validmind 2.5.8__py3-none-any.whl → 2.5.15__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (212) hide show
  1. validmind/__version__.py +1 -1
  2. validmind/ai/test_descriptions.py +26 -7
  3. validmind/api_client.py +89 -43
  4. validmind/client.py +2 -2
  5. validmind/client_config.py +11 -14
  6. validmind/datasets/regression/fred_timeseries.py +67 -138
  7. validmind/template.py +1 -0
  8. validmind/test_suites/__init__.py +0 -2
  9. validmind/test_suites/statsmodels_timeseries.py +1 -1
  10. validmind/test_suites/summarization.py +0 -1
  11. validmind/test_suites/time_series.py +0 -43
  12. validmind/tests/__types__.py +3 -13
  13. validmind/tests/data_validation/ACFandPACFPlot.py +15 -13
  14. validmind/tests/data_validation/ADF.py +31 -24
  15. validmind/tests/data_validation/AutoAR.py +9 -9
  16. validmind/tests/data_validation/AutoMA.py +23 -16
  17. validmind/tests/data_validation/AutoSeasonality.py +18 -16
  18. validmind/tests/data_validation/AutoStationarity.py +21 -16
  19. validmind/tests/data_validation/BivariateScatterPlots.py +67 -96
  20. validmind/tests/data_validation/ChiSquaredFeaturesTable.py +82 -124
  21. validmind/tests/data_validation/ClassImbalance.py +15 -12
  22. validmind/tests/data_validation/DFGLSArch.py +19 -13
  23. validmind/tests/data_validation/DatasetDescription.py +17 -11
  24. validmind/tests/data_validation/DatasetSplit.py +7 -5
  25. validmind/tests/data_validation/DescriptiveStatistics.py +28 -21
  26. validmind/tests/data_validation/Duplicates.py +33 -25
  27. validmind/tests/data_validation/EngleGrangerCoint.py +35 -33
  28. validmind/tests/data_validation/FeatureTargetCorrelationPlot.py +59 -71
  29. validmind/tests/data_validation/HighCardinality.py +19 -12
  30. validmind/tests/data_validation/HighPearsonCorrelation.py +27 -22
  31. validmind/tests/data_validation/IQROutliersBarPlot.py +13 -10
  32. validmind/tests/data_validation/IQROutliersTable.py +40 -36
  33. validmind/tests/data_validation/IsolationForestOutliers.py +21 -14
  34. validmind/tests/data_validation/KPSS.py +34 -29
  35. validmind/tests/data_validation/LaggedCorrelationHeatmap.py +22 -15
  36. validmind/tests/data_validation/MissingValues.py +32 -27
  37. validmind/tests/data_validation/MissingValuesBarPlot.py +25 -21
  38. validmind/tests/data_validation/PearsonCorrelationMatrix.py +71 -84
  39. validmind/tests/data_validation/PhillipsPerronArch.py +37 -30
  40. validmind/tests/data_validation/RollingStatsPlot.py +31 -23
  41. validmind/tests/data_validation/ScatterPlot.py +63 -78
  42. validmind/tests/data_validation/SeasonalDecompose.py +38 -34
  43. validmind/tests/data_validation/Skewness.py +35 -37
  44. validmind/tests/data_validation/SpreadPlot.py +35 -35
  45. validmind/tests/data_validation/TabularCategoricalBarPlots.py +23 -17
  46. validmind/tests/data_validation/TabularDateTimeHistograms.py +21 -13
  47. validmind/tests/data_validation/TabularDescriptionTables.py +51 -16
  48. validmind/tests/data_validation/TabularNumericalHistograms.py +25 -22
  49. validmind/tests/data_validation/TargetRateBarPlots.py +21 -14
  50. validmind/tests/data_validation/TimeSeriesDescription.py +25 -18
  51. validmind/tests/data_validation/TimeSeriesDescriptiveStatistics.py +23 -17
  52. validmind/tests/data_validation/TimeSeriesFrequency.py +24 -17
  53. validmind/tests/data_validation/TimeSeriesHistogram.py +33 -32
  54. validmind/tests/data_validation/TimeSeriesLinePlot.py +17 -10
  55. validmind/tests/data_validation/TimeSeriesMissingValues.py +15 -10
  56. validmind/tests/data_validation/TimeSeriesOutliers.py +37 -33
  57. validmind/tests/data_validation/TooManyZeroValues.py +16 -11
  58. validmind/tests/data_validation/UniqueRows.py +11 -6
  59. validmind/tests/data_validation/WOEBinPlots.py +23 -16
  60. validmind/tests/data_validation/WOEBinTable.py +35 -30
  61. validmind/tests/data_validation/ZivotAndrewsArch.py +34 -28
  62. validmind/tests/data_validation/nlp/CommonWords.py +21 -14
  63. validmind/tests/data_validation/nlp/Hashtags.py +27 -20
  64. validmind/tests/data_validation/nlp/LanguageDetection.py +33 -14
  65. validmind/tests/data_validation/nlp/Mentions.py +21 -15
  66. validmind/tests/data_validation/nlp/PolarityAndSubjectivity.py +32 -9
  67. validmind/tests/data_validation/nlp/Punctuations.py +24 -20
  68. validmind/tests/data_validation/nlp/Sentiment.py +27 -8
  69. validmind/tests/data_validation/nlp/StopWords.py +26 -19
  70. validmind/tests/data_validation/nlp/TextDescription.py +36 -35
  71. validmind/tests/data_validation/nlp/Toxicity.py +32 -9
  72. validmind/tests/decorator.py +81 -42
  73. validmind/tests/model_validation/BertScore.py +36 -27
  74. validmind/tests/model_validation/BleuScore.py +25 -19
  75. validmind/tests/model_validation/ClusterSizeDistribution.py +38 -34
  76. validmind/tests/model_validation/ContextualRecall.py +35 -13
  77. validmind/tests/model_validation/FeaturesAUC.py +32 -13
  78. validmind/tests/model_validation/MeteorScore.py +46 -33
  79. validmind/tests/model_validation/ModelMetadata.py +32 -64
  80. validmind/tests/model_validation/ModelPredictionResiduals.py +75 -73
  81. validmind/tests/model_validation/RegardScore.py +30 -14
