228
262
  vellum/types/rejected_prompt_execution_meta.py,sha256=kBS6bThYk1vvhKv47UB0FZP7WuCBoCAsbTnK43XQWbI,1138
229
263
  vellum/types/rejected_workflow_node_result_event.py,sha256=NbHR7Dhd9QBxDY9AMVM3uHx6HkgPiW6C0LaBGktGycA,1293
230
264
  vellum/types/sandbox_scenario.py,sha256=-MaSvpH6jSokr5XsCZybafKez3fnPctTFqm30Lfk8Ko,1144
@@ -243,8 +277,14 @@ vellum/types/search_result_document_request.py,sha256=xgR1HOrXdJUNUzQrK6f1KSaj50
243
277
  vellum/types/search_result_merging_request.py,sha256=Yx1iv-58kFMCayP_ngjhD8O-m2nvlIAfAQUz1pRxwKI,972
244
278
  vellum/types/search_result_request.py,sha256=fqqTr-id9cLg5cVxGavZSLOCJSTMBKPNRdkGAjJrytM,1333
245
279
  vellum/types/search_results_enum.py,sha256=qiQWwPnGtlWgG6JVCOAV8KzJarrhOeZrOAeb569grgA,133
246
- vellum/types/search_results_variable_value.py,sha256=eWhi8-aEO2pm5ybz-JJqS_5cqeITUabVQGgFX34P9Zk,950
247
280
  vellum/types/search_weights_request.py,sha256=C6uvEWZSpmbslpU52qcVA-lEtKF_crRsafXsN_rDURc,1128
281
+ vellum/types/sentence_chunker_config.py,sha256=DVag4hG9rvuhJWgzbcbsdU4Nz1mx_Ynb3DHUbeOViA4,1003
282
+ vellum/types/sentence_chunker_config_request.py,sha256=OxXVy5putar1sBc_ZAnY_fiudzWMgi2BzfPAeNhBk70,1010
283
+ vellum/types/sentence_chunker_enum.py,sha256=T7R4Ee7ahhY5a6d3QuAsuIXZpQvt--NcDEgzWdDqKTc,137
284
+ vellum/types/sentence_chunking.py,sha256=MjtwzWKBttlAw6fk1SuR2cEdIfi_FkWV5bA3U4uf-c4,1003
285
+ vellum/types/sentence_chunking_request.py,sha256=E4haYxb4l4D6nYbRs0ZS0mxKYBfRvkaIM_2BEObwZxU,1032
286
+ vellum/types/sentence_transformers_multi_qa_mpnet_base_cos_v_1_enum.py,sha256=1WAFU1hp5CDVaDwnAlMJQ38DWOTuFEpbWep0sJgWTeU,195
287
+ vellum/types/sentence_transformers_multi_qa_mpnet_base_dot_v_1_enum.py,sha256=biVui-_CWBRL-u7tqhBvTxmWR6BRTOF-9_Ni7lKNu84,195
248
288
  vellum/types/slim_deployment_read.py,sha256=_rdjrhGxMd9oyAhAUsPg5s4Uej-dxZML2yl8x-ydbqk,1753
249
289
  vellum/types/slim_document.py,sha256=Sb02at3OFB_PXmIyevs3Ka0K1YUlgqUoN-LWW9kfx5c,2975
250
290
  vellum/types/slim_workflow_deployment.py,sha256=xtJ7q7CYrLy0wc5Nx5BjDn7rI2pTPDAmJpAvAmPbLwM,2104
@@ -287,7 +327,7 @@ vellum/types/terminal_node_search_results_result.py,sha256=neeojsER6K17-Mw8pQ92q
287
327
  vellum/types/terminal_node_string_result.py,sha256=AV-9qUXT0WJiftv_uv_qKSROXo8XEijEOMSshGU6JNA,1049
288
328
  vellum/types/test_case_chat_history_variable_value.py,sha256=hi9BArWPk7im4X2091yGRfjpIgGPJSUBp9PqHA0ZH6w,1061
289
329
