validmind 2.5.8__py3-none-any.whl → 2.5.15__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (212) hide show
  1. validmind/__version__.py +1 -1
  2. validmind/ai/test_descriptions.py +26 -7
  3. validmind/api_client.py +89 -43
  4. validmind/client.py +2 -2
  5. validmind/client_config.py +11 -14
  6. validmind/datasets/regression/fred_timeseries.py +67 -138
  7. validmind/template.py +1 -0
  8. validmind/test_suites/__init__.py +0 -2
  9. validmind/test_suites/statsmodels_timeseries.py +1 -1
  10. validmind/test_suites/summarization.py +0 -1
  11. validmind/test_suites/time_series.py +0 -43
  12. validmind/tests/__types__.py +3 -13
  13. validmind/tests/data_validation/ACFandPACFPlot.py +15 -13
  14. validmind/tests/data_validation/ADF.py +31 -24
  15. validmind/tests/data_validation/AutoAR.py +9 -9
  16. validmind/tests/data_validation/AutoMA.py +23 -16
  17. validmind/tests/data_validation/AutoSeasonality.py +18 -16
  18. validmind/tests/data_validation/AutoStationarity.py +21 -16
  19. validmind/tests/data_validation/BivariateScatterPlots.py +67 -96
  20. validmind/tests/data_validation/ChiSquaredFeaturesTable.py +82 -124
  21. validmind/tests/data_validation/ClassImbalance.py +15 -12
  22. validmind/tests/data_validation/DFGLSArch.py +19 -13
  23. validmind/tests/data_validation/DatasetDescription.py +17 -11
  24. validmind/tests/data_validation/DatasetSplit.py +7 -5
  25. validmind/tests/data_validation/DescriptiveStatistics.py +28 -21
  26. validmind/tests/data_validation/Duplicates.py +33 -25
  27. validmind/tests/data_validation/EngleGrangerCoint.py +35 -33
  28. validmind/tests/data_validation/FeatureTargetCorrelationPlot.py +59 -71
  29. validmind/tests/data_validation/HighCardinality.py +19 -12
  30. validmind/tests/data_validation/HighPearsonCorrelation.py +27 -22
  31. validmind/tests/data_validation/IQROutliersBarPlot.py +13 -10
  32. validmind/tests/data_validation/IQROutliersTable.py +40 -36
  33. validmind/tests/data_validation/IsolationForestOutliers.py +21 -14
  34. validmind/tests/data_validation/KPSS.py +34 -29
  35. validmind/tests/data_validation/LaggedCorrelationHeatmap.py +22 -15
  36. validmind/tests/data_validation/MissingValues.py +32 -27
  37. validmind/tests/data_validation/MissingValuesBarPlot.py +25 -21
  38. validmind/tests/data_validation/PearsonCorrelationMatrix.py +71 -84
  39. validmind/tests/data_validation/PhillipsPerronArch.py +37 -30
  40. validmind/tests/data_validation/RollingStatsPlot.py +31 -23
  41. validmind/tests/data_validation/ScatterPlot.py +63 -78
  42. validmind/tests/data_validation/SeasonalDecompose.py +38 -34
  43. validmind/tests/data_validation/Skewness.py +35 -37
  44. validmind/tests/data_validation/SpreadPlot.py +35 -35
  45. validmind/tests/data_validation/TabularCategoricalBarPlots.py +23 -17
  46. validmind/tests/data_validation/TabularDateTimeHistograms.py +21 -13
  47. validmind/tests/data_validation/TabularDescriptionTables.py +51 -16
  48. validmind/tests/data_validation/TabularNumericalHistograms.py +25 -22
  49. validmind/tests/data_validation/TargetRateBarPlots.py +21 -14
  50. validmind/tests/data_validation/TimeSeriesDescription.py +25 -18
  51. validmind/tests/data_validation/TimeSeriesDescriptiveStatistics.py +23 -17
  52. validmind/tests/data_validation/TimeSeriesFrequency.py +24 -17
  53. validmind/tests/data_validation/TimeSeriesHistogram.py +33 -32
  54. validmind/tests/data_validation/TimeSeriesLinePlot.py +17 -10
  55. validmind/tests/data_validation/TimeSeriesMissingValues.py +15 -10
  56. validmind/tests/data_validation/TimeSeriesOutliers.py +37 -33
  57. validmind/tests/data_validation/TooManyZeroValues.py +16 -11
  58. validmind/tests/data_validation/UniqueRows.py +11 -6
  59. validmind/tests/data_validation/WOEBinPlots.py +23 -16
  60. validmind/tests/data_validation/WOEBinTable.py +35 -30
  61. validmind/tests/data_validation/ZivotAndrewsArch.py +34 -28
  62. validmind/tests/data_validation/nlp/CommonWords.py +21 -14
  63. validmind/tests/data_validation/nlp/Hashtags.py +27 -20
  64. validmind/tests/data_validation/nlp/LanguageDetection.py +33 -14
  65. validmind/tests/data_validation/nlp/Mentions.py +21 -15
  66. validmind/tests/data_validation/nlp/PolarityAndSubjectivity.py +32 -9
  67. validmind/tests/data_validation/nlp/Punctuations.py +24 -20
  68. validmind/tests/data_validation/nlp/Sentiment.py +27 -8
  69. validmind/tests/data_validation/nlp/StopWords.py +26 -19
  70. validmind/tests/data_validation/nlp/TextDescription.py +36 -35
  71. validmind/tests/data_validation/nlp/Toxicity.py +32 -9
  72. validmind/tests/decorator.py +81 -42
  73. validmind/tests/model_validation/BertScore.py +36 -27
  74. validmind/tests/model_validation/BleuScore.py +25 -19
  75. validmind/tests/model_validation/ClusterSizeDistribution.py +38 -34
  76. validmind/tests/model_validation/ContextualRecall.py +35 -13
  77. validmind/tests/model_validation/FeaturesAUC.py +32 -13
  78. validmind/tests/model_validation/MeteorScore.py +46 -33
  79. validmind/tests/model_validation/ModelMetadata.py +32 -64
  80. validmind/tests/model_validation/ModelPredictionResiduals.py +75 -73
  81. validmind/tests/model_validation/RegardScore.py +30 -14
  82. validmind/tests/model_validation/RegressionResidualsPlot.py +10 -5
  83. validmind/tests/model_validation/RougeScore.py +36 -30
  84. validmind/tests/model_validation/TimeSeriesPredictionWithCI.py +30 -14
  85. validmind/tests/model_validation/TimeSeriesPredictionsPlot.py +27 -30
  86. validmind/tests/model_validation/TimeSeriesR2SquareBySegments.py +68 -63
  87. validmind/tests/model_validation/TokenDisparity.py +31 -23
  88. validmind/tests/model_validation/ToxicityScore.py +26 -17
  89. validmind/tests/model_validation/embeddings/ClusterDistribution.py +24 -20
  90. validmind/tests/model_validation/embeddings/CosineSimilarityComparison.py +30 -27
  91. validmind/tests/model_validation/embeddings/CosineSimilarityDistribution.py +7 -5
  92. validmind/tests/model_validation/embeddings/CosineSimilarityHeatmap.py +32 -23
  93. validmind/tests/model_validation/embeddings/DescriptiveAnalytics.py +7 -5
  94. validmind/tests/model_validation/embeddings/EmbeddingsVisualization2D.py +15 -11
  95. validmind/tests/model_validation/embeddings/EuclideanDistanceComparison.py +29 -29
  96. validmind/tests/model_validation/embeddings/EuclideanDistanceHeatmap.py +34 -25
  97. validmind/tests/model_validation/embeddings/PCAComponentsPairwisePlots.py +38 -26
  98. validmind/tests/model_validation/embeddings/StabilityAnalysis.py +40 -1
  99. validmind/tests/model_validation/embeddings/StabilityAnalysisKeyword.py +18 -17
  100. validmind/tests/model_validation/embeddings/StabilityAnalysisRandomNoise.py +40 -45
  101. validmind/tests/model_validation/embeddings/StabilityAnalysisSynonyms.py +17 -19
  102. validmind/tests/model_validation/embeddings/StabilityAnalysisTranslation.py +29 -25
  103. validmind/tests/model_validation/embeddings/TSNEComponentsPairwisePlots.py +38 -28
  104. validmind/tests/model_validation/ragas/AnswerCorrectness.py +5 -4
  105. validmind/tests/model_validation/ragas/AnswerRelevance.py +5 -4
  106. validmind/tests/model_validation/ragas/AnswerSimilarity.py +5 -4
  107. validmind/tests/model_validation/ragas/AspectCritique.py +7 -0
  108. validmind/tests/model_validation/ragas/ContextEntityRecall.py +9 -8
  109. validmind/tests/model_validation/ragas/ContextPrecision.py +5 -4
  110. validmind/tests/model_validation/ragas/ContextRecall.py +5 -4
  111. validmind/tests/model_validation/ragas/Faithfulness.py +5 -4
  112. validmind/tests/model_validation/ragas/utils.py +6 -0
  113. validmind/tests/model_validation/sklearn/AdjustedMutualInformation.py +19 -12
  114. validmind/tests/model_validation/sklearn/AdjustedRandIndex.py +22 -17
