vellum-ai 0.5.2__py3-none-any.whl → 0.6.0__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (76) hide show
  1. vellum/__init__.py +160 -18
  2. vellum/core/client_wrapper.py +1 -1
  3. vellum/resources/document_indexes/client.py +61 -52
  4. vellum/resources/documents/client.py +8 -4
  5. vellum/types/__init__.py +179 -17
  6. vellum/types/add_openai_api_key_enum.py +3 -0
  7. vellum/types/array_variable_value_item.py +0 -24
  8. vellum/types/array_vellum_value_item.py +82 -0
  9. vellum/types/{rejected_function_call.py → basic_vectorizer_intfloat_multilingual_e_5_large.py} +3 -6
  10. vellum/types/basic_vectorizer_intfloat_multilingual_e_5_large_request.py +29 -0
  11. vellum/types/basic_vectorizer_sentence_transformers_multi_qa_mpnet_base_cos_v_1.py +29 -0
  12. vellum/types/basic_vectorizer_sentence_transformers_multi_qa_mpnet_base_cos_v_1_request.py +29 -0
  13. vellum/types/basic_vectorizer_sentence_transformers_multi_qa_mpnet_base_dot_v_1.py +29 -0
  14. vellum/types/basic_vectorizer_sentence_transformers_multi_qa_mpnet_base_dot_v_1_request.py +29 -0
  15. vellum/types/document_index_chunking.py +46 -0
  16. vellum/types/document_index_chunking_request.py +46 -0
  17. vellum/types/document_index_indexing_config.py +28 -0
  18. vellum/types/document_index_indexing_config_request.py +28 -0
  19. vellum/types/document_index_read.py +2 -4
  20. vellum/types/function_call.py +20 -18
  21. vellum/types/{fulfilled_function_call_request.py → function_call_request.py} +2 -2
  22. vellum/types/function_call_vellum_value.py +1 -1
  23. vellum/types/hkunlp_instructor_xl_enum.py +5 -0
  24. vellum/types/hkunlp_instructor_xl_vectorizer.py +30 -0
  25. vellum/types/hkunlp_instructor_xl_vectorizer_request.py +30 -0
  26. vellum/types/{fulfilled_function_call.py → image_vellum_value.py} +4 -5
  27. vellum/types/indexing_config_vectorizer.py +106 -0
  28. vellum/types/indexing_config_vectorizer_request.py +106 -0
  29. vellum/types/instructor_vectorizer_config.py +31 -0
  30. vellum/types/instructor_vectorizer_config_request.py +31 -0
  31. vellum/types/intfloat_multilingual_e_5_large_enum.py +5 -0
  32. vellum/types/metric_enum.py +5 -0
  33. vellum/types/{chat_history_variable_value.py → metric_node_result.py} +4 -3
  34. vellum/types/named_test_case_function_call_variable_value.py +2 -2
  35. vellum/types/named_test_case_function_call_variable_value_request.py +2 -2
  36. vellum/types/node_output_compiled_array_value.py +2 -2
  37. vellum/types/{search_results_variable_value.py → number_vellum_value.py} +6 -3
  38. vellum/types/open_ai_vectorizer_config.py +30 -0
  39. vellum/types/open_ai_vectorizer_config_request.py +30 -0
  40. vellum/types/open_ai_vectorizer_text_embedding_3_large.py +30 -0
  41. vellum/types/open_ai_vectorizer_text_embedding_3_large_request.py +30 -0
  42. vellum/types/open_ai_vectorizer_text_embedding_3_small.py +30 -0
  43. vellum/types/open_ai_vectorizer_text_embedding_3_small_request.py +30 -0
  44. vellum/types/open_ai_vectorizer_text_embedding_ada_002.py +30 -0
  45. vellum/types/open_ai_vectorizer_text_embedding_ada_002_request.py +30 -0
  46. vellum/types/reducto_chunker_config.py +29 -0
  47. vellum/types/reducto_chunker_config_request.py +29 -0
  48. vellum/types/reducto_chunker_enum.py +5 -0
  49. vellum/types/reducto_chunking.py +30 -0
  50. vellum/types/reducto_chunking_request.py +30 -0
  51. vellum/types/sentence_chunker_config.py +30 -0
  52. vellum/types/sentence_chunker_config_request.py +30 -0
  53. vellum/types/sentence_chunker_enum.py +5 -0
  54. vellum/types/sentence_chunking.py +30 -0
  55. vellum/types/sentence_chunking_request.py +30 -0
  56. vellum/types/sentence_transformers_multi_qa_mpnet_base_cos_v_1_enum.py +5 -0
  57. vellum/types/sentence_transformers_multi_qa_mpnet_base_dot_v_1_enum.py +5 -0
  58. vellum/types/test_case_function_call_variable_value.py +2 -2
  59. vellum/types/test_suite_run_execution_function_call_output.py +2 -2
  60. vellum/types/text_embedding_3_large_enum.py +5 -0
  61. vellum/types/text_embedding_3_small_enum.py +5 -0
  62. vellum/types/text_embedding_ada_002_enum.py +5 -0
  63. vellum/types/token_overlapping_window_chunker_config.py +30 -0