  vellum/types/test_case_error_variable_value.py,sha256=7WIe0DMvp8tBCcqyRHQpT76vTylwuW2YQ3jRPkfc-t0,1036
290
- vellum/types/test_case_function_call_variable_value.py,sha256=_1qdrMiMaKLWkljPpk8D0C9DH8VjQ7obWtY24mOy8xY,1081
330
+ vellum/types/test_case_function_call_variable_value.py,sha256=Auv--TyCGUOjs9z42ZB29tsGZ5khy7CmqSNWJe55Lzk,1053
291
331
  vellum/types/test_case_json_variable_value.py,sha256=BsgNdPsgTh_Vxt3ZRkHy22foq2T-5MlKDSm0tDJFXpw,1012
292
332
  vellum/types/test_case_number_variable_value.py,sha256=96vZuKZTm7AVa_r-xjTMTpQMRCCga-Pcfw0HLoAYkg8,996
293
333
  vellum/types/test_case_search_results_variable_value.py,sha256=lzExcnYAH8PWjWEfMj6rmhDnQG7YSLiU0bwH62N2dIk,1068
@@ -303,7 +343,7 @@ vellum/types/test_suite_run_exec_config_request.py,sha256=cV_Yq4cbHK8MZxPp6RQqA6
303
343
  vellum/types/test_suite_run_execution.py,sha256=IwWBhWtlqJvA0pmv0Tm5mKVGbEEk0TzIdOb1rApk4wM,1158
304
344
  vellum/types/test_suite_run_execution_chat_history_output.py,sha256=zY5gpMhhYUfQ36Uy2D-SshURvn2vUqGD57EvEiOuW7c,1115
305
345
  vellum/types/test_suite_run_execution_error_output.py,sha256=hY1TSU9-TvllhHvnubSy9F_JirzFFucL_5mbfllf8Eo,1089
306
- vellum/types/test_suite_run_execution_function_call_output.py,sha256=ftrOWH3EuShDVLF4ICUJcICursiZ1q8dS59IhXoBK5E,1135
346
+ vellum/types/test_suite_run_execution_function_call_output.py,sha256=XrWHlNs4pOeVWbTgcgHJusr1JaM9o-vRFNRo3n-E3yk,1107
307
347
  vellum/types/test_suite_run_execution_json_output.py,sha256=jEcPAovcKOadRnodsQyu0wTGlT0fKoy9XfDUhU_702c,1066
308
348
  vellum/types/test_suite_run_execution_metric_definition.py,sha256=r9K5M-dxQZ0SN2Sp7qCLHf0ai0C0F67-RC4zLnoNDJg,973
309
349
  vellum/types/test_suite_run_execution_metric_result.py,sha256=WKp6K3MhDlbBC245CT87YRsdPwrEkoLJUh8Ojzj3SO8,1218
@@ -332,6 +372,14 @@ vellum/types/test_suite_run_workflow_release_tag_exec_config_data_request.py,sha
332
372
  vellum/types/test_suite_run_workflow_release_tag_exec_config_request.py,sha256=P0zRtzh7ekun8pcEH2EFTB6p4Kq54cE955Vff4q6-dE,1405
333
373
  vellum/types/test_suite_run_workflow_release_tag_exec_config_type_enum.py,sha256=JMN3-aK8SWJzTli6c-j9xmHSYVwGND1PaZgGzwwkMjo,170
334
374
  vellum/types/test_suite_test_case.py,sha256=Zi4uLAXIgZnecVdrG0BTKA4I8Ri_Qrt83OuClyQkzIc,1086
375
+ vellum/types/text_embedding_3_large_enum.py,sha256=mniEbUgFr40fnVAGnlL_aNaFET3PhrQ8flune0mm2H4,147
376
+ vellum/types/text_embedding_3_small_enum.py,sha256=_fBJkCGGk8o9FD19oWq_ARJHIU3KjPTKMPGSvAe3Vxw,147