  115. validmind/tests/model_validation/sklearn/ClassifierPerformance.py +27 -25
  116. validmind/tests/model_validation/sklearn/ClusterCosineSimilarity.py +7 -5
  117. validmind/tests/model_validation/sklearn/ClusterPerformance.py +40 -78
  118. validmind/tests/model_validation/sklearn/ClusterPerformanceMetrics.py +15 -17
  119. validmind/tests/model_validation/sklearn/CompletenessScore.py +17 -11
  120. validmind/tests/model_validation/sklearn/ConfusionMatrix.py +22 -15
  121. validmind/tests/model_validation/sklearn/FeatureImportance.py +95 -0
  122. validmind/tests/model_validation/sklearn/FowlkesMallowsScore.py +7 -7
  123. validmind/tests/model_validation/sklearn/HomogeneityScore.py +19 -12
  124. validmind/tests/model_validation/sklearn/HyperParametersTuning.py +35 -30
  125. validmind/tests/model_validation/sklearn/KMeansClustersOptimization.py +10 -5
  126. validmind/tests/model_validation/sklearn/MinimumAccuracy.py +32 -32
  127. validmind/tests/model_validation/sklearn/MinimumF1Score.py +23 -23
  128. validmind/tests/model_validation/sklearn/MinimumROCAUCScore.py +15 -10
  129. validmind/tests/model_validation/sklearn/ModelsPerformanceComparison.py +26 -19
  130. validmind/tests/model_validation/sklearn/OverfitDiagnosis.py +38 -18
  131. validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py +31 -25
  132. validmind/tests/model_validation/sklearn/PopulationStabilityIndex.py +8 -6
  133. validmind/tests/model_validation/sklearn/PrecisionRecallCurve.py +24 -17
  134. validmind/tests/model_validation/sklearn/ROCCurve.py +12 -7
  135. validmind/tests/model_validation/sklearn/RegressionErrors.py +74 -130
  136. validmind/tests/model_validation/sklearn/RegressionErrorsComparison.py +27 -12
  137. validmind/tests/model_validation/sklearn/{RegressionModelsPerformanceComparison.py → RegressionPerformance.py} +18 -20
  138. validmind/tests/model_validation/sklearn/RegressionR2Square.py +55 -93
  139. validmind/tests/model_validation/sklearn/RegressionR2SquareComparison.py +32 -13
  140. validmind/tests/model_validation/sklearn/RobustnessDiagnosis.py +36 -32
  141. validmind/tests/model_validation/sklearn/SHAPGlobalImportance.py +7 -5
  142. validmind/tests/model_validation/sklearn/SilhouettePlot.py +27 -19
  143. validmind/tests/model_validation/sklearn/TrainingTestDegradation.py +25 -18
  144. validmind/tests/model_validation/sklearn/VMeasure.py +14 -13
  145. validmind/tests/model_validation/sklearn/WeakspotsDiagnosis.py +7 -5
  146. validmind/tests/model_validation/statsmodels/AutoARIMA.py +24 -18
  147. validmind/tests/model_validation/statsmodels/BoxPierce.py +14 -10
  148. validmind/tests/model_validation/statsmodels/CumulativePredictionProbabilities.py +73 -104
  149. validmind/tests/model_validation/statsmodels/DurbinWatsonTest.py +19 -12
  150. validmind/tests/model_validation/statsmodels/GINITable.py +44 -77
  151. validmind/tests/model_validation/statsmodels/JarqueBera.py +27 -22
  152. validmind/tests/model_validation/statsmodels/KolmogorovSmirnov.py +33 -34
  153. validmind/tests/model_validation/statsmodels/LJungBox.py +32 -28
  154. validmind/tests/model_validation/statsmodels/Lilliefors.py +27 -24
  155. validmind/tests/model_validation/statsmodels/PredictionProbabilitiesHistogram.py +87 -119
  156. validmind/tests/model_validation/statsmodels/RegressionCoeffs.py +100 -0
  157. validmind/tests/model_validation/statsmodels/RegressionFeatureSignificance.py +14 -9
  158. validmind/tests/model_validation/statsmodels/RegressionModelForecastPlot.py +17 -13
  159. validmind/tests/model_validation/statsmodels/RegressionModelForecastPlotLevels.py +46 -43
  160. validmind/tests/model_validation/statsmodels/RegressionModelSensitivityPlot.py +38 -36
  161. validmind/tests/model_validation/statsmodels/RegressionModelSummary.py +30 -28
  162. validmind/tests/model_validation/statsmodels/RegressionPermutationFeatureImportance.py +18 -11
  163. validmind/tests/model_validation/statsmodels/RunsTest.py +32 -28
  164. validmind/tests/model_validation/statsmodels/ScorecardHistogram.py +75 -107
  165. validmind/tests/model_validation/statsmodels/ShapiroWilk.py +15 -8
  166. validmind/tests/ongoing_monitoring/FeatureDrift.py +10 -6
  167. validmind/tests/ongoing_monitoring/PredictionAcrossEachFeature.py +31 -25
  168. validmind/tests/ongoing_monitoring/PredictionCorrelation.py +29 -21
  169. validmind/tests/ongoing_monitoring/TargetPredictionDistributionPlot.py +31 -23
  170. validmind/tests/prompt_validation/Bias.py +14 -11
  171. validmind/tests/prompt_validation/Clarity.py +16 -14
  172. validmind/tests/prompt_validation/Conciseness.py +7 -5
  173. validmind/tests/prompt_validation/Delimitation.py +23 -22
  174. validmind/tests/prompt_validation/NegativeInstruction.py +7 -5
  175. validmind/tests/prompt_validation/Robustness.py +12 -10
  176. validmind/tests/prompt_validation/Specificity.py +13 -11
  177. validmind/tests/prompt_validation/ai_powered_test.py +6 -0
  178. validmind/tests/run.py +68 -23
  179. validmind/unit_metrics/__init__.py +81 -144
  180. validmind/unit_metrics/classification/{sklearn/Accuracy.py → Accuracy.py} +1 -1
  181. validmind/unit_metrics/classification/{sklearn/F1.py → F1.py} +1 -1
  182. validmind/unit_metrics/classification/{sklearn/Precision.py → Precision.py} +1 -1
  183. validmind/unit_metrics/classification/{sklearn/ROC_AUC.py → ROC_AUC.py} +1 -2
  184. validmind/unit_metrics/classification/{sklearn/Recall.py → Recall.py} +1 -1
  185. validmind/unit_metrics/regression/{sklearn/AdjustedRSquaredScore.py → AdjustedRSquaredScore.py} +1 -1
  186. validmind/unit_metrics/regression/GiniCoefficient.py +1 -1
  187. validmind/unit_metrics/regression/HuberLoss.py +1 -1
  188. validmind/unit_metrics/regression/KolmogorovSmirnovStatistic.py +1 -1
  189. validmind/unit_metrics/regression/{sklearn/MeanAbsoluteError.py → MeanAbsoluteError.py} +1 -1
  190. validmind/unit_metrics/regression/MeanAbsolutePercentageError.py +1 -1
  191. validmind/unit_metrics/regression/MeanBiasDeviation.py +1 -1
  192. validmind/unit_metrics/regression/{sklearn/MeanSquaredError.py → MeanSquaredError.py} +1 -1
  193. validmind/unit_metrics/regression/QuantileLoss.py +1 -1
  194. validmind/unit_metrics/regression/{sklearn/RSquaredScore.py → RSquaredScore.py} +1 -1
  195. validmind/unit_metrics/regression/{sklearn/RootMeanSquaredError.py → RootMeanSquaredError.py} +1 -1
  196. validmind/vm_models/dataset/dataset.py +2 -0
  197. validmind/vm_models/figure.py +5 -0
  198. validmind/vm_models/test/result_wrapper.py +93 -132
  199. {validmind-2.5.8.dist-info → validmind-2.5.15.dist-info}/METADATA +1 -1
  200. {validmind-2.5.8.dist-info → validmind-2.5.15.dist-info}/RECORD +203 -210
  201. validmind/tests/data_validation/ANOVAOneWayTable.py +0 -138
  202. validmind/tests/data_validation/BivariateFeaturesBarPlots.py +0 -142
  203. validmind/tests/data_validation/BivariateHistograms.py +0 -117
  204. validmind/tests/data_validation/HeatmapFeatureCorrelations.py +0 -124
  205. validmind/tests/data_validation/MissingValuesRisk.py +0 -88
  206. validmind/tests/model_validation/ModelMetadataComparison.py +0 -59
  207. validmind/tests/model_validation/sklearn/FeatureImportanceComparison.py +0 -83
  208. validmind/tests/model_validation/statsmodels/RegressionCoeffsPlot.py +0 -135
  209. validmind/tests/model_validation/statsmodels/RegressionModelsCoeffs.py +0 -103
  210. {validmind-2.5.8.dist-info → validmind-2.5.15.dist-info}/LICENSE +0 -0
  211. {validmind-2.5.8.dist-info → validmind-2.5.15.dist-info}/WHEEL +0 -0
  212. {validmind-2.5.8.dist-info → validmind-2.5.15.dist-info}/entry_points.txt +0 -0
@@ -11,36 +11,41 @@ class JarqueBera(Metric):
11
11
  """
12
12
  Assesses normality of dataset features in an ML model using the Jarque-Bera test.
13
13
 