  82. validmind/tests/model_validation/RegressionResidualsPlot.py +10 -5
  83. validmind/tests/model_validation/RougeScore.py +36 -30
  84. validmind/tests/model_validation/TimeSeriesPredictionWithCI.py +30 -14
  85. validmind/tests/model_validation/TimeSeriesPredictionsPlot.py +27 -30
  86. validmind/tests/model_validation/TimeSeriesR2SquareBySegments.py +68 -63
  87. validmind/tests/model_validation/TokenDisparity.py +31 -23
  88. validmind/tests/model_validation/ToxicityScore.py +26 -17
  89. validmind/tests/model_validation/embeddings/ClusterDistribution.py +24 -20
  90. validmind/tests/model_validation/embeddings/CosineSimilarityComparison.py +30 -27
  91. validmind/tests/model_validation/embeddings/CosineSimilarityDistribution.py +7 -5
  92. validmind/tests/model_validation/embeddings/CosineSimilarityHeatmap.py +32 -23
  93. validmind/tests/model_validation/embeddings/DescriptiveAnalytics.py +7 -5
  94. validmind/tests/model_validation/embeddings/EmbeddingsVisualization2D.py +15 -11
  95. validmind/tests/model_validation/embeddings/EuclideanDistanceComparison.py +29 -29
  96. validmind/tests/model_validation/embeddings/EuclideanDistanceHeatmap.py +34 -25
  97. validmind/tests/model_validation/embeddings/PCAComponentsPairwisePlots.py +38 -26
  98. validmind/tests/model_validation/embeddings/StabilityAnalysis.py +40 -1
  99. validmind/tests/model_validation/embeddings/StabilityAnalysisKeyword.py +18 -17
  100. validmind/tests/model_validation/embeddings/StabilityAnalysisRandomNoise.py +40 -45
  101. validmind/tests/model_validation/embeddings/StabilityAnalysisSynonyms.py +17 -19
  102. validmind/tests/model_validation/embeddings/StabilityAnalysisTranslation.py +29 -25
  103. validmind/tests/model_validation/embeddings/TSNEComponentsPairwisePlots.py +38 -28
  104. validmind/tests/model_validation/ragas/AnswerCorrectness.py +5 -4
  105. validmind/tests/model_validation/ragas/AnswerRelevance.py +5 -4
  106. validmind/tests/model_validation/ragas/AnswerSimilarity.py +5 -4
  107. validmind/tests/model_validation/ragas/AspectCritique.py +7 -0
  108. validmind/tests/model_validation/ragas/ContextEntityRecall.py +9 -8
  109. validmind/tests/model_validation/ragas/ContextPrecision.py +5 -4
  110. validmind/tests/model_validation/ragas/ContextRecall.py +5 -4
  111. validmind/tests/model_validation/ragas/Faithfulness.py +5 -4
  112. validmind/tests/model_validation/ragas/utils.py +6 -0
  113. validmind/tests/model_validation/sklearn/AdjustedMutualInformation.py +19 -12
  114. validmind/tests/model_validation/sklearn/AdjustedRandIndex.py +22 -17
  115. validmind/tests/model_validation/sklearn/ClassifierPerformance.py +27 -25
  116. validmind/tests/model_validation/sklearn/ClusterCosineSimilarity.py +7 -5
  117. validmind/tests/model_validation/sklearn/ClusterPerformance.py +40 -78
  118. validmind/tests/model_validation/sklearn/ClusterPerformanceMetrics.py +15 -17
  119. validmind/tests/model_validation/sklearn/CompletenessScore.py +17 -11
  120. validmind/tests/model_validation/sklearn/ConfusionMatrix.py +22 -15
  121. validmind/tests/model_validation/sklearn/FeatureImportance.py +95 -0
  122. validmind/tests/model_validation/sklearn/FowlkesMallowsScore.py +7 -7
  123. validmind/tests/model_validation/sklearn/HomogeneityScore.py +19 -12
  124. validmind/tests/model_validation/sklearn/HyperParametersTuning.py +35 -30
  125. validmind/tests/model_validation/sklearn/KMeansClustersOptimization.py +10 -5
  126. validmind/tests/model_validation/sklearn/MinimumAccuracy.py +32 -32
  127. validmind/tests/model_validation/sklearn/MinimumF1Score.py +23 -23
  128. validmind/tests/model_validation/sklearn/MinimumROCAUCScore.py +15 -10
  129. validmind/tests/model_validation/sklearn/ModelsPerformanceComparison.py +26 -19
  130. validmind/tests/model_validation/sklearn/OverfitDiagnosis.py +38 -18
  131. validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py +31 -25
  132. validmind/tests/model_validation/sklearn/PopulationStabilityIndex.py +8 -6
  133. validmind/tests/model_validation/sklearn/PrecisionRecallCurve.py +24 -17
  134. validmind/tests/model_validation/sklearn/ROCCurve.py +12 -7
  135. validmind/tests/model_validation/sklearn/RegressionErrors.py +74 -130
  136. validmind/tests/model_validation/sklearn/RegressionErrorsComparison.py +27 -12
  137. validmind/tests/model_validation/sklearn/{RegressionModelsPerformanceComparison.py → RegressionPerformance.py} +18 -20
  138. validmind/tests/model_validation/sklearn/RegressionR2Square.py +55 -93
  139. validmind/tests/model_validation/sklearn/RegressionR2SquareComparison.py +32 -13
  140. validmind/tests/model_validation/sklearn/RobustnessDiagnosis.py +36 -32
  141. validmind/tests/model_validation/sklearn/SHAPGlobalImportance.py +7 -5
  142. validmind/tests/model_validation/sklearn/SilhouettePlot.py +27 -19
  143. validmind/tests/model_validation/sklearn/TrainingTestDegradation.py +25 -18
  144. validmind/tests/model_validation/sklearn/VMeasure.py +14 -13
  145. validmind/tests/model_validation/sklearn/WeakspotsDiagnosis.py +7 -5
  146. validmind/tests/model_validation/statsmodels/AutoARIMA.py +24 -18
  147. validmind/tests/model_validation/statsmodels/BoxPierce.py +14 -10
