vellum-ai 0.5.2__py3-none-any.whl → 0.6.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (76) hide show
  1. vellum/__init__.py +160 -18
  2. vellum/core/client_wrapper.py +1 -1
  3. vellum/resources/document_indexes/client.py +61 -52
  4. vellum/resources/documents/client.py +8 -4
  5. vellum/types/__init__.py +179 -17
  6. vellum/types/add_openai_api_key_enum.py +3 -0
  7. vellum/types/array_variable_value_item.py +0 -24
  8. vellum/types/array_vellum_value_item.py +82 -0
  9. vellum/types/{rejected_function_call.py → basic_vectorizer_intfloat_multilingual_e_5_large.py} +3 -6
  10. vellum/types/basic_vectorizer_intfloat_multilingual_e_5_large_request.py +29 -0
  11. vellum/types/basic_vectorizer_sentence_transformers_multi_qa_mpnet_base_cos_v_1.py +29 -0
  12. vellum/types/basic_vectorizer_sentence_transformers_multi_qa_mpnet_base_cos_v_1_request.py +29 -0
  13. vellum/types/basic_vectorizer_sentence_transformers_multi_qa_mpnet_base_dot_v_1.py +29 -0
  14. vellum/types/basic_vectorizer_sentence_transformers_multi_qa_mpnet_base_dot_v_1_request.py +29 -0
  15. vellum/types/document_index_chunking.py +46 -0
  16. vellum/types/document_index_chunking_request.py +46 -0
  17. vellum/types/document_index_indexing_config.py +28 -0
  18. vellum/types/document_index_indexing_config_request.py +28 -0
  19. vellum/types/document_index_read.py +2 -4
  20. vellum/types/function_call.py +20 -18
  21. vellum/types/{fulfilled_function_call_request.py → function_call_request.py} +2 -2
  22. vellum/types/function_call_vellum_value.py +1 -1
  23. vellum/types/hkunlp_instructor_xl_enum.py +5 -0
  24. vellum/types/hkunlp_instructor_xl_vectorizer.py +30 -0
  25. vellum/types/hkunlp_instructor_xl_vectorizer_request.py +30 -0
  26. vellum/types/{fulfilled_function_call.py → image_vellum_value.py} +4 -5
  27. vellum/types/indexing_config_vectorizer.py +106 -0
  28. vellum/types/indexing_config_vectorizer_request.py +106 -0
  29. vellum/types/instructor_vectorizer_config.py +31 -0
  30. vellum/types/instructor_vectorizer_config_request.py +31 -0
  31. vellum/types/intfloat_multilingual_e_5_large_enum.py +5 -0
  32. vellum/types/metric_enum.py +5 -0
  33. vellum/types/{chat_history_variable_value.py → metric_node_result.py} +4 -3
  34. vellum/types/named_test_case_function_call_variable_value.py +2 -2
  35. vellum/types/named_test_case_function_call_variable_value_request.py +2 -2
  36. vellum/types/node_output_compiled_array_value.py +2 -2
  37. vellum/types/{search_results_variable_value.py → number_vellum_value.py} +6 -3
  38. vellum/types/open_ai_vectorizer_config.py +30 -0
  39. vellum/types/open_ai_vectorizer_config_request.py +30 -0
  40. vellum/types/open_ai_vectorizer_text_embedding_3_large.py +30 -0
  41. vellum/types/open_ai_vectorizer_text_embedding_3_large_request.py +30 -0
  42. vellum/types/open_ai_vectorizer_text_embedding_3_small.py +30 -0
  43. vellum/types/open_ai_vectorizer_text_embedding_3_small_request.py +30 -0
  44. vellum/types/open_ai_vectorizer_text_embedding_ada_002.py +30 -0
  45. vellum/types/open_ai_vectorizer_text_embedding_ada_002_request.py +30 -0
  46. vellum/types/reducto_chunker_config.py +29 -0
  47. vellum/types/reducto_chunker_config_request.py +29 -0
  48. vellum/types/reducto_chunker_enum.py +5 -0
  49. vellum/types/reducto_chunking.py +30 -0
  50. vellum/types/reducto_chunking_request.py +30 -0
  51. vellum/types/sentence_chunker_config.py +30 -0
  52. vellum/types/sentence_chunker_config_request.py +30 -0
  53. vellum/types/sentence_chunker_enum.py +5 -0
  54. vellum/types/sentence_chunking.py +30 -0