14
- **Purpose**: The purpose of the Jarque-Bera test as implemented in this metric is to determine if the features in
15
- the dataset of a given Machine Learning model follows a normal distribution. This is crucial for understanding the
16
- distribution and behavior of the model's features, as numerous statistical methods assume normal distribution of
17
- the data.
18
-
19
- **Test Mechanism**: The test mechanism involves computing the Jarque-Bera statistic, p-value, skew, and kurtosis
20
- for each feature in the dataset. It utilizes the 'jarque_bera' function from the 'statsmodels' library in Python,
21
- storing the results in a dictionary. The test evaluates the skewness and kurtosis to ascertain whether the dataset
22
- follows a normal distribution. A significant p-value (typically less than 0.05) implies that the data does not
23
- possess normal distribution.
24
-
25
- **Signs of High Risk**:
26
- - A high Jarque-Bera statistic and a low p-value (usually less than 0.05) indicates high-risk conditions.
14
+ ### Purpose
15
+
16
+ The purpose of the Jarque-Bera test as implemented in this metric is to determine if the features in the dataset of
17
+ a given Machine Learning model follow a normal distribution. This is crucial for understanding the distribution and
18
+ behavior of the model's features, as numerous statistical methods assume normal distribution of the data.
19
+
20
+ ### Test Mechanism
21
+
22
+ The test mechanism involves computing the Jarque-Bera statistic, p-value, skew, and kurtosis for each feature in
23
+ the dataset. It utilizes the 'jarque_bera' function from the 'statsmodels' library in Python, storing the results
24
+ in a dictionary. The test evaluates the skewness and kurtosis to ascertain whether the dataset follows a normal
25
+ distribution. A significant p-value (typically less than 0.05) implies that the data does not possess normal
26
+ distribution.
27
+
28
+ ### Signs of High Risk
29
+
30
+ - A high Jarque-Bera statistic and a low p-value (usually less than 0.05) indicate high-risk conditions.
27
31
  - Such results suggest the data significantly deviates from a normal distribution. If a machine learning model
28
32
  expects feature data to be normally distributed, these findings imply that it may not function as intended.
29
33
 