  148. validmind/tests/model_validation/statsmodels/CumulativePredictionProbabilities.py +73 -104
  149. validmind/tests/model_validation/statsmodels/DurbinWatsonTest.py +19 -12
  150. validmind/tests/model_validation/statsmodels/GINITable.py +44 -77
  151. validmind/tests/model_validation/statsmodels/JarqueBera.py +27 -22
  152. validmind/tests/model_validation/statsmodels/KolmogorovSmirnov.py +33 -34
  153. validmind/tests/model_validation/statsmodels/LJungBox.py +32 -28
  154. validmind/tests/model_validation/statsmodels/Lilliefors.py +27 -24
  155. validmind/tests/model_validation/statsmodels/PredictionProbabilitiesHistogram.py +87 -119
  156. validmind/tests/model_validation/statsmodels/RegressionCoeffs.py +100 -0
  157. validmind/tests/model_validation/statsmodels/RegressionFeatureSignificance.py +14 -9
  158. validmind/tests/model_validation/statsmodels/RegressionModelForecastPlot.py +17 -13
  159. validmind/tests/model_validation/statsmodels/RegressionModelForecastPlotLevels.py +46 -43
  160. validmind/tests/model_validation/statsmodels/RegressionModelSensitivityPlot.py +38 -36
  161. validmind/tests/model_validation/statsmodels/RegressionModelSummary.py +30 -28
  162. validmind/tests/model_validation/statsmodels/RegressionPermutationFeatureImportance.py +18 -11
  163. validmind/tests/model_validation/statsmodels/RunsTest.py +32 -28
  164. validmind/tests/model_validation/statsmodels/ScorecardHistogram.py +75 -107
  165. validmind/tests/model_validation/statsmodels/ShapiroWilk.py +15 -8
  166. validmind/tests/ongoing_monitoring/FeatureDrift.py +10 -6
  167. validmind/tests/ongoing_monitoring/PredictionAcrossEachFeature.py +31 -25
  168. validmind/tests/ongoing_monitoring/PredictionCorrelation.py +29 -21
  169. validmind/tests/ongoing_monitoring/TargetPredictionDistributionPlot.py +31 -23
  170. validmind/tests/prompt_validation/Bias.py +14 -11
  171. validmind/tests/prompt_validation/Clarity.py +16 -14
  172. validmind/tests/prompt_validation/Conciseness.py +7 -5
  173. validmind/tests/prompt_validation/Delimitation.py +23 -22
  174. validmind/tests/prompt_validation/NegativeInstruction.py +7 -5
  175. validmind/tests/prompt_validation/Robustness.py +12 -10
  176. validmind/tests/prompt_validation/Specificity.py +13 -11
  177. validmind/tests/prompt_validation/ai_powered_test.py +6 -0
  178. validmind/tests/run.py +68 -23
  179. validmind/unit_metrics/__init__.py +81 -144
  180. validmind/unit_metrics/classification/{sklearn/Accuracy.py → Accuracy.py} +1 -1
  181. validmind/unit_metrics/classification/{sklearn/F1.py → F1.py} +1 -1
  182. validmind/unit_metrics/classification/{sklearn/Precision.py → Precision.py} +1 -1
  183. validmind/unit_metrics/classification/{sklearn/ROC_AUC.py → ROC_AUC.py} +1 -2
  184. validmind/unit_metrics/classification/{sklearn/Recall.py → Recall.py} +1 -1
  185. validmind/unit_metrics/regression/{sklearn/AdjustedRSquaredScore.py → AdjustedRSquaredScore.py} +1 -1
  186. validmind/unit_metrics/regression/GiniCoefficient.py +1 -1
  187. validmind/unit_metrics/regression/HuberLoss.py +1 -1
  188. validmind/unit_metrics/regression/KolmogorovSmirnovStatistic.py +1 -1
  189. validmind/unit_metrics/regression/{sklearn/MeanAbsoluteError.py → MeanAbsoluteError.py} +1 -1
  190. validmind/unit_metrics/regression/MeanAbsolutePercentageError.py +1 -1
  191. validmind/unit_metrics/regression/MeanBiasDeviation.py +1 -1
  192. validmind/unit_metrics/regression/{sklearn/MeanSquaredError.py → MeanSquaredError.py} +1 -1
  193. validmind/unit_metrics/regression/QuantileLoss.py +1 -1
  194. validmind/unit_metrics/regression/{sklearn/RSquaredScore.py → RSquaredScore.py} +1 -1
  195. validmind/unit_metrics/regression/{sklearn/RootMeanSquaredError.py → RootMeanSquaredError.py} +1 -1
  196. validmind/vm_models/dataset/dataset.py +2 -0
  197. validmind/vm_models/figure.py +5 -0
  198. validmind/vm_models/test/result_wrapper.py +93 -132
  199. {validmind-2.5.8.dist-info → validmind-2.5.15.dist-info}/METADATA +1 -1
  200. {validmind-2.5.8.dist-info → validmind-2.5.15.dist-info}/RECORD +203 -210
  201. validmind/tests/data_validation/ANOVAOneWayTable.py +0 -138
  202. validmind/tests/data_validation/BivariateFeaturesBarPlots.py +0 -142
  203. validmind/tests/data_validation/BivariateHistograms.py +0 -117
  204. validmind/tests/data_validation/HeatmapFeatureCorrelations.py +0 -124
  205. validmind/tests/data_validation/MissingValuesRisk.py +0 -88
  206. validmind/tests/model_validation/ModelMetadataComparison.py +0 -59
  207. validmind/tests/model_validation/sklearn/FeatureImportanceComparison.py +0 -83
  208. validmind/tests/model_validation/statsmodels/RegressionCoeffsPlot.py +0 -135
  209. validmind/tests/model_validation/statsmodels/RegressionModelsCoeffs.py +0 -103
  210. {validmind-2.5.8.dist-info → validmind-2.5.15.dist-info}/LICENSE +0 -0
  211. {validmind-2.5.8.dist-info → validmind-2.5.15.dist-info}/WHEEL +0 -0
  212. {validmind-2.5.8.dist-info → validmind-2.5.15.dist-info}/entry_points.txt +0 -0
@@ -2,136 +2,104 @@
2
2
  # See the LICENSE file in the root of this repository for details.
3
3
  # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
4
 