  55. vellum/types/sentence_chunking_request.py +30 -0
  56. vellum/types/sentence_transformers_multi_qa_mpnet_base_cos_v_1_enum.py +5 -0
  57. vellum/types/sentence_transformers_multi_qa_mpnet_base_dot_v_1_enum.py +5 -0
  58. vellum/types/test_case_function_call_variable_value.py +2 -2
  59. vellum/types/test_suite_run_execution_function_call_output.py +2 -2
  60. vellum/types/text_embedding_3_large_enum.py +5 -0
  61. vellum/types/text_embedding_3_small_enum.py +5 -0
  62. vellum/types/text_embedding_ada_002_enum.py +5 -0
  63. vellum/types/token_overlapping_window_chunker_config.py +30 -0
  64. vellum/types/token_overlapping_window_chunker_config_request.py +30 -0
  65. vellum/types/token_overlapping_window_chunker_enum.py +5 -0
  66. vellum/types/token_overlapping_window_chunking.py +30 -0
  67. vellum/types/token_overlapping_window_chunking_request.py +30 -0
  68. vellum/types/workflow_execution_actual_chat_history_request.py +5 -0
  69. vellum/types/workflow_execution_actual_json_request.py +5 -0
  70. vellum/types/workflow_execution_actual_string_request.py +5 -0
  71. vellum/types/workflow_node_result_data.py +12 -0
  72. vellum/types/workflow_output_array.py +2 -2
  73. {vellum_ai-0.5.2.dist-info → vellum_ai-0.6.0.dist-info}/METADATA +1 -1
  74. {vellum_ai-0.5.2.dist-info → vellum_ai-0.6.0.dist-info}/RECORD +76 -28
  75. {vellum_ai-0.5.2.dist-info → vellum_ai-0.6.0.dist-info}/LICENSE +0 -0
  76. {vellum_ai-0.5.2.dist-info → vellum_ai-0.6.0.dist-info}/WHEEL +0 -0
@@ -0,0 +1,31 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+
9
+
10
+ class InstructorVectorizerConfig(pydantic_v1.BaseModel):
11
+ """
12
+ Configuration for using an Instructor vectorizer.
13
+ """
14
+
15
+ instruction_domain: str
16
+ instruction_query_text_type: str
17
+ instruction_document_text_type: str
18
+
19
+ def json(self, **kwargs: typing.Any) -> str:
20
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
21
+ return super().json(**kwargs_with_defaults)
22
+
23
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
24
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
25
+ return super().dict(**kwargs_with_defaults)
26
+
27
+ class Config:
28
+ frozen = True
29
+ smart_union = True
30
+ extra = pydantic_v1.Extra.allow
31
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,31 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+
9
+
10
+ class InstructorVectorizerConfigRequest(pydantic_v1.BaseModel):
11
+ """
12
+ Configuration for using an Instructor vectorizer.
13
+ """
14
+
15
+ instruction_domain: str
16
+ instruction_query_text_type: str
17
+ instruction_document_text_type: str
18
+
19
+ def json(self, **kwargs: typing.Any) -> str:
20
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
21
+ return super().json(**kwargs_with_defaults)
22
+
23
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
24
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
25
+ return super().dict(**kwargs_with_defaults)
26
+
27
+ class Config:
28
+ frozen = True
29
+ smart_union = True
30
+ extra = pydantic_v1.Extra.allow
31
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,5 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import typing
4
+
5
+ IntfloatMultilingualE5LargeEnum = typing.Literal["intfloat/multilingual-e5-large"]
@@ -0,0 +1,5 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import typing
4
+
5
+ MetricEnum = typing.Literal["METRIC"]
@@ -5,11 +5,12 @@ import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
7
  from ..core.pydantic_utilities import pydantic_v1
8
- from .chat_message import ChatMessage
9
8
 