377
+ vellum/types/text_embedding_ada_002_enum.py,sha256=FzY5woDqAEElY-ulFR9u7Rrw93KKhGiVwBkrmE1URxM,147
378
+ vellum/types/token_overlapping_window_chunker_config.py,sha256=uXmGxbpjAQE_-lcMO_bqR6qK_KwMK0Nu0tXu0Y7Gke0,1025
379
+ vellum/types/token_overlapping_window_chunker_config_request.py,sha256=zQlZfj9aj9zPjZ9HEbyC5s8xcmFyFPMMIH5Wnvdmads,1032
380
+ vellum/types/token_overlapping_window_chunker_enum.py,sha256=hUGyFRsTEfjHfT74WoOuFveugHuWaUoE88CRAiMtxvM,167
381
+ vellum/types/token_overlapping_window_chunking.py,sha256=Xlaj2rKEzsU8w46g5u1T5rSrH2HcCs9-2di5H18sQb0,1077
382
+ vellum/types/token_overlapping_window_chunking_request.py,sha256=D1kS86Haw3FPZKimh-JifYlN06alsvyRtymwgBctffs,1106
335
383
  vellum/types/upload_document_error_response.py,sha256=2OujdWv40S6dfpPg1XOY7VurwOWeXs-RhRAKzqDEE6k,866
336
384
  vellum/types/upload_document_response.py,sha256=VsKBPRKSTblu_M0GS2rJMd-9ZK4Gm4dhUtV0EQnuags,946
337
385
  vellum/types/vellum_error.py,sha256=WjaUKAuuRVNOXC630oAM0A6n6pD6AXndbZVZ44WszQ4,937
@@ -343,18 +391,18 @@ vellum/types/vellum_variable.py,sha256=MPxkKBtuxtg4HZud4xwsyT_sH6FG-YDGeFLpUa4NZ
343
391
  vellum/types/vellum_variable_type.py,sha256=uHeBCGi7U_SksgKOxtvI4KxYffD4BD2TlddTPo_LUSM,281
344
392
  vellum/types/workflow_deployment_read.py,sha256=KsGJ4Ah4ybWbEsdnb0ixXHxCfwxRSQssBuQmlyZMpbc,2110
345
393
  vellum/types/workflow_event_error.py,sha256=1f-xt3rNeCIpSm37KmAqVMc9IEbDD-3pNH4zwBYzXP0,981
346
- vellum/types/workflow_execution_actual_chat_history_request.py,sha256=772wvb3NA_hO6fldsxGwv8fxFo_8AfZe-gxgFlkeJnQ,2038
347
- vellum/types/workflow_execution_actual_json_request.py,sha256=Z5f4Btqp7Hp4JCtDKRAfatxjwpy916xduGXKeUTRPKw,1975
348
- vellum/types/workflow_execution_actual_string_request.py,sha256=rdu8TeZw8ZWpbooIlo0n9hb03wT78kknXBhsNNLusAY,1952
394
+ vellum/types/workflow_execution_actual_chat_history_request.py,sha256=ZBk37qbr-gXYeFLhgmkQQLKvrtlJCWVe9B6GYjq763o,2223
395
+ vellum/types/workflow_execution_actual_json_request.py,sha256=XuiH6iE_NZiut9E3Y8VwiY5rOHx8u3sd2i_TxbfG8d8,2160
396
+ vellum/types/workflow_execution_actual_string_request.py,sha256=abeuR1PeN9t0eulgYP9pd2VTESzmQT31b9pa0Xr_aKo,2137
349
397
  vellum/types/workflow_execution_event_error_code.py,sha256=Vf-MTOx0KclZp35aajWDHSdtwGgg0LWvM5yVQfnXYc4,425
350
398
  vellum/types/workflow_execution_event_type.py,sha256=ESKqV3ItoAlqBooruf-i0AnmEh_GvCySZ0Co3r9Bvt0,170