30
- **Strengths**:
31
- - This test provides insights into the shape of the data distribution, helping determine whether a given set of
32
- data follows a normal distribution.
33
- - This is particularly useful for risk assessment for models that assume a normal distribution of data.
34
+ ### Strengths
35
+
36
+ - Provides insights into the shape of the data distribution, helping determine whether a given set of data follows
37
+ a normal distribution.
38
+ - Particularly useful for risk assessment for models that assume a normal distribution of data.
34
39
  - By measuring skewness and kurtosis, it provides additional insights into the nature and magnitude of a
35
40
  distribution's deviation.
36
41
 
37
- **Limitations**:
38
- - The Jarque-Bera test only checks for normality in the data distribution. It cannot provide insights into other
39
- types of distributions.
42
+ ### Limitations
43
+
44
+ - Only checks for normality in the data distribution. It cannot provide insights into other types of distributions.
40
45
  - Datasets that aren't normally distributed but follow some other distribution might lead to inaccurate risk
41
46
  assessments.
42
- - The test is highly sensitive to large sample sizes, often rejecting the null hypothesis (that data is normally
43
- distributed) even for minor deviations in larger datasets.
47
+ - Highly sensitive to large sample sizes, often rejecting the null hypothesis (that data is normally distributed)
48
+ even for minor deviations in larger datasets.
44
49
  """
45
50
 
46
51
  name = "jarque_bera"
@@ -13,40 +13,39 @@ from validmind.vm_models import Metric, ResultSummary, ResultTable, ResultTableM
13
13
  @dataclass
14
14
  class KolmogorovSmirnov(Metric):
15
15
  """
16
- Executes a feature-wise Kolmogorov-Smirnov test to evaluate alignment with normal distribution in datasets.
17
-
18
- **Purpose**: This metric employs the Kolmogorov-Smirnov (KS) test to evaluate the distribution of a dataset's
19
- features. It specifically gauges whether the data from each feature aligns with a normal distribution, a common
20
- presumption in many statistical methods and machine learning models.
21
-
22
- **Test Mechanism**: This KS test calculates the KS statistic and the corresponding p-value for each column in a
23
- dataset. It achieves this by contrasting the cumulative distribution function of the dataset's feature with an
24
- ideal normal distribution. Subsequently, a feature-by-feature KS statistic and p-value are stored in a dictionary.
25
- The specific threshold p-value (the value below which we reject the hypothesis that the data is drawn from a normal
26
- distribution) is not firmly set within this implementation, allowing for definitional flexibility depending on the
27
- specific application.
28
-
29
- **Signs of High Risk**:
30
- - Elevated KS statistic for a feature combined with a low p-value. This suggests a significant divergence between
31
- the feature's distribution and a normal one.
32
- - Features with notable deviations. These could create problems if the applicable model makes assumptions about
33
- normal data distribution, thereby representing a risk.
34
-
35
- **Strengths**:
36
- - The KS test is acutely sensitive to differences in the location and shape of the empirical cumulative
37
- distribution functions of two samples.
38
- - It is non-parametric and does not presuppose any specific data distribution, making it adaptable to a range of
39
- datasets.
40
- - With its focus on individual features, it offers detailed insights into data distribution.
41
-
42
- **Limitations**:
43
- - The sensitivity of the KS test to disparities in data distribution tails can be excessive. Such sensitivity might
44
- prompt false alarms about non-normal distributions, particularly in situations where these tail tendencies are
45
- irrelevant to the model.
46
- - It could become less effective when applied to multivariate distributions, considering that it's primarily
47
- configured for univariate distributions.
48
- - As a goodness-of-fit test, the KS test does not identify specific types of non-normality, such as skewness or
49
- kurtosis, that could directly impact model fitting.
16
+ Assesses whether each feature in the dataset aligns with a normal distribution using the Kolmogorov-Smirnov test.
17
+
18
+ ### Purpose
19
+
20
+ The Kolmogorov-Smirnov (KS) test evaluates the distribution of features in a dataset to determine their alignment
21
+ with a normal distribution. This is important because many statistical methods and machine learning models assume
22
+ normality in the data distribution.
23
+
24
+ ### Test Mechanism
25
+
26
+ This test calculates the KS statistic and corresponding p-value for each feature in the dataset. It does so by
27
+ comparing the cumulative distribution function of the feature with an ideal normal distribution. The KS statistic
28
+ and p-value for each feature are then stored in a dictionary. The p-value threshold to reject the normal
29
+ distribution hypothesis is not preset, providing flexibility for different applications.
30
+
31
+ ### Signs of High Risk
32
+
33
+ - Elevated KS statistic for a feature combined with a low p-value, indicating a significant divergence from a
34
+ normal distribution.
35
+ - Features with notable deviations that could create problems if the model assumes normality in data distribution.
36
+
37
+ ### Strengths
38
+
39
+ - The KS test is sensitive to differences in the location and shape of empirical cumulative distribution functions.
40
+ - It is non-parametric and adaptable to various datasets, as it does not assume any specific data distribution.
41
+ - Provides detailed insights into the distribution of individual features.
42
+
43
+ ### Limitations
44
+
45
+ - The test's sensitivity to disparities in the tails of data distribution might cause false alarms about
46
+ non-normality.
47
+ - Less effective for multivariate distributions, as it is designed for univariate distributions.
48
+ - Does not identify specific types of non-normality, such as skewness or kurtosis, which could impact model fitting.
50
49
  """
51
50
 