5
- from dataclasses import dataclass
6
-
7
5
  import plotly.graph_objects as go
8
6
  from matplotlib import cm
9
7
 
10
- from validmind.vm_models import Figure, Metric
8
+ from validmind import tags, tasks
11
9
 
12
10
 
13
- @dataclass
14
- class ScorecardHistogram(Metric):
11
+ @tags("visualization", "credit_risk", "logistic_regression")
12
+ @tasks("classification")
13
+ def ScorecardHistogram(dataset, title="Histogram of Scores", score_column="score"):
15
14
  """
16
- Creates histograms of credit scores, from both default and non-default instances, generated by a credit-risk model.
17
-
18
- **Purpose**: The Scorecard Histogram test metric provides a visual interpretation of the credit scores generated by
19
- a machine learning model for credit-risk classification tasks. It aims to compare the alignment of the model's
20
- scoring decisions with the actual outcomes of credit loan applications. It helps in identifying potential
21
- discrepancies between the model's predictions and real-world risk levels.
22
-
23
- **Test Mechanism**: This metric uses logistic regression to generate a histogram of credit scores for both default
24
- (negative class) and non-default (positive class) instances. Using both training and test datasets, the metric
25
- calculates the credit score of each instance with a scorecard method, considering the impact of different features
26
- on the likelihood of default. İncludes the default point to odds (PDO) scaling factor and predefined target score
27
- and odds settings. Histograms for training and test sets are computed and plotted separately to offer insights into
28
- the model's generalizability to unseen data.
29
-
30
- **Signs of High Risk**:
31
- - Discrepancies between the distributions of training and testing data, indicating a model's poor generalisation
15
+ The Scorecard Histogram test evaluates the distribution of credit scores between default and non-default instances,
16
+ providing critical insights into the performance and generalizability of credit-risk models.
17
+
18
+ ### Purpose
19
+
20
+ The Scorecard Histogram test metric provides a visual interpretation of the credit scores generated by a machine
21
+ learning model for credit-risk classification tasks. It aims to compare the alignment of the model's scoring
22
+ decisions with the actual outcomes of credit loan applications. It helps in identifying potential discrepancies
23
+ between the model's predictions and real-world risk levels.
24
+
25
+ ### Test Mechanism
26
+
27
+ This metric uses logistic regression to generate a histogram of credit scores for both default (negative class) and
28
+ non-default (positive class) instances. Using both training and test datasets, the metric calculates the credit
29
+ score of each instance with a scorecard method, considering the impact of different features on the likelihood of
30
+ default. It includes the default point to odds (PDO) scaling factor and predefined target score and odds settings.
31
+ Histograms for training and test sets are computed and plotted separately to offer insights into the model's
32
+ generalizability to unseen data.
33
+
34
+ ### Signs of High Risk
35
+
36
+ - Discrepancies between the distributions of training and testing data, indicating a model's poor generalization
32
37
  ability
33
- - Skewed distributions favouring specific scores or classes, representing potential bias
38
+ - Skewed distributions favoring specific scores or classes, representing potential bias
39
+
40
+ ### Strengths
34
41
 
35
- **Strengths**:
36
42
  - Provides a visual interpretation of the model's credit scoring system, enhancing comprehension of model behavior
37
43
  - Enables a direct comparison between actual and predicted scores for both training and testing data
38
44
  - Its intuitive visualization helps understand the model's ability to differentiate between positive and negative
39
45
  classes
40
46
  - Can unveil patterns or anomalies not easily discerned through numerical metrics alone
41
47
 
42
- **Limitations**:
43
- - Despite its value for visual interpretation, it doesn't quantify the performance of the model, and therefore may
48
+ ### Limitations
49
+
50
+ - Despite its value for visual interpretation, it doesn't quantify the performance of the model and therefore may
44
51
  lack precision for thorough model evaluation
45
52
  - The quality of input data can strongly influence the metric, as bias or noise in the data will affect both the
46
53
  score calculation and resultant histogram
47
54
  - Its specificity to credit scoring models limits its applicability across a wider variety of machine learning
48
55
  tasks and models
49
- - The metric's effectiveness is somewhat tied to the subjective interpretation of the analyst, since it relies on
50
- the analyst's judgment of the characteristics and implications of the plot.
56
+ - The metric's effectiveness is somewhat tied to the subjective interpretation of the analyst, relying on their
57
+ judgment of the characteristics and implications of the plot.
51
58
  """
52
59
 
53
- name = "scorecard_histogram"
54
- required_inputs = ["datasets"]
55
- tasks = ["classification"]
56
- tags = ["tabular_data", "visualization", "credit_risk"]
60
+ if score_column not in dataset.df.columns:
61
+ raise ValueError(
62
+ f"The required column '{score_column}' is not present in the dataset with input_id {dataset.input_id}"
63
+ )
57
64
 
58
- default_params = {
59
- "title": "Histogram of Scores",
60
- "score_column": "score",
61
- }
65
+ df = dataset.df
62
66
 