  64. vellum/types/token_overlapping_window_chunker_config_request.py +30 -0
  65. vellum/types/token_overlapping_window_chunker_enum.py +5 -0
  66. vellum/types/token_overlapping_window_chunking.py +30 -0
  67. vellum/types/token_overlapping_window_chunking_request.py +30 -0
  68. vellum/types/workflow_execution_actual_chat_history_request.py +5 -0
  69. vellum/types/workflow_execution_actual_json_request.py +5 -0
  70. vellum/types/workflow_execution_actual_string_request.py +5 -0
  71. vellum/types/workflow_node_result_data.py +12 -0
  72. vellum/types/workflow_output_array.py +2 -2
  73. {vellum_ai-0.5.2.dist-info → vellum_ai-0.6.0.dist-info}/METADATA +1 -1
  74. {vellum_ai-0.5.2.dist-info → vellum_ai-0.6.0.dist-info}/RECORD +76 -28
  75. {vellum_ai-0.5.2.dist-info → vellum_ai-0.6.0.dist-info}/LICENSE +0 -0
  76. {vellum_ai-0.5.2.dist-info → vellum_ai-0.6.0.dist-info}/WHEEL +0 -0
@@ -0,0 +1,29 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+
9
+
10
+ class BasicVectorizerSentenceTransformersMultiQaMpnetBaseCosV1Request(pydantic_v1.BaseModel):
11
+ """
12
+ Basic vectorizer for sentence-transformers/multi-qa-mpnet-base-cos-v1.
13
+ """
14
+
15
+ config: typing.Optional[typing.Dict[str, typing.Any]] = None
16
+
17
+ def json(self, **kwargs: typing.Any) -> str:
18
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
19
+ return super().json(**kwargs_with_defaults)
20
+
21
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
22
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
23
+ return super().dict(**kwargs_with_defaults)
24
+
25
+ class Config:
26
+ frozen = True
27
+ smart_union = True
28
+ extra = pydantic_v1.Extra.allow
29
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,29 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+
9
+
10
+ class BasicVectorizerSentenceTransformersMultiQaMpnetBaseDotV1(pydantic_v1.BaseModel):
11
+ """
12
+ Basic vectorizer for sentence-transformers/multi-qa-mpnet-base-dot-v1.
13
+ """
14
+
15
+ config: typing.Optional[typing.Dict[str, typing.Any]] = None
16
+
17
+ def json(self, **kwargs: typing.Any) -> str:
18
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
19
+ return super().json(**kwargs_with_defaults)
20
+
21
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
22
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
23
+ return super().dict(**kwargs_with_defaults)
24
+
25
+ class Config:
26
+ frozen = True
27
+ smart_union = True
28
+ extra = pydantic_v1.Extra.allow
29
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,29 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+
9
+
10
+ class BasicVectorizerSentenceTransformersMultiQaMpnetBaseDotV1Request(pydantic_v1.BaseModel):
11
+ """
12
+ Basic vectorizer for sentence-transformers/multi-qa-mpnet-base-dot-v1.
13
+ """
14
+
15
+ config: typing.Optional[typing.Dict[str, typing.Any]] = None
16
+
17
+ def json(self, **kwargs: typing.Any) -> str:
18
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
19
+ return super().json(**kwargs_with_defaults)
20
+
21
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
22
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
23
+ return super().dict(**kwargs_with_defaults)
24
+
25
+ class Config:
26
+ frozen = True
27
+ smart_union = True
28
+ extra = pydantic_v1.Extra.allow
29
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,46 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ from __future__ import annotations
4
+
5
+ import typing
6
+
7
+ from .reducto_chunking import ReductoChunking
8
+ from .sentence_chunking import SentenceChunking
9
+ from .token_overlapping_window_chunking import TokenOverlappingWindowChunking
10
+
11
+
12
+ class DocumentIndexChunking_ReductoChunker(ReductoChunking):
13
+ chunker_name: typing.Literal["reducto-chunker"] = "reducto-chunker"
14
+
15
+ class Config:
16
+ frozen = True
17
+ smart_union = True
18
+ allow_population_by_field_name = True
19
+ populate_by_name = True
20
+
21
+
22
+ class DocumentIndexChunking_SentenceChunker(SentenceChunking):
23
+ chunker_name: typing.Literal["sentence-chunker"] = "sentence-chunker"
24
+
25
+ class Config:
26
+ frozen = True
27
+ smart_union = True
28
+ allow_population_by_field_name = True
29
+ populate_by_name = True