52
51
  name = "kolmogorov_smirnov"
@@ -11,36 +11,40 @@ class LJungBox(Metric):
11
11
  """
12
12
  Assesses autocorrelations in dataset features by performing a Ljung-Box test on each feature.
13
13
 
14
- **Purpose**: The Ljung-Box test is a type of statistical test utilized to ascertain whether there are
15
- autocorrelations within a given dataset that differ significantly from zero. In the context of a machine learning
16
- model, this test is primarily used to evaluate data utilized in regression tasks, especially those involving time
17
- series and forecasting.
18
-
19
- **Test Mechanism**: The test operates by iterating over each feature within the training dataset and applying the
20
- `acorr_ljungbox` function from the `statsmodels.stats.diagnostic` library. This function calculates the Ljung-Box
21
- statistic and p-value for each feature. These results are then stored in a dictionary where the keys are the
22
- feature names and the values are dictionaries containing the statistic and p-value respectively. Generally, a lower
23
- p-value indicates a higher likelihood of significant autocorrelations within the feature.
24
-
25
- **Signs of High Risk**:
26
- - A high risk or failure in the model's performance relating to this test might be indicated by high Ljung-Box
27
- statistic values or low p-values.
28
- - These outcomes suggest the presence of significant autocorrelations in the respective features. If not properly
29
- consider or handle in the machine learning model, these can negatively affect model performance or bias.
30
-
31
- **Strengths**:
32
- - The Ljung-Box test is a powerful tool for detecting autocorrelations within datasets, especially in time series
33
- data.
34
- - It provides quantitative measures (statistic and p-value) that allow for precise evaluation of autocorrelation.
35
- - This test can be instrumental in avoiding issues related to autoregressive residuals and other challenges in
36
- regression models.
37
-
38
- **Limitations**:
39
- - The Ljung-Box test cannot detect all types of non-linearity or complex interrelationships among variables.
14
+ ### Purpose
15
+
16
+ The Ljung-Box test is a type of statistical test utilized to ascertain whether there are autocorrelations within a
17
+ given dataset that differ significantly from zero. In the context of a machine learning model, this test is
18
+ primarily used to evaluate data utilized in regression tasks, especially those involving time series and
19
+ forecasting.
20
+
21
+ ### Test Mechanism
22
+
23
+ The test operates by iterating over each feature within the training dataset and applying the `acorr_ljungbox`
24
+ function from the `statsmodels.stats.diagnostic` library. This function calculates the Ljung-Box statistic and
25
+ p-value for each feature. These results are then stored in a dictionary where the keys are the feature names and
26
+ the values are dictionaries containing the statistic and p-value respectively. Generally, a lower p-value indicates
27
+ a higher likelihood of significant autocorrelations within the feature.
28
+
29
+ ### Signs of High Risk
30
+
31
+ - High Ljung-Box statistic values or low p-values.
32
+ - Presence of significant autocorrelations in the respective features.
33
+ - Potential for negative impact on model performance or bias if autocorrelations are not properly handled.
34
+
35
+ ### Strengths
36
+
37
+ - Powerful tool for detecting autocorrelations within datasets, especially in time series data.
38
+ - Provides quantitative measures (statistic and p-value) for precise evaluation.
39
+ - Helps avoid issues related to autoregressive residuals and other challenges in regression models.
40
+
41
+ ### Limitations
42
+
43
+ - Cannot detect all types of non-linearity or complex interrelationships among variables.
40
44
  - Testing individual features may not fully encapsulate the dynamics of the data if features interact with each
41
45
  other.
42
- - It is designed more for traditional statistical models and may not be fully compatible with certain types of
43
- complex machine learning models.
46
+ - Designed more for traditional statistical models and may not be fully compatible with certain types of complex
47
+ machine learning models.
44
48
  """
45
49
 
46
50
  name = "ljung_box"
@@ -14,44 +14,47 @@ class Lilliefors(Metric):
14
14
  """
15
15
  Assesses the normality of feature distributions in an ML model's training dataset using the Lilliefors test.
16
16
 