63
- @staticmethod
64
- def plot_score_histogram(dataframes, dataset_titles, score_col, target_col, title):
65
- figures = []
66
- # Generate a colormap and convert to Plotly-accepted color format
67
- # Adjust 'viridis' to any other matplotlib colormap if desired
68
- colormap = cm.get_cmap("viridis")
69
-
70
- for _, (df, dataset_title) in enumerate(zip(dataframes, dataset_titles)):
71
- fig = go.Figure()
72
-
73
- # Get unique classes and assign colors
74
- classes = sorted(df[target_col].unique())
75
- colors = [
76
- colormap(i / len(classes))[:3] for i in range(len(classes))
77
- ] # RGB
78
- color_dict = {
79
- cls: f"rgb({int(rgb[0]*255)}, {int(rgb[1]*255)}, {int(rgb[2]*255)})"
80
- for cls, rgb in zip(classes, colors)
81
- }
82
-
83
- for class_value in sorted(df[target_col].unique()):
84
- scores_class = df[df[target_col] == class_value][score_col]
85
- fig.add_trace(
86
- go.Histogram(
87
- x=scores_class,
88
- opacity=0.75,
89
- name=f"{dataset_title} {target_col} = {class_value}",
90
- marker=dict(
91
- color=color_dict[class_value],
92
- ),
93
- )
94
- )
95
- fig.update_layout(
96
- barmode="overlay",
97
- title_text=f"{title} - {dataset_title}",
98
- xaxis_title="Score",
99
- yaxis_title="Frequency",
100
- legend_title=target_col,
101
- )
102
- figures.append(fig)
103
- return figures
104
-
105
- def run(self):
106
- title = self.params["title"]
107
- score_column = self.params["score_column"]
108
- dataset_titles = [dataset.input_id for dataset in self.inputs.datasets]
109
- target_column = self.inputs.datasets[0].target_column
110
-
111
- dataframes = []
112
- metric_value = {"score_histogram": {}}
113
- for dataset in self.inputs.datasets:
114
- if score_column not in dataset.df.columns:
115
- raise ValueError(
116
- f"The required column '{score_column}' is not present in the dataset with input_id {dataset.input_id}"
117
- )
118
-
119
- dataframes.append(dataset.df.copy())
120
- metric_value["score_histogram"][dataset.input_id] = list(
121
- dataset.df[score_column]
122
- )
67
+ fig = _plot_score_histogram(df, score_column, dataset.target_column, title)
123
68
 
124
- figures = self.plot_score_histogram(
125
- dataframes, dataset_titles, score_column, target_column, title
126
- )
69
+ return fig
127
70
 
128
- figures_list = [
129
- Figure(
130
- for_object=self,
131
- key=f"score_histogram_{title.replace(' ', '_')}_{i+1}",
132
- figure=fig,
133
- )
134
- for i, fig in enumerate(figures)
135
- ]
136
71
 
137
- return self.cache_results(metric_value=metric_value, figures=figures_list)
72
+ def _plot_score_histogram(df, score_col, target_col, title):
73
+ # Generate a colormap and convert to Plotly-accepted color format
74
+ # Adjust 'viridis' to any other matplotlib colormap if desired
75
+ colormap = cm.get_cmap("viridis")
76
+
77
+ fig = go.Figure()
78
+
79
+ # Get unique classes and assign colors
80
+ classes = sorted(df[target_col].unique())
81
+ colors = [colormap(i / len(classes))[:3] for i in range(len(classes))] # RGB
82
+ color_dict = {
83
+ cls: f"rgb({int(rgb[0]*255)}, {int(rgb[1]*255)}, {int(rgb[2]*255)})"
84
+ for cls, rgb in zip(classes, colors)
85
+ }
86
+
87
+ for class_value in sorted(df[target_col].unique()):
88
+ scores_class = df[df[target_col] == class_value][score_col]
89
+ fig.add_trace(
90
+ go.Histogram(
91
+ x=scores_class,
92
+ opacity=0.75,
93
+ name=f"{target_col} = {class_value}",
94
+ marker=dict(
95
+ color=color_dict[class_value],
96
+ ),
97
+ )
98
+ )
99
+ fig.update_layout(
100
+ barmode="overlay",
101
+ title_text=f"{title}",
102
+ xaxis_title="Score",
103
+ yaxis_title="Frequency",
104
+ )
105
+ return fig
@@ -11,29 +11,36 @@ class ShapiroWilk(Metric):
11
11
  """
12
12
  Evaluates feature-wise normality of training data using the Shapiro-Wilk test.
13
13
 
14
- **Purpose**: The Shapiro-Wilk test is utilized to investigate whether a particular dataset conforms to the standard
15
- normal distribution. This analysis is crucial in machine learning modeling because the normality of the data can
14
+ ### Purpose
15
+
16
+ The Shapiro-Wilk test is utilized to investigate whether a particular dataset conforms to the standard normal
17
+ distribution. This analysis is crucial in machine learning modeling because the normality of the data can
16
18
  profoundly impact the performance of the model. This metric is especially useful in evaluating various features of
17
19
  the dataset in both classification and regression tasks.
18
20
 
19
- **Test Mechanism**: The Shapiro-Wilk test is conducted on each feature column of the training dataset to determine
20
- if the data contained fall within the normal distribution. The test presents a statistic and a p-value, with the
21
- p-value serving to validate or repudiate the null hypothesis, which is that the tested data is normally distributed.
21
+ ### Test Mechanism
22
+
23
+ The Shapiro-Wilk test is conducted on each feature column of the training dataset to determine if the data
24
+ contained fall within the normal distribution. The test presents a statistic and a p-value, with the p-value
25
+ serving to validate or repudiate the null hypothesis, which is that the tested data is normally distributed.
26
+
27
+ ### Signs of High Risk
22
28
 
23
- **Signs of High Risk**:
24
29
  - A p-value that falls below 0.05 signifies a high risk as it discards the null hypothesis, indicating that the
25
30
  data does not adhere to the normal distribution.
26
31
  - For machine learning models built on the presumption of data normality, such an outcome could result in subpar
27
32
  performance or incorrect predictions.
28
33
 