30
+
31
+
32
+ class DocumentIndexChunking_TokenOverlappingWindowChunker(TokenOverlappingWindowChunking):
33
+ chunker_name: typing.Literal["token-overlapping-window-chunker"] = "token-overlapping-window-chunker"
34
+
35
+ class Config:
36
+ frozen = True
37
+ smart_union = True
38
+ allow_population_by_field_name = True
39
+ populate_by_name = True
40
+
41
+
42
+ DocumentIndexChunking = typing.Union[
43
+ DocumentIndexChunking_ReductoChunker,
44
+ DocumentIndexChunking_SentenceChunker,
45
+ DocumentIndexChunking_TokenOverlappingWindowChunker,
46
+ ]
@@ -0,0 +1,46 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ from __future__ import annotations
4
+
5
+ import typing
6
+
7
+ from .reducto_chunking_request import ReductoChunkingRequest
8
+ from .sentence_chunking_request import SentenceChunkingRequest
9
+ from .token_overlapping_window_chunking_request import TokenOverlappingWindowChunkingRequest
10
+
11
+
12
+ class DocumentIndexChunkingRequest_ReductoChunker(ReductoChunkingRequest):
13
+ chunker_name: typing.Literal["reducto-chunker"] = "reducto-chunker"
14
+
15
+ class Config:
16
+ frozen = True
17
+ smart_union = True
18
+ allow_population_by_field_name = True
19
+ populate_by_name = True
20
+
21
+
22
+ class DocumentIndexChunkingRequest_SentenceChunker(SentenceChunkingRequest):
23
+ chunker_name: typing.Literal["sentence-chunker"] = "sentence-chunker"
24
+
25
+ class Config:
26
+ frozen = True
27
+ smart_union = True
28
+ allow_population_by_field_name = True
29
+ populate_by_name = True
30
+
31
+
32
+ class DocumentIndexChunkingRequest_TokenOverlappingWindowChunker(TokenOverlappingWindowChunkingRequest):
33
+ chunker_name: typing.Literal["token-overlapping-window-chunker"] = "token-overlapping-window-chunker"
34
+
35
+ class Config:
36
+ frozen = True
37
+ smart_union = True
38
+ allow_population_by_field_name = True
39
+ populate_by_name = True
40
+
41
+
42
+ DocumentIndexChunkingRequest = typing.Union[
43
+ DocumentIndexChunkingRequest_ReductoChunker,
44
+ DocumentIndexChunkingRequest_SentenceChunker,
45
+ DocumentIndexChunkingRequest_TokenOverlappingWindowChunker,
46
+ ]
@@ -0,0 +1,28 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+ from .document_index_chunking import DocumentIndexChunking
9
+ from .indexing_config_vectorizer import IndexingConfigVectorizer
10
+
11
+
12
+ class DocumentIndexIndexingConfig(pydantic_v1.BaseModel):
13
+ vectorizer: IndexingConfigVectorizer
14
+ chunking: typing.Optional[DocumentIndexChunking] = None
15
+
16
+ def json(self, **kwargs: typing.Any) -> str:
17
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
18
+ return super().json(**kwargs_with_defaults)
19
+
20
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
21
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
22
+ return super().dict(**kwargs_with_defaults)
23
+
24
+ class Config:
25
+ frozen = True
26
+ smart_union = True
27
+ extra = pydantic_v1.Extra.allow
28
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,28 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+ from .document_index_chunking_request import DocumentIndexChunkingRequest
9
+ from .indexing_config_vectorizer_request import IndexingConfigVectorizerRequest
10
+
11
+
12
+ class DocumentIndexIndexingConfigRequest(pydantic_v1.BaseModel):
13
+ vectorizer: IndexingConfigVectorizerRequest
14
+ chunking: typing.Optional[DocumentIndexChunkingRequest] = None
15
+
16
+ def json(self, **kwargs: typing.Any) -> str:
17
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
18
+ return super().json(**kwargs_with_defaults)
19
+
20
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
21
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
22
+ return super().dict(**kwargs_with_defaults)
23
+
24
+ class Config:
25
+ frozen = True
26
+ smart_union = True
27
+ extra = pydantic_v1.Extra.allow
28
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -5,6 +5,7 @@ import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
7
  from ..core.pydantic_utilities import pydantic_v1
8
+ from .document_index_indexing_config import DocumentIndexIndexingConfig
8
9
  from .entity_status import EntityStatus
9
10
  from .environment_enum import EnvironmentEnum
10
11
 