17
- **Purpose**: The purpose of this metric is to utilize the Lilliefors test, named in honor of the Swedish
18
- statistician Hubert Lilliefors, in order to assess whether the features of the machine learning model's training
19
- dataset conform to a normal distribution. This is done because the assumption of normal distribution plays a vital
20
- role in numerous statistical procedures as well as numerous machine learning models. Should the features fail to
21
- follow a normal distribution, some model types may not operate at optimal efficiency. This can potentially lead to
22
- inaccurate predictions.
23
-
24
- **Test Mechanism**: The application of this test happens across all feature columns within the training dataset.
25
- For each feature, the Lilliefors test returns a test statistic and p-value. The test statistic quantifies how far
26
- the feature's distribution is from an ideal normal distribution, whereas the p-value aids in determining the
27
- statistical relevance of this deviation. The final results are stored within a dictionary, the keys of which
28
- correspond to the name of the feature column, and the values being another dictionary which houses the test
29
- statistic and p-value.
30
-
31
- **Signs of High Risk**:
17
+ ### Purpose
18
+
19
+ The purpose of this metric is to utilize the Lilliefors test, named in honor of the Swedish statistician Hubert
20
+ Lilliefors, in order to assess whether the features of the machine learning model's training dataset conform to a
21
+ normal distribution. This is done because the assumption of normal distribution plays a vital role in numerous
22
+ statistical procedures as well as numerous machine learning models. Should the features fail to follow a normal
23
+ distribution, some model types may not operate at optimal efficiency. This can potentially lead to inaccurate
24
+ predictions.
25
+
26
+ ### Test Mechanism
27
+
28
+ The application of this test happens across all feature columns within the training dataset. For each feature, the
29
+ Lilliefors test returns a test statistic and p-value. The test statistic quantifies how far the feature's
30
+ distribution is from an ideal normal distribution, whereas the p-value aids in determining the statistical
31
+ relevance of this deviation. The final results are stored within a dictionary, the keys of which correspond to the
32
+ name of the feature column, and the values being another dictionary which houses the test statistic and p-value.
33
+
34
+ ### Signs of High Risk
32
35
 
33
36
  - If the p-value corresponding to a specific feature sinks below a pre-established significance level, generally
34
37
  set at 0.05, then it can be deduced that the distribution of that feature significantly deviates from a normal
35
38
  distribution. This can present a high risk for models that assume normality, as these models may perform
36
39
  inaccurately or inefficiently in the presence of such a feature.
37
40
 
38
- **Strengths**:
41
+ ### Strengths
39
42
 
40
43
  - One advantage of the Lilliefors test is its utility irrespective of whether the mean and variance of the normal
41
44
  distribution are known in advance. This makes it a more robust option in real-world situations where these values
42
45
  might not be known.
43
- - Second, the test has the ability to screen every feature column, offering a holistic view of the dataset.
46
+ - The test has the ability to screen every feature column, offering a holistic view of the dataset.
44
47
 
45
- **Limitations**:
48
+ ### Limitations
46
49
 
47
50
  - Despite the practical applications of the Lilliefors test in validating normality, it does come with some
48
51
  limitations.
49
- - Firstly, it is only capable of testing unidimensional data, thus rendering it ineffective for datasets with
50
- interactions between features or multi-dimensional phenomena.
51
- - Additionally, the test might not be as sensitive as some other tests (like the Anderson-Darling test) in
52
- detecting deviations from a normal distribution.
53
- - Lastly, like any other statistical test, Lilliefors test may also produce false positives or negatives. Hence,
54
- banking solely on this test, without considering other characteristics of the data, may give rise to risks.
52
+ - It is only capable of testing unidimensional data, thus rendering it ineffective for datasets with interactions
53
+ between features or multi-dimensional phenomena.
54
+ - The test might not be as sensitive as some other tests (like the Anderson-Darling test) in detecting deviations
55
+ from a normal distribution.
56
+ - Like any other statistical test, Lilliefors test may also produce false positives or negatives. Hence, banking
57
+ solely on this test, without considering other characteristics of the data, may give rise to risks.
55
58
  """
56
59
 
57
60
  name = "lilliefors_test"
@@ -2,134 +2,102 @@
2
2
  # See the LICENSE file in the root of this repository for details.
3
3
  # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
4
 