29
- **Strengths**:
34
+ ### Strengths
35
+
30
36
  - The Shapiro-Wilk test is esteemed for its level of accuracy, thereby making it particularly well-suited to
31
37
  datasets of small to moderate sizes.
32
38
  - It proves its versatility through its efficient functioning in both classification and regression tasks.
33
39
  - By separately testing each feature column, the Shapiro-Wilk test can raise an alarm if a specific feature does
34
40
  not comply with the normality.
35
41
 
36
- **Limitations**:
42
+ ### Limitations
43
+
37
44
  - The Shapiro-Wilk test's sensitivity can be a disadvantage as it often rejects the null hypothesis (i.e., data is
38
45
  normally distributed), even for minor deviations, especially in large datasets. This may lead to unwarranted 'false
39
46
  alarms' of high risk by deeming the data as not normally distributed even if it approximates normal distribution.
@@ -16,37 +16,41 @@ def FeatureDrift(
16
16
  datasets, bins=[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], feature_columns=None
17
17
  ):
18
18
  """
19
- **Purpose**:
19
+ Evaluates changes in feature distribution over time to identify potential model drift.
20
+
21
+ ### Purpose
20
22
 
21
23
  The Feature Drift test aims to evaluate how much the distribution of features has shifted over time between two
22
24
  datasets, typically training and monitoring datasets. It uses the Population Stability Index (PSI) to quantify this
23
- change, providing insights into the model's robustness and the necessity for retraining or feature engineering.
25
+ change, providing insights into the models robustness and the necessity for retraining or feature engineering.
24
26
 
25
- **Test Mechanism**:
27
+ ### Test Mechanism
26
28
 
27
29
  This test calculates the PSI by:
30
+
28
31
  - Bucketing the distributions of each feature in both datasets.
29
32
  - Comparing the percentage of observations in each bucket between the two datasets.
30
33
  - Aggregating the differences across all buckets for each feature to produce the PSI score for that feature.
31
34
 
32
35
  The PSI score is interpreted as:
36
+
33
37
  - PSI < 0.1: No significant population change.
34
38
  - PSI < 0.2: Moderate population change.
35
39
  - PSI >= 0.2: Significant population change.
36
40
 
37
- **Signs of High Risk**:
41
+ ### Signs of High Risk
38
42
 
39
43
  - PSI >= 0.2 for any feature, indicating a significant distribution shift.
40
44
  - Consistently high PSI scores across multiple features.
41
45
  - Sudden spikes in PSI in recent monitoring data compared to historical data.
42
46
 
43
- **Strengths**:
47
+ ### Strengths
44
48
 
45
49
  - Provides a quantitative measure of feature distribution changes.
46
50
  - Easily interpretable thresholds for decision-making.
47
51
  - Helps in early detection of data drift, prompting timely interventions.
48
52
 
49
- **Limitations**:
53
+ ### Limitations
50
54
 
51
55
  - May not capture more intricate changes in data distribution nuances.
52
56
  - Assumes that bucket thresholds (quantiles) adequately represent distribution shifts.
@@ -12,31 +12,37 @@ from validmind import tags, tasks
12
12
  @tasks("monitoring")
13
13
  def PredictionAcrossEachFeature(datasets, model):
14
14
  """
15
- **Purpose:**
16
- This test shows visually the prediction using reference data and monitoring data across each individual feature. If
17
- there are significant differences in predictions across feature values from reference to monitoring dataset, then
18
- further investigation is needed as the model is producing predictions that are different than what was observed
19
- during the training of the model.
20
-
21
- **Test Mechanism:**
22
- The test creates scatter plots for each feature, comparing the reference dataset (used for training) with the
23
- monitoring dataset (used in production). Each plot has two subplots: one for the reference data and one for the
24
- monitoring data, visualizing the prediction probabilities. This allows for a visual comparison of the model's
25
- behavior across different datasets.
26
-
27
- **Signs of High Risk:**
28
- - Significant discrepancies between the reference and monitoring subplots for the same feature
29
- - Unexpected patterns or trends in monitoring data that weren't present in reference data
30
-
31
- **Strengths:**
32
- - Provides a clear visual representation of model performance across different features
33
- - Allows for easy identification of features where the model's predictions have changed
34
- - Facilitates quick detection of potential issues with the model when deployed in production
35
-
36
- **Limitations:**
37
- - Interpretation of scatter plots can be subjective and may require expertise
38
- - Visualizations do not provide quantitative metrics for objective evaluation
39
- - May not capture all types of distribution changes or issues with the model's predictions
15
+ Assesses differences in model predictions across individual features between reference and monitoring datasets
16
+ through visual analysis.
17
+
18
+ ### Purpose
19
+
20
+ The Prediction Across Each Feature test aims to visually compare model predictions for each feature between
21
+ reference (training) and monitoring (production) datasets. It helps identify significant differences in prediction
22
+ patterns for further investigation and ensures the model's consistency and stability over time.
23
+
24
+ ### Test Mechanism
25
+
26
+ The test generates scatter plots for each feature, comparing prediction probabilities between the reference and
27
+ monitoring datasets. Each plot consists of two subplots: one for reference data and one for monitoring data,
28
+ enabling visual comparison of the model's predictive behavior.
29
+
30
+ ### Signs of High Risk
31
+
32
+ - Significant discrepancies between the reference and monitoring subplots for the same feature.
33
+ - Unexpected patterns or trends in monitoring data that were absent in reference data.
34
+
35
+ ### Strengths
36
+
37
+ - Provides a clear visual representation of model performance across different features.
38
+ - Facilitates easy identification of features where the model's predictions have diverged.
39
+ - Enables quick detection of potential model performance issues in production.
40
+
41
+ ### Limitations
42
+
43
+ - Interpretation of scatter plots can be subjective and may require expertise.
44
+ - Visualizations do not provide quantitative metrics for objective evaluation.
45
+ - May not capture all types of distribution changes or issues with the model's predictions.
40
46
  """
41
47
 