10
9
 
11
- class ChatHistoryVariableValue(pydantic_v1.BaseModel):
12
- value: typing.Optional[typing.List[ChatMessage]] = None
10
+ class MetricNodeResult(pydantic_v1.BaseModel):
11
+ """
12
+ A Node Result Event emitted from a Metric Node.
13
+ """
13
14
 
14
15
  def json(self, **kwargs: typing.Any) -> str:
15
16
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -5,7 +5,7 @@ import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
7
  from ..core.pydantic_utilities import pydantic_v1
8
- from .fulfilled_function_call import FulfilledFunctionCall
8
+ from .function_call import FunctionCall
9
9
 
10
10
 
11
11
  class NamedTestCaseFunctionCallVariableValue(pydantic_v1.BaseModel):
@@ -13,7 +13,7 @@ class NamedTestCaseFunctionCallVariableValue(pydantic_v1.BaseModel):
13
13
  Named Test Case value that is of type FUNCTION_CALL
14
14
  """
15
15
 
16
- value: typing.Optional[FulfilledFunctionCall] = None
16
+ value: typing.Optional[FunctionCall] = None
17
17
  name: str
18
18
 
19
19
  def json(self, **kwargs: typing.Any) -> str:
@@ -5,7 +5,7 @@ import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
7
  from ..core.pydantic_utilities import pydantic_v1
8
- from .fulfilled_function_call_request import FulfilledFunctionCallRequest
8
+ from .function_call_request import FunctionCallRequest
9
9
 
10
10
 
11
11
  class NamedTestCaseFunctionCallVariableValueRequest(pydantic_v1.BaseModel):
@@ -13,7 +13,7 @@ class NamedTestCaseFunctionCallVariableValueRequest(pydantic_v1.BaseModel):
13
13
  Named Test Case value that is of type FUNCTION_CALL
14
14
  """
15
15
 
16
- value: typing.Optional[FulfilledFunctionCallRequest] = None
16
+ value: typing.Optional[FunctionCallRequest] = None
17
17
  name: str
18
18
 
19
19
  def json(self, **kwargs: typing.Any) -> str:
@@ -5,7 +5,7 @@ import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
7
  from ..core.pydantic_utilities import pydantic_v1
8
- from .array_variable_value_item import ArrayVariableValueItem
8
+ from .array_vellum_value_item import ArrayVellumValueItem
9
9
  from .workflow_node_result_event_state import WorkflowNodeResultEventState
10
10
 
11
11
 
@@ -14,7 +14,7 @@ class NodeOutputCompiledArrayValue(pydantic_v1.BaseModel):
14
14
  An output returned by a node that is of type ARRAY.
15
15
  """
16
16
 
17
- value: typing.Optional[typing.List[ArrayVariableValueItem]] = None
17
+ value: typing.Optional[typing.List[ArrayVellumValueItem]] = None
18
18
  node_output_id: str
19
19
  state: typing.Optional[WorkflowNodeResultEventState] = None
20
20
 
@@ -5,11 +5,14 @@ import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
7
  from ..core.pydantic_utilities import pydantic_v1
8
- from .search_result import SearchResult
9
8
 
10
9
 
11
- class SearchResultsVariableValue(pydantic_v1.BaseModel):
12
- value: typing.Optional[typing.List[SearchResult]] = None
10
+ class NumberVellumValue(pydantic_v1.BaseModel):
11
+ """
12
+ A value representing a number.
13
+ """
14
+
15
+ value: typing.Optional[float] = None
13
16
 