5
- from dataclasses import dataclass
6
5
 
7
6
  import plotly.graph_objects as go
8
7
  from matplotlib import cm
9
8
 
10
- from validmind.vm_models import Figure, Metric
11
9
 
10
+ from validmind import tags, tasks
12
11
 
13
- @dataclass
14
- class PredictionProbabilitiesHistogram(Metric):
12
+
13
+ @tags("visualization", "credit_risk", "logistic_regression")
14
+ @tasks("classification")
15
+ def PredictionProbabilitiesHistogram(
16
+ dataset, model, title="Histogram of Predictive Probabilities"
17
+ ):
15
18
  """
16
- Generates and visualizes histograms of the Probability of Default predictions for both positive and negative
17
- classes in training and testing datasets.
18
-
19
- **Purpose**: This code is designed to generate histograms that display the Probability of Default (PD) predictions
20
- for positive and negative classes in both the training and testing datasets. By doing so, it evaluates the
21
- performance of a logistic regression model, particularly in the context of credit risk prediction.
22
-
23
- **Test Mechanism**: The metric executes these steps to run the test:
24
- - Firstly, it extracts the target column from both the train and test datasets.
25
- - The model's predict function is then used to calculate probabilities.
26
- - These probabilities are added as a new column to the training and testing dataframes.
27
- - Histograms are generated for each class (0 or 1 in binary classification scenarios) within the training and
28
- testing datasets.
29
- - To enhance visualization, the histograms are set to have different opacities.
30
- - The four histograms (two for training data and two for testing) are overlaid on two different subplot frames (one
31
- for training and one for testing data).
32
- - The test returns a plotly graph object displaying the visualization.
33
-
34
- **Signs of High Risk**: Several indicators could suggest a high risk or failure in the model's performance. These
35
- include:
36
- - Significant discrepancies observed between the histograms of training and testing data.
19
+ Assesses the predictive probability distribution for binary classification to evaluate model performance and
20
+ potential overfitting or bias.
21
+
22
+ ### Purpose
23
+
24
+ The Prediction Probabilities Histogram test is designed to generate histograms displaying the Probability of
25
+ Default (PD) predictions for both positive and negative classes in training and testing datasets. This helps in
26
+ evaluating the performance of a logistic regression model, particularly for credit risk prediction.
27
+
28
+ ### Test Mechanism
29
+
30
+ The metric follows these steps to execute the test:
31
+ - Extracts the target column from both the train and test datasets.
32
+ - Uses the model's predict function to calculate probabilities.
33
+ - Adds these probabilities as a new column to the training and testing dataframes.
34
+ - Generates histograms for each class (0 or 1) within the training and testing datasets.
35
+ - Sets different opacities for the histograms to enhance visualization.
36
+ - Overlays the four histograms (two for training and two for testing) on two different subplot frames.
37
+ - Returns a plotly graph object displaying the visualization.
38
+
39
+ ### Signs of High Risk
40
+
41
+ - Significant discrepancies between the histograms of training and testing data.
37
42
  - Large disparities between the histograms for the positive and negative classes.
38
- - These issues could signal potential overfitting or bias in the model.
39
- - Unevenly distributed probabilities may also indicate that the model does not accurately predict outcomes.
40
-
41
- **Strengths**: This metric and test offer several benefits, including:
42
- - The visual representation of the PD predictions made by the model, which aids in understanding the model's
43
- behaviour.
44
- - The ability to assess both the training and testing datasets, adding depth to the validation of the model.
45
- - Highlighting disparities between multiple classes, providing potential insights into class imbalance or data
46
- skewness issues.
47
- - Particularly beneficial for credit risk prediction, it effectively visualizes the spread of risk across different
48
- classes.
49
-
50
- **Limitations**: Despite its strengths, the test has several limitations:
51
- - It is specifically tailored for binary classification scenarios, where the target variable only has two classes;
52
- as such, it isn't suited for multi-class classification tasks.
53
- - This metric is mainly applicable for logistic regression models. It might not be effective or accurate when used
54
- on other model types.
55
- - While the test provides a robust visual representation of the model's PD predictions, it does not provide a
56
- quantifiable measure or score to assess model performance.
43
+ - Potential overfitting or bias indicated by significant issues.
44
+ - Unevenly distributed probabilities suggesting inaccurate model predictions.
45
+
46
+ ### Strengths
47
+
48
+ - Offers a visual representation of the PD predictions made by the model, aiding in understanding its behavior.
49
+ - Assesses both the training and testing datasets, adding depth to model validation.
50
+ - Highlights disparities between classes, providing insights into class imbalance or data skewness.
51
+ - Effectively visualizes risk spread, which is particularly beneficial for credit risk prediction.
52
+
53
+ ### Limitations
54
+
55
+ - Specifically tailored for binary classification scenarios and not suited for multi-class classification tasks.
56
+ - Mainly applicable to logistic regression models, and may not be effective for other model types.
57
+ - Provides a robust visual representation but lacks a quantifiable measure to assess model performance.
57
58
  """
58
59
 
59
- name = "prediction_probabilities_histogram"
60
- required_inputs = ["model", "datasets"]
61
- tasks = ["classification"]
62
- tags = ["tabular_data", "visualization", "credit_risk", "logistic_regression"]
63
-
64
- default_params = {"title": "Histogram of Predictive Probabilities"}
65
-
66
- @staticmethod
67
- def plot_prob_histogram(dataframes, dataset_titles, target_col, title):
68
- figures = []
69
-
70
- # Generate a colormap and convert to Plotly-accepted color format
71
- # Adjust 'viridis' to any other matplotlib colormap if desired
72
- colormap = cm.get_cmap("viridis")
73
-
74
- for i, (df, dataset_title) in enumerate(zip(dataframes, dataset_titles)):
75
- fig = go.Figure()
76
-
77
- # Get unique classes and assign colors
78
- classes = sorted(df[target_col].unique())
79
- colors = [
80
- colormap(i / len(classes))[:3] for i in range(len(classes))
81
- ] # RGB
82
- color_dict = {
83
- cls: f"rgb({int(rgb[0]*255)}, {int(rgb[1]*255)}, {int(rgb[2]*255)})"
84
- for cls, rgb in zip(classes, colors)
85
- }
86
-
87
- # Ensure classes are plotted in the specified order
88
- for class_value in sorted(df[target_col].unique()):
89
- fig.add_trace(
90
- go.Histogram(
91
- x=df[df[target_col] == class_value]["probabilities"],
92
- opacity=0.75,
93
- name=f"{dataset_title} {target_col} = {class_value}",
94
- marker=dict(
95
- color=color_dict[class_value],
96
- ),
97
- )
98
- )
99
- fig.update_layout(
100
- barmode="overlay",
101
- title_text=f"{title} - {dataset_title}",
102
- xaxis_title="Probability",
103
- yaxis_title="Frequency",
104
- )
105
- figures.append(fig)
106
- return figures
107
-
108
- def run(self):
109
- dataset_titles = [dataset.input_id for dataset in self.inputs.datasets]
110
- target_column = self.inputs.datasets[0].target_column
111
- title = self.params.get("title", self.default_params["title"])
112
-
113
- dataframes = []
114
- metric_value = {"prob_histogram": {}}
115
- for _, dataset in enumerate(self.inputs.datasets):
116
- df = dataset.df.copy()
117
- y_prob = dataset.y_prob(self.inputs.model)
118
- df["probabilities"] = y_prob
119
- dataframes.append(df)
120
- metric_value["prob_histogram"][dataset.input_id] = list(df["probabilities"])
121
-
122
- figures = self.plot_prob_histogram(
123
- dataframes, dataset_titles, target_column, title
124
- )
60
+ df = dataset.df
61
+ df["probabilities"] = dataset.y_prob(model)
125
62
 