@@ -39,10 +40,7 @@ class DocumentIndexRead(pydantic_v1.BaseModel):
39
40
  - `PRODUCTION` - Production
40
41
  """
41
42
 
42
- indexing_config: typing.Dict[str, typing.Any] = pydantic_v1.Field()
43
- """
44
- Configuration representing how documents should be indexed
45
- """
43
+ indexing_config: DocumentIndexIndexingConfig
46
44
 
47
45
  def json(self, **kwargs: typing.Any) -> str:
48
46
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -1,31 +1,33 @@
1
1
  # This file was auto-generated by Fern from our API Definition.
2
2
 
3
- from __future__ import annotations
4
-
3
+ import datetime as dt
5
4
  import typing
6
5
 
7
- from .fulfilled_function_call import FulfilledFunctionCall
8
- from .rejected_function_call import RejectedFunctionCall
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+ from .fulfilled_enum import FulfilledEnum
9
9
 
10
10
 
11
- class FunctionCall_Fulfilled(FulfilledFunctionCall):
12
- state: typing.Literal["FULFILLED"] = "FULFILLED"
11
+ class FunctionCall(pydantic_v1.BaseModel):
12
+ """
13
+ The final resolved function call value.
14
+ """
13
15
 
14
- class Config:
15
- frozen = True
16
- smart_union = True
17
- allow_population_by_field_name = True
18
- populate_by_name = True
16
+ arguments: typing.Dict[str, typing.Any]
17
+ id: typing.Optional[str] = None
18
+ name: str
19
+ state: typing.Optional[FulfilledEnum] = None
19
20
 