14
17
  def json(self, **kwargs: typing.Any) -> str:
15
18
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -0,0 +1,30 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+ from .add_openai_api_key_enum import AddOpenaiApiKeyEnum
9
+
10
+
11
+ class OpenAiVectorizerConfig(pydantic_v1.BaseModel):
12
+ """
13
+ Configuration for using an OpenAI vectorizer.
14
+ """
15
+
16
+ add_openai_api_key: typing.Optional[AddOpenaiApiKeyEnum] = None
17
+
18
+ def json(self, **kwargs: typing.Any) -> str:
19
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
+ return super().json(**kwargs_with_defaults)
21
+
22
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().dict(**kwargs_with_defaults)
25
+
26
+ class Config:
27
+ frozen = True
28
+ smart_union = True
29
+ extra = pydantic_v1.Extra.allow
30
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,30 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+ from .add_openai_api_key_enum import AddOpenaiApiKeyEnum
9
+
10
+
11
+ class OpenAiVectorizerConfigRequest(pydantic_v1.BaseModel):
12
+ """
13
+ Configuration for using an OpenAI vectorizer.
14
+ """
15
+
16
+ add_openai_api_key: typing.Optional[AddOpenaiApiKeyEnum] = None
17
+
18
+ def json(self, **kwargs: typing.Any) -> str:
19
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
+ return super().json(**kwargs_with_defaults)
21
+
22
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().dict(**kwargs_with_defaults)
25
+
26
+ class Config:
27
+ frozen = True
28
+ smart_union = True
29
+ extra = pydantic_v1.Extra.allow
30
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,30 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+ from .open_ai_vectorizer_config import OpenAiVectorizerConfig
9
+
10
+
11
+ class OpenAiVectorizerTextEmbedding3Large(pydantic_v1.BaseModel):
12
+ """
13
+ OpenAI vectorizer for text-embedding-3-large.
14
+ """
15
+
16
+ config: OpenAiVectorizerConfig
17
+
18
+ def json(self, **kwargs: typing.Any) -> str:
19
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
+ return super().json(**kwargs_with_defaults)
21
+
22
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().dict(**kwargs_with_defaults)
25
+
26
+ class Config:
27
+ frozen = True
28
+ smart_union = True
29
+ extra = pydantic_v1.Extra.allow
30
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,30 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+ from .open_ai_vectorizer_config_request import OpenAiVectorizerConfigRequest
9
+
10
+
11
+ class OpenAiVectorizerTextEmbedding3LargeRequest(pydantic_v1.BaseModel):
12
+ """
13
+ OpenAI vectorizer for text-embedding-3-large.
14
+ """
15
+
16
+ config: OpenAiVectorizerConfigRequest
17
+
18
+ def json(self, **kwargs: typing.Any) -> str:
19
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
+ return super().json(**kwargs_with_defaults)
21
+
22
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().dict(**kwargs_with_defaults)
25
+
26
+ class Config:
27
+ frozen = True
28
+ smart_union = True
29
+ extra = pydantic_v1.Extra.allow
30
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,30 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+ from .open_ai_vectorizer_config import OpenAiVectorizerConfig
9
+
10
+
11
+ class OpenAiVectorizerTextEmbedding3Small(pydantic_v1.BaseModel):
12
+ """
13
+ OpenAI vectorizer for text-embedding-3-small.
14
+ """
15
+
16
+ config: OpenAiVectorizerConfig
17
+
18
+ def json(self, **kwargs: typing.Any) -> str:
19
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
+ return super().json(**kwargs_with_defaults)
21
+
22
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().dict(**kwargs_with_defaults)
25
+
26
+ class Config:
27
+ frozen = True
28
+ smart_union = True
29
+ extra = pydantic_v1.Extra.allow
30
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,30 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+ from .open_ai_vectorizer_config_request import OpenAiVectorizerConfigRequest
9
+
10
+
11
+ class OpenAiVectorizerTextEmbedding3SmallRequest(pydantic_v1.BaseModel):
12
+ """
13
+ OpenAI vectorizer for text-embedding-3-small.
14
+ """
15
+
16
+ config: OpenAiVectorizerConfigRequest
17
+
18
+ def json(self, **kwargs: typing.Any) -> str:
19
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
+ return super().json(**kwargs_with_defaults)
21
+
22
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().dict(**kwargs_with_defaults)
25
+
26
+ class Config:
27
+ frozen = True
28
+ smart_union = True
29
+ extra = pydantic_v1.Extra.allow
30
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,30 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+ from .open_ai_vectorizer_config import OpenAiVectorizerConfig
9
+
10
+
11
+ class OpenAiVectorizerTextEmbeddingAda002(pydantic_v1.BaseModel):
12
+ """
13
+ OpenAI vectorizer for text-embedding-ada-002.
14
+ """
15
+
16
+ config: OpenAiVectorizerConfig
17
+
18
+ def json(self, **kwargs: typing.Any) -> str:
19
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
+ return super().json(**kwargs_with_defaults)
21
+
22
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().dict(**kwargs_with_defaults)
25
+
26
+ class Config:
27
+ frozen = True
28
+ smart_union = True
29
+ extra = pydantic_v1.Extra.allow
30
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,30 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+ from .open_ai_vectorizer_config_request import OpenAiVectorizerConfigRequest
9
+
10
+
11
+ class OpenAiVectorizerTextEmbeddingAda002Request(pydantic_v1.BaseModel):
12
+ """
13
+ OpenAI vectorizer for text-embedding-ada-002.
14
+ """
15
+
16
+ config: OpenAiVectorizerConfigRequest
17
+
18
+ def json(self, **kwargs: typing.Any) -> str:
19
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
+ return super().json(**kwargs_with_defaults)
21
+
22
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().dict(**kwargs_with_defaults)
25
+
26
+ class Config:
27
+ frozen = True
28
+ smart_union = True
29
+ extra = pydantic_v1.Extra.allow
30
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,29 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+
9
+
10
+ class ReductoChunkerConfig(pydantic_v1.BaseModel):
11
+ """
12
+ Configuration for Reducto chunking
13
+ """
14
+
15
+ character_limit: typing.Optional[int] = None
16
+
17
+ def json(self, **kwargs: typing.Any) -> str:
18
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
19
+ return super().json(**kwargs_with_defaults)
20
+
21
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
22
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
23
+ return super().dict(**kwargs_with_defaults)
24
+
25
+ class Config:
26
+ frozen = True
27
+ smart_union = True
28
+ extra = pydantic_v1.Extra.allow
29
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,29 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+
9
+
10
+ class ReductoChunkerConfigRequest(pydantic_v1.BaseModel):
11
+ """
12
+ Configuration for Reducto chunking
13
+ """
14
+
15
+ character_limit: typing.Optional[int] = None
16
+
17
+ def json(self, **kwargs: typing.Any) -> str:
18
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
19
+ return super().json(**kwargs_with_defaults)
20
+
21
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
22
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
23
+ return super().dict(**kwargs_with_defaults)
24
+
25
+ class Config:
26
+ frozen = True
27
+ smart_union = True
28
+ extra = pydantic_v1.Extra.allow
29
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,5 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import typing
4
+
5
+ ReductoChunkerEnum = typing.Literal["reducto-chunker"]
@@ -0,0 +1,30 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+ from .reducto_chunker_config import ReductoChunkerConfig
9
+
10
+
11
+ class ReductoChunking(pydantic_v1.BaseModel):
12
+ """
13
+ Reducto chunking
14
+ """
15
+
16
+ chunker_config: typing.Optional[ReductoChunkerConfig] = None
17
+
18
+ def json(self, **kwargs: typing.Any) -> str:
19
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
+ return super().json(**kwargs_with_defaults)
21
+
22
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().dict(**kwargs_with_defaults)
25
+
26
+ class Config:
27
+ frozen = True
28
+ smart_union = True
29
+ extra = pydantic_v1.Extra.allow
30
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,30 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+ from .reducto_chunker_config_request import ReductoChunkerConfigRequest
9
+
10
+
11
+ class ReductoChunkingRequest(pydantic_v1.BaseModel):
12
+ """
13
+ Reducto chunking
14
+ """
15
+
16
+ chunker_config: typing.Optional[ReductoChunkerConfigRequest] = None
17
+
18
+ def json(self, **kwargs: typing.Any) -> str:
19
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
+ return super().json(**kwargs_with_defaults)
21
+
22
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().dict(**kwargs_with_defaults)
25
+
26
+ class Config:
27
+ frozen = True
28
+ smart_union = True
29
+ extra = pydantic_v1.Extra.allow
30
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,30 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+
9
+
10
+ class SentenceChunkerConfig(pydantic_v1.BaseModel):
11
+ """
12
+ Configuration for sentence chunking
13
+ """
14
+
15
+ character_limit: typing.Optional[int] = None
16
+ min_overlap_ratio: typing.Optional[float] = None
17
+
18
+ def json(self, **kwargs: typing.Any) -> str:
19
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
+ return super().json(**kwargs_with_defaults)
21
+
22
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().dict(**kwargs_with_defaults)
25
+
26
+ class Config:
27
+ frozen = True
28
+ smart_union = True
29
+ extra = pydantic_v1.Extra.allow
30
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,30 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+
9
+
10
+ class SentenceChunkerConfigRequest(pydantic_v1.BaseModel):
11
+ """
12
+ Configuration for sentence chunking
13
+ """
14
+
15
+ character_limit: typing.Optional[int] = None
16
+ min_overlap_ratio: typing.Optional[float] = None
17
+
18
+ def json(self, **kwargs: typing.Any) -> str:
19
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
+ return super().json(**kwargs_with_defaults)
21
+
22
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().dict(**kwargs_with_defaults)
25
+
26
+ class Config:
27
+ frozen = True
28
+ smart_union = True
29
+ extra = pydantic_v1.Extra.allow
30
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,5 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import typing
4
+
5
+ SentenceChunkerEnum = typing.Literal["sentence-chunker"]
@@ -0,0 +1,30 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+ from .sentence_chunker_config import SentenceChunkerConfig
9
+
10
+
11
+ class SentenceChunking(pydantic_v1.BaseModel):
12
+ """
13
+ Sentence chunking
14
+ """
15
+
16
+ chunker_config: typing.Optional[SentenceChunkerConfig] = None
17
+
18
+ def json(self, **kwargs: typing.Any) -> str:
19
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
+ return super().json(**kwargs_with_defaults)
21
+
22
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().dict(**kwargs_with_defaults)
25
+
26
+ class Config:
27
+ frozen = True
28
+ smart_union = True
29
+ extra = pydantic_v1.Extra.allow
30
+ json_encoders = {dt.datetime: serialize_datetime}