126
- figures_list = [
127
- Figure(
128
- for_object=self,
129
- key=f"prob_histogram_{title.replace(' ', '_')}_{i+1}",
130
- figure=fig,
131
- )
132
- for i, fig in enumerate(figures)
133
- ]
63
+ fig = _plot_prob_histogram(df, dataset.target_column, title)
64
+
65
+ return fig
66
+
67
+
68
+ def _plot_prob_histogram(df, target_col, title):
134
69
 
135
- return self.cache_results(metric_value=metric_value, figures=figures_list)
70
+ # Generate a colormap and convert to Plotly-accepted color format
71
+ # Adjust 'viridis' to any other matplotlib colormap if desired
72
+ colormap = cm.get_cmap("viridis")
73
+
74
+ fig = go.Figure()
75
+
76
+ # Get unique classes and assign colors
77
+ classes = sorted(df[target_col].unique())
78
+ colors = [colormap(i / len(classes))[:3] for i in range(len(classes))] # RGB
79
+ color_dict = {
80
+ cls: f"rgb({int(rgb[0]*255)}, {int(rgb[1]*255)}, {int(rgb[2]*255)})"
81
+ for cls, rgb in zip(classes, colors)
82
+ }
83
+
84
+ # Ensure classes are plotted in the specified order
85
+ for class_value in sorted(df[target_col].unique()):
86
+ fig.add_trace(
87
+ go.Histogram(
88
+ x=df[df[target_col] == class_value]["probabilities"],
89
+ opacity=0.75,
90
+ name=f"{target_col} = {class_value}",
91
+ marker=dict(
92
+ color=color_dict[class_value],
93
+ ),
94
+ )
95
+ )
96
+ fig.update_layout(
97
+ barmode="overlay",
98
+ title_text=f"{title}",
99
+ xaxis_title="Probability",
100
+ yaxis_title="Frequency",
101
+ )
102
+
103
+ return fig
@@ -0,0 +1,100 @@
1
+ # Copyright © 2023-2024 ValidMind Inc. All rights reserved.
2
+ # See the LICENSE file in the root of this repository for details.
3
+ # SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
4
+
5
+
6
+ import pandas as pd
7
+ import plotly.graph_objects as go
8
+ from scipy import stats
9
+
10
+ from validmind.errors import SkipTestError
11
+ from validmind import tags, tasks
12
+
13
+
14
+ @tags("tabular_data", "visualization", "model_training")
15
+ @tasks("regression")
16
+ def RegressionCoeffs(model):
17
+ """
18
+ Assesses the significance and uncertainty of predictor variables in a regression model through visualization of
19
+ coefficients and their 95% confidence intervals.
20
+
21
+ ### Purpose
22
+
23
+ The `RegressionCoeffs` metric visualizes the estimated regression coefficients alongside their 95% confidence intervals,
24
+ providing insights into the impact and significance of predictor variables on the response variable. This visualization
25
+ helps to understand the variability and uncertainty in the model's estimates, aiding in the evaluation of the
26
+ significance of each predictor.
27
+
28
+ ### Test Mechanism
29
+
30
+ The function operates by extracting the estimated coefficients and their standard errors from the regression model.
31
+ Using these, it calculates the confidence intervals at a 95% confidence level, which indicates the range within which
32
+ the true coefficient value is expected to fall 95% of the time. The confidence intervals are computed using the
33
+ Z-value associated with the 95% confidence level. The coefficients and their confidence intervals are then visualized
34
+ in a bar plot. The x-axis represents the predictor variables, the y-axis represents the estimated coefficients, and
35
+ the error bars depict the confidence intervals.
36
+
37
+ ### Signs of High Risk
38
+
39
+ - The confidence interval for a coefficient contains the zero value, suggesting that the predictor may not significantly
40
+ contribute to the model.
41
+ - Multiple coefficients with confidence intervals that include zero, potentially indicating issues with model reliability.
42
+ - Very wide confidence intervals, which may suggest high uncertainty in the coefficient estimates and potential model
43
+ instability.
44
+
45
+ ### Strengths
46
+
47
+ - Provides a clear visualization that allows for easy interpretation of the significance and impact of predictor
48
+ variables.
49
+ - Includes confidence intervals, which provide additional information about the uncertainty surrounding each coefficient
50
+ estimate.
51
+
52
+ ### Limitations
53
+
54
+ - The method assumes normality of residuals and independence of observations, assumptions that may not always hold true
55
+ in practice.
56
+ - It does not address issues related to multi-collinearity among predictor variables, which can affect the interpretation
57
+ of coefficients.
58
+ - This metric is limited to regression tasks using tabular data and is not applicable to other types of machine learning
59
+ tasks or data structures.
60
+ """
61
+
62
+ if model.library != "statsmodels":
63
+ raise SkipTestError("Only statsmodels are supported for this metric")
64
+
65
+ # Extract estimated coefficients and standard errors
66
+ coefficients = model.regression_coefficients()
67
+ coef = pd.to_numeric(coefficients["coef"])
68
+ std_err = pd.to_numeric(coefficients["std err"])
69
+
70
+ # Calculate confidence intervals
71
+ confidence_level = 0.95 # 95% confidence interval
72
+ z_value = stats.norm.ppf((1 + confidence_level) / 2) # Calculate Z-value
73
+ lower_ci = coef - z_value * std_err
74
+ upper_ci = coef + z_value * std_err
75
+
76
+ # Create a bar plot with confidence intervals
77
+ fig = go.Figure()
78
+
79
+ fig.add_trace(
80
+ go.Bar(
81
+ x=list(coefficients["Feature"].values),
82
+ y=coef,
83
+ name="Estimated Coefficients",
84
+ error_y=dict(
85
+ type="data",
86
+ symmetric=False,
87
+ arrayminus=lower_ci,
88
+ array=upper_ci,
89
+ visible=True,
90
+ ),
91
+ )
92
+ )
93
+
94
+ fig.update_layout(
95
+ title=f"{model.input_id} Coefficients with Confidence Intervals",
96
+ xaxis_title="Predictor Variables",
97
+ yaxis_title="Coefficients",
98
+ )
99
+
100
+ return (fig, coefficients)