21
+ def json(self, **kwargs: typing.Any) -> str:
22
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
23
+ return super().json(**kwargs_with_defaults)
20
24
 
21
- class FunctionCall_Rejected(RejectedFunctionCall):
22
- state: typing.Literal["REJECTED"] = "REJECTED"
25
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
26
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
27
+ return super().dict(**kwargs_with_defaults)
23
28
 
24
29
  class Config:
25
30
  frozen = True
26
31
  smart_union = True
27
- allow_population_by_field_name = True
28
- populate_by_name = True
29
-
30
-
31
- FunctionCall = typing.Union[FunctionCall_Fulfilled, FunctionCall_Rejected]
32
+ extra = pydantic_v1.Extra.allow
33
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -8,15 +8,15 @@ from ..core.pydantic_utilities import pydantic_v1
8
8
  from .fulfilled_enum import FulfilledEnum
9
9
 
10
10
 
11
- class FulfilledFunctionCallRequest(pydantic_v1.BaseModel):
11
+ class FunctionCallRequest(pydantic_v1.BaseModel):
12
12
  """
13
13
  The final resolved function call value.
14
14
  """
15
15
 
16
- state: FulfilledEnum
17
16
  arguments: typing.Dict[str, typing.Any]
18
17
  id: typing.Optional[str] = None
19
18
  name: str
19
+ state: typing.Optional[FulfilledEnum] = None
20
20
 
21
21
  def json(self, **kwargs: typing.Any) -> str:
22
22
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -13,7 +13,7 @@ class FunctionCallVellumValue(pydantic_v1.BaseModel):
13
13
  A value representing a Function Call.
14
14
  """
15
15
 
16
- value: FunctionCall
16
+ value: typing.Optional[FunctionCall] = None
17
17
 
18
18
  def json(self, **kwargs: typing.Any) -> str:
19
19
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -0,0 +1,5 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import typing
4
+
5
+ HkunlpInstructorXlEnum = typing.Literal["hkunlp/instructor-xl"]
@@ -0,0 +1,30 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+ from .instructor_vectorizer_config import InstructorVectorizerConfig
9
+
10
+
11
+ class HkunlpInstructorXlVectorizer(pydantic_v1.BaseModel):
12
+ """
13
+ Vectorizer for hkunlp/instructor-xl.
14
+ """
15
+
16
+ config: InstructorVectorizerConfig
17
+
18
+ def json(self, **kwargs: typing.Any) -> str:
19
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
+ return super().json(**kwargs_with_defaults)
21
+
22
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().dict(**kwargs_with_defaults)
25
+
26
+ class Config:
27
+ frozen = True
28
+ smart_union = True
29
+ extra = pydantic_v1.Extra.allow
30
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -0,0 +1,30 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ import datetime as dt
4
+ import typing
5
+
6
+ from ..core.datetime_utils import serialize_datetime
7
+ from ..core.pydantic_utilities import pydantic_v1
8
+ from .instructor_vectorizer_config_request import InstructorVectorizerConfigRequest
9
+
10
+
11
+ class HkunlpInstructorXlVectorizerRequest(pydantic_v1.BaseModel):
12
+ """
13
+ Vectorizer for hkunlp/instructor-xl.
14
+ """
15
+
16
+ config: InstructorVectorizerConfigRequest
17
+
18
+ def json(self, **kwargs: typing.Any) -> str:
19
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
20
+ return super().json(**kwargs_with_defaults)
21
+
22
+ def dict(self, **kwargs: typing.Any) -> typing.Dict[str, typing.Any]:
23
+ kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
24
+ return super().dict(**kwargs_with_defaults)
25
+
26
+ class Config:
27
+ frozen = True
28
+ smart_union = True
29
+ extra = pydantic_v1.Extra.allow
30
+ json_encoders = {dt.datetime: serialize_datetime}
@@ -5,16 +5,15 @@ import typing
5
5
 