351
399
  vellum/types/workflow_execution_node_result_event.py,sha256=qIjztqor0UcBTxbq7w7Is98Mqu0IgggUKY24qOHal4s,1139
352
400
  vellum/types/workflow_execution_workflow_result_event.py,sha256=PyMUdEwRMd8vjdimdcOXSvzPNd3PoacfDKuEmdrzpTU,1134
353
- vellum/types/workflow_node_result_data.py,sha256=fMi04ZIPmnjnPyMTKAXeilxtFdLoZ3toWax9XPzCQ_o,2966
401
+ vellum/types/workflow_node_result_data.py,sha256=wMPEIx8TSPFT8W9MrhAhbg2QmP88j8ANnLBdz7RIlUY,3299
354
402
  vellum/types/workflow_node_result_event.py,sha256=0tSTva8wAxMKSGWrbSRADqGcbR_A6FMSR7xkYLP9rZg,1745
355
403
  vellum/types/workflow_node_result_event_state.py,sha256=cC3CdfmXR8bPzSG4W6vDnndA9HAnfF3v4UzmyeVwxog,209
356
404
  vellum/types/workflow_output.py,sha256=iSz1VQAm0e4gJcJlB_HG6jI9P4gRx4nQhMzoTgzG4lM,3212
357
- vellum/types/workflow_output_array.py,sha256=d52Grj5m6s2G08W4jq4x0S_iYTzuVSXi_Qkj-1KOh6k,1154
405
+ vellum/types/workflow_output_array.py,sha256=KbXzXJySPSQ00Q5mQ2Ka7NQ1X7NRyoFiHLGu3D6JZRM,1148
358
406
  vellum/types/workflow_output_chat_history.py,sha256=w77iHmsJKjmwGcjLgVSlz_JubZ5_posHgCORg-0H2SI,1131
359
407
  vellum/types/workflow_output_error.py,sha256=W3Slj5xldWOz_RE6swVoai-0JlEIffDbnYh81bPTTLA,1106
360
408
  vellum/types/workflow_output_function_call.py,sha256=9Xa7ZSdEVtnPFLO7AXDpXyo1C7BVbW88IaT7BI5KB9o,1123
@@ -380,7 +428,7 @@ vellum/types/workflow_result_event_output_data_search_results.py,sha256=gazaUrC5
380
428
  vellum/types/workflow_result_event_output_data_string.py,sha256=aVWIIGbLj4TJJhTTj6WzhbYXQkcZatKuhhNy8UYwXbw,1482
381
429
  vellum/types/workflow_stream_event.py,sha256=KA6Bkk_XA6AIPWR-1vKnwF1A8l_Bm5y0arQCWWWRpsk,911
382
430
  vellum/version.py,sha256=neLt8HBHHUtDF9M5fsyUzHT-pKooEPvceaLDqqIGb0s,77
383
- vellum_ai-0.5.2.dist-info/LICENSE,sha256=CcaljEIoOBaU-wItPH4PmM_mDCGpyuUY0Er1BGu5Ti8,1073
384
- vellum_ai-0.5.2.dist-info/METADATA,sha256=eZs04Vzi6mhgnm2pqE2oG5qCcUS5UENyDq5gyKA0LV8,3549
385
- vellum_ai-0.5.2.dist-info/WHEEL,sha256=Zb28QaM1gQi8f4VCBhsUklF61CTlNYfs9YAZn-TOGFk,88
386
- vellum_ai-0.5.2.dist-info/RECORD,,
431
+ vellum_ai-0.6.0.dist-info/LICENSE,sha256=CcaljEIoOBaU-wItPH4PmM_mDCGpyuUY0Er1BGu5Ti8,1073
432
+ vellum_ai-0.6.0.dist-info/METADATA,sha256=vuUj8xLP9qDd0H_c_R8h9sSwQBQF32NW6ApoeoBHNFU,3549
433
+ vellum_ai-0.6.0.dist-info/WHEEL,sha256=Zb28QaM1gQi8f4VCBhsUklF61CTlNYfs9YAZn-TOGFk,88
434
+ vellum_ai-0.6.0.dist-info/RECORD,,