42
48
  """
@@ -13,30 +13,38 @@ from validmind import tags, tasks
13
13
  @tasks("monitoring")
14
14
  def PredictionCorrelation(datasets, model):
15
15
  """
16
- **Purpose:**
17
- The test is used to assess the correlation pairs for each feature between model predictions from reference and
18
- monitoring datasets. The primary goal is to detect significant changes in these pairs, which may signal target
19
- drift, leading to lower model performance.
16
+ Assesses correlation changes between model predictions from reference and monitoring datasets to detect potential
17
+ target drift.
20
18
 
21
- **Test Mechanism:**
22
- The test calculates the correlation of each feature with model predictions for both reference and monitoring
23
- datasets. The test then compares these correlations side-by-side via a bar plot and a correlation table. Features
24
- with significant changes in correlation pairs highlight potential risks of model drift.
19
+ ### Purpose
20
+
21
+ To evaluate the changes in correlation pairs between model predictions and features from reference and monitoring
22
+ datasets. This helps in identifying significant shifts that may indicate target drift, potentially affecting model
23
+ performance.
24
+
25
+ ### Test Mechanism
26
+
27
+ This test calculates the correlation of each feature with model predictions for both reference and monitoring
28
+ datasets. It then compares these correlations side-by-side using a bar plot and a correlation table. Significant
29
+ changes in correlation pairs are highlighted to signal possible model drift.
30
+
31
+ ### Signs of High Risk
25
32
 
26
- **Signs of High Risk:**
27
33
  - Significant changes in correlation pairs between the reference and monitoring predictions.
28
- - Notable correlation differences indicating a potential shift in the relationship between features and the target
29
- variable.
30
-
31
- **Strengths:**
32
- - Allows for visual identification of drift in feature relationships with model predictions.
33
- - Comparison via a clear bar plot assists in understanding model stability over time.
34
- - Helps in early detection of target drift, enabling timely interventions.
35
-
36
- **Limitations:**
37
- - May require substantial reference and monitoring data for accurate comparison.
38
- - Correlation does not imply causation, and other factors might influence changes.
39
- - The method solely focuses on linear relationships, potentially missing non-linear interactions.
34
+ - Notable differences in correlation values, indicating a possible shift in the relationship between features and
35
+ the target variable.
36
+
37
+ ### Strengths
38
+
39
+ - Provides visual identification of drift in feature relationships with model predictions.
40
+ - Clear bar plot comparison aids in understanding model stability over time.
41
+ - Enables early detection of target drift, facilitating timely interventions.
42
+
43
+ ### Limitations
44
+
45
+ - Requires substantial reference and monitoring data for accurate comparison.
46
+ - Correlation does not imply causation; other factors may influence changes.
47
+ - Focuses solely on linear relationships, potentially missing non-linear interactions.
40
48
  """
41
49
 
42
50
  prediction_prob_column = f"{model.input_id}_probabilities"
@@ -12,29 +12,37 @@ from validmind import tags, tasks
12
12
  @tasks("monitoring")
13
13
  def TargetPredictionDistributionPlot(datasets, model):
14
14
  """
15
- **Purpose:**
16
- This test provides the prediction distributions from the reference dataset and the new monitoring dataset. If there
17
- are significant differences in the distributions, it might indicate different underlying data characteristics that
18
- warrant further investigation into the root causes.
19
-
20
- **Test Mechanism:**
21
- The methodology involves generating Kernel Density Estimation (KDE) plots for the prediction probabilities from
22
- both the reference and monitoring datasets. By comparing these KDE plots, one can visually assess any significant
23
- differences in the prediction distributions between the two datasets.
24
-
25
- **Signs of High Risk:**
26
- - Significant divergence between the distribution curves of the reference and monitoring predictions
27
- - Unusual shifts or bimodal distribution in the monitoring predictions compared to the reference predictions
28
-
29
- **Strengths:**
30
- - Visual representation makes it easy to spot differences in prediction distributions
31
- - Useful for identifying potential data drift or changes in underlying data characteristics
32
- - Simple and efficient to implement using standard plotting libraries
33
-
34
- **Limitations:**
35
- - Subjective interpretation of the visual plots
36
- - Might not pinpoint the exact cause of distribution changes
37
- - Less effective if the differences in distributions are subtle and not easily visible
15
+ Assesses differences in prediction distributions between a reference dataset and a monitoring dataset to identify
16
+ potential data drift.
17
+
18
+ ### Purpose
19
+
20
+ The Target Prediction Distribution Plot test aims to evaluate potential changes in the prediction distributions
21
+ between the reference and new monitoring datasets. It seeks to identify underlying shifts in data characteristics
22
+ that warrant further investigation.
23
+
24
+ ### Test Mechanism
25
+
26
+ This test generates Kernel Density Estimation (KDE) plots for prediction probabilities from both the reference and
27
+ monitoring datasets. By visually comparing the KDE plots, it assesses significant differences in the prediction
28
+ distributions between the two datasets.
29
+
30
+ ### Signs of High Risk
31
+
32
+ - Significant divergence between the distribution curves of reference and monitoring predictions.
33
+ - Unusual shifts or bimodal distribution in the monitoring predictions compared to the reference predictions.
34
+
35
+ ### Strengths
36
+
37
+ - Visual representation makes it easy to spot differences in prediction distributions.
38
+ - Useful for identifying potential data drift or changes in underlying data characteristics.
39
+ - Simple and efficient to implement using standard plotting libraries.
40
+
41
+ ### Limitations
42
+
43
+ - Subjective interpretation of the visual plots.
44
+ - Might not pinpoint the exact cause of distribution changes.
45
+ - Less effective if the differences in distributions are subtle and not easily visible.
38
46
  """
39
47
 
40
48
  pred_ref = datasets[0].y_prob_df(model)
@@ -27,42 +27,45 @@ from .ai_powered_test import (
27
27
  @dataclass
28
28
  class Bias(ThresholdTest):
29
29
  """
30
- Evaluates bias in a Large Language Model based on the order and distribution of exemplars in a prompt.
30
+ Assesses potential bias in a Large Language Model by analyzing the distribution and order of exemplars in the
31
+ prompt.
32
+
33
+ ### Purpose
31
34
 