6
6
  from ..core.datetime_utils import serialize_datetime
7
7
  from ..core.pydantic_utilities import pydantic_v1
8
+ from .vellum_image import VellumImage
8
9
 
9
10
 
10
- class FulfilledFunctionCall(pydantic_v1.BaseModel):
11
+ class ImageVellumValue(pydantic_v1.BaseModel):
11
12
  """
12
- The final resolved function call value.
13
+ A base Vellum primitive value representing an image.
13
14
  """
14
15
 
15
- arguments: typing.Dict[str, typing.Any]
16
- id: typing.Optional[str] = None
17
- name: str
16
+ value: typing.Optional[VellumImage] = None
18
17
 
19
18
  def json(self, **kwargs: typing.Any) -> str:
20
19
  kwargs_with_defaults: typing.Any = {"by_alias": True, "exclude_unset": True, **kwargs}
@@ -0,0 +1,106 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ from __future__ import annotations
4
+
5
+ import typing
6
+
7
+ from .basic_vectorizer_intfloat_multilingual_e_5_large import BasicVectorizerIntfloatMultilingualE5Large
8
+ from .basic_vectorizer_sentence_transformers_multi_qa_mpnet_base_cos_v_1 import (
9
+ BasicVectorizerSentenceTransformersMultiQaMpnetBaseCosV1,
10
+ )
11
+ from .basic_vectorizer_sentence_transformers_multi_qa_mpnet_base_dot_v_1 import (
12
+ BasicVectorizerSentenceTransformersMultiQaMpnetBaseDotV1,
13
+ )
14
+ from .hkunlp_instructor_xl_vectorizer import HkunlpInstructorXlVectorizer
15
+ from .open_ai_vectorizer_text_embedding_3_large import OpenAiVectorizerTextEmbedding3Large
16
+ from .open_ai_vectorizer_text_embedding_3_small import OpenAiVectorizerTextEmbedding3Small
17
+ from .open_ai_vectorizer_text_embedding_ada_002 import OpenAiVectorizerTextEmbeddingAda002
18
+
19
+
20
+ class IndexingConfigVectorizer_TextEmbedding3Small(OpenAiVectorizerTextEmbedding3Small):
21
+ model_name: typing.Literal["text-embedding-3-small"] = "text-embedding-3-small"
22
+
23
+ class Config:
24
+ frozen = True
25
+ smart_union = True
26
+ allow_population_by_field_name = True
27
+ populate_by_name = True
28
+
29
+
30
+ class IndexingConfigVectorizer_TextEmbedding3Large(OpenAiVectorizerTextEmbedding3Large):
31
+ model_name: typing.Literal["text-embedding-3-large"] = "text-embedding-3-large"
32
+
33
+ class Config:
34
+ frozen = True
35
+ smart_union = True
36
+ allow_population_by_field_name = True
37
+ populate_by_name = True
38
+
39
+
40
+ class IndexingConfigVectorizer_TextEmbeddingAda002(OpenAiVectorizerTextEmbeddingAda002):
41
+ model_name: typing.Literal["text-embedding-ada-002"] = "text-embedding-ada-002"
42
+
43
+ class Config:
44
+ frozen = True
45
+ smart_union = True
46
+ allow_population_by_field_name = True
47
+ populate_by_name = True
48
+
49
+
50
+ class IndexingConfigVectorizer_IntfloatMultilingualE5Large(BasicVectorizerIntfloatMultilingualE5Large):
51
+ model_name: typing.Literal["intfloat/multilingual-e5-large"] = "intfloat/multilingual-e5-large"
52
+
53
+ class Config:
54
+ frozen = True
55
+ smart_union = True
56
+ allow_population_by_field_name = True
57
+ populate_by_name = True
58
+
59
+
60
+ class IndexingConfigVectorizer_SentenceTransformersMultiQaMpnetBaseCosV1(
61
+ BasicVectorizerSentenceTransformersMultiQaMpnetBaseCosV1
62
+ ):
63
+ model_name: typing.Literal[
64
+ "sentence-transformers/multi-qa-mpnet-base-cos-v1"
65
+ ] = "sentence-transformers/multi-qa-mpnet-base-cos-v1"
66
+
67
+ class Config:
68
+ frozen = True
69
+ smart_union = True
70
+ allow_population_by_field_name = True
71
+ populate_by_name = True
72
+
73
+
74
+ class IndexingConfigVectorizer_SentenceTransformersMultiQaMpnetBaseDotV1(
75
+ BasicVectorizerSentenceTransformersMultiQaMpnetBaseDotV1
76
+ ):
77
+ model_name: typing.Literal[
78
+ "sentence-transformers/multi-qa-mpnet-base-dot-v1"
79
+ ] = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
80
+
81
+ class Config:
82
+ frozen = True
83
+ smart_union = True
84
+ allow_population_by_field_name = True
85
+ populate_by_name = True
86
+
87
+
88
+ class IndexingConfigVectorizer_HkunlpInstructorXl(HkunlpInstructorXlVectorizer):
89
+ model_name: typing.Literal["hkunlp/instructor-xl"] = "hkunlp/instructor-xl"
90
+
91
+ class Config:
92
+ frozen = True
93
+ smart_union = True
94
+ allow_population_by_field_name = True
95
+ populate_by_name = True
96
+
97
+
98
+ IndexingConfigVectorizer = typing.Union[
99
+ IndexingConfigVectorizer_TextEmbedding3Small,
100
+ IndexingConfigVectorizer_TextEmbedding3Large,
101
+ IndexingConfigVectorizer_TextEmbeddingAda002,
102
+ IndexingConfigVectorizer_IntfloatMultilingualE5Large,
103
+ IndexingConfigVectorizer_SentenceTransformersMultiQaMpnetBaseCosV1,
104
+ IndexingConfigVectorizer_SentenceTransformersMultiQaMpnetBaseDotV1,
105
+ IndexingConfigVectorizer_HkunlpInstructorXl,
106
+ ]
@@ -0,0 +1,106 @@
1
+ # This file was auto-generated by Fern from our API Definition.
2
+
3
+ from __future__ import annotations
4
+
5
+ import typing
6
+
7
+ from .basic_vectorizer_intfloat_multilingual_e_5_large_request import BasicVectorizerIntfloatMultilingualE5LargeRequest
8
+ from .basic_vectorizer_sentence_transformers_multi_qa_mpnet_base_cos_v_1_request import (
9
+ BasicVectorizerSentenceTransformersMultiQaMpnetBaseCosV1Request,
10
+ )
11
+ from .basic_vectorizer_sentence_transformers_multi_qa_mpnet_base_dot_v_1_request import (
12
+ BasicVectorizerSentenceTransformersMultiQaMpnetBaseDotV1Request,
13
+ )
14
+ from .hkunlp_instructor_xl_vectorizer_request import HkunlpInstructorXlVectorizerRequest
15
+ from .open_ai_vectorizer_text_embedding_3_large_request import OpenAiVectorizerTextEmbedding3LargeRequest
16
+ from .open_ai_vectorizer_text_embedding_3_small_request import OpenAiVectorizerTextEmbedding3SmallRequest
17
+ from .open_ai_vectorizer_text_embedding_ada_002_request import OpenAiVectorizerTextEmbeddingAda002Request
18
+
19
+
20
+ class IndexingConfigVectorizerRequest_TextEmbedding3Small(OpenAiVectorizerTextEmbedding3SmallRequest):
21
+ model_name: typing.Literal["text-embedding-3-small"] = "text-embedding-3-small"
22
+
23