32
- **Purpose:**
33
35
  The Bias Evaluation test calculates if and how the order and distribution of exemplars (examples) in a few-shot
34
36
  learning prompt affect the output of a Large Language Model (LLM). The results of this evaluation can be used to
35
37
  fine-tune the model's performance and manage any unintended biases in its results.
36
38
 
37
- **Test Mechanism:**
39
+ ### Test Mechanism
40
+
38
41
  This test uses two checks:
39
42
 
40
- 1. *Distribution of Exemplars:* The number of positive vs. negative examples in a prompt is varied. The test then
43
+ 1. **Distribution of Exemplars:** The number of positive vs. negative examples in a prompt is varied. The test then
41
44
  examines the LLM's classification of a neutral or ambiguous statement under these circumstances.
42
- 2. *Order of Exemplars:* The sequence in which positive and negative examples are presented to the model is
45
+ 2. **Order of Exemplars:** The sequence in which positive and negative examples are presented to the model is
43
46
  modified. Their resultant effect on the LLM's response is studied.
44
47
 
45
48
  For each test case, the LLM grades the input prompt on a scale of 1 to 10. It evaluates whether the examples in the
46
49
  prompt could produce biased responses. The test only passes if the score meets or exceeds a predetermined minimum
47
- threshold. This threshold is set at 7 by default, but it can be modified as per the requirements via the test
50
+ threshold. This threshold is set at 7 by default but can be modified as per the requirements via the test
48
51
  parameters.
49
52
 
50
- **Signs of High Risk:**
53
+ ### Signs of High Risk
51
54
 
52
55
  - A skewed result favoring either positive or negative responses may suggest potential bias in the model. This skew
53
56
  could be caused by an unbalanced distribution of positive and negative exemplars.
54
57
  - If the score given by the model is less than the set minimum threshold, it might indicate a risk of high bias and
55
58
  hence poor performance.
56
59
 
57
- **Strengths:**
60
+ ### Strengths
58
61
 
59
- - This test provides a quantitative measure of potential bias, providing clear guidelines for developers about
62
+ - This test provides a quantitative measure of potential bias, offering clear guidelines for developers about
60
63
  whether their Large Language Model (LLM) contains significant bias.
61
- - It's useful in evaluating the impartiality of the model based on the distribution and sequence of examples.
64
+ - It is useful in evaluating the impartiality of the model based on the distribution and sequence of examples.
62
65
  - The flexibility to adjust the minimum required threshold allows tailoring this test to stricter or more lenient
63
66
  bias standards.
64
67
 
65
- **Limitations:**
68
+ ### Limitations
66
69
 
67
70
  - The test may not pick up on more subtle forms of bias or biases that are not directly related to the distribution
68
71
  or order of exemplars.
@@ -29,36 +29,38 @@ class Clarity(ThresholdTest):
29
29
  """
30
30
  Evaluates and scores the clarity of prompts in a Large Language Model based on specified guidelines.
31
31
 
32
- **Purpose:**
32
+ ### Purpose
33
+
33
34
  The Clarity evaluation metric is used to assess how clear the prompts of a Large Language Model (LLM) are. This
34
35
  assessment is particularly important because clear prompts assist the LLM in more accurately interpreting and
35
36
  responding to instructions.
36
37
 
37
- **Test Mechanism:**
38
+ ### Test Mechanism
39
+
38
40
  The evaluation uses an LLM to scrutinize the clarity of prompts, factoring in considerations such as the inclusion
39
- of relevant details, persona adoption, step-by-step instructions, usage of examples and specification of desired
41
+ of relevant details, persona adoption, step-by-step instructions, usage of examples, and specification of desired
40
42
  output length. Each prompt is rated on a clarity scale of 1 to 10, and any prompt scoring at or above the preset
41
43
  threshold (default of 7) will be marked as clear. It is important to note that this threshold can be adjusted via
42
44
  test parameters, providing flexibility in the evaluation process.
43
45
 
44
- **Signs of High Risk:**
46
+ ### Signs of High Risk
45
47
 
46
48
  - Prompts that consistently score below the clarity threshold
47
- - Repeated failure of prompts to adhere to guidelines for clarity. These guidelines could include detail inclusion,
48
- persona adoption, explicit step-by-step instructions, use of examples, and specification of output length.
49
+ - Repeated failure of prompts to adhere to guidelines for clarity, including detail inclusion, persona adoption,
50
+ explicit step-by-step instructions, use of examples, and specification of output length
49
51
 
50
- **Strengths:**
52
+ ### Strengths
51
53
 
52
- - Encourages the development of more effective prompts that aid the LLM in interpreting instructions accurately.
53
- - Applies a quantifiable measure (a score from 1 to 10) to evaluate the clarity of prompts.
54
- - Threshold for clarity is adjustable, allowing for flexible evaluation depending on the context.
54
+ - Encourages the development of more effective prompts that aid the LLM in interpreting instructions accurately
55
+ - Applies a quantifiable measure (a score from 1 to 10) to evaluate the clarity of prompts
56
+ - Threshold for clarity is adjustable, allowing for flexible evaluation depending on the context
55
57
 
56
- **Limitations:**
58
+ ### Limitations
57
59
 
58
- - Scoring system is subjective and relies on the AI’s interpretation of 'clarity'.
60
+ - Scoring system is subjective and relies on the AI’s interpretation of 'clarity'
59
61
  - The test assumes that all required factors (detail inclusion, persona adoption, step-by-step instructions, use of
60
- examples, and specification of output length) contribute equally to clarity, which might not always be the case.
61
- - The evaluation may not be as effective if used on non-textual models.
62
+ examples, and specification of output length) contribute equally to clarity, which might not always be the case
63
+ - The evaluation may not be as effective if used on non-textual models
62
64
  """
63
65
 
64
66
  name = "clarity"