+ class Config:
24
+ frozen = True
25
+ smart_union = True
26
+ allow_population_by_field_name = True
27
+ populate_by_name = True
28
+
29
+
30
+ class IndexingConfigVectorizerRequest_TextEmbedding3Large(OpenAiVectorizerTextEmbedding3LargeRequest):
31
+ model_name: typing.Literal["text-embedding-3-large"] = "text-embedding-3-large"
32
+
33
+ class Config:
34
+ frozen = True
35
+ smart_union = True
36
+ allow_population_by_field_name = True
37
+ populate_by_name = True
38
+
39
+
40
+ class IndexingConfigVectorizerRequest_TextEmbeddingAda002(OpenAiVectorizerTextEmbeddingAda002Request):
41
+ model_name: typing.Literal["text-embedding-ada-002"] = "text-embedding-ada-002"
42
+
43
+ class Config:
44
+ frozen = True
45
+ smart_union = True
46
+ allow_population_by_field_name = True
47
+ populate_by_name = True
48
+
49
+
50
+ class IndexingConfigVectorizerRequest_IntfloatMultilingualE5Large(BasicVectorizerIntfloatMultilingualE5LargeRequest):
51
+ model_name: typing.Literal["intfloat/multilingual-e5-large"] = "intfloat/multilingual-e5-large"
52
+
53
+ class Config:
54
+ frozen = True
55
+ smart_union = True
56
+ allow_population_by_field_name = True
57
+ populate_by_name = True
58
+
59
+
60
+ class IndexingConfigVectorizerRequest_SentenceTransformersMultiQaMpnetBaseCosV1(
61
+ BasicVectorizerSentenceTransformersMultiQaMpnetBaseCosV1Request
62
+ ):
63
+ model_name: typing.Literal[
64
+ "sentence-transformers/multi-qa-mpnet-base-cos-v1"
65
+ ] = "sentence-transformers/multi-qa-mpnet-base-cos-v1"
66
+
67
+ class Config:
68
+ frozen = True
69
+ smart_union = True
70
+ allow_population_by_field_name = True
71
+ populate_by_name = True
72
+
73
+
74
+ class IndexingConfigVectorizerRequest_SentenceTransformersMultiQaMpnetBaseDotV1(
75
+ BasicVectorizerSentenceTransformersMultiQaMpnetBaseDotV1Request
76
+ ):
77
+ model_name: typing.Literal[
78
+ "sentence-transformers/multi-qa-mpnet-base-dot-v1"
79
+ ] = "sentence-transformers/multi-qa-mpnet-base-dot-v1"
80
+
81
+ class Config:
82
+ frozen = True
83
+ smart_union = True
84
+ allow_population_by_field_name = True
85
+ populate_by_name = True
86
+
87
+
88
+ class IndexingConfigVectorizerRequest_HkunlpInstructorXl(HkunlpInstructorXlVectorizerRequest):
89
+ model_name: typing.Literal["hkunlp/instructor-xl"] = "hkunlp/instructor-xl"
90
+
91
+ class Config:
92
+ frozen = True
93
+ smart_union = True
94
+ allow_population_by_field_name = True
95
+ populate_by_name = True
96
+
97
+
98
+ IndexingConfigVectorizerRequest = typing.Union[
99
+ IndexingConfigVectorizerRequest_TextEmbedding3Small,
100
+ IndexingConfigVectorizerRequest_TextEmbedding3Large,
101
+ IndexingConfigVectorizerRequest_TextEmbeddingAda002,
102
+ IndexingConfigVectorizerRequest_IntfloatMultilingualE5Large,
103
+ IndexingConfigVectorizerRequest_SentenceTransformersMultiQaMpnetBaseCosV1,
104
+ IndexingConfigVectorizerRequest_SentenceTransformersMultiQaMpnetBaseDotV1,
105
+ IndexingConfigVectorizerRequest_HkunlpInstructorXl,
106
